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Using Origin Analysis to Detect Merging and
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Abstract— Merging and splitting source code entities is a
common activity during the lifespan of a software system; as
developers rethink the essential structure of a system or plan for a
new evolutionary direction, so must they be able to reorganize the
design artifacts at various abstraction levels as seems appropriate.
However, while the raw effects of such changes may be plainly
evident in the new artifacts, the original context of the design
changes is often lost. That is, it may be obvious which characters
of which files have changed, but it may not be obvious where
or why moving, renaming, merging, and/or splitting of design
elements has occurred. In this paper, we discuss how we have
extended origin analysis [1], [2] to aid in the detection of
merging and splitting of files and functions in procedural code; in
particular, we show how reasoning about how call relationships
have changed can aid a developer in locating where merges and
splits have occurred, thereby helping to recover some information
about the context of the design change. We also describe a case
study of these techniques (as implemented in the Beagle tool)
using the PostgreSQL database system as the subject.

Index Terms— Software evolution, origin analysis, restructur-
ing, reverse engineering, and re-engineering

I. INTRODUCTION

MErging and splitting source code artifacts — such
as files and functions — are commonly performed

activities during both active development and maintenance.
These refactoring techniques [3]–[5] can be used to keep the
codebase in a healthy and agile state; software maintainers
often use merging and splitting to reduce the complexity of the
software system, making it more comprehensible and easier to
evolve.

Although the effects of merging and splitting are plainly
evident in the source code version histories, the merging and
splitting actions themselves typically are not. That is, it may
be clear what is contained in successive versions of a set of
files, but it may not be clear that between versions 4.2 and 4.3
one function from each of the files scsi.c , atapi.c , and
usb.c were merged into a common utility function that was
added to the file storage.c .

Detecting where merges and splits have occurred can help
software maintainers to better understand the change history
of a software system. In a typical development environment,
system changes are tracked by a version management system,
and detail which characters in which files have changed
since the last check-in. They usually do not provide answers
to such questions as “why was this new function added?”,
“where did the XXX functionality disappear to?, “how much
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additive versus invasive change occurred?”, or “how much
restructuring of source code occurred?”. A software developer
who requires answers to these questions must either hope
that previous developers have kept accurate and up-to-date
documentation, or must make use of tools that can help to
extract information about the system’s evolution after-the-fact.

Effective reconstruction of the evolutionary history of a
software system can also benefit other types of analysis in
software evolution research, such as growth analysis based on
counting software entities. Most researchers assume that a soft-
ware entity is uniquely identified by its name (and, perhaps,
its logical location within the source code). However, when
structural changes, such as moving, renaming, merging, and
splitting have occurred, the evolutionary history may appear
to be discontinuous, although this is not the case. Having an
accurate evolutionary history that takes structural changes into
account is thus also of aid to the research community.

In this paper, we propose an approach to detecting function
and file merges and splits that have occurred between versions
of a software system. Our approach is based on a detailed
analysis of call relations and various attributes of the function
entities themselves. This work is an extension of our previous
work on origin analysis [1], [2]; our original formulation of
origin analysis did not consider the possibility that program
entities might be merged or split between versions.

Ultimately, our goal is to aid the user in gaining a better
understanding of the original context of an apparent design
change. Origin analysis uses the results of syntactic and
semantic analyses to attempt to determine “what happened”
to various source code entities from one version to the next.
In turn, this information may be used as a basis to infer
knowledge of broader or higher level design changes that
may have occurred, such as the adoption of a new naming
convention, the implementation of a recognized design pattern,
or a attempt to consolidate duplicated code within a particular
subsystem. By using the results of the origin analysis sys-
tem model together with experience, domain knowledge, and
common sense, the user can build intuition about the context,
rationale, scope, and intent of the original design changes.
However, in this paper we do not explicitly address how this
might be systematically achieved, as it is beyond of the scope
of our current work.

The remainder of this paper is structured as follows: In
Section II, we define what we mean by origin analysis, and
show how we have extended the definition to include the
detection of merging and splitting of source code artifacts.
In Section III, we describe how we have implemented origin
analysis and various cases of merging and splitting can be
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detected. In Section IV, we describe a case study performed
on the source code for PostgreSQL, an open source database
system that is in wide use. In Section V, we discuss related
work, and finally, in Section VI we summarize our results.

