
A Reference Architecture for Web Browsers

Alan Grosskurth and Michael W. Godfrey
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1 CANADA
{agrossku,migod }@uwaterloo.ca

Abstract

A reference architecture for a domain captures the fun-
damental subsystems common to systems of that domain as
well as the relationships between these subsystems. Hav-
ing a reference architecture available can aid both during
maintenance and at design time: it can improve understand-
ing of a given system, it can aid in analyzing trade-offs be-
tween different design options, and it can serve as a tem-
plate for designing new systems and re-engineering existing
ones.

In this paper, we examine the history of the web browser
domain and identify several underlying phenomena that
have contributed to its evolution. We develop a reference ar-
chitecture for web browsers based on two well known open
source implementations, and we validate it against two ad-
ditional implementations. Finally, we discuss our obser-
vations about this domain and its evolutionary history; in
particular, we note that the significant reuse of open source
components among different browsers and the emergence of
extensive web standards have caused the browsers to exhibit
“convergent evolution.”

Keywords: Software architecture, reference architec-
ture, software evolution, component reuse, web browser.

1 Introduction

A reference architecture[27] for a domain captures the
fundamental subsystems and relationships that are common
to the existing systems in that domain. It aids in the under-
standing of these systems, some of which may not have their
own specific architectural document. It also serve as a tem-
plate for designing new systems, identifying areas in which
reuse can occur, both at the design level and the implemen-
tation level. While reference architectures exist for many
mature software domains, such as compilers and operating

systems, no reference architecture has been proposed yet for
web browsers.

The web browser is perhaps the most widely-used soft-
ware application in history. Although the domain is only
fifteen years old, it has evolved significantly over that time.
It provides business and home users with convenient access
to a wealth of information and services. Internet-enabled
commerce currently accounts for billions of dollars worth
of annual sales and is constantly growing.

The requirements for web browsers can differ signif-
icantly depending on the needs of the intended users.
For example, handheld computer users typically want fast
browsers with small memory footprints and streamlined
user interfaces, while desktop users are often willing to
trade-off some efficiency for additional features such as
support for multiple languages. Additionally, web standards
are constantly evolving, putting pressure on browsers to add
support for the latest specifications. A reference architec-
ture for web browsers can help implementors to understand
trade-offs when designing new systems, and can also assist
maintainers in understanding legacy code.

In this paper, we derive a reference architecture for web
browsers from the source code of two existing open source
systems and validate our findings against two additional
systems. We explain how the evolutionary history of the
web browser domain has influenced this reference architec-
ture, and we identify underlying phenomena that can help
to explain current trends. Although we present these ob-
servations in the context of web browsers, we believe many
of our findings represent more general evolutionary patterns
which apply to other domains.

This paper is organized as follows: Section 2 provides an
overview of the web browser domain, outlining its history
and evolution. Section 3 describes the process and tools we
used to develop a reference architecture for web browsers
based on the source code of two existing open source sys-
tems. Section 4 presents this reference architecture and ex-
plains how it represents the commonalities of the two sys-



tems from which it was derived. Section 5 provides valida-
tion for our reference architecture by showing how it maps
onto the conceptual architectures of two other systems. Sec-
tion 6 discusses related work, and Section 7 presents con-
clusions.

2 The Web Browser Domain

2.1 Overview

The World Wide Web (WWW) is a shared information
system operating on top of the Internet. It consists of doc-
uments, as well as other types of files such as images and
video clips, which are transmitted via HyperText Transfer
Protocol (HTTP), a stateless and anonymous means of in-
formation exchange. A web browser is a program that re-
trieves these documents from remote servers and displays
them on screen, either within the browser window itself or
by passing the document to an external helper application.
Documents are written using HyperText Markup Language
(HTML) and contain hyperlinks which point to other places
in the same document, or in different documents. Every
resource on the Web is identified by a unique Uniform Re-
source Identifier (URI). The web browser presents an in-
terface to the user that allows particular resources to be re-
quested explicitly by URI, or implicitly by following em-
bedded hyperlinks.

Although HTML itself is a relatively simple language
for encoding web pages, other technologies may be used to
improve the visual appearance and user experience. Cas-
cading Style Sheets[4] (CSS) allow authors to add layout
and style information to web pages without complicating
the original structural markup. JavaScript, now standard-
ized as ECMAScript[7], is a host environment for perform-
ing client-side computations. Scripting code is embedded
within HTML documents, and the corresponding displayed
page is the result of evaluating the JavaScript code and
applying it to the static HTML constructs. Examples of
JavaScript applications include changing element focus, al-
tering page and image loading behaviour, and interpreting
mouse actions. Finally, there are some types of content that
the web browser cannot directly display, such as Macrome-
dia Flash animations and Java applets. Plugins, small pro-
grams that connect with other programs, are used to embed
these types of content in web pages.

