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Abstract

The main goal of any object-oriented analysis (OOA) method is to clarify a problem by modeling

the problem and its domain. Therefore, the most important artifact that results from OOA is the

domain model, which is usually realized as a class diagram that describes the core concepts in the

domain and their relationships. Ideally, a mature engineering process is repeatable: analysts given

the same problem and instructions to follow the same OOA process should produce semantically

similar domain models.

This work compares the observed semantic similarity among the different domain models pro-

duced by one process for one system by different users of the process when the process is one



of:

1. creation of use cases (UCs), then sequence diagrams, then a domain model, and

2. creation of UCs, then a unified UC statechart, then a domain model.

One process was used to produce 31 specifications of a large VoIP system and its accompanying

information management system. The other process was used to produce 34 specifications of the

same system. The data show that domain models produced using the second process were 10%

more semantically similar to each other than those produced using the first process, but at a cost, by

one measure, of up to 25% more time, spent in learning the process and in requirements elicitation.

1 Introduction

In 1967, Dahl and Nygaard presented the first object-oriented programming (OOP) language,

Simula 67 [8]. In 1982, Booch published his paper on object-oriented design (OOD) [4]. In

1988, Shlaer and Mellor published their book on object-oriented analysis (OOA) [27]. These

three events were major milestones in the development of the object-oriented (OO) paradigm of

software development. Today, object orientation is not just one of the oldest software development

paradigms, it is also one of the most widespread. From OOP languages to different OO modeling

standards and frameworks, object orientation shapes the ways we think about business and software

systems, how we organize our development processes, and so on.

From more than 25 years of hindsight, it appears that the eventual widespread adoption of object

orientation was fueled partially by the impact of Booch’s 1982 paper “Object-Oriented Design”

[4], and in particular, due to his claim of how easy it is to identify the objects of a problem, their

attributes, and their operations by looking for nouns, adjectives, verbs, and adverbs in a written

description of the problem. This identification forms the essence of an OOD method that Booch

was advocating. In turn, these two steps form the foundation of what is today known as OOA.
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With almost equal hindsight, we can safely say that these tasks arenot that simpleand, as stated,

they are not sufficient for the production of high-quality OOA models. Indeed, Hatton [14] has

presented empirical evidence that calls into question the fundamental idea that the main benefit

of object orientation is that an object-oriented program accurately models its domain, and there-

fore its validity is easy to ascertain. Earlier, Santos (now Ramos) and Carvalho [25] performed

an empirical assessment of the applicability of OOA to the development of information systems

(ISs) and found that with their subjects, OOA led to good models of an IS itself but did not lead

to adequate models of the processes of the organization that owns the IS. More generally, Hatton

[14], Kaindl [16], and Kramer [17] have indicated an urgent need for experimentation aimed at val-

idating the effectiveness of all software engineering abstraction techniques and methods including

object-oriented techniques.

This paper and a companion paper [30] are derived from the first author’s Ph.D. thesis [29],

which describes an attempt to fulfill the need identified by Hatton, Kaindl, and Kramer with respect

to one particular OOA method, the Use Case Unification Method (UCUM), a method to build a

domain model (DM) of a computer-based system (CBS) that is to be developed. In the OOA

literature [e.g., 20], this DM is known as a OOA class model or as a conceptual model.

This DM is built in the context of an RE effort to elicit and analyze requirements, and eventually

to specify in a Software Requirements Specification (SRS) document the CBS’s desired behavior

and properties, i.e., the CBS’srequirements. The portion of the real world that a CBS is supposed

to automate is the CBS’sdomain. In use-case-driven requirements analysis methods [e.g., 21], the

first task analysts perform in modeling the behavior of the CBS being built is to writeuse cases

(UCs) that describe the CBS’s intended behavior. A UC of a CBS is one particular way some user

of the CBS uses the CBS to achieve stakeholders’ goals. Domain experts and analysts together

typically capture UCs during and after requirements elicitation from many stakeholders, each with

a different perspective. The description of a UC is typically given at the shared-interface level,

showing the CBS as a monolithic black box.

From these UCs, the analysts begin to model the entire CBS’s domain. In object-oriented anal-
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ysis (OOA), the analysts break down and describe the entire CBS’s domain in terms of objects that

are used later as the main source of objects for object-oriented design (OOD).Conceptual analysis

is this whole process of discovering and specifying concepts from a domain with the goal of pro-

ducing a DM. Traditionally, conceptual analysis proceeds by creating sequence diagrams from the

UCs, then choosing objects, and finally assigning behavior to these objects in order to capture the

combined behavior of all UCs.

Recently, among others, Glinz [11]; Whittle and Schumann [31]; and Harel, Kugler, and Pnueli

[13] have suggested in three different formal methods that it might be worthwhile to build a be-

havioral model of the entire domain prior to decomposing the DM into objects. UCUM, as an

implementation of this suggestion, was developed iteratively and collaboratively by us and some

of our students as a means to deal with difficulties that our students were having when they tried

to build DMs for CBSs in courses we were teaching. In UCUM, a statechart [12] representation

of the CBS’s domain as a UC statechart is constructed prior to decomposing the system into ob-

jects. Thus, UCUM is an informal variant of the more formal methods that suggested its creation.

UCUM is described in detail both in the first author’s Ph.D. thesis and in the companion paper,

which shows an example application of UCUM to build a DM for a standard Turnstile Control

System [3].