II. ORIGIN ANALYSIS AND MERGES/SPLITS

A. Definition of origin analysis

We begin with an informal definition of origin analysis:
Suppose G is a software entity (such as a function,
class, or file) that occurs in a particular version
of a software system, call it Vnew . Suppose
further that G did not “exist” in the previous
system version, call it Vold, in the sense that there
was no like entity of the same name and/or location.

Origin analysis is the process of deciding if G is a
program entity that was newly introduced in Vnew,
or if it should more accurately be viewed as a
renamed, moved, or otherwise changed version of
an entity from Vold, say F .

We note that while simple renaming and moving of entities
are easy to define formally and fairly easy to detect, the more
general concept that G is a changed version of F is not. This is
why we consider that origin analysis must be a semi-automated
approach to be useful. The user must apply experience and
common sense to decide if the similarity is strong enough to
consider that G is a changed version of F .

While this informal definition helps to show the intuition be-
hind our research, origin analysis — as we have implemented
and investigated it — is slightly more complex:

• Origin analysis can be performed in either direction: old-
to-new, or new-to-old. That is, the above formulation
essentially asks the question: “Are these apparently new
entities really new?”; one might be just as interested in
asking: “Are these apparently deleted entities really gone
from the new version?” Our original implementation of
origin analysis in the Beagle tool considered only the first
question, but the new version of the tool supports looking
in both directions.

• Since merging and splitting of software entities may
occur, there may be several Gis that were split from a
single F , and there may be several Fis that were merged
into a single G. It may also be the case that several Fis
are merged into a G that is present in both versions of the
system (or analogously, an F that exists in both versions
may split off some of its “old” functionality into one or
more “new” Gis into the new version).

We shall concentrate our discussions on the phenomena of
merging and splitting in this paper.

B. Merge/split matching

Merging and splitting can occur at different architectural
granularities. When these actions are performed at the subsys-
tem level — as files and subsystems are broken up, merged,
and moved around — significant changes to the design of
the software system are being effected. When merging and

splitting are performed at the function level, this often reflects
a fine tuning of the design, as maintainers may strive to
improve the cohesion of a function, file, or class or lessen its
coupling with other design entities. Since changes at the higher
levels of design (i.e., file and subsystem) can often be inferred
from changes at the lower levels, we have concentrated our
efforts on extracting and modelling information about merges
and splits at the function level.

Let us now consider how N-way merging and splitting
can affect the call relationships between the various program
entities. To simplify discussions somewhat, we will let N = 2
and consider only merging of functions for now.
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Fig. 1. Canonical two-way function merge.

Figure 1 shows the before and after of two functions, F1 and
F2, being merged into a single new function, G. Let us assume
that in1, in2, and in denote the callers (clients) and out1,
out2, and out denote the callees of F1, F2, and G respectively.

While there are many reasons why merges may occur, we
have found three cases that are relatively easy to detect by
examining the call relationships:

1) Clone elimination — Two (or more) functions that
perform similar tasks are merged into one function in
the new version.
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Fig. 2. Clone elimination.

An indicator of this phenomenon is
• in1 ∩ in2 ≈ ∅ ∧ in1 ∪ in2 ≈ in

• out1 ≈ out2 ≈ out

where ≈ means two sets are approximately the same.
That is, F1 and F2 have no clients in common (if they
are clones, why would one call both?), and the union of
the clients is the client set of the new function. Since the
three functions have roughly the same functionality, the
set of outgoing calls for each should be highly similar.

2) Service consolidation — Two (or more) functions that
perform different services, but are called at the same
time by the same clients, are merged into a new, larger
function.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. YYY, AUGUST 2005 3

V
old
 V
new


in1
 G
 out1
in


out1


out2


F1


F2


out2


in2


in


Fig. 3. Service consolidation.