In addition to retrieving and displaying documents, web
browsers typically provide the user with other useful fea-
tures. For example, most browsers keep track of recently
visited web pages and provide a mechanism for “bookmark-
ing” pages of interest. They may also store commonly en-
tered form values as well as usernames and passwords. Fi-
nally, browsers often provide accessibility features to acco-
modate users with disabilities such as blindness, low vision,

1.0

2.0

2.0

3.0

4.0

4.5

6.0

1998−03−31

1.0

1.0

3.0

4.0

5.0

5.5

6.0

Mozilla

Mosaic

Lynx

2.0

3.0

Galeon

1.2
0.5

Firefox

1.0

2.0

M18

Explorer
Internet

2.4

1.0
Netscape

7.0

2.1

3.0

Opera

5.0
4.0

6.0

2005

2002

2003

2004

2000

2001

1999

1998

1997

1996

1995

1994

1992

1993

2.85
1.7

1.0

1.0

2.0

Konqueror

Safari

W3C founded

Open−source

Closed−source

Hybrid

7.0

8.0 Beta

Legend

3.0

0.8

1.0

1.2

1.0

Figure 1. Web Browser Timeline

hearing loss, and motor impairments.

2.2 History and Evolution

The origins of the World Wide Web (WWW) can be
traced back to a proposal written by Tim Berners-Lee in
1990 at the European Nuclear Research Center (CERN). A
year later he had written the first web browser, which also
served as a simple HTML editor. This browser was text-
only and it allowed users to browse the web by typing in
commmands that referenced numbered links. Around the
same time, researchers at the University of Kansas had be-
gun to work on their own hypertext browser called Lynx in-
dependent of the WWW. Lynx was also a text-only browser,
but it allowed users to browse documents using navigational
keys, rather than typing in commands. In 1993, Lynx was
adapted to support the WWW, and it quickly became the
preferred text-only browser. In 1995, it was released under
a free software license. Figure 1 shows when the various
releases of Lynx occurred, along with the releases of other
popular browsers.

Also in 1993, the National Center for Supercomputing
Applications (NCSA) released a web browser called Mo-
saic to the Internet community. As one of the first graphi-
cal browsers for the web, it allowed users to view images
directly interspersed with text, as well as scroll through
large documents. It had an easy point-and-click interface



that set a new standard for web browsers. During the same
year, the first commercial Internet domain name was reg-
istered by Digital Equipment Corporation (DEC). As the
commercial potential for the Internet began to grow, the
University of Illinois forked off an offshoot called Spy-
glass to commercialize and support technologies developed
at NCSA. Around the same time, the creator of Mosaic,
Marc Andreeseen, left NCSA to co-found Netscape Com-
munications Corp. The first version of their Netscape web
browser was released in 1994. Netscape introduced the
notion of continuous document streaming, which allowed
users to view parts of documents as they were being down-
loaded, rather than wait for the entire download to finish.
Also in 1994, the World Wide Web Consortium (W3C) was
founded to promote interoperability among web technolo-
gies.

In 1995, Microsoft released the Windows 95 operating
system. They included with it their own web browser, In-
ternet Explorer (IE), which was based on code licensed
from Spyglass. A period known as “browser wars” ensued,
characterized by heated competition between Microsoft and
Netscape. During this time, each browser introduced nu-
merous innovations and proprietary enhancements to the
web in an effort to attract more users. Although Netscape
started off with over 90% market, Microsoft eventually took
over the market, likely because their browser was included
for free with Windows and could not be removed. In 1998,
Netscape released most of the source code for the upcoming
version of their browser under the in-house project name,
Mozilla. Much of the code was rewritten, and eventually
Mozilla released version 1.0 in 2002, which provided strong
support for emerging web standards, such as CSS. Netscape
now creates their browser by re-branding particular releases
of Mozilla and adding in proprietary features. By this time,
the closed source browser Opera[19] had also appeared,
with its origins tracing back to a research project at the Nor-
wegian telecom company, Telenor.

Since the rollout of Mozilla, a large number of varia-
tions have appeared. While the core of the browser remains
the same, these variations offer alternative design decisions
with respect to user-level features. Mozilla’s emphasis on
cross-platform support sacrifices tight integration with each
particular platform; Galeon[8] remedies this by integrating
with the Gnome Desktop Environment, and Camino[3] with
Apple’s Mac OS X. Mozilla’s complex user interface and
integrated mail client make it too cumbersome for some
tastes; Firefox is a standalone browser developed by the
Mozilla Foundation to provide lighter, more streamlined
user interface. (In fact, Mozilla has recently been officially
discontinued in favour of Firefox[15].)

In addition to Mozilla-based browsers, there are also
several browsers based on Konqueror[10]. Developed for
the K Desktop Environment (KDE), a user-friendly, open

source desktop for UNIX-like systems, Konqueror is a file
manager and universal document viewer as well as a web
browser. In 2002, Apple used the core of Konqueror as
the basis for their own OS X web browser, Safari. Al-
though Safari is closed source, Apple has released their
changes to the KHTML core engine back to the commu-
nity as the open source Webcore[23] engine. This code has
since been reused in several other OS X browsers, such as
OmniWeb[18].

