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Abstract

A commonly used strategy to address the scalability
challenge in object-oriented reverse engineering is to syn-
thesize coarse-grained representations, such as package di-
agrams. However, the traditional coarse-grained represen-
tations are poorly suited to object-oriented program com-
prehension as they can be difficult to map to the domain ob-
ject models, contain little real detail, and provide few clues
to the design decisions made during development.

In this paper, we propose a hybrid model of object-
oriented software that blends the use of classes and enti-
ties at different levels of granularity. Each coarse-grained
entity represents a set of software objects, and contains the
complete static description of the objects it represents. This
hybrid model allows maintainers to understand objects as
independent units, and focus on the their external properties
and their interrelationships at different levels of granular-
ity. We show the usefulness of the hybrid model to program
comprehension by means of an exploratory case study.

1 Introduction

An object-oriented software system is composed of a
collection of communicating objects that cooperate with
one another to achieve some desired goals. Those soft-
ware objects are often used to model real-world objects.
Similar objects form classes, which provides the static de-
scription of how objects behave. Aiming to supporting
object-oriented program comprehension, reverse engineer-
ing seeks to create representations of object-oriented sys-
tems about classes/objects and their interrelations.

The biggest challenge for a reverse engineering tool is to
capture a large amount of information using descriptive and
understandable representations, while at the same time not
overwhelming the users with too much detail. Large-scale
object-oriented systems typically consist of hundreds of
classes as well as a high degree of interdependence among

them. However, humans have limited information storing
and manipulating abilities [8]. If the provided representa-
tion is too complex, maintainers may “drown” in the infor-
mation overload. Moreover, too much information on one
diagram may decrease tool performance significantly [5].

A commonly used strategy to address this challenge is to
synthesize representations at a coarse level of granularity.
Many existing tools offer to generate package diagrams by
dividing classes into packages, which act as coarse-grained
proxies for their contained classes [10, 12, 13, 15]. While
grouping classes into packages provides better readability
of classes and their interrelations, it harms the comprehen-
sibility of objects as independent units. Because the static
description of an object can end up being distributed across
multiple packages due to inheritance, it can be difficult to
capture the external properties of the software object at a
coarse-grained level, not to mention to identify the real-
world object it models.

In this paper, we propose a hybrid program model that
blends the use of model elements at different levels of gran-
ularity. Instead of grouping programming language classes,
we aggregate the complete static description of software ob-
jects, so that each coarse-grained entity of the hybrid model
represents a set of objects. At a low level of abstraction,
software objects can be understood as independent units,
while at a higher level, each coarse-grained entity can be
understood as a whole and be mapped to real world objects.
In addition, hybrid models serve as a kind of palette that
allows users to mix the relationships that maintainers are
interested in, and interpret them at different levels of gran-
ularity.

The rest of paper is organized as follows. Section 2 an-
alyzes the reasons why package diagrams are ill suited to
object-oriented program comprehension. In section 3, we
present a new model for creating representations of object-
oriented systems. Section 4 demonstrates a real world com-
prehension scenario using the new model representation,
and section 5 presents our conclusion.
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Helper_1
-s: Service

+mb()
{s.bar();}

Service
-h1: Helper_1

+foo()
+bar()
{h1.mb();}

Service_Impl
-h2: Helper_2

+foo()
{h2.mc();}

Helper_2

+mc()
{...}

Client
-super: Service

+ma()
{super.foo(); }

<<call>> <<call>>

<<call>>

<<call>>

Figure 1. The Class Diagram of an example
program. Method invocations are modelled
as stereotyped dependencies.

2 A Motivational Example

In an object-oriented system, classes are arranged in an
inheritance hierarchy. The term class is used to connote two
slightly different ideas, one prescriptive and one descriptive.
First, a class is a blueprint of objects. It is a programming
language construct that encapsulates a set of attributes and
the set of operations performed on the attributes. A class
may also inherit attributes and operations from its super-
classes. Second, a class represents the entire collection of
objects that can be created from the blueprint. An object
of a class is also polymorphically an object of the ancestors
of the class. A class, along with its ancestors, describes a
common structure and a common set of behaviors that are
shared by the objects the class represents. During the gener-
ation of a package diagram, a class is often separated from
its ancestors. Hence, a package, which is composed of a set
of classes, may not contain the complete blueprints (i.e., se-
mantic descriptions) of the objects that its contained classes
represent.