An indicator of this phenomenon is
• in1 ≈ in2 ≈ in

• out1 ∪ out2 ≈ out

That is, the client sets of F1 and F2 are similar to each
other as well as to the new function G, and the union of
the callees of F1 and F2 are similar to that of G. Since
F1 and F2 perform different tasks, there is no presumed
overlap in the callee sets out1 and out2.

3) Pipeline contraction — A function (the service provider)
is only ever called by a single client. In the new version,
either the client consumes functionality of the service
provider directly, or a new function is created that
merges both the client and service provider.
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Fig. 4. Pipeline contraction.

An indicator of this phenomenon is
• F2 ∈ out1 ∧ in2 = {F1} ∧ in ≈ in1

• out1 ∪ out2 ≈ out

That is, the “second” function F2 is called only by its
single client F1 in the old version, and the client set of
F1 and G are highly similar. Furthermore, the callee set
of the new function is similar to the union of the callee
sets of F1 and F2

Since, at least structurally, a split is the dual operation of a
merge, we note that the analogous patterns of

4) clone introduction,
5) service extraction, and
6) pipeline expansion

may also be detected easily. We have built some of this
knowledge into the new version of the Beagle tool; in the next
two sections we will describe our experiences in using Beagle
to look for merges and splits in a large software system.

We conclude this section by noting that merging and split-
ting may occur for a number of other reasons, in addition to
those cases we have described above. Those patterns listed
above are the ones we had conceived of based on informal
experiments with other subject software systems, but before
attempting the case study on PostgreSQL; in Section IV, we

shall discuss two additional patterns that we discovered to have
occurred in the evolution of PostgreSQL.

III. DETECTING MERGING AND SPLITTING

Previously, we have described how we used a combination
of entity analysis and relationship analysis techniques to
help to detect structural changes that have occurred between
versions of a software system [2]. In brief,

• [Entity analysis] we created a kind of hash value or
fingerprint of each function in a (procedural) system
based on its various attributes, such as number of lines
of code, fan-in/out, number of local/global variable used,
its cyclomatic complexity, etc., and

• [Relationship analysis] we considered the set of callers
and callees of each function.

In our original implementation of origin analysis in the
Beagle tool [1], the analysis routines were performed all at
once in a batch, and the results combined into a single list.
That is, for each function G that appeared to be “new” in
Vnew, and for each function F that appeared to be “deleted”
in Vold, we:

1) compared the entity analysis fingerprints,
2) compared the calls and called by relational images, and
3) performed a simple string matching algorithm on the

function prototypes.
The results were then combined into a linear ranking, and the
user was able to examine the best “match candidates”.

Recently, we have sought to improve our approach to
support more matching techniques, and to be more flexible
and interactive so as to better support exploratory strategies
for detecting merges and splits. The major improvements we
have made include:

1) We have generalized the notion of matching. Different
matching techniques implemented as “matchers” can be
plugged into a common infrastructure. In addition to
enhancing the previously mentioned metrics matcher and
call relation matcher, we added three new matchers: a
name matcher, a declaration matcher, and an expression
matcher. The results from the different matchers can also
be used in combination.

2) We support semi-automatic and incremental discovery
of structural changes. By applying matchers in multiple
iterations on selected software entities, the user can iden-
tify and informally reason about merging and splitting
from historical data, even in complex situations such
as sequences of structural changes that are “chained”
together.

In the remainder of this section, we first briefly discuss
each of the matchers and their running times. Then we give
an overview of the tool Beagle from the point of performing
origin analysis. Finally we describe how to detect merging and
splitting under various circumstances.

A. Matchers

1) Name matcher: The name matcher calculates the
longest common substring (LCS) of the name of the target
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entity against the names of each of the members of the
candidate set, and normalizes the value against the average
length of the two entity names.

length(LCS(s1, s2)) × 2

length(s1) + length(s2)

The user may optionally specify if the comparison should be
case sensitive, and if a string transformation should apply to
one of the names (in the case that a naming convention has
been changed between versions).

2) Declaration matcher: The declaration matcher per-
forms a normalized LCS calculation similar to that of the
name matcher above. By default it removes the parameter
types from the declaration string, and then lexically sorts the
parameter names. This ensures that changing parameter types
or the order of the parameters will not affect the search results;
the disadvantage of this approach is that may return more
false positives, and it will not handle the case where parameter
names really have changed.