Finally, Internet Explorer’s closed source core has
been used as the basis for several closed-source Windows
browsers: Maxthon[13], Avant[2], and NetCaptor[17] each
provide features not found in IE such as tabbed browsing
and advertisement blocking. More interestingly, version 8
of Netscape’s browser is expected to be based on Firefox
and support IE-based rendering as well as Mozilla-based
rendering, allowing the user to switch between the two on
the fly. Since there are subtle rendering differences between
the engines, this feature may be useful because it would al-
low the user to choose the engine which produces the better
results for a particular web site. Additionally, it may bene-
fit web developers who need to test compatibility with both
engines. However, it can be argued that including two dif-
ferent engines undermines the goal of web standards, which
is to ensure web sites function identically across all engines.

2.3 Basic Usage

Although web browsers have evolved significantly since
the early days of the web, their basic operation still remains
relatively simple. A user begins by typing in a URI to view.
Using HTTP, the browser sends a request to the appropri-
ate remote web server for the document. The document is
downloaded onto the user’s computer, and a visual represen-
tation is rendered and displayed on the user’s screen. If the
document contains content other than basic HTML or Ex-
tensible Markup Language (XML), the browser may open a
third-party application to display it. By clicking on hyper-
links in the document, the user can then navigate to other
related documents, which will be requested and displayed
by the web browser in a similar manner.

3 Deriving a Reference Architecture

Using the source code and available documentation for
two different web browsers, we derived a reference archi-
tecture for the web browser domain. This reference archi-
tecture represents the abstract architecture of the domain,
and was derived by following a process similar to that which
is described by Hassan and Holt in [31]:

1. Two mature browser implementations were selected
from which to derive the reference architecture.



rawlink

addcontain

Program
facts

Object
code

program
Linked

liftfile

Source
code

facts

landscape

Architecture
Concrete

Adjustments

lsedit

program
schema

landscape

Conceptual
Architecture

Predefined

decomposition

Hierarchichal
subsystemSoftware

Facts with File level
decomp−

factsosition
addschema

bfx

Tool

jgrok

Data flow

Human interaction

script

Legend

Build

Figure 2. Extraction process for concrete ar-
chitecture

2. For each brower:

(a) A conceptual architecture was proposed based on
domain knowledge and available documentation.

(b) The concrete architecture was extracted from the
source code and used to refine the conceptual ar-
chitecture.

3. A reference architecture was proposed based on the
common structure of the conceptual architectures.

4. The reference architecture was validated against other
browser implementations.

The two implementations chosen to serve as a basis for
derivation were Mozilla and Konqueror. They were cho-
sen because they are mature systems, have reasonably large
developer communities and user bases, provide good sup-
port for web standards, and are entirely open source. Both
Internet Explorer and Opera meet the first three require-
ments, but were not suitable for examination because they
are closed source.

3.1 Extraction Methodology

The concrete architecture of each system was extracted
from its source code using QLDX[20], a reverse engineer-
ing toolkit developed at the University of Waterloo for ex-
ploring and visualizing software architectures. The toolkit
consists ofbfx , a C and C++ fact extractor which operates
on binary object files;jgrok , a relational calculator ca-
pable of manipulating these facts; andlsedit , a tool for
viewing and editing software landscapes.

The process used to extract the concrete architecture is
shown in Figure 2. First, the source code for the system

User Interface

Rendering Engine

XMLJavaScript
Networking Display Backend

D
ata P

ersistence

Browser Engine

ParserInterpreter

Figure 3. Reference architecture for web
browsers

was compiled into binary object code using the standard
GNU toolchain. Next, the program facts were extracted us-
ing bfx . The program facts were then linked using a spe-
cializedjgrok script. Since the systems studied were rel-
atively large, the relations between the entities were propa-
gated from the function level to the file level, using another
specializedjgrok script. Next, a hierarchichal subsystem
decomposition was created based on the system’s concep-
utal architecture. This containment structure was then ap-
plied to the file-level program facts, and a standard schema
was added to produce the software landscape. This land-
scape respresents a preliminary version of the concrete ar-
chitecture of the system, and it was explored and adjusted
futher usinglsedit to arrive at the final version.

The size of the extraction artifacts was at most within a
factor of two of the size of the build artifacts, and typically
much smaller. The extraction process was almost entirely
automated; the only manual tasks were deriving the hier-
achichal subsystem decomposition and adjusting the land-
scape inlsedit . If the system was small or the directory
structure of the source code corresponded well with the ar-
chitectural structure, these steps did not require much effort.
On the other hand, if the system was large and the architec-
tural structure was not reflected in the directory structure, a
significant amount of effort was involved in developing an
accurate subsystem decomposition.