For example, consider the program whose class diagram
is shown in Figure 1. The method invocation relationship
between classes is modelled as a stereotyped dependency.
This diagram is similar to what most reverse engineering
tools are capable of generating to model the system as a
whole; a package diagram is created by dividing the five
classes into three distinct packages. Using the package di-
agram, maintainers may face the following issues during
program comprehension.

First, it may not be possible for maintainers to under-
stand — that is, create a coherent mental model of — one
package independently of the others. In this example, nei-
ther package B nor package C can be understood solely
based on the code it contains. Class Service in package B

declares an abstract method foo, whose behavior is defined
in class Service Impl. When studying package B, main-
tainers can only guess the behavior of the method based on
its signature. Service Impl inherits method bar from its
superclass. The code of the method is a part of the blueprint
of the objects it represents. Therefore, it is necessary for
maintainers to investigate the internal details of package B
to understand how an object of class Service Impl behaves.
If maintainers limit their investigation in either package,
they could misunderstand the package and make ill-advised
modifications to the code.

Second, the external properties of a package may not re-
flect the external properties of the set of objects that its con-
tained classes represent. A package is composed of a set
of classes, and thus its external properties are the proper-
ties that the contained classes export to outside packages.
In this example, method bar is part of the external prop-
erties of package B, not package C, although an object of
Service Impl does provide such a method implicitly.

Third, the interrelationship between packages may not
capture the interrelationship between objects contained in
the packages. Class interrelationships, such as calls and
composition, must be interpreted in the context of class hi-
erarchy, as implicit dependencies may be derived from the
ones that are explicitly defined in source code. For exam-
ple, in the class diagram shown in Figure 1, an object of
Client could send messages to an object of Service Impl,
and there could be interactions between an object of Ser-
vice Impl and an object of Helper 1. These implicit calls
dependencies, as well as the explicit calls dependency from
Service Impl to Helper 2, provide a complete description
of how an object of Service Impl interacts with other ob-
jects. However, none of the implicit calls dependencies that
Service Impl is involved in contribute to the interdepen-
dencies between package C and other packages.

Due to the above issues, package diagrams may not sat-
isfy the comprehension needs at a high level. Pennington
et al. reported that programmers develop a situation model
at a high level of granularity [11]. Burkhardt et al. applied
Pennington’s approach to object-oriented program compre-
hension [2]. They believe that the situation model of an
object-oriented system consists of both structural and be-
havioral aspects. The structural aspect is of domain objects,
describing their interrelationship and the program goals.
The behavioral aspect captures the client-server relationship
among domain objects. However, in the package diagrams,
the blueprint of a software object is distributed across sev-
eral packages, none of which captures the complete external
properties of the object, and the client-server relationship it
involves. In this example, the static description of an object
of Service Impl is distributed in both package B and pack-
age C. It is unclear how either package can be mapped di-
rectly to the domain objects that Service or Service Impl
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Figure 2. The hybrid model for the example
program at the top level. (a) shows the ex-
panded view, and (b) shows the collapsed
view.

models, and how the dependencies between packages can
be interpreted as interrelationships among domain objects.
It is even more difficult for maintainers to use the package
diagram to derive the design intentions, such as how the sys-
tem is decomposed, how the functionality of the system is
distributed among the classes, and what is the responsibil-
ity of each class. Therefore, package diagrams are of lim-
ited usefulness to developers seeking to acquire a high-level
understanding of an object-oriented system.

3 The Hybrid Model

The major limitation of a package diagram is due to the
fact that the full definition of a class may be spread across
different packages; the semantics of any given object may
not be understandable by examining only the package of
the defining class. If we view a class as a collection of ob-
jects with common structure and behaviors, we note this
view does not scale up to the next level. That is, a package
is not a collection of objects, but a collection of program
language constructs. The interrelationships among pack-
ages represent the compilation dependencies among pro-

gram language constructs, but cannot be interpreted as the
relations among objects or classes.

