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Abstract

Maintainers face the daunting task of wading through

a collection of both new and old revisions, trying to fer-

ret out revisions which warrant personal inspection. One

can rank revisions by size/lines of code (LOC), but often,

due to the distribution of the size of changes, revisions will

be of similar size. If we can’t rank revisions by LOC per-

haps we can rank by Halstead’s and McCabe’s complexity

metrics? However, these metrics are problematic when ap-

plied to code fragments (revisions) written in multiple lan-

guages: special parsers are required which may not sup-

port the language or dialect used; analysis tools may not

understand code fragments. We propose using the statisti-

cal moments of indentation as a lightweight, language inde-

pendent, revision/diff friendly metric which actually proxies

classical complexity metrics. We have extensively evaluated

our approach against the entire CVS histories of the 278

of the most popular and most active SourceForge projects.

We found that our results are linearly correlated and rank-

correlated with traditional measures of complexity, suggest-

ing that measuring indentation is a cheap and accurate

proxy for code complexity of revisions. Thus ranking revi-

sions by the standard deviation and summation of indenta-

tion will be very similar to ranking revisions by complexity.

1 Introduction

Assessing the complexity and maintainability of changes
to large evolving software projects presents many tech-
nical challenges. Such systems are often heterogeneous:
they contain many sub-components written in multiple lan-
guages, and are stored using a variety of repository mecha-
nisms. However, maintainability metrics are commonly lan-
guage dependent, and computing them requires tools that
typically assume access to the full definitions of the soft-
ware entities, access which we might not have if we’re eval-
uating newly submitted patches.

This paper focuses on characterizing the complexity of
revisions (and thereby their maintainability) by measuring
the indentation of the change itself. The patches and revi-
sions are code fragments that represent the difference be-
tween old and new versions of software entities. Conse-
quently, measuring indentation is relatively language neu-
tral and does not require complete compilable sources.

We have taken this approach because revisions are the
currency of ongoing development. Developers and man-
agers typically want to understand what has happened to the
code base since the last revision. They want assurances that
new code will implement the desired enhancement or bug
fix, and will not break the existing system. Existing analy-
sis techniques and tools commonly assume access to com-
pilable source-code. By contrast we seek ways of reliably
and efficiently analyzing arbitrary code fragments — not
necessarily compilable — representing revisions to source
code. If we can measure or estimate the complexity of
source code changes we can better rank the complexity and
maintainability of these changed code fragments, such as
revisions in a source control repository. In turn, we could
help maintainers identify complex and error prone patches;
this is often valuable when analyzing and merging branches.

Proxies for complexity (McCabe’s Cyclomatic Com-
plexity [12] (MCC) and Halstead’s Complexity metrics [9])
are valuable because these metrics are combined with lines
of code LOC to produce maintainability metrics, such as
the maintainability index [15]. This means that by estimat-
ing complexity we are potentially estimating maintainabil-
ity. These complexity metrics are hard to apply to revisions
because the revisions are partial chunks of non-compilable
source code often written in a multitude of different lan-
guages. LOC is not enough because most revisions are quite
small so ranking by LOC doesn’t help us rank revisions of
the same size. The statistical moments of indentation are
relatively language agnostic, and easy to calculate as they
do not require grammar-level semantic knowledge of the
languages of the source code being analyzed.
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Variance and standard deviation of indentation and the
summation of indentation should be good indicators of the
complexity of source code. Varying indentation of code can
indicate there are changes at multiple levels of scope. We
assume that properly indented programs reveal their struc-
ture simply by indentation. For imperative and procedural
code indentation indicates functions and control structures
such as conditionals and loops. For OO languages such as
C++ and Java, indentation can indicate encapsulation and
depth of encapsulation via classes, subclasses, and methods.
Whereas for more functional languages such as OCaml,
Scheme and Lisp, indentation indicates new scope, new clo-
sures, new functions, and new expressions.