4 A Reference Architecture for Web
Browsers

The reference architecture we derived is shown in Fig-
ure 3; it comprises eight major subsystems plus the depen-
dencies between them:



1. TheUser Interfacesubsystem is the layer between the
user and theBrowser Engine. It provides features such
as toolbars, visual page-load progress, smart down-
load handling, preferences, and printing. It may be
integrated with the desktop environment to provide
browser session management or communication with
other desktop applications.

2. The Browser Enginesubsystem is an embeddable
component that provides a high level interface to the
Rendering Engine. It loads a given URI and sup-
ports primitive browsing actions such as forward, back,
and reload. It provides hooks for viewing various as-
pects of the browsing session such as current page load
progress and JavaScript alerts. It also allows the query-
ing and manipulation ofRendering Enginesettings.

3. TheRendering Enginesubsystem translates a URI into
a visual representation. It is capable of displaying
HTML and XML documents, optionally styled with
CSS, as well as embedded content such as images. It is
responsible for page layout and may contain “reflow”
algorithms which incrementally adjust the position of
elements on the page. This subsystem also includes
the HTML parser.

4. The Networkingsubsystem implements file transfer
protocols such as HTTP and FTP. It translates between
different character sets, and resolves mime types for
files. It may include a cache of recently retrieved re-
sources.

5. TheJavaScript Interpreterevaluates JavaScript (also
known as ECMAScript) code, which may be embed-
ded in web pages. JavaScript is an object-oriented
scripting language developed by Netscape. Certain
JavaScript functionality, such as the opening of pop-
up windows, may be disabled by theBrowser Engine
or Rendering Enginefor security purposes.

6. TheXML Parsersubsystem parses XML documents
into a Document Object Model (DOM) tree. This is
one of the most reusable subsystems in the architec-
ture. In fact, almost all browser implementations lever-
age an existingXML Parser, rather than rewriting their
own from scratch.

7. TheDisplay Backendsubsystem provides drawing and
windowing primitives, a set of user interface widgets,
and a set of fonts. It may be tied closely with the oper-
ating system.

8. TheData Persistencesubsystem stores various data as-
sociated with the browsing session on disk. This may
be high level data such as bookmarks or toolbar loca-
tions, or it might be lower level data such as cookies,
cache, or security certificates.

The reader may wonder why we have placed the HTML
parser within the rendering engine subsystem, while isolat-
ing the XML parser in a subsystem of its own. The answer
is because although arguably less important to the function-
ality of the system, the XML parser is a generic, reusable
component with a standard, well-defined interface. This is
in contrast to the HTML parser, which is often tighly inte-
grated with the rendering engine for performance reasons,
and can provide varying levels of support for broken or non-
standard HTML. That is, thisdesign decisionseemed to be
a common feature of web browser architectures.

4.1 Mozilla

The Mozilla Suite[16] is one of the most prominent and
widely-used open source projects today. It was started in
1998 when Netscape Communications released the source
code for the development version of their popular Netscape
Communicator product on the Internet under a free soft-
ware licence. Now, almost seven years later, most of that
system has been completely redesigned and rewritten, and a
large number of new features have been added. Mozilla was
written with several design goals in mind: support for web
standards as well as broken web pages, support for multiple
platforms, and fast rendering. We examined version 1.7.3,
which consists of approximately 2,400 kLOC. Most of the
source code is written in C++ although large parts of the
user interface are written in JavaScript and a small amount
of legacy code is written in C. We built and extracted the
Linux version of Mozilla which uses the GTK toolkit.

The mapping of Mozilla’s conceptual architecture onto
the reference architecture is shown in Figure 4. We note the
following observations about Mozilla’s architecture:

• TheUser Interfacesubsystem is split into two subsys-
tems: the XPFE toolkit and the actual user interface.
The reason for this is that Mozilla reuses the XPFE
toolkit as a basis for the user interfaces of other ap-
plications in the Mozilla suite including the mail/news
client and the HTML editor.

• All data persistence is provided by Mozilla’s profile
mechanism, which is responsible for storing both high-
level data such as bookmarks and low-level data such
as a page cache.

• Mozilla’s Rendering Engineis larger and more com-
plex than that of other browsers. This is likely because
it contains more functionality; for example, it is re-
sponsible for rendering the application’s user interface
and well as web pages.

• The Rendering Engineand Browser Enginesubsys-
tems are tightly coupled to each other. As a result,



JavaScript
Interpreter

Expat
Spider−
MonkeyNecko

Browser Engine

Rendering Engine

Gecko

XML
Parser

UI Toolkit (XPFE)

User Interface

GTK+ / X11 Libraries

Display BackendNetworking

Security
(NSS/PSM)

Adapter
GTK+

D
ata P

ersistence

User Interface

B
row

ser P
ersist.