The companion paper discusses the difficulties we had observed among our students, confirm-

ing that OOA is not as simple as the folklore claims it is. It presents a qualitative evaluation of

UCUM’s effectiveness in attacking these difficulties. The companion paper concludes that UCUM

is straightforward to learn and to apply, that it provides signifcant help in handling the observed

DM building difficulties, that it helps students produce better than average models, but that it is not

the cure to all DM building difficulties.

The present paper addresses a different measure of the quality UCUM as a method. It compares

the repeatability of UCUM to that of traditional OOA. Ideally, given the same problem domain and

the same OOA method, identical DMs should result. However, achieving identical DMs is highly

unlikely in practice: different analysts may have different abilities and experiences, and these
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differences often strongly influence the results of performing domain analysis. Hence, we settle

for semanticallysimilar DMs as a sign of a repeatable method for generating DMs. Therefore, the

repeatability of a method is assessed by examining the semantic similarity of the DMs that result

from different people using the method on the same problem in the same context or environment.

The results from the data we gathered show that the DMs of one large CBS produced by students

using UCUM are about 10% more semantically similar to each other than are the DMs of the same

large CBS produced by students using more traditional OOA with no notion of unification of use

cases.

In addition to the quantitative comparison of the repeatability of two OOA methods, this paper

provides also (1) a discussion of the role of semantic similarity in evaluating a method’s repeata-

bility; (2) for the sake of experimental replication, a detailed description of how to determine

in which of two sets of DMs are the DMs more semantically similar to each other; and (3) an

in-depth analysis of the quantitative results, which provides insights for further improvements of

OOA methods.

Accordingly, Section 2 discusses repeatability and explains why it is a desirable property of

methods. Section 3 describes the background and context of the two case studies, each with a

set of DMs produced with the help of one of the OOA methods. Section 4 describes a procedure

for comparing the semantic similarity of the DMs in two sets of DMs. Section 5 describes the

actual comparison of the semantic similarity of the elements of each of the two sets of DMs that

are in the two case studies. Section 6 describes the results and the lessons learned from the case

studies. Section 7 discusses related work whose results conflict with those of this paper. Section 8

concludes the paper.

2 Repeatability and Semantic Similarity

The goal of this paper is to determine whether UCUM as a method of building DMs is more

repeatable than is traditional OOA with no notion of unification of use cases. Given two methods,

M andN , for building DMs,M is deemed more repeatable thanN if the DMs of a CBS produced
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by analysts usingM are moresemantically similarto each other than are the DMs of the same

CBS produced by similar analysts usingN . By “similar analysts” we mean designers of roughly

the same background and experience, such as students taking the same course at one university.

2.1 High Level Definition of Semantic Similarity

We use the termsemantic similarityto indicate the degree of closeness that independently pro-

duced DMs of one domain may share. More formally, we use a generalized definition of semantic

similarity [2]:

Semantic similarity, variously also called semantic closeness/proximity/nearness, is a

concept whereby a set of documents or terms within term lists are assigned a metric

based on the likeness of their meaning/semantic content.

The metric used in this work is domain-expert opinion combined with manual clustering. The

actual method used to evaluate semantic similarity is described in Section 4 after the presentation

of data from the case studies that prompted the discovery of the evaluation method. For now, this

section assumes an intuitive notion of semantic similarity.

Semantic similarity is not new and has been used quite extensively in practice and research. For

example, the basis for the concepts of reference architectures and design patterns [e.g., 10, 7] is in

the idea that all architectures matching a reference architecture and all design patterns matching a

particular design are semantically similar.

2.2 Why Repeatability?

Each of science and engineering depends on repeatable results. Science requires that a result be

reproducible before it can be accepted as fact, and engineering strives to develop reliable processes

for achieving consistent outcomes. Furthermore, there has recently been much discussion of the

scientific underpinnings of modelling; Booch, for example, has discussed the notion of modelling-

as-science being something worth striving for [5].
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In the context of software RE, an ideal modeling process is one that produces high quality

models consistently and reliably. That is, for any given problem and encompassing domain, two

teams of requirements engineers who follow the process are likely to come up with semantically

similar solutions that are of good quality.

Repeatability for OOA as an engineering method means that given the same domain, different

analysts applying the same OOA would be expected to produce semantically similar models of the

same domain. Thus, semantic similarity of the results of several applications of an OOA method

to one domain is a direct measure of the repeatability of the OOA method.

2.3 Semantic Similarity, Method Repeatability, and Quality

Guttorm Sindre, one of the authors of “Understanding Quality in Conceptual Modeling” [22]

and of other works dealing with the quality of RE modeling [18, 19], observed in paraphrased

private communication [28], that

• Semantic similarity of models does not prove quality, as the models could be of similarly

poor quality. There are many factors other than just pure modeling that affect the similarity

and the quality of models. However, it would be reasonable to assume that the fact that

two independently produced models are similar at least increases the confidence that both

modeling efforts have been performed well and that this confidence grows as the number of

independently produced models grows beyond two.