To address the issues mentioned above, we propose a
new hybrid model of object-oriented systems that blends the
use of classes and entities at different levels of granularity.
In our model, each coarse-grained entity includes the com-
plete static descriptions of the objects that are defined and
implemented within it. Thus, a coarse-grained entity, like a
class, can be interpreted as the set of objects it defines. An
interdependency between two coarse-grained entities arises
when there is a possible relation between the objects they
represent.

3.1 Constructing Hybrid Models

We assume that we start with a collection of classes orga-
nized into a tree-like hierarchy of containers, such as Java
packages or C++ namespaces. The construction of a hy-
brid model for an object-oriented program consists of three
steps.

1. All abstract classes, including Java-style interfaces, are
initially removed from their containers. An abstract
class is intended to be a superclass and cannot be in-
stantiated. Conceptually, it contains partial blueprint
of the objects that its subclasses represent, and should
be understood along with its subclasses. For example,
Service in Figure 1 is removed from B.

2. For each concrete class in each container, all ances-
tors1 of that class are pulled into the container. We
note that the containment relation in a hybrid model is
not a tree, as ancestor classes can belong to more than
one container; in UML terminology, the containers in a
hybrid model are aggregates rather than compositions
of their parts. An abstract class with multiple imple-
mentations in different containers will appear in each
such container. For example, Service is pulled into C.

3. Any dependencies between classes that are not in the
same container become dependencies of their respec-
tive aggregate containers. That is, external usages and
unfulfilled requirements of the parts become, respec-
tively, usages and requirements of the whole. The in-
terface of each aggregate container is calculated auto-
matically from the dependencies of the contained ele-
ments. Figure 2 shows the hybrid model of the exam-
ple program at the top-level abstraction.

In the next section, we present the notation of our hybrid
model in order to facilitate further discussion in the follow-
ing sections.

1We focus on the application classes within the system under consider-
ation, and ignore the default inheritance relation to library classes, such as
java.lang.Object



3.2 Notation

Resources, components, ports, and connectors are the
four key elements of a hybrid model.

3.2.1 Resource

We define a resource [3] as any entity that can be named
in a programming language, such as an instance or class
variable, a method, or a type. For example, bar is a method
resource, and Service is a type resource. In this paper, we
only show type resources, and consider variable resources
and method resources as parts of type resources.

3.2.2 Component

A component [7, 9] is a logical computation unit that pro-
vides resources to its environment and may also require
resources from its environment. The internal implementa-
tion is encapsulated and hidden from its environment. Each
component corresponds to either a class or an aggregate
container as described in the previous section.

A component, represented visually as a box, can be
shown either collapsed or expanded. In Figure 2 (a), all
components are expanded, and their internal structures are
visible. In Figure 2 (b), all components are collapsed and
labelled with the names of the resources it contains.

An aggregate component may contain two types of
classes:

• Defined classes, which are declared and defined in the
component. For example, Helper 1 is a defined class
of component B.

• Ghost classes, which were originally declared else-
where but implemented in the component. For exam-
ple, Service is a ghost class of component C.

An aggregate component also serves as a proxy for all
of the objects that are objects of the defined classes that
it (recursively) contains. Ghost classes of the component
provide necessary context information for reasoning about
the properties of those objects.

3.2.3 Ports

Ports are the interfaces through which a component inter-
acts with its environment. We distinguish two kinds of
ports: inports and outports [9].

• An inport, visually represented as a box on the left
side of a component, is the interface through which
the component provides resources to others. An inport
represents the subset of the available resources that
the component provides and are actually used by other

components; resources that are provided by the com-
ponent but not used by the system are not considered
to be part of the inport list. In Figure 2, component C
provides a ghost resource Service.

• An outport, visually represented as a box on the right
side of a component, describes the resources that the
component requires from others. For example, in Fig-
ure 2, component A requires an external resource Ser-
vice.

3.2.4 Connectors

A connector [7, 9] specifies the interrelationship among two
components. There are three types of connectors: inheri-
tance, delegation [9], and assembly [9] connectors.

• An inheritance connector, visually represented as a
solid line with an empty arrowhead, specifies the inher-
itance relation between two classes. In a hybrid model,
inheritance can exist within only aggregate compo-
nents, and cannot cross component boundaries.