U
ser, S

ecure, and

Figure 4. Architecture of Mozilla

it would be difficult to reuse theRendering Engineby
itself.

• All graphical elements in the user interface and web
pages are specified in Extensible User Interface Lan-
guage (XUL), which abstracts away the details of dif-
ferent platform-specific display and widget libraries.
XUL is then mapped onto these each of these libraries
using specially written adapter components. This ar-
chitecture distinguishes Mozilla from other browsers
in which the user platform-specific display and wid-
get libraries are used directly, and allows Mozilla to be
ported to different platforms with minimal difficulty.

4.2 Konqueror

Konqueror[10] is the official web browser of the K Desk-
top Environment (KDE)[9]. It can also serve as a file man-
ager and a general-purpose file viewer. The project was
started in January 1999, and its main design goals are speed,
standards-compliance, and integration with KDE. We ex-
amined release 3.3.2, which consists of approximately 613
kLOC, including the required KDE libraries. Konqueror is
written entirely in C++, as is most of the code in KDE.

We found Konqueror’s codebase to be extremely well or-
ganized. Modules were split up cleanly into subdirectories
and there was often a concise design document included
with the code explaining the main abstractions and design
decisions. This may be in part due to the extensive docu-
mentaion provided by the KDE Quality Team that details
various design guidelines and best practices for KDE ap-
plication development. This group also makes a conscious

Parser
Display BackendXML

Qt / X11 Libraries

KJSKIO

Networking

P
ersist.

P
ersist.

U
ser

B
row

ser

KHTML

K
W

allet

Browser Engine

User Interface

User Interface

Browser Engine

Rendering Engine

D
ata P

ersistence

PCRE

Interpreter
JavaScript

Figure 5. Architecture of Konqueror

effort to involve nondevelopers with areas such as documen-
tation, user interface design, issue tracking, and testing.

The mapping of Konqueror’s conceptual architecture
onto the reference architecture is shown in Figure 5. Kon-
queror makes extensive use of various KDE libraries:
KHTML performs parsing, layout, and rendering of web
pages; KJS interprets embedded JavaScript code; KWal-
let stores data such as passwords, cookies, and form data
with strong encryption and error detection; and KIO is an
asynchronous virtual file system which automatically pro-
vides encoding and decoding over common protocols. We
note the following observations about the conceptual-to-
reference architecture mapping:

• TheXML ParserandDisplay Backendsubsystems are
both provided by the Qt[21] toolkit, which serves as
the basis for all KDE applications. That is, these sub-
systems are external to the browser itself.

• The Perl Compatible Regular Expressions (PCRE) li-
brary is used as a backend for the regular expression
functionality of theJavaScript Interpreter. PCRE is a
mature and well tested component used in many other
high-profile open source projects including Python and
Apache.

• Data Persistenceis provided at three levels. First,
some high-level data such as bookmarks and history
are stored by Konqueror itself. Second, other high-
level data such as form completions are stored by
KHTML. Third, secure data such as passwords are
stored by KWallet, which allows this data to be shared
with other KDE applications.



Overall, we found that Konqueror’s developers have
made a concious effort to implement the browser on top
of existing libraries which take care of difficult tasks. In
contrast, Mozilla has developed almost all these libraries in-
house, delegating only to other libraries only when neces-
sary. A consequence of this is that Konqueror is closely tied
to UNIX-like operating systems and the Qt toolkit, while
Mozilla supports several different operating systems and
display toolkits. However, as we will see in the next sec-
tion, Apple was able to adapt Konqueror to their own needs
by removing many of its dependencies.

5 Validating the Reference Architecture

Two additional implementations were chosen against
which to validate the reference architecture: Lynx and Sa-
fari. Lynx was chosen because it is the oldest web browser
still regularly used and maintained. Safari was chosen be-
cause it represents an interesting mix of open and closed
source technology, and was developed with usability as a
key design goal.

5.1 Lynx

Lynx[12] is a text-only web browser for use on cursor-
addressable, character cell terminals. Its history dates back
to before the age of the World Wide Web and HTML; it
began as an interface for an “organization-wide informa-
tion system.”[6] Hypertext capabilities were then added,
complete with its own link syntax and URI scheme. It
next evolved to support the Gopher protocol and distributed
hypertext, functioning also as a database interface. The
wwwlib library, which provided the first support for WWW
protocols, was later grafted on making Lynx into a true web
browser. We examined release 2.8.5 of Lynx, which con-
sists of approximately 122 kLOC.

Lynx’s age and development process are the primary rea-
sons why its codebase is so large and complex. Although it
was developed by a single student through its early stages,
we found that its diverse and constantly changing require-
ments resulted in a system composed of small fragments of
code with no coherent overall structure. In addition, much
of the code is very low-level and is specific to either the
UNIX or VMS platform, which increases the overall com-
plexity. To its credit, however, Lynx still remains among the
most popular console browsers on UNIX-based systems.