• Semantic dissimilarity of models need not imply poor quality of any of the models, as the

models could be for different purposes and from different viewpoints. However, in a situation

in which (1) all analysts start from the same and very fixed source of information, and each is

asked to produce a model with the same and very fixed purpose—as is often done in student

exercises or experiments—and in which (2) the semantic quality of the models is measured as

the correspondence between the model and the textual description, one might expect more

semantic similarity between independently produced models than in other situations. In

this case, it might be possible to argue that semantic similarity of the models increases the
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likelihood that all are of high quality. In this case, semantic similarity might be seen as a

sign of quality not only of the models and modelers but also of the modeling language and

modeling method; that is, the models are more semantically similar because the modeling

method is clear and easily followed, supporting consistent application of modeling language

concepts by independent modelers.

3 Background and Context

The motivation for the development of UCUM came from our observations of our students’

work in the requirements analysis and specification of a computer-based system (CBS) composed

of

1. a telephone exchange or a Voice-over-IP (VOIP) system and

2. its information management system (IMS).

Production of the specification, in the form of a SRS document, is the term-long project carried

out in the first course of a three-course sequence of software engineering courses that span the last

three terms of the undergraduate software engineering program at the University of Waterloo [26].

In later courses, students design, implement, test, and enhance the CBS specified in the SRS.

From 2000 until 2005, the first author played a wide variety of roles in this course, serving as

teaching assistant (TA), group coordinator, UML and SDL instructor, project evaluator, and finally,

head TA. The first author reviewed over 135 SRSs, out of over 195 that were developed in this time

interval by 3-or-4-student groups of over 740 software engineering, computer science, and elec-

trical and computer engineering students. During the same period, each of the other authors was

the instructor-in-charge for at least one offering of the course. The instructor-in-charge has overall

responsibility for the contents, requirements, and marking for the course. This educational experi-

ence has given the authors the opportunity to observe various software analysis and specification

issues from different perspectives.
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The project in the three-course sequence involves using various techniques for developing soft-

ware for real-time systems and OO techniques for developing information systems. Use cases

(UCs) [e.g., 20] are used to capture requirements, and OOA is used as a bridge to later OOD. The

real-time components of the CBS are specified using formal finite-state modeling in the Specifi-

cation and Description Language (SDL) [6]. The information-system components of the CBS are

specified using the notations of the Unified Modeling Language (UML) [24]. In addition, students

are responsible for modeling user interfaces of the IMS and for the overall management of the

requirements specification process. The average size of the resulting SRS document for the whole

CBS is 120 pages, with actual sizes ranging anywhere from 80 to 250 pages.

In order to deal with the difficulties that the students had when using UC-driven OOA, we

decided to introduce a method based on performing detailed behavioral analysis of the domain

through the unification of the behavior described in UCs into an integrated behavioral model shown

as one statechart. Once we decided to use statecharts as the notation in which to unify the UCs,

we had to develop a unification method, to apply it in practice, and to evaluate the results. The

method, which builds on using statecharts to model UCs and then unifying the UC statecharts into

a unified UC statechart [11, 31, 13], is the new OOA method that we called “UCUM”. More details

on the origin of UCUM are found in the companion paper.

After two full terms in which the students in the course learned and used UCUM to produce DMs

for their SRSs, we felt that the quality of the students’ DMs had improved. The first author began,

for his Ph.D. research, after-the-fact analyses of the DMs and SRSs produced by the students in

three consecutive offerings of the CS445 course, the first not using UCUM and the second and third

using UCUM, for the purpose of evaluating the quality of UCUM as a method for producing DMs.

All the results are reported in the first author’s Ph.D. thesis, and many of the qualitative results are

reported in the companion paper. As mentioned, this paper focuses on the quantitative evaluation

of the repeatability of UCUM for producing DMs. Moreover, it uses the data from the first two

of the three consecutive offering of the course. These two offerings were in fact the last offering

without UCUM, followed by the first offering with UCUM. Because the only difference, other than
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the set of students, between these two offerings was in the OOA method, these two offerings have

more similar contexts than do any other pair of non-UCUM-using and UCUM-using offerings.

The repeatability of UCUM and of ordinary OOA for producing DMs were evaluated by after-

the-fact analyses of the DMs produced by two consecutive offerings of CS445. Each term’s DMs

formed one case study:

1. CS O31VS1, examining 31 large-sized SRSs of a VoIP CBS and its IMS, produced without

using UCUM as group term-long projects in one offering of the CS445 class.

2. CS N34VS, examining 34 large-sized SRSs of a VoIP CBS and its IMS, produced using

UCUM as group term-long projects in one offering of the CS445 class.

4 Semantic Similarity Analysis

This section describes a general, manually performed procedure to determine in which of two

arbitrary sets,A andB, of DMs are the DMs more semantically similar to each other.

The intuition that is simulated by the analysis is best illustrated by showing the two tables of data

that told us visually that indeed that the DMs of CS N34VS are slightly more semantically similar

to each other than the DMs of the DMs of CS O31VS. Figure 1 shows two tables side by side. The

tables have been scaled to make avisual impression stand out, the result being that the case study

names at the top are barely readable. However, the table on the left side is from CS O31VS and the

table on the right side is from CS N34VS. Each row of a table represents one concept, and each

column of a table represents one goup’s DM. The cell for conceptc and DMd is black if and only

if c appears ind. The facts that

1. there is slightly more black in the mostly black region at the top of the right table than in the

same part of the left table, and
1The name of a case study encodes some of the data about the case study; “CS” means “case study”, “O” means

“Old OOA method with no use case unification”, “N” means “New OOA method, i.e., UCUM”, a number is the
number of SRSs in the case study, and “VS” means “VoIP system”.
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Figure 1. CS O31VS and CS N34VS Data Shown Side-By-Side
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2. there is slightly less black in the mostly white region at the bottom of the right table than in

the same part of the left table, even when the the black streaks down the first two columns

are considered,

say that the DMs of CS N34VS are slightly more semantically similar to each other than the DMs

of CS O31VS. Understanding this semantic similarity difference prompted detailed examination of

the actual concepts in the DMs of CS O31VS and CS N34VS, which in turn led to the development

of the semantic similarity analysis method described in the rest of this section.