• A delegation connector, visually represented as a dot-
ted arrow, links ports of an aggregate component and
the ports of the components it contains. A delega-
tion connector promotes the required interfaces and the
provided interfaces of the contained components to the
corresponding interfaces of its container components.
For example, component C provides resources that
Service provides, and requires resources that Service
requires.

• An assembly connector, visually represented as a solid
arrow, specifies the client-server relationship between
two components. The client component uses resources
provided by the server components. For example,
component A uses the resource Service provided by
component B.

3.3 Interpretation

The main goal of hybrid models is to help maintainers
apply a divide-and-conquer comprehension strategy to deal
with the complexity of large systems. At a high level of
abstraction, maintainers can focus on the external proper-
ties of the coarse-grained entities and their interrelation-
ships without worrying about their internal implementation.
At a low level of abstraction, maintainers can focus on one
aggregate-component to acquire deeper knowledge.

With a hybrid model, maintainers are able to study one
component at a time. Each component represents a set
of objects, and contains a complete static description of
those objects. Therefore, the structure and the behavior of
those objects can be understood solely based on the code



contained in the component, along with the resources that
component requires from outside components. For exam-
ple, according to the hybrid model shown in Figure 2, only
component C contains class Service. Therefore, to under-
stand class Service, maintainers can limit their investiga-
tion within that component.

With a hybrid model, maintainers are able to focus on
the external properties of a component at a higher level of
granularity. For example, component C in Figure 2 contains
three resources. Among them, only Service is known to
other components. Service Impl provides the implementa-
tion for the resource, but it is at a low data abstraction level
and is not of great interest at a coarse-grained level. Hence,
component C can be understood as a whole, and known as
a service provider for resource Service, while its internal
details, Service Impl and Help 2, are hidden.

With a hybrid model, maintainers are able to study all
possible relations between objects in different components.
As each component contains the complete blueprints of the
objects they represent, the connectors between components
reflect both explicit dependencies (dependencies explicitly
defined in source code) and implicit dependencies (depen-
dencies through inheritance). Therefore, the presence of a
connector indicates a possible relation between two compo-
nents, while the absence of a connector between two com-
ponents indicates they are not directly connected. For ex-
ample, Figure 2, component A may send message to com-
ponent C, but there is no communication path from compo-
nent A to component B.

In addition, hybrid models can be used to study var-
ious relations individually or in groups. Object-oriented
program comprehension requires both structural and behav-
ioral information. From a structural viewpoint, maintainers
may focus on aggregation and composition, while from a
behavioral viewpoint, maintainers may focus on calls and
instantiates. Different relations generate different hybrid
models, but share the containment relation among compo-
nents. We view those hybrid models as a set of layered
maps. The base map is composed of components and the
inheritance connectors among class-components. Ports, as-
sembly connectors and delegate connectors forms an add-on
map, which is determined by the class relation under con-
sideration. For example, Figure 2 shows the hybrid model
with calls add-on map. As the base map remains unchange,
it severs a platform to compare or combine different rela-
tions.

3.4 Tool Support

We implemented a prototype tool to support the con-
struction and visualization of hybrid models. Our tool is
composed of three parts: extractor, analyzer and visual-
izer. The extractor collects static information from Java

class files. The analyzer provides an interactive environ-
ment, in which users can modify containment hierarchy of
an object-oriented system, choose from primitive class in-
terrelations (e.g. calls, instantiates, aggregation, etc.) or
their combinations (union, intersection, and difference), and
perform queries on the hybrid models, which are automati-
cally generated. The visualizer presents hybrid models us-
ing Graphviz [4].

4 Case Studies

In this section, we present an exploratory case study
to show how the hybrid models can be used in a realistic
software comprehension scenario. The subject system is
LSEdit, a Java system currently under development in Soft-
ware Architecture Group at the University of Waterloo. It
is part of Swagkit [14], a reverse engineering toolkit for ex-
tracting, abstracting, and exploring software architectures.
LSEdit is an interactive visualization tool designed to en-
able users to explore and edit software landscapes in TA
format [6].