The mapping of Lynx’s conceptual architecture onto the
reference architecture is shown in Figure 6. Lynx uses lib-
www, which provides a wide variety of functionality such
as HTML parsing and support for both the HTTP and FTP
protocols. The libgnutls library provides optional support
for secure protocols. Lynx also uses the curses library for
displaying information on character-cell terminals. Lynx’s

Rendering Engine

Display Backend

JavaScript
Interpreter

Networking

Security
(libgnutls)

Parser
XML

User Interface
D

ata P
ersistence

Browser Core

Browser Engine

Curseswwwlib

Figure 6. Architecture of Lynx

conceptual architecture shows a clear separation between
three main subsystems: browser core, networking, and dis-
play backend. We note the following observations about the
conceptual-to-reference architecture mapping:

• There is no clear separation between theUser Inter-
face, Browsing Engine, Rendering Engine, andData
Persistencesubsystems. This is likely because these
subsystems are much simpler in Lynx than in other
browsers due to its text-only nature. For example,
the rendering engine outputs web pages in linear form
rather than attempting to layout elements at appropri-
ate coordinates, and the user interface relies solely on
keyboard input rather than dealing with menus, wid-
gets, and mouse events.

• Lynx does not contain aJavaScript Interpretersubsys-
tem or anXML Parser subsystem. This is because
the majority of Lynx’s codebase was written before
JavaScript existed, and no one has since volunteered
to add support for it. As a result, Lynx cannot be used
to browse web sites that rely on JavaScript for normal
interaction. However, many sites only use JavaScript
to augment functionality provided by HTML, so Lynx
users can still use these sites, albeit with decreased
functionality.

Overall, the lack of modularity and text-only nature of
Lynx make its conceptual architecture much simpler than
our reference architecture. However, we are still able to
identify three core subsystems which correspond to some
of the subsystems in the reference architecture.



KJS

Networking

P
ersist.

P
ersist.

U
ser

B
row

ser

PCRE

JavaScript
Interpreter

XML Display Backend

ExpatFoundation
Core

User Interface

Cocoa / Carbon

Parser

User Interface

Browser Engine

K
eychain

Rendering Engine

Brower Engine (Web Kit)

Adapter (KWQ)

KHTML

D
ata P

ersistence

Figure 7. Architecture of Safari

5.2 Safari

Safari[22] is a web browser developed by Apple Com-
puter for its Mac OS X operating system. The first version
was released in January 2003. The main design goals for
Safari are usability, speed, standards-compliance, and in-
tegration with OS X. Safari reuses the KHTML rendering
engine and the KJS JavaScript interpreter from the KDE
project. Their modified version is called WebCore, and
is released under the GNU Lesser General Public License
(LGPL). However, the rest of Safari’s code is proprietary,
including the browser engine (WebKit) and the user inter-
face. We examined the source code of release 125 of We-
bCore and JavaScriptCore, which consists of 114 kLOC of
C++ code and 22 kLOC of Objective C++. Since we could
not extract the proprietary parts, their structure was inferred
from Apple’s developer documentation[1].

The conceptual-to-reference architecture mapping for
Safari is shown in Figure 7 We note the following obser-
vations about Safari’s archtiecture:

• The Rendering Engineis composed of the KHTML
core engine wrapped in the KWQ adapter. KWQ is
written in Objective C++, which allows it to present an
Objective C API to KHTML, which is written in C++.
This was needed for integrating Safari into OS X.

• Networkingfunctionality is provided by OS X’s Core
Foundation networking library, used in place of KIO.

• The XML Parsersubsystem is provided by the Expat
XML parser, used in place of the XML parser provided
by the Qt toolkit.

• The Display Backendsubsystem is composed of two
complementary libraries: Carbon and Cocoa. Car-
bon provides a lower-level C API for display routines,
while Cocoa provides a higher-level Objective C API.

• Persistent data is handled by three separate system-
wide services that are built into OS X: Preferences,
Keychains, and Caches. The use of these services al-
lows Safari to to integrate smoothly with other OS X
applications.

Overall, Safari’s conceptual architecture corresponds
well with our reference architecture. Safari reuses the core
engine from Konqueror, substitues a Mac OS X look and
feel, and makes use of other components and libraries na-
tive to OS X in place of the Linux- and KDE-specific com-
ponents of Konqueror.

5.3 Summary

There are several reasons why a web browser’s architec-
ture would differ from our reference architecture. Some of
the subsystems in the reference architecture may be imple-
mented as a single subsystem for simplicity, while others
may implemented across multiple subsystems for greater
flexibility. Furthermore, new subsystems may be added to
provide additional capabilities not found in traditional web
browsers, while other subsystems may be omitted to make
the browser more lightweight.

Lynx’s conceptual architecture is much simpler than our
reference architecture. Some subsystems are missing be-
cause they correspond to relatively modern features which
either are not applicable to text-only browsers, or simply
are not supported yet in Lynx. Other subsystems are tighly
coupled as a result of Lynx’s overall lack of modularity.