Multiple branches in source code will often imply a
larger variance or standard deviation of indentation, thus
statistical moments of indentation (the set of summary
statistics about the indentation) serves as a proxy to Mc-
Cabe’s Cyclomatic Complexity (MCC) as MCC counts
branching paths in code. The summation of indentation
proxies LOC and complexity as it grows with both line
count and indentation depth. Most code is shallow (0 to
2 levels of indentation (LIL) deep), thus deep code is rare
(in section 3.2 we show this fact).

To evaluate indentation metrics we must first see if it is
indeed regular. In section 3.2, we show that indentation is
very regular across all the languages we evaluated. This is
because programmers use indentation to aid the readability
of source code. Some programming languages like Python,
require indentation to indicate and maintain scope. The best
practices for the majority of languages used today — C,
C++, Java, Perl, Python, Ruby, PHP, etc. — dictate that
software should be properly indented so that it can be made
more readable [5, 14].

What we propose, and show, is that to rank revisions by
complexity we can rank them by their statistical moments
of indentation (average (AVG), median (MED), variance
(VAR), standard deviation (STD), sum of indented lines
(SUM)), since these measurements are correlated with com-
plexity metrics like McCabe Cyclomatic Complexity and
Halstead Complexity. As well, we show these statistical
moments of indentation can be combined in a linear manner
which correlates with the associated complexity measures.

Our contributions in this paper include:

• Evidence that ranking revisions by statistical moments
of indentation proxies ranking revisions by complexity
or maintainability.

• New metrics for measuring changes to source code.

• An empirical survey of indentation of popular OSS
projects found on Source-Forge.

• Measuring indentation is computationally cheaper
than applying complexity or maintainability metrics.

1.1 Previous Work

Indentation is often promoted for helping program read-
ability [14] and defining structure [16] in code. It can be
used to trace a program’s flow [11] and has been shown to
be generally helpful for program comprehension [13].

Indentation can be used for software visualization, in or-
der to provide an overview of a program’s structure [6].
Gorla et al. [8] uses inappropriate indentation as a code
quality metric. Some have compared indentation char-
acters to the non-indentation characters [2] and others have
measured the horizontal spacing (indented/non-indented) of
source code [4] . Other uses of indentation include plagia-
rism detection [3].

There are many complexity metrics, two popular met-
rics are McCabe’s Cyclomatic Complexity (MCC) [12] and
Halstead’s complexity metrics [9]. We are interested in
these two complexity metrics because many studies like that
of Oman et al. [15] use these metrics in calculations of
maintainability metrics.

McCabe Cyclomatic Complexity (MCC) counts branch-
ing and control flow in a program, this means counting
control flow structures and tokens. The accepted styles
of many programming languages dictate that code within
block structures such as if blocks, branches, loops and ex-
ceptions should be indented; this suggests that indentation
indicates branching, which suggests there is a potential cor-
relation with MCC. Other complexity metrics, such as Hal-
stead’s complexity metric, measure the number of unique
operators and operands. Although each metric measures
something different they all seem to be correlated with LOC
[10]. We applied MCC and Halstead complexity to source
code revisions, which relates to modification-aware change
metrics as discussed by German et al. [7].

1.2 Motivation

We need effective metrics for ranking revisions. We want
to be able to immediately and quickly ascertain, from a set
of changes, what are the valuable changes. We need met-
rics which operate on patches, diffs and revisions to source
code because that is often all we have. Sometimes we don’t
even have the original source code to combine with the revi-
sion. We can provide the diff, but the prerequisites of many
metrics require more than that. If we want to measure the
number of classes of a system, we need the source code,
and we must be able to parse it. In our case, source con-
trol repositories and revisions, most of the source code we
are parsing will not compile because we’re looking at small
chunks of source code.

Statistical moments of indentation require low semantic
awareness. Level of semantic awareness is how much in-
formation a metric needs about the system it is measuring,
LOC does not need to know what language it is measur-



ing where as Number of Comment Lines needs to know
what kind of language it is measuring. Semantic aware-
ness requires more than just knowing what language is be-
ing parsed, it needs to understand and know about compo-
nents of the language such as tokens, conditionals, com-
ments, statements and expressions.