LSEdit version 7.1.25 consists of total 348 classes, in-
cluding 5 Java interfaces, 9 abstract classes, and 334 con-
crete classes. All of the classes are organized in a single
package. It is impractical for a maintainer to try to com-
prehend the entire system at once, so we employ a divide-
and-conquer strategy. We have chosen not to use an auto-
mated or semi-automated approach, such as software clus-
tering [16, 17], to create the system model. Instead, we
will create it manually to show how the hybrid modelling
approach can help maintainers to perform several tasks: to
chunk fine-grained entities to a higher level of abstraction
structure, to form meaningful hypotheses at the high-level
abstraction, to confirm or reject those hypotheses using low-
level information, and to derive design rationales during the
program comprehension process.

4.1 Chunking

Initially, we knew little about the source code. We had to
read through Java files, and group logically related classes
into coarse-grained entities. Based on our knowledge of
object-oriented paradigm and Java programming language,
we know that classes may connect with each other through
a variety of relations, such as inheritance, association, com-
position, instantiates, etc. With hybrid models, we are able
to choose relations, and perform analysis on one perspective
of the system at a time.

Step 1. We started with inheritance, which is often the se-
mantic backbone of an object-oriented system. The de-
scendants of the same class often describe the variants



 
So

rtV
ec

to
r

  
Co

m
pa

re
Fn

 

Cl
ie

nt
Su

pp
lie

rC
om

pa
re

Fn
D

ist
an

ce
Co

m
pa

re
Fn

H
or

iz
on

ta
lC

om
pa

re
Fn

Id
Co

m
pa

re
Fn

Po
sit

io
nC

om
pa

re
Fn

Pr
eo

rd
er

Co
m

pa
re

Fn
St

rin
gC

om
pa

re
Fn

Ve
rti

ca
lC

om
pa

re
Fn

 
D

o
 

 
To

ol
Ba

rE
ve

nt
H

an
dl

er
 

Cl
ip

bo
ar

dB
ox

H
ist

or
yB

ox
Ri

gh
tT

ab
be

dP
an

e
U

nd
oB

ox

 
Re

su
ltB

ox
 Re

su
ltB

ox 
M

yS
pl

itP
an

e
 

A
ttr

ib
ut

eB
ox 

M
yC

he
ck

Bo
xM

en
uI

te
m

 
 

M
yM

en
uI

te
m

 
 

Ch
kB

ox
 

Le
ge

nd
Bo

x
Q

ue
ry

Bo
x

 
M

ap
Bo

x
 

M
ap

Bo
x

 
Ta

 

D
ia

gr
am

 
A

ttr
ib

ut
eV

al
ue

Ite
m

 

 
D

ia
gr

am
Co

or
di

na
te

s
 

 
A

ttr
ib

ut
e

 

 
La

nd
sc

ap
eV

ie
w

er
 

La
nd

sc
ap

eE
di

to
rC

or
e

 
La

nd
sc

ap
eE

di
to

rF
ra

m
e

 La
nd

sc
ap

eE
di

to
rC

or
e

 
Cl

us
te

rM
et

ric
s

  
M

et
ric

sE
nt

ry
 

 
La

nd
sc

ap
eO

bj
ec

t
 

 
Ed

ge
sC

on
ta

in
er

 
 

Cl
ip

bo
ar

d
 

 
En

tit
yC

ac
he

 

Cl
ie

nt
Se

t
Su

pp
lie

rS
et

Re
la

tio
nC

la
ss

En
tit

yC
la

ss
Re

la
tio

nI
ns

ta
nc

e
En

tit
yI

ns
ta

nc
e

En
tit

yC
ac

he

Figure 3. A partial hybrid model with composition add-on map. Yellow boxes represent class-
components, and are labelled with class names. White boxes represent aggregate components,
and are labelled with user-defined names. Connectors to container-components are labelled with
associated resources.



for an abstract domain object. Therefore, it is reason-
able to group the classes related through inheritance.

The base map is particularly suitable for this pur-
pose as it only contains the inheritance among classes.
Among the total 348 classes, 192 classes are not in-
volved in any inheritance relation, 114 classes are in
hierarchical trees, and other 42 classes are in hierarchi-
cal graphs due to the presence of multiple interfaces.
We grouped each hierarchy tree into a coarse-grained
node, and named it after the root of the tree. For exam-
ple, ToolBarButton is grouped with its 18 subclasses
to form an aggregate component called ‘ToolBarBut-
ton’. This component can be cross-referred to a gen-
eral toolbar button. For those classes with multiple par-
ents, we subjectively assign them with one of their an-
cestors according to the naming convention. For exam-
ple, EntityInstance is grouped with LandscapeOb-
ject instead of DiagramCoordinates, as its name are
similar to EntityClass and RelationInstance, the de-
scendants of LandscapeObject.