Safari’s conceptual architecture corresponds quite
closely to our reference architecture. This makes sense
because Safari is based on the same rendering engine and
JavaScript interpreter as Konqueror; furthermore, it seems
as though Apple has used Konqueror as a blueprint for Sa-
fari, substituting OS X technologies for the corresponding
KDE technologies. Additionally, we observe that Safari
uses the Expat XML parser, which is also found in Mozilla.

Table 1 shows various statistics about the different web
browsers studied. We note the following observations:

• Konqueror achieves nearly the same degree of
standards-compliance as Mozilla with one-quarter of
the amount of code. This may be due to the fact that
Mozilla supports many different platforms, while Kon-
queror only supports UNIX-like systems running X11
with the Qt toolkit.

• Lynx, while smaller than the other browsers, is
nonetheless very large for a text-based browser. For



Table 1. Approximate web browser statistics
Project Rel. Lang. Files kLOC Size* Start
Mozilla 1.7.3 C++ 10,500 2,400 29 1998
Konq. 3.3.2 C++ 3,145 600 17 1996
Lynx 2.8.5 C 200 122 2.1 1992
Safari 1.2 C++,

Obj C
>750 >136 >2.1 2003

*Represents the compressed tarball size in megabytes.

comparisions sake, Links[11], a more recent text-only
browser with a comparable feature set, consists of only
26 kLOC, approximately one-fifth the size of Lynx.
This may be due to the large amount of legacy code
in Lynx.

• We are unable to obtain complete size information for
Safari because a large portion of the code is closed
source. The numbers shown correspond only to the
WebCore engine, and thus represent a lower-bound on
the total size.

We are currently investigating how the conceptual archi-
tectures of the Mosaic[14], Dillo[5], and Galeon[8] web
browsers correspond to our reference architecture. We
would also like to examine web browsers designed specif-
ically for embedded devices, but at the present time we do
not know of any mature open source implementations.

6 Related Work

There has been some previous research involving ref-
erence architectures. Eixelsberger has recovered a refer-
ence architecture from a family of embedded, real-time
train control systems, each around 150 kLOC[27]. He
used a formal Architectural Description Langugage (ADL)
to describe each system, and then performed commonal-
ity analysis. Batory, Coglianese, Goodwin, and Shafer
have defined a reference architecture for avionics as part
of a project to build a domain-specific software architec-
ture (DSSA) environment for assisting the development of
avionics software.[24]. Hassan and Holt have defined a ref-
erence architecture for web servers, and shown how it maps
to the conceptual architectures of three systems[31].

A product line architecture specifies the architecture for
a group of products sharing a common, managed set of
features[25, 26]. Product line architectures are similar to
reference architectures, although they generally represent a
group of systems intended to be produced by a single orga-
nization, while reference architectures represent the entire
spectrum of systems in a domain.

Finally, there have been some previous case studies ex-
amining various aspects of Mozilla’s architecture and devel-
opment process. Godfrey and Lee have extracted Mozilla’s

architecture as part of a study investigating data exchange
between different reverse engineering tools[30]. Mockus,
Fielding, and Herbsleb have used Mozilla as part of a
case study of open source software projects[32]. Fischer,
Pinzger, and Gall have analyzed the proximity of fea-
tures in Mozilla based on data in its bug-tracking database,
Bugzilla[28].

7 Conclusions

We have examined the history and evolution of the web
browser domain, developed a reference architecture for web
browsers based on two existing implementations, and vali-
dated this reference architecture by mapping it onto two ad-
ditional implementations. Furthermore, we have observed
several interesting evolutionary phenomena while studying
web browsers; namely, emergent domain boundaries, con-
vergent evolution, and tension between open and closed
source development approaches.

As the web browser domain has evolved, its concep-
tual boundaries—both external and internal—have become
increasingly more defined. However, there are still dis-
crepancies as to the nature of these boundaries. For ex-
ample, Microsoft has claimed that Internet Explorer is a
fundamental part of the Windows operating systems, pro-
viding rendering functionality to other applications such as
help browsers and wizards. This extended boundary posed
a problem for third-party browsers such as Netscape who
sought to compete with IE. In a similar example, we have
seen email and usenet client functionality integrated with
the web browser starting with Netscape, and continuing
with the Mozilla Suite. This integration has potentially
made it more difficult for external clients to compete. Fur-
ther examples of domain integration include FTP clients and
local file managers. It will be interesting to observe how the
web browser domain adapts to support embedded devices,
such as cell phones and PDAs; these platforms often have
limited amounts of memory, making it undesirable to have
multiple competing applications installed at once.