Suppose thatA andB are sets of DMs that have been constructed to model the same system. The

comparison is between betweentwo sets of DMs, because each set of DMs has been constructed

with a method that is different from that used to construct the other, and the desire is to see if the

different construction methods lead to different amounts of semantic similarity in the two sets of

DMs. Without loss of generality, the purposes of this procedure are

• to decide whether the DMs contained inA are more semantically similar to each other than

the DMs contained inB, and,

• if the models inA are more semantically similar to each other than the models inB, to

compute the percentageP by which the models inA are more semantically similar to each

other than the models inB.

This procedure has two phases: a data normalization phase, followed by a calculation phase.

The procedure is described as steps to be taken by its performer, who is called upon to make

judgements. In fact, for the case studies reported in this paper, the performer was the first au-

thor, whose judgement was based on his long experience with the artifacts of the case studies, as

described in the beginning of Section 3.

4.1 Phase 1: Data Normalization

DMs that are constructed to model the same problem are likely to have significant semantic

overlap, since they are modeling the same conceptual space. At the same time, they are also likely
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to exhibit semantic and syntactic variation from each other, since each is created by a different

individual or group. The purpose of data normalization is to obtain a normalized view of the

concepts in the various DMs of one set of DMs, i.e., to ignore trivial differences in the naming of

concepts, in order to be able to show how much the DMs in the set differ, in terms ofsemantically

unique concepts.

The name of a concept is taken as its value. Within a single DM, it is assumed that any name

refers to a unique concept, e.g., the use of the word “flight” in one travel agency DM is assumed

to refer to the same concept throughout that DM. It is assumed also that any one name refers to

the same concept in different DMs, e.g., “flight” appearing in two different travel agency DMs is

assumed to refer to the same flight concept in both DMs. Finally, it is assumed that all different

names from different DMs that refer to whatappear to the analystto be the same semantic idea,

are nevertheless considered to refer to the same concept, e.g., “flight”, “flightInfo”, and “flight-

Number” are considered to refer to the same concept if the first author believes that what they refer

to are the same semantic idea.

To construct a single, representative set of semantically unique concepts in a setD of DMs,

first construct the setRawConcepts(D) of all concepts in all of the models inD. Because

RawConcepts(D) is a set,syntactically identical concepts, i.e., those that have the same name,

that appear in more than one DM appear only once inRawConcepts(D).

Next, partitionRawConcepts(D) into equivalence classes of elements that refer to the same

semantic concept although they may have different names. For example, the three names of the

previous example, “flight”, “flightInfo”, and “flightNumber”, would be be in the same equivalence

class. For each equivalence class, one member is chosen to be the representative concept name,

e.g., “flight” for the equivalence class of the previous example. The determination of equivalences

class is performed by comparing the name, attributes, methods, and relationships of each raw

concept with those of all other concepts.

Next, for each conceptcraw in each DMd in D, replacecraw with the representative concept

namecrep for the equivalence class ofRawConcepts(D) to whichcraw belongs.
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Finally, some pruning of the DMs is necessary to reduce the importance of concepts that appear

in only one or a few of the DMs. A concept is said to bel-significant if it appears in at leastl

DMs in D. Then, for somek, remove from all the DMs inD, all of the concepts that are not

k-significant. The case studies used 2 as the value ofk.

For ease of the discussion, assume, from this point on, that a reference to a conceptc belonging

to a DM d is a representative concept name rather than the raw concept name that might actually

appear in the text ofd. Moreover, below,c(d) is defined to be the set of representative concepts

appearing ind.

This process might sound very complicated, but it is really just a normalization of different

names in different DMs in a set of DMs to a single, unambiguous vocabulary consistent across the

set, followed by some simple pruning. The manual process of creating the semantic equivalence

classes is labor intensive, slow, and highly subjective. However, it is also likely to be more accurate

than any automated approach.

4.2 Phase 2: Determination of Semantic Similarity

The steps for determining, for the setsA andB of DMs, if the DMs ofA are more semantically

similar to each other than are the DMs ofB are:

1. LetD be a set of DMs such thatD = A orD = B.

In the following,a, b, andd are DMs such thata ∈ A, b ∈ B, andd ∈ D.

2. For any DMd ∈ D, let c(d) be the set ofd’s representative concepts.

3. To get themajor conceptsof any DM d ∈ D, for some integerk ≥ 1, let mc(d) be c(d)

restricted to thek-significant concepts.

By extension, for a set of DMsD, define themajor conceptsof D,

mc(D) =
⋃
d∈D

mc(d).
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4. Let

cc(A,B) = mc(A) ∩mc(B),

i.e., the set ofconceptsthat arecommonto A andB, a.k.a. thecommon conceptsof A and

B.