Step 2. We also examined the inner-outer-class relation. In
Java, an inner class is a class nested in another class.
An inner class is often tightly coupled with its outer
class as it has access to the outer’s private members.
Therefore, it makes sense to group inner classes with
their outer classes, and map the resulting components
to the domain objects that the outer classes model.

We studied the inner-outer-class add-on map, gathered
Java inner classes with their outer classes, and named
the groups after the outer classes. For example, Leg-
endBox has 17 inner classes, 2 of them are types of
graphic components, and the other 15 implement GUI
event listeners to handle the events that occur on those
graphic components. The inner classes are not use-
ful on their own, but together with their outer class,
they can be cross-referred to the ‘Legend’ page on the
right side of LSEdit user interface. After the above two
steps, we reduce the number of top-level entities to 97.

Step 3. After inheritance, aggregation and composition are
the most important dependencies in traditional struc-
tural representations of object-oriented systems. An
aggregation specifies a whole-part relationship. A
composition is a special aggregation where the lifetime
of the part is controlled by the whole. The group of the
parts and the whole can be mapped to the complicated
real-world object that the whole models.

In the context of reverse engineering, an aggregation
can be roughly interpreted as the phenomenon that a
class (whole) has an attribute whose type is the aggre-
gated classes (part), and a composition is an aggrega-
tion in which the whole instantiates the part. Based on

the above consideration, we calculated composition,
which is the intersection of aggregation and instanti-
ates, and created an add-on map. Figure 3 shows the
most complicated part of the hybrid model with com-
position add-on map.

From Figure 3, we are able to identify three groups.
The left bottom shows that LandscapeEditorFrame
is composed of LandscapeEditorCore, whose family
members (ancestors, descendants, and inner classes)
are composed MyMenuItem, AtttibuteBox, Legend-
Box, MapBox, etc. The class names of those in-
volved classes remind us the user interface of LSEdit.
Each name corresponds to a graphic component on
the screen. Therefore, it is natural to group them
together to form an aggregate component represent-
ing the GUI part of the system. The classes on
the right top of the figure, starting with Ta, can be
grouped together because the composition relation
among them is consistent with the structure of TA
files in real world - a TA file specifies a typed graph
(Ta) which includes the types (EntityClass, Relation-
Class) of nodes and edges as well as the attributes
(Attribute) of those nodes (EntityInstance) and edges
(RelationInstance). Finally, the right bottom of the
figure shows the composition relationship among util-
ity classes.

In addition, we reviewed other relationships, such
as instantiates, aggregation, refers, calls, static-method-
invocation, etc. As we analyzed one relation at a time,
we found that the clustering result from previous steps may
seem inappropriate when viewed from a different perspec-
tive. For example, if EntityInstance is separated from
LandscapeObject but it is often referred as an object that
provides the responsibilities of LandscapeObject, then
unexpected coupling to the component that contains Enti-
tyInstance will be revealed when calls is examined. In this
case, we adjust the clustering, and check other relations it-
eratively.

4.2 Constructing Hypotheses

When we acquired some knowledge of the code, espe-
cially after studying Figure 3, we consider the system within
its problem domain, and form hypotheses about how the
system’s design can be decomposed. One well known way
to describe a system in an object-oriented manner is to use
Class-Responsibility-Collaborator (CRC) cards [1]. A CRC
card is composed of three parts: a class name, responsibil-
ities and collaborators. Responsibilities are what the class
knows and does, and collaborators are those classes that the
class needed to fulfill its responsibilities. CRC cards were
original introduced to teach object-oriented thinking, and
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Figure 4. Conceptual Model of LSEdit

later became a modelling technique that is often applied
to identify classes and their interactions at the early stage
of object-oriented analysis and design. Here we use CRC
cards to describe our mental image of the system.