The large amount of effort devoted to creating high-
quality open source browser implementations has had a
tremendous influence on the domain. During the “browser
wars,” core browser components included proprietary ex-
tensions in order to attract customers. Today, increased
standardization and pressure to comply with these stan-
dards has led to reuse of core browser components. Rather
than duplicate effort, browsers often attempt to differenti-
ate themselves by providing interface enhancements; how-
ever, these features seem to be easily duplicated. For ex-
ample, after tabbed browsing was pioneered by NetCap-
tor, it quickly began appearing in other browsers such as
Opera and Mozilla. Similarly, popup blocking and auto-
matic web form filling are now commonplace, suggesting



that web browser domain is exhibiting a form ofconvergent
evolution[29].

The availability of mature browser components has also
resulted in tension betwen open and closed source devel-
opment approaches. The Mozilla project was founded with
the intention of creating a mature, open source browser plat-
from that could be used as the basis for other browsers, both
open and closed. Indeed, the last two releases of Netscape
have been based on Mozilla and have been closed source. A
similar situation has occurred with Apple’s Safari, which is
a closed source browser based on Konqueror’s open source
engine. Although not required by the licence, Apple has
voluntarily contributed their changes to open source code
back to the community. Conversely, Internet Explorer rep-
resents a closed source browser component that can po-
tentially be embedded in an otherwise open source prod-
uct. Interstingly enough, the upcoming version of Netscape
promises to embed both the Mozilla and IE engines, allow-
ing users to switch on the fly.

While we have seen applications composed of both open
and closed source components before, the interaction usu-
ally takes place on the perimeter, as is the case with closed
source binary modules for the Linux kernel. We believe the
heterogeneous combination of core open and closed source
software components within individual systems makes the
web browser domain unique and interesting.

Acknowledgements

We thank Ali Echihabi for his contributions to an earlier
project out which this paper has grown, as well as Ric Holt
for his feedback and advice.

References

[1] Apple developer documentation.http://developer.
apple.com/documentation .

[2] Avant web browser home page. http://www.
avantbrowser.com .

[3] Camino web browser home page. http:
//caminobrowser.org .

[4] Cascading Style Sheets home page.http://www.w3.
org/Style/CSS .

[5] Dillo web browser home page.http://dillo.org .
[6] An early history of Lynx. http://www.cc.ku.edu/

˜grobe/early-lynx.html .
[7] ECMAScript language specification. http://www.

ecma-international.org/publications/
standards/Ecma-262.htm .

[8] Galeon web browser home page.http://galeon.
sourceforge.net .

[9] K Desktop Environment home page.http://kde.org .
[10] Konqueror web browser home page. http:

//konqueror.org .

[11] Links web browser home page. http://links.
sourceforge.net .

[12] Lynx web browser home page.http://lynx.isc.org .
[13] Maxthon web browser home page. http://www.

maxthon.com .
[14] Mosaic web browser home page. http:

//archive.ncsa.uiuc.edu/SDG/Software/
Mosaic/NCSAMosaicHome.html .

[15] Mozilla application suite transition plan.http://www.
mozilla.org/seamonkey-transition.html .

[16] Mozilla project home page.http://www.mozilla.
org .

[17] Netcaptor web browser home page.http://www.
netcaptor.com .

[18] Omniweb web browser home page. http://www.
omnigroup.com/applications/omniweb .

[19] Opera web browser home page.http://www.opera.
com.

[20] QLDX reverse engineering toolkit home page.http://
swag.uwaterloo.ca/qldx .

[21] Qt application development framework home page.http:
//www.trolltech.com/products/qt .

[22] Safari web browser home page.www.apple.com/
safari .

[23] Webcore framework home page.http://developer.
apple.com/darwin/projects/webcore .

[24] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer. Cre-
ating reference architectures: an example from avionics. In
Proceedings of the 1995 Symposium on Software Reusability
(SSR ’95), pages 27–37, 1995.

[25] J. Bosch. Design and use of software architectures:
adopting and evolving a product-line approach. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[26] P. Clements and L. M. Northrop.Software product lines:
practices and patterns. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2001.

[27] W. Eixelsberger, M. Ogris, H. Gall, and B. Bellay. Software
architecture recovery of a program family. InProceedings of
the 20th International Conference on Software Engineering
(ICSE ’98), pages 508–511, 1998.

[28] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. InProceedings of the
10th Working Conference on Reverse Engineering (WCRE
’03), pages 90–99, 2003.

[29] D. J. Futuyma.Evolutionary Biology. Sinauer Associates,
Sunderland, MA, USA, 3rd edition, 1998.

[30] M. Godfrey and E. H. S. Lee. Secrets from the monster:
Extracting mozilla’s software architecture. InSecond Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET ’00), June 2000.

[31] A. E. Hassan and R. C. Holt. A reference architecture for
web servers. InProceedings of 7th the Working Conference
on Reverse Engineering (WCRE ’00), pages 150–160, 2000.

[32] A. Mockus, R. T. Fielding, and J. Herbsleb. A case study
of open source software development: the apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE ’00), pages 263–272, 2000.