Note thatcc(A,B) is not the same as the intersection of the concepts of all DMs inA ∪ B;

that intersection would be a much smaller set of concepts. Instead,cc(A,B) contains all of

the concepts that belong to at leastk DMs inA and at leastk DMs inB.

5. Ford ∈ A ∪B, let

cc(d) = c(d) ∩ cc(A,B),

the set ofcommon conceptsof A andB that are found in DMd.

6. Define

cr(d) =
|cc(d)|
|c(d)|

.

This commonality ratiomeasures the number of concepts common toA andB found in a

DM d and measures it relative tod’s size. This number is close to 1 ifd is very similar to

the set of common concepts, and is close to 0 ifd is very dissimilar to the set of common

concepts, i.e., the number is close to 0 ifd contains either few common concepts or many

uncommon concepts.

7. Define

avgcc(D) =

∑
d∈D |cc(d)|
|D|

,

the average number of concepts common toA andB found in eachd in D.

8. Define

avgcr(D) =

∑
d∈D(cr(d))

|D|
,

theaverage commonality ratiorelative toA andB of eachd in D.
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9. Now, it is possible to say that the DMs ofA are moresemantically similarto each other than

are the DMs ofB if and only if

avgcc(A) > avgcc(B)

and

avgcr(A) > avgcr(B)

i.e., if and only if, amongA andB, the average number of common concepts found in

members ofA is higher and theaverage commonality ratioof members ofA is higher.

10. Finally, if the DMs ofA are more semantically similar to each other than are the DMs ofB,

we define

P = avg(avgcc(A)%− avgcc(B)%, avgcr(A)%− avgcr(B)%),

the estimated percentage by which the DMs ofA are more semantically similar to each other

than are the DMs ofB.

For a brief example showing the calculation of all the above defined functions for setsA andB

in which each ofA andB is a 12-element set of DMs, see Section 5.3 of the first author’s Ph.D.

thesis [29].

4.3 Additional Optional Phase

In the process of applying the procedure of Section 4.2 to the case studies, we found some

additional calculations that can be used to confirm the conclusions of the procedure:

• Let sdevcon(D) denote the standard deviation in the number of concepts over a set of DMs.

• Let sdevcc(D) denote the standard deviation in the number of common concepts relative to

A andB over a set of DMs.
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• Let iqcon(D) denote the interquartile range of the number of concepts in a set of DMs.

• Let iqcc(D) denote the interquartile range of the number of common concepts relative toA

andB over a set of DMs.

There is additional confirmation that the DMs ofA are more semantically similar to each other

than are the DMs ofB if any of the following is true:

sdevcon(A) < sdevcon(B) iqcon(A) < iqcon(B)

sdevcc(A) < sdevcc(B) iqcc(A) < iqcc(B)

A more refined estimate ofP can be obtained by using any of the following as an additional

component of the average definingP :

sdevcon(B)− sdevcon(A) iqcon(B)− iqcon(A)

sdevcc(B)− sdevcc(A) iqcc(B)− iqcc(A)

5 Analysis of Case Studies

This section discusses the analysis of the two case studies, CS O31VS and CS N34VS. Recall

that CS O31VS is about 31 DMs for a VoIP system and its IMS producedwithout the use of

UCUM, and CS N34VS is about 34 DMs for the same large-sized CBS producedwith the use of

UCUM.

Table 1 shows the data about the numbers of concepts discovered and captured in all DMs and

per DM of CS O31VS and CS N34VS. Notice that there are two columns about CS N34VS, one

labeled “CS N34VS” and one labeled “CS N34VS w/DM45”. The data for the former column

exclude the data for the DM with the most semantically unique concepts, while the data for the

latter column include the data for this DM. The excluded DM has 45 concepts and contains a large

number of concepts that we were unable to classify and really understand what they represent. This

outlier DM is the subject of a later discussion, and it is ignored in the discussion until then, unless

it is explicitly mentioned as DM45. As can be seen in Table 1, with this outlier DM45 excluded,

the numbers from each DM of CS O31VS and CS N34VS end up being very similar.
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Scope Measure Case Studies
CS O31VS CS N34VS CS N34VS

w/DM45

In all DMs of
the case study

Original, raw concepts 527 622 622
Syntactically unique concepts 259 312 312
Semantically unique concepts 134 110 140

In each DM of
the case study

Maximum number of
semantically unique concepts 31 33 45
Minimum number of
semantically unique concepts 8 10 10
Average number of
semantically unique concepts 17 17 18
Median number of
semantically unique concepts 16 17 17

Table 1. CS O31VS–CS N34VS Statistics

5.1 Detailed Evaluation of Concepts in the DMs of the Case Studies

The main comparison of the semantic similarity of the concept sets of the DMs in CS O31VS

and CS N34VS considers the 36 elements ofcc((CS O31VS), (CS N34VS w/DM45)), i.e., the

concepts common to the DMs of both case studies. Tables 2 and 3 show the distribution of these

36 common concepts in the DMs of CS O31VS CS N34VS, respectively. The 36 common concepts

account for to 72% of the major concepts in the DMs in CS O31VS and 77% of the major concepts

in the DMs in CS N34VS.