As future work, we intend to implement several options for
this matcher, whereby the user can specify:

• the behaviour described above, or
• to keep the parameter types and ignore the names, or
• to keep both the parameter types and names.
3) Metrics matcher: The metrics matcher compares the

differences in various metric values and returns a normalized
result. Currently, we use five metric values in our calculations;
our preliminary investigations suggest that “more is better” but
also that no single metric is a more reliable indicator than any
other. The basic formula is:

Ans =

n
∑

i=1

Mi

where n equals five in our current selection of metrics, each
Mi is non-negative, and the sum of the Mis is guaranteed to
be at most 1. An example metric we currently use is:

MLOC =

{

0.2 if |LOC(e1) − LOC(e2)| ≤ 5

0.1 if 5 < |LOC(e1) − LOC(e2)| ≤ 10

0 if |LOC(e1) − LOC(e2)| > 10

where LOC(e) is the number of lines of code in entity
e. The choice of which metrics to use and how to weight
them is a subject of ongoing research; we initially tried the
approach suggested by Kontogiannis et al. [6] and are now
experimenting with other formulations.

4) Call relation matcher: The (call) relation matcher

returns a normalized value indicating how closely the
caller/callee sets of two entities match; in our experience,
it is also the most useful matcher for detecting merges and
splits. The matcher computes the similarity of two entities by
comparing: (a) both callers and callees, (b) only callers, or (c)
only callees. The calculation of similarity for considering both
callers and callees is as follows:

2 ×
#(caller(e1) e caller(e2)) + #(callee(e1) e callee(e2))

#caller(e1) + #caller(e2) + #callee(e1) + #callee(e2)

where S1 e S2 is the set of elements in S1 that have been
matched to elements in S2 (i.e., it is effectively set intersection

that incorporates knowledge of any previous origin analysis
matching). Similar definitions hold for queries considering
only callers and only callees.

Comparing entities based on combined similarity of both
caller and callee sets is a good technique for finding functions
that have been moved or renamed, but it works less well for
finding merges/splits as the patterns discussed in section II-B
illustrate. Allowing the user to match on similarity of only
caller or only callee sets provides the additional flexibility
to get a more accurate ranking when merging or splitting is
suspected to have occurred.

5) Expression matcher: The expression matcher differs
from the other matchers in several ways: it allows the user to
create composite queries (using the other matchers), it allows
thresholds to be specified, it allows multiple targets to be
checked against candidate sets, and it returns a 2D matrix of
all of the results. For example, one could ask for the results
of matching all entities in a given file (the targets) against all
other unmatched entities (the candidate set), where name ≥
0.8 ∧ metrics ≥ 0.5. One could then see if any obvious
matches are apparent, enter those matches into the system
model, possibly remove the matched targets from the target set,
and then perform subsequent queries changing the thresholds
and/or matchers used. Since the similarities are computed only
once and then can be queried in multiple iterations, using this
matcher can speed up the analysis process.

B. Matcher running times

For the name matcher, the running time of computing
LCS is O(pq), where p and q are the lengths of the two
strings. If we assume that there is an upper bound for the
name length, then the running time is O(1). In each iteration
of origin analysis, we match m entities from version 1 and
n entities from version 2, thus the whole matching process is
O(mn).

The declaration matcher works similarly to the name-
matcher, and its running time is O(mn) for analogous reasons.

For the metrics matcher, comparing a pair of entities
is constant time, since the individual metric values are pre-
computed during system check-in. Finding matches from m

entities in version 1 and n entities in version 2 is therefore
O(mn).

For the relation matcher, comparing a pair of entities is
O(pq), where p and q are respectively the combined number
of callers and callees of the two entities. If we also assume
that p and q have a constant upper bound, then the running
time becomes O(1). Thus, an iteration of origin analysis for
m and n entities from two versions is O(mn).

However, we note that in practice, all of these values are
fairly small and the automated parts of origin analysis are
therefore almost instantaneous. The time the user takes to