Metrics can vary by their difficulty of implementation
and their computational performance, for example LOC can
be implemented with a simple character search. Indentation
measurements can be implemented using a simple scanner,
where as token based metrics such as Halstead’s complex-
ity metrics require a tokenizer for each particular language
studied. Using our tool we found that tokenizing took about
2 to 4 times more time than just counting indentation.

The rest of this paper has the following structure: we
introduce our methodology in section 2, we provide an
overview of the indentation we encountered (section 3), we
show how the indentation of diffs relate to complexity met-
rics of the revisions, we discuss our results, then suggest
threats to validity and conclude.

2 Methodology

Our methodology can be summarized as:

• Choose projects to study and download them. We
downloaded the CVS repositories of the top 250 Most
Active Source Forge projects and top 250 Most Pop-
ular (downloaded) Source Forge projects (as provided
by Source Forge on their website). This resulted in
278 projects since the two groups overlap and not all
projects had CVS repositories available at the time.

• Process the revisions. For each file, we extract each
individual revision and we analyze the indentation of
the new code.

• Run complexity metrics. We calculate the complexity
metrics for each revision.

• Correlate the indentation measurements and the com-
plexity metrics. We then analyze the results and ex-
tract correlations between complexity and the indent-
ation metrics.

2.1 Extraction and Measurement

For each revision to C, C++, Java, Perl, PHP, and Python
files, we analyzed the new and revised code. If one revi-
sion wasn’t contiguous we just evaluated the changed code
blocks (which we call diff-chunks, see figure 1 for an exam-
ple diff-chunk). We extracted about 13 million diff-chunks,
evaluating only the changed-to code (the new code). We did
not measure the initial commits because they would skew
the results as these are often full files that are imported, and

there were no previous revisions to revise. We measured
raw indentation and then calculated the logical indentation
as described in section 3.1.

We consider raw indentation to be the actual preceding
white space on each line. Logical indentation is the depth
of indentation that the programmers meant to portray. In
most cases 4 spaces, 8 spaces, or a tab could all be equiva-
lent to one unit of logical indentation. Logical indentation
is the unit in which the depth of indentation is measured,
where as raw indentation composes logical indentation. For
example, if a line consisted of “ def sqr”, where was
a leading space, we’d say it has 2 units of raw indentation
but it probably had 1 unit of logical indentation because it
was indented 1 level of indentation.

We measured each chunk by its LOC, and then we mea-
sured the statistics of raw and logical indentation of the
diff-chunk: average (IAVG and LAVG), median (IAVG and
LMED), standard deviation (ISTD and LSTD), variance
(IVAR and LVAR), and summation of indentation per line
(ISUM and LSUM). Also, we counted the frequency of in-
dentation depth to produce histograms. Figure 1 provides
an example of our measurement of a diff-chunk.

We also calculated MCC and Halstead Complexity met-
rics per each diff-chunk. Each metric used a tokenizing
strategy so running the metrics on broken code was straight-
forward. We used the full population of each data-set of
diff-chunks from each repository, minus values that were
removed because they contained or caused metrics to pro-
duce values such as Infinity or NaN (not a number). Figure
1 shows the application of MCC and Halstead Complexity
to a diff-chunk.

Since we were using multiple languages and partial
chunks of source code we had to make our own Halstead
and McCabe metrics for C, C++, Java, Perl, Python and
PHP. This helped us to maintain consistency across the
measurements between languages, as well allowed us to act
on the diff-chunks. We had 51GB of CVS repositories and
it took about 3 days of runtime to measure each revision of
every repository on an Intel Pentium IV; this resulted in 13
million diff chunks.