Tables 2 and 3 have the same layout. In each table, each conceptc has a row. The row forc is

divided into 4 columns, the second of which has subcolumns. The first column containsc’s name.2

The second column is divided into one subcolumn for each DMd. Rowc’s entry for the subcolumn

for d is black if and only if conceptc appears ind. The third column contains the number of DMs

that have conceptc. This number is the number of black subcolumns in the second column of the

same row. The fourth column contains the percentage that the number in the third column is of the

total number of DMs.

In the third last row of the table, the subcolumn for anyd contains the number of common
2The concept names in this case study are disguised because at the time of publishing the work, the analyzed

project is still being used in the course from which the data come.
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Table 3. CS N34VS Common Concepts
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1 2 3 4 5
Metric CS O31VS CS N34VS CS O31VS CS N34VS

Common Common
1 Concepts Concepts Concepts Concepts
2 Average 16.97 17.91 12.29 14.06
3 Standard Deviation 5.07 6.85 3.53 2.60
4 Standard Error 0.91 1.17 0.63 0.45
5 Quartile (.75) 20.00 18.75 14.00 15.75
6 Quartile (.25) 13.00 14.00 10.00 12.00
7 Interquartile Range 7.00 4.75 4.00 3.75

Table 4. CS O31VS–CS N34VS Statistics Summary

concepts ind. In the second last row of the table, the subcolumn for anyd contains the number of

all semantically unique concepts ind. In the last row of the table, the subcolumn for anyd contains

the commonality ratio ford. Finally, the cell at the intersection of the last row and the last column

contains the average commonality ratio for the DMs of the case study, which is the average of all

the commonality ratios in the last row.

A visual inspection of the data distribution patterns in Tables 2 and 3 gives an impression similar

to that given by the visual inspection of the data distribution patterns in Figure 1. Therefore,

additional analysis is needed. Tables 2 and 3 show that

1. on average, 84% of all concepts in the DMs of CS N34VS and

2. on average, 75% of all concepts in the DMs of CS O31VS

are the concepts common to the DMs of both case studies, indicating a higher concentration of

common concepts in each DM of CS N34VS than in each DM of CS O31VS.

Table 4 shows that the semantic similarity of common concepts in the DMs of CS N34VS is

higher than the semantic similarity of common concepts in the DMs of CS O31VS. Specifically:

1. The average number of concepts per DM is approximately 5.5% higher for the DMs of CS

N34VS than for the DMs of CS O31VS, as is shown in the cells in Row 2 and Columns 2

and 3.

2. The average number per DM of common concepts is approximately 14.4% higher for the
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DMs of CS N34VS than for DMs of CS O31VS, as is shown in the cells in Row 2 and

Columns 4 and 5.

3. For each of the average number of concepts per DM and the average number of common

concepts per DM, the standard error of the average for one case study is approximately the

same as the standard error of the average for the other case study, due to the approximately

equal size of the two sets of data involved.

4. The standard deviation of the average number of concepts per DM is approximately 35.1%

higher for the DMs of CS N34VS than for DMs of CS O31VS, as is shown in the cells in

Row 3 and Columns 2 and 3.

5. The standard deviation of the average number of common concepts per DM is approximately

35.8% lower for the DMs of CS N34VS than for the DMs of CS O31VS, as is shown in the

cells in Row 3 and Columns 4 and 5. The probable reason that the standard deviation of the

average number of concepts per DM is higher for the DMs of CS N34VS is the presence

in the DMs of CS N34VS of concepts from the outlier DM45. Therefore, we computed

also the interquartile range, which can ignore any outlier DM with an extremely large or an

extremely small number of concepts.

6. The interquartile range of the number of concepts per DM is approximately 47.4% lower for

the DMs of CS N34VS than for the DMs of CS O31VS, as is shown in the cells in Row 7

and Columns 2 and 3.

7. The interquartile range of the number of common concepts per DM is approximately 6.7%

lower for the DMs of CS N34VS than for the DMs of CS O31VS, as is shown in the cells in

Row 7 and Columns 4 and 5.

That the interquartile range of the number of common concepts per DM is lower in CS N34VS

than in CS O31VS for the same set of data leads to the conclusion that the concept concentration

was higher in the DMs of CS N34VS than in the DMs of CS O31VS, for both all and the common
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concepts. Therefore, the DMs of CS N34VS are more semantically similar to each other than are

the DMs of CS O31VS.

Moveover, it is possible to estimate that the semantic similarity of concepts is approximately

10% higher in the DMs of CS N34VS than in the DMs of CS O31VS, based on the previously

described quantitative analysis showing that:

• an average increase of 5.5% in the number of concepts per DM of CS N34VS over the

number of concepts per DM of CS O31VS

• an average increase of 14.4% in the number of common concepts per DM of CS N34VS over

the number of common concepts per DM of CS O31VS

• an increase in the capture of common concepts per DM from 75% in the DMs of CS O31VS

to 84% in the DMs of CS N34VS; and

• a narrow data spread for both sets of data.

This 10% improvement in semantic similarity came at a cost. The cost of teaching UCUM

and eliciting requirements for the CS N34VS term was at least about 25% higher than the cost of

teaching traditional OOA and eliciting requirements for the CS O31VS term. We do not have data

on students’ hours, but we do have data on hours the TAs interacted with the students. We assume

that the students required more time from the TAs in the CS N34VS term than in the CS O31VS

term because the students were spending more time on their project at about the same rate. The

first author, as the head TA in both terms, was responsible for answering students’ questions found

that his workload for the CS N34VS term was about 30% higher than for the CS O31VS term.