Figure 4 depicts our conceptual model in CRC nota-
tion. The LSEdit system can be decomposed into three main
parts: the graph user interface, the typed graph specified in
a TA file, and some utility classes.

• The GUI consists of a set of smaller graphic compo-
nents. It renders graphics, handles user interaction
events, and dispatches some user commands to TA.
It may require some common algorithms or methods
from UTIL.

• TA understands the data structure of the typed graphs
specified in TA files. It provides means to modify, load
and store graphs. It may also require the collaboration
from UTIL.

• UTIL encapsulates common algorithms or methods re-
quired from the other two components.

4.3 Confirm/Reject Hypotheses

In order to confirm or reject the top-level hypothesis, we
need to identify the components that correspond to the three
domain objects, and analyze the interaction among them.
Hence, we divided all classes of the system into three re-
gions: 223 classes for GUI component, 96 classes for TA
component, and 29 classes for UTIL component. Then we
created the calls add-on map as shown in Figure 5.

In hybrid models, the responsibilities of a class-
component can be derived from the resources that are de-
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Figure 5. Concrete Model of LSEdit (Hybrid
Model with calls Add-on Map)

clared or defined in it, and the responsibilities of a compo-
nent can be interpreted as the union of the responsibilities
that its internal components have. The inports of compo-
nents indicate the responsibilities that they reveal to the out-
side through a particular dependency. Therefore, Figure 5
give us a peek into the responsibilities of the top-level com-
ponents.

Comparing the conceptual and concrete model of
LSEdit, we found that the inports of the top-level com-
ponents roughly match their responsibilities in conceptual
model. The inport of TA includes most classes that cor-
respond to constructs of a TA file, such as Ta, Attribute,
EntityClass, etc. This indicates that TA has the responsi-
bilities to maintain TA files. From the inport of GUI, we



are able to identify some GUI components, such as Result-
Box and ToolBarButton, the class that deals with user input
event, such as EditModelHandler, and the class related to
graph rendering, such as LandscapeLayouter. The inport
of UTIL includes 3 classes that encapsulate common algo-
rithms. After checking the static-method-invocation add-on
map, we found that most classes in UTIL contain only static
methods and are not meant to be instantiated.

The assembly connectors in Figure 5 describe the inter-
action among components, and can be interpreted as the
collaboration among domain objects. All the collaboration
in the conceptual model can be identified from the con-
crete model. However, there are some unexpected collab-
orations. For example, UTIL requires resources from both
GUI and TA. We examined the internal structure and be-
havior of UTIL, and found that some utility classes, such as
Util and SortVector, take objects as parameters and retrieve
run-time data stored in those objects. Such collaboration is
necessary and should be added to our conceptual model.

The biggest surprise is that TA requires many resources
from GUI, especially some graphic components. This can
be caused by two reasons, either the partition is not reason-
able, or some responsibilities and collaborations are missing
from the conceptual model. We studies the TA region. After
examining the low-level representation, we found that the
classes that model the typed graphs from TA files are not
pure data. The Java class Diagram can be cross-referred
to the visualized graph in LSEdit, and EntityInstance and
RelationInstance correspond to nodes and edges of the vi-
sualized graph respectively. They not only keep the struc-
ture of the graph, but also are responsible for rendering the
graph. Therefore, both responsibilities and collaborator of
TA in our conceptual model should be synchronized with
the concrete model.

4.4 Derive Design Rationale

The hybrid model organizes the system in a hierarchical
structure. Components at different levels of granularity can
be mapped to domain objects or submodules. Therefore,
navigating along the hierarchical abstraction enable main-
tainers to derive the rationale behind system decomposition
and responsibilities assignment. For example, LSEdit sys-
tem is decomposed into three parts, GUI, TA and UTIL.
The decomposition indicates designers’ intention to separa-
tion user interface from application data. The GUI part is
further decomposed into small graphic components accord-
ing to the structure of user interface arrangement. The TA
part is decomposed into a group of classes that model the
constructs of real-world TA files.