2.2 Analysis

To analyze the results we extracted, we used various
statistical tools for comparing distributions of indentation
depth and calculating correlations. Our data distributions
were usually discrete and positive. The matching distrib-
utions [1] often included the Pareto distribution, the Poisson
distribution, the Binomial distribution and the Exponential
distribution. We also use summary statistics on the count
data [1].

To show a similarity between indentation styles (the kind
of indentation used) we compare the distributions of indent-
ation of sets of revisions (indentation per revision per lang-



1 > vo id s q u a r e ( i n t ∗ a r r , i n t n ) {
2 > i n t i = 0 ;
3 > f o r ( i = 0 ; i < n ; i ++ ) {
4 > a r r [ i ] ∗= a r r [ i ] ;
5 > }
6 > }

Metric Raw Logical

LOC 6 6
AVG 3.33 0.833
MED 4 1
STD 2.75 0.687
VAR 9.07 0.567
SUM 20 5

MCC 2 2
HVOL 142 142
HDIFF 15 15

HEFFORT 2127 2127

Figure 1. An example diff-chunk with corresponding indentation and complexity metrics. This exam-
ple depicts a function being added, the first 6 metrics are calculated from measuring indentation of
the code example (see section 1). MCC is McCabe’s Cyclomatic complexity of the code example (1
loop, 1 function). HVOL, HDIFF, HEFFORT are Halstead Complexity metrics.

uage). We expect that similar indentation distributions sug-
gest similar styles of indentation, coding, indicating scope
and similar semantics. For instance C and C++ should be
similar since C++ and its syntax was derived from C.

If one measurement is similar or related to another
measurement, if it can replace the other, we need to show
there is a relationship between them. The easiest way to
show a relationship between two variables is to see how
well they correlate. We use correlation in this paper to show
a relationship between indentation metrics and code com-
plexity metrics, thereby showing that one could potentially
replace the other.

To determine correlations between variables we use two
kinds of correlations: linear correlation and rank-based cor-
relation. The difference is great: a linear correlation at-
tempts to show the strength of a linear relationship between
two or more variables. A rank-based correlation does not
rely on a linear relationship, it orders the variables, ranking
them from smallest to largest and then correlates those ranks
with the rank of the other variable. Thus if the high ranked
values for the first variable occur often with low ranked val-
ues of the second variable, the rank-based correlation will
be negative; if a high rank of one variable frequently cor-
responds to a high rank of the second variable the correla-
tion will be positive. Our linear correlation is the Pearson
Correlation Coefficient , our rank based correlations are the
Spearman-Rho Correlation Coefficient and the Kendall-Tau
Correlation Coefficient [1]. All three of these correlations
produce values between -1 and 1 where 0.1 to 0.25 indicates
a weak positive correlation (0 indicates no correlation), 0.25
to 0.75 indicates a medium positive correlation and 0.75 to
1.0 indicates a strong positive correlation (and vice versa
for negative correlations).

If there is truly a linear relationship, as suggested by a
linear correlation, we should be able to build a linear model

of complexity using indentation. The linear model of inden-
tation should be able to do better then a model composed
of only LOC. Thus to further support assertions of linear
correlation, we use Least Squares Linear Regression to pro-
duce a best fit of coefficients of our statistical moments of
indentation to both MCC and Halstead complexity metrics.
This method uses an R2 measure, which indicates the per-
cent of the variation between the model and the data that
is accounted for by the model. Larger values of R2 (0.6 or
greater) indicate a good linear fit.

To calculate these correlations we developed our own
software in OCaml which parallelized the correlation cal-
culations for Kendall-tau because Kendall-tau correlation
has a algorithmic complexity of O(N2), while Spearman
correlation has a complexity of O(Nlog(N)). This was a
problem because we had 13 million diff-chunks to correlate.
Our largest correlation, run on the C language, was on about
4 million diff-chunks. Our correlations took 8 CPU years to
calculate (which was collapsed down to a few actual weeks
on a cluster).