This time is mostly for teaching, since each student was to go to his or her own project TA for

elicitation issues. Also, in each term in CS445, we have each TA report his or her actual workload

for the course. The average number of elicitation meetings in a term between a group and its TA,

as analysts and customer, increased from about 6–8 per previous non-UCUM-using term to about

10 in the UCUM-using term, i.e., from about 66% to about 25% more. That is, using any variant

of UCUM required at least about 25% more elicitation effort.
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The next step is to perform an in-depth analysis of the results of these two case studies. The

focus is on the set ofcommonconcepts that appeared in the DMs of both case studies. The chart in

Figure 2 is built from the data in Tables 2 and 3. Each actual number of groups in CS N34VS was

scaled down to maximum of 31, by multiplying it by31/34, to match the number of groups in CS

O31VS.

For any conceptc listed in thex-axis of Figure 2, thatc appears less often in the DMs of CS

N34VS than in the DMs of CS O31VS suggests either that the use of unified UC statecharts and

UCUM preventedc’s discovery or that the use of unified UC statecharts and UCUM filteredc out

of DMs becausec was outside of the domain’s boundary. The same number ofcs in the DMs of

both case studies indicates no change in the effect of the use of unified UC statecharts and UCUM

on the discovery ofc, and a larger number ofcs in the DMs of CS N34VS than in the DMs of CS

O31VS indicates that the use of unified UC statecharts and UCUM helpedc’s discovery.

In the DMs of CS N34VS there were:

• 11 concepts, or 30.6%, that were captured less often than in the DMs of CS O31VS,

• 23 concepts, or 63.9%, that were captured more often than in the DMs of CS O31VS, and

• 2 concepts, or 5.5%, that were captured as often as in the DMs of CS O31VS.

Four concepts of the 11 that appear less often in the DMs of CS O31VS than in the DMs of

CS N34VS represent external entities, i.e., Each is an actor from outside the boundary of the VoIP

CBS. It was gratifying to see that the DMs of CS N34VS had fewer of the external actors, which

should not have appeared, than the DMs of CS O31VS. Nevertheless, it was disappointing that

some of external actors still appeared in the DMs of CS N34VS. Thus, building unified UC state-

charts for a CBS facilitates but does not guarantee proper boundary definition and proper placement

of external actors outside the CBS’s boundaries.

The lower numbers ofsystem controller3 andcall manager concepts in the DMs of CS N34VS
3The concept names in this discussion are not disguised because the discussion makes no sense without the concept

names. We have determined that revealing these particular concept names gives no particular advantage to the students
in the course who may have read this paper.
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than in the DMs of CS O31VS was due to the level of conceptual decomposition and refinement at

which DMs in the DMs of CS N34VS were specified;system controller andcall manager are

the high-level concepts responsible for the overall control of the IMS and of the call processing

part of VoIP system, respectively. Because the degree of decomposition in the DMs of CS N34VS

is higher than in the DMs of CS O31VS, these concepts tended to be less explicitly indicated in the

DMs of CS N34VS than in the DMs of CS O31VS. Instead, they tended to be included indirectly

through their components, i.e., the concepts of which they consist.

The system concept represents the CBS itself, and in most cases it was captured through the

use of package notation to capture all other concepts within the CBS. This concept is considered

redundant because a DM, by definition, captures only conceptswithin the CBS’s domain. However,

for some reason, some students felt a need to include this concept explicitly as part of the DM.

The chart of Figure 2 shows that the typical concept appears about 10% more often in the DMs

of CS N34VS than in the DMs of CS O31VS, in agreement with the estimate that the DMs of CS

N34VS are 10% more similar to each other than are the DMs of CS O31VS.

Finally, the outlier DM45, with 30 unclassifiable concepts, taught us about a potentially very

negative impact that the use of unified UC statecharts and UCUM can have on DMs, for the speci-

fication of any concept that represents only one function of the CBS. Most of the 30 unclassifiable

concepts were of this type. For example, a concept such asadd admin profile is nothing but one

high-level function of CBS captured as a concept. Many a modeling expert considers creating a

concept for each function to be incorrect modeling and a negative extreme to which detailed behav-

ioral analysis and modeling can lead. Fortunately, only one out of 34 groups went in this direction.

So, the problem was not widespread. The problem could probably have been avoided by the TA’s

having pointed the group in the right direction.

6 Overall Evaluation and Main Lessons

The analysis of the case studies in Section 5 shows that the semantic similarity of the DMs of

CS N34VS was about 10% higher than the semantic similarity of the DMs in CS O31VS. That
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is, UCUM is about 10% more repeatable than is ordinary OOA, and the key difference between

the methods is that UCUM has an analyst performing a detailed behavioral analysis before doing

conceptual analysis. However, the cost of teaching UCUM and eliciting requirements was about

25% higher for the SRSs of CS N34VS than for the SRSs of CS O31VS.

The remainder of this overall evaluation considers observations about UCUM and its products,

observations that fall out of the data and our grading evaluation of the artifacts produced by the

students.