In a good design, an object or a module reveals only the
interface needed to interact with it. With hybrid models, it
is possible for maintainers to derive important design deci-

sions about program logic encapsulation made during soft-
ware development. The inport of a component in the hybrid
model shows the resources that the component reveals to
the outside through a particular relationship. In the calls
add-on map, the inports can be interpreted as the service
that the component provides to others. By comparing the
revealed functionalities with the responsibilities that a com-
ponent has, maintainers are able to uncover the design ra-
tionales about program logic encapsulation. For instance,
GUI component in Figure 5 reveals 13 out of 223 classes it
contains. This indicates that most responsibilities this com-
ponent has are not pertinent to the use of the component and
they are hidden from the rest of the system. The internal de-
tails of TA and UTIL further show that most classes know
GUI through LandscapeEditorCore, the core of the user
interface, and only a small portion of classes in TA rely on
other GUI elements. If maintainers plan to further reduce
the coupling between GUI and other components, they may
consider of isolating GUI related responsibilities from TA
and moving them to the GUI.

The hybrid model also helps to derive the purpose of in-
heritance. An inheritance relationship can be introduced to
reuse implementation, specialize behaviors, or establish a
contract. Without knowing the context where the inheri-
tance is used, maintainers can not determine the rationale
behind such inheritance. The hybrid model that integrates
inheritance and calls is able to provide such a context. For
example, 59 classes in LSEdit system accomplish layout
related responsibilities, and 11 of them are descendant of
LandscapLayouter. The rest of the system interacts with
this region only through LandscapLayouter. This indi-
cates that the LandscapLayouter serves as a contract about
how the region is used. For another example, Diagram is
a descendant of DiagramCoordinates, Ta, TemporalTa,
EditableTa and UndoableTa. Diagram is often accessed
directly, and occasionally accessed as an object of Dia-
gramCoordinates or Ta. However, it is never used as an
object of TemporalTa, EditableTa or UndoableTa. There-
fore, the main purpose of this inheritance is code reuse.

4.5 Case Study Summary

The hybrid models help program comprehension at
coarse-grained level. maintainers are able to map compo-
nents extracted from source code to objects or subsystems in
the problem domain at different levels of granularity. When
a component is mapped to a subsystem, the resources at-
tached to its inports can be interpreted as the functionality
of the subsystems. When it is cross referenced to a com-
plicated domain object, the resources attached to its inports
indicate the responsibilities expected from other domain ob-
jects. Therefore, maintainers can think in the problem do-
main using the appropriated hybrid models.



In addition, the integration problem can be mitigated.
Hybrid models serve as a kind of palette that allows main-
tainers to mix the relationships that they are interested in.
As structural and behavioral properties of an object-oriented
system can be integrated and visualized in one single view,
maintainers do not have to search for the required informa-
tion from other perspectives of programs or constantly shift
between different views.

However, the hybrid model approach has its own lim-
itations. First, it is based on static analysis, and so suf-
fers from the usual conservatism about relation informa-
tion. Low-level data and control dependency analysis may
help narrow the set of potential targets of polymorphic calls,
and reduce the impossible relations. Second, the construc-
tion of a hybrid model may introduce a large number of
ghost classes when a system has a deep class hierarchy and
many instances of cross-package inheritance. To our expe-
rience, however, this case is very rare. Inheritance, espe-
cially implementation inheritance, often leads to tight cou-
pling between the subclass and the superclass. They are
often grouped in the same package as they are logically re-
lated, and should be understood together.

5 Conclusion

In this paper, we have presented a hybrid model of
object-oriented systems. Instead of grouping programming
language classes, we aggregate the complete static descrip-
tion of software objects, so that each aggregate component
of a hybrid model represents a set of objects. The assembly
connectors among components capture all possible relations
among the objects in different components.

Maintainers who attain high-level understanding of an
object-oriented system can benefit from the proposed hy-
brid model. It allows maintainers to apply a divide-and-
conquer comprehension strategy to deal with the complex-
ity of large systems. At a low level of abstraction, main-
tainers can study one component at a time, and understand
its composing software objects as independent units. At a
high level, maintainers can focus on the external properties
of components and their interrelationships. In addition, the
hybrid models may help maintainers to identify domain ob-
jects at coarse-grained levels, and may provide clues to the
important design decision made during development. An
exploratory case study has been performed to show the use-
fulness of the hybrid models to program comprehension in
a realistic comprehension scenario.
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