3 Indentation of Revisions

In this section we give an overview of the data we are
analyzing. We have the source code repositories of 278
Projects, of which, we evaluate 6 languages (C, C++, Java,
PHP, Perl, Python). We characterized the indentation depth
distributions of the languages and projects; we related the
languages with each other via their distributions.

3.1 Distributions of Indentation Depth

In general for all projects and languages we found that
the actual indentation follows a base 4 rule (raw indenta-
tion depth is usually divisible by 4, a single logical unit of



indentation was 4 spaces). A logical unit of indentation is
the depth of nesting a programmer wanted to convey; for
instance, inside of an if block a programmer probably often
means to indent the conditional code 1 more unit of logical
indentation, regardless if they use tabs or spaces to achieve
that. If tabs are used, they act as a single unit of logical in-
dentation. Tabs are often used to represent an even number
of spaces of indentation. One must note, this is not the in-
dentation of a released product, this is the indentation per
diff in the CVS repository.

In figure 3 we can see spikes appearing at line numbers
which are divisible by 4. Tabs were considered to be 8 char-
acters in depth. The spikes in the plots seem to indicate that
the data is composed of 2 distributions, the distribution of
the peaks and the distribution between the peaks. In figure
4 we can see a more smooth slope reminiscent of a Power
Law or an Exponential distribution [1]. What is important
here is that we can see that base 4 and base 8 levels of raw
indentation are very common, more common than base 2, it
also shows that this indentation is very regular.

3.2 Language Analysis

Java was notable because it seemed to have more noise
between the base 4 indentation levels. Some Java projects
used an initial indentation of one space. Since all methods
must be within a class, some Java programmers apparently
try to save screen space by indenting in only one space for
the initial classes’ scope. Java’s logical indentation distri-
bution was most similar to a Binomial distribution [1] with
a p value of 0.017, this is because of the tall peak at Logical
Indentation Level (LIL) 2.

Header files (.h files) for C and C++ were predictably
indented very little. LIL 0 was the most popular followed
by LIL 1. LIL 1 was composed of 4 spaces or 1 tab. There
were many lines (4th most frequent raw indentation depth)
indented by 1 or 2 spaces but there were more lines of LIL
1. According to figure 2, header files have the least similar
logical indentation distribution.

Perl’s indentation distribution is the closest to C and
PHP, although it shares some relation with Python. This
might be because classes in Perl do not require further in-
dentation since they are denoted by a package keyword.
Often, Perl code uses 4 spaces and tabs, although sometimes
2 spaces are used. All of the Perl indentation distributions
follow an exponential distribution.

Python’s logical indentation distribution is the most sim-
ilar to Java’s. Python is a unique language that uses inden-
tation to indicate scope, that is, indentation has semantics.
Python’s logical units of indentation were very consistent,
either 4 spaces or 1 tab. More lines were indented at LIL
1 or LIL 2 times than at LIL 0. Notably, Python’s logical
indentation distribution matched closest with a Poisson dis-
tribution.
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Figure 2. Logical Indentation Distribution
Similarity between Languages (1.0 indicates
they are very similar) (the asymmetry is due
to scaling each distribution per comparison)

PHP’s indentation was the most similar to C and Perl.
PHP stood out because it had some common deep inden-
tations with logical units of 1 tab and 4 spaces. It appears
that due to the mixing of HTML and PHP code that the log-
ical indentation units of PHP ends up being mixed between
spaces and tabs.

C++ files (.cpp files) were the most similar with .c files
and were somewhat similar with Perl files. Perl and C++
define methods similarly so this might have been the case.
C++ files had a definite pronounced non-base-4 heights, 2
spaces was quite common although most files followed a
4 spaces or tabbed indentation. 0 to 2 LILs were common
with C++.

C files (.c files) were very similar to C++ files in distri-
bution and style. 2 spaces were common units, although 4
spaces and tabs dominated. C’s indentation was more simi-
lar to C++’s than with the indentation of Perl or PHP.