The two numbers, 10% and 25%, are not comparable and should not be used to make a direct

cost–benefit analysis of performing a detailed behavioral analysis before conceptual analysis. For

example, one possible benefit of spending the 25% more time eliciting requirements is more de-

tailed requirements and UCs. As described in the companion paper, the TAs and the first author

agreed that the requirements and UCs specified in the SRSs of the UCUM-using terms were more

detailed and consistent than those of the non-UCUM-using terms. It is necessary also to take the

entire lifecycle into account. It is hard, if not impossible, to estimate the total benefits to the down-

stream development speed and to the reliability, robustness, and other qualities of the CBS being

developed caused by the 10% improvement in semantic similarity in the DMs and by the use of

UCUM.

The use of UCUM and of extensive functional and behavioral modeling before proceeding with

conceptual analysis led to4

1. better functional analysis and discovery of more CBS requirements,

2. an increase in semantic similarity among different DMs of the same CBS,

3. several qualitative changes in the DMs:

• larger number offunctionalconcepts, i.e.,processors,

• clearer boundary and interface concept definition, and

• a lack ofinheritance, and
4The first of these results was reported in the companion paper and the rest are reported in Section 5 of this paper.
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4. an insufficient number ofdataconcepts.

The relationship between the first two points is of particular importance. Consider the detailed

behavioral modeling that was done through the use of the unified UC statecharts. This modeling is

very similar to, and to some extent, nothing but traditional structured analysis [e.g., 9, 34, 33, 32].

So, rather than contradicting each other, combining structured analysis and OOA helped improve

the semantic similarity and the quality of DMs in a way summarized by Richman [23]:

A weakness of OO is that OO methods only build functional models within the objects.

There is no place in the methodology to build a complete functional model. While this

is not a problem for some applications (e.g., building a software toolset), for large

systems, it can lead to missed requirements. Use cases address this problem, but since

all use cases cannot be developed, it is still possible to miss requirements until late in

the development cycle.

In addition, it is probably this integration of the detailed behavioral analysis with OOA, in

UCUM, that has resulted in DMs that are deeper, more detailed, and closer to the design and

architecture of the domain, as observed by John Mylopoulos (in private communication) and some

of the graduate students building the DMs of an existing elevator CBS who were familiar with

other OOA methods [1, 29]. Mylopoulos observed that the method itself is more systematic than

many scenario-based OOA methods. The DMs produced using UCUM seemed to provide a more

solid basis for transitioning to design phases than those produced by the OOA methods that had

been used previously.

A large number of and well decomposedfunctionalconcepts, i.e.,processors, a clear definition

of interfaceconcepts, and a lack ofinheritance, are what we consider to be the positive effects

of doing a detailed behavioral analysis first on the DMs. In our opinion, such DMs allow easier

transition to OOD activities and models.

Each of traditional OOA and UCUM seems unable to expose thedataconcepts in a domain. It

seems that no analysis not focusing on data is an adequate substitute for traditionaldataanalysis.
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Data analysis should be a necessary component of any analysis method and, in our opinion, of a

higher priority than conceptual analysis.

In summary, in our opinion, conceptual analysis should not be the main analysis activity. It

should be used with behavioral and data analysis. Note that we consider OOD completely distinct

from OOA and self-sufficient, and none of the conclusions of this paper apply to OOD.

7 Related Work and Counter Indications

The companion paper describes related work by Glinz; Whittle and Schumann; and Harel, Ku-

gler, and Pnueli [11, 31, 13] whose conclusions generally agree with those of that and this paper.

The present results showing the effectiveness of UCUM as an approach in which an analyst does

detailed behavioral analysisbeforedoing conceptual analysis contradicts, at least superficially,

the conclusions of a case study by Kabeli and Shoval [15]. Their case study shows that doing

data modeling before doing functional analysis leads to better OO models, as judged by their

criteria [15], than doing functional analysis before doing data modeling. It is not surprising that

early case studies produce results that appear to contradict each other. First of all, neither our

nor their case study is conclusive, and the two sets of case studies addressed different issues, i.e.,

neither traditional OOA nor UCUM perform explicitdataanalysis, while the subjects of the Kabeli

and Shoval study did explicitdataanalysis. Second, there may be yet other parameters, entirely

overlooked in each case study, that consistently account for the contradictory conclusions. Only

additional, independent, experimentation in the future can resolve this issue.

8 Conclusion

This paper compares the repeatability of two OOA methods, (1) traditional OOA and (2) UCUM,

by comparing the degree of semantic similarity among the sets of DMs for the same problem

produced by the two methods. The comparison is based on two after-the-fact case studies:

• Traditional OOA was carried out to produce 31 SRSs of a large VoIP CBS containing an
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IMS. Data from these 31 SRSs and their DMs were gathered later in the case study CS

O31VS.

• UCUM was carried out to produced 34 SRSs of the same large VoIP CBS containing an

IMS. Data from these 34 SRSs and their DMs were gathered later in case study CS N34VS.

The conclusion of the two case studies was that for the CBS, the students, and the SRSs involved

in the case studies, the use of UCUM yields DMs that are about 10% more semantically similar

to each other than are the DMs yielded by traditional OOA. However, UCUM requires about 25%

more time than does traditional OOA.

Other contributions of this work are:

• a discussion of the role of semantic similarity in evaluating a method’s repeatability as ar

measure of the quality of the method

• a technique to determine in which of two sets of DMs are the DMs more semantically similar

to each other, and

• an in-depth analysis of the quantitative results to obtain ideas for further improvements of

OOA methods.
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