4 Indentation and Complexity

In this section we correlate complexity metrics like Hal-
stead complexity and McCabe’s Cyclomatic complexity
with moments of indentation.

For McCabe’s Cyclomatic Complexity we measure the
MCC and the number of return statements. The Halstead
metric is a set of measurements of tokens: length (HLEN),
vocabulary (HVOCAB), volume (HVOL), difficulty (HD-
IFF) and effort (HEFFORT). We correlated these metrics
against the indentation metrics for raw indentation and log-
ical indentation. Our metrics were the statistical mom-
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ents (without skew or kurtosis) of raw and logical indent-
ation: LOC, IAVG and LAVG, IMED and LMED, ISTD
and LSTD, IVAR and LVAR, ISUM and LSUM.

4.1 Measures and Correlation

Our observation was that the AVG and MED did not cor-
relate well with any of the complexity metrics for both lin-
ear correlation (Pearson) and rank-based correlation (Spear-
man and Kendall).

LOC, SUM, STD, and VAR had medium strength (0.4
to 0.6) rank based correlations and small linear correlations
(0.2 to 0.4) with the complexity measures such as Halstead
Difficulty (HDIFF) and MCC. For MCC, LOC had a lin-
ear correlation of 0.75 and a rank-based correlation of 0.41
to 0.45. For HDIFF, LOC had rank and linear based cor-
relation of 0.49 to 0.55.

Halstead has count-based metrics such as Halstead
length, Halstead vocabulary and Halstead volume (these lin-
early correlated well with LOC and SUM). Halstead diffi-
culty and Halstead Effort try to estimate complexity based
on the number of unique operands and operators versus the
total number of operands and operators. Halstead Effort is
supposed to model the time it took to write the source code,
which correlates best with LOC in most cases.

4.2 Complexity and Language

In general, rank based correlations showed that SUM
and STD correlated better with complexity than LOC did.
For linear correlations LOC usually faired better than SUM.
Figures 5 and 6 depict the correlation coefficients of SUM
and STD. The Halstead length metrics all correlated best
with LOC, both with linear and rank-based correlations.

The C files had low scores for linear Pearson correlation,
with MCC correlating better with SUM than LOC. Rank
based correlations confirmed that LOC was correlated with
complexity measures but also that STD and VAR were im-
portant. Kendall correlation coefficients were lower than
Spearman coefficients. Both Spearman and Kendall corre-
lation of STD (Spearman 0.48, Kendall 0.44) were more
correlated with MCC than LOC (Spearman 0.43, Kendall
0.39).

For C++, SUM correlated linearly with MCC (0.79)
more than LOC (0.73). Although with rank based corre-
lation STD and VAR of indentation were equally correlated
with MCC ( 0.45)

For .h files, LOC, SUM, then STD, in descending order,
correlated well with HDIFF and MCC. Surprisingly SUM
correlated well with the number of returns and complexity
of functions and methods in .h files.
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For Java, LSUM linearly correlated with complexity bet-
ter than LOC (0.77 versus 0.76). For rank based measures
STD and VAR had medium correlations with MCC and HD-
IFF (0.43 − 0.45).

For PHP, rank based correlations of MCC with STD and
SUM were better correlated than LOC. For linear correla-
tion both SUM and LOC were correlated to complexity.

Python files were interesting as their linear correlation
between LOC and complexity was relatively low (0.64 and
0.49). STD had a medium linear correlation with HDIFF
(0.39).

For Perl, STD was more correlated linearly with HDIFF
than with LOC (0.47 versus 0.42), although LOC strongly
linearly correlated with MCC (0.75). For rank based cor-
relations STD is correlated best for MCC (Spearman 0.52,
and Kendall 0.47) and SUM correlated best with HDIFF
(Spearman 0.47 and Kendall 0.44).

Thus for all the languages we have shown strong and
medium linear correlations between MCC and HDIFF with
LOC and SUM. We have also shown for all languages stud-
ied, there were medium strength linear and rank-based cor-
relations between complexity, HDIFF and STD and VAR.

4.3 Complexity Correlation per Project

For most projects, LSUM and ISUM had a greater lin-
ear correlation for MCC than LOC, although LOC was just
above SUM for HDIFF. For rank based correlation STD and
SUM were better correlated than LOC for complexity, but
LOC was better correlated for HDIFF.

Some projects had relatively strong linear (0.55 to 0.67)

correlations between complexity and STD, such projects in-
cluded: Sodipodi, Bittorrent, Dynapi, Aureal, PHPnuke.
Some projects which did not linearly correlate (0.01 to
0.07): CrystalSpace, sed, jedit, BOOST. For rank based
correlations, Bastille-Linux, Unikey, Sodipodi and OpenCV
were above 0.67 (Bittorrent, Dynapi, Aureal, and PHPNuke
were all above 0.5).

4.4 Linear Combinations

To further show the linear relationship between inden-
tation metrics and complexity metrics we tried to linearly
model each of MCC and Halstead difficulty with our mom-
ents of indentation. Our model is:

c = α1β1 + α2β2...αn−1βn−1 + αnβn

where c is MCC or HDIFF and α1 through αn are the co-
efficients of the indentation metrics that enumerated as β1

through βn where n is the number of indentation metrics.
In the model shown in table 1, we do not use LOC as we
want to see if the linear relationship still holds without LOC.
Without SUM and withoutLOC most of the R2 values are
very low. For MCC, LOC does not improve the R2 much,
it increases from 0.385 to 0.388; this implies that our in-
dentation metrics provide most of the information that LOC
provides.

Halstead difficulty had worse results than McCabe’s
Cyclomatic complexity (R2 of 0.20−0.22) and Halstead Ef-
fort had an R2 below 0.041. Halstead Volume and Length
had the highest R2 values of 0.6 and 0.5. This suggests



Coefficient Value

-0.03 IAVG
0.05 IMED
-0.05 ISTD

4.81e-05 IVAR
3.93e-05 ISUM

0.16 LMED
0.28 LSTD
-0.10 LVAR
0.08 LSUM

Table 1. Coefficients for the linear model of
complexity. This model had a R2 of 0.385

that the important Halstead metrics such as difficulty were
harder to model linearly than MCC.

We can see there is some linear relationship between
statistical moments of indentation and complexity, although
there is a lot of variation unaccounted for in these models.
LOC on its own does not fare well against most of mea-
sures: Halstead volume (R2 of 0.59) , Halstead length (R2

of 0.51), number of returns (R2 of 0.38) and MCC (R2 of
0.29). We can see that by including indentation metrics in
our model we do gain information and accuracy from our
linear models. We have shown that there is value in measur-
ing indentation as well as LOC as we can model complexity
more accurately with indentation and LOC combined.

5 Discussion

We can see from the results there is some correlation be-
tween our indentation measures and traditional complexity
measures (McCabe’s and Halstead’s). There is some linear
correlation and there is some better rank based correlation
but it is not overly strong. This suggests that our statistical
moments of indentation can be used as proxies for ranking
revisions by complexity; the larger our measurements the
more complex the code, particularly the larger the standard
deviation and summation of indentation the more complex
the code.

Standard deviation of indentation seems to be a good
proxy for complexity because one could argue that the
greater the change in indentation depth, the more complex
the statements are in that code block. A large standard
deviation in indentation could indicate multiple if blocks or
expressions within a diff-chunk, which would correlate well
with Halstead’s complexity metrics.

We noticed there was little difference between logical
and non-logical indentation in the correlations. This sug-
gests two things: that the relationship between logical and
non-logical indentation is for the most part linear (for exam-
ples 4 spaces are often 1 logical unit) and that indentation

is regular enough that logical indentation does not matter.
What it also suggests is that the out-lier indentations, non-
base 4 indentations, do not affect the results much otherwise
there would be significant differences between raw indenta-
tion and logical indentation.

Indentation can provide information that a tokenizer
could not, indentation can show the scope of expressions
whereas a tokenizer provides a flattened representation. To
get the information that indentation supplies one would
have to parse the source code into a tree. Although Indenta-
tion can proxy complexity metrics, it is potentially its own
complexity metric. Halstead’s metrics do not count scope
where as MCC often does, but indentation will capture more
scoping semantics than MCC because not every new scope
is a new branch in the code.

6 Validity Threats

Our work potentially suffers from a few threats to va-
lidity. The five main categories of these threats are: met-
ric application issues, sampling issues, data cleaning issues,
language issues, and development tool issues.

Our measurement of MCC and Halstead Complexity was
done on revisions, not on methods, functions, modules, or
files. Often these measurements are taken at a semantic
level of structural granularity (functions, modules) but we
only applied them to diff-chunks.

We sampled popular SourceForge projects which had ac-
cessible CVS repositories. This might not be representative
of many classes of software.

Our choice of languages were the 6 most popular lan-
guages in the repository other than XML, Makefiles and
shell scripts. These languages are related to each other
through a common heritage of C and thus are syntactically
similar. The results per each of these languages could be
very similar due to shared syntax. Thus our results might
not be truly generalizable.

7 Conclusions

We have shown with sufficient confidence that to rank
revisions by statistical moments of indentation is analogous
to ranking revisions by complexity or maintainability. We
have also provided some evidence that measuring statistical
moments of indentation is more computationally efficient
than applying the complexity metrics.

We tested and confirmed our assertion that indentation
was a meaningful proxy for code complexity. It has been
suggested by others [10] that LOC correlated with com-
plexity metrics well enough such that complexity metrics
weren’t needed. We have shown through correlations and
linear models that cheap metrics such as the statistical mo-
ments of indentation, when combined with LOC or alone,



can be used to better model and simulate complexity mea-
sures than just LOC alone. We showed that for revisions
to source code, there were medium to strong linear and
rank based correlations between complexity metrics and the
summation and standard deviation of indentation. In many
cases summation of indentation and standard deviation of
indentation did better than LOC, especially with rank based
correlations. We found little difference between raw and
logical indentation metrics with respect to complexity.

We have provided an overview of indentation with re-
spect to a large body of successful, popular Open Source
software, as ranked by Source Forge. We have shown that
indentation is actually quite regular across multiple lan-
guages, at least for the projects we sampled.We expected
common logical units of indentation of 2 spaces to be fre-
quent, but across all of the languages, 4 spaces of indenta-
tion or 1 tab of indentation were the most common logical
units. We compared the distributions of indentation per lan-
guage to each other and found that the indentation of one
language was often similar to another. For instance Python
and Java had similar indentation styles, while Perl, C and
PHP were similar to each other, C and C++ were very sim-
ilar to each other.

We have shown that indentation is regular and consis-
tent enough to be worth measuring. We demonstrated the
value of measuring indentation along side LOC, it can be
used as a proxy for complexity, and it is almost as cheap as
LOC to calculate. Thus with the knowledge that indenta-
tion metrics are generally language agnostic, language un-
aware and cheap to calculate, we can use them as cheap
proxies for complexity and maintainability of source code
revisions. These measurements help to quickly and effi-
ciently rank patches to source code by their complexity and
maintainability.

7.1 Future Work

Future work should include the investigation of if our
results hold for other languages as well, particularly those
which do not have a shared history with C. Languages such
as Smalltalk, LISP, Scheme, Dylan, and Ruby are more for-
eign to C than Java, C++, Perl, PHP and Python.

We want to investigate if the shape of the indentation
matters. This would including testing if code changes that
have bubble shaped indentation are more complex than code
with flat indentation.

We measured the indentation of revisions in this paper,
perhaps we should measure code characters per line or to-
kens per line. Alternatively we could also compare com-
plete versions of a system before and after a revision rather
than just measuring the source code deltas.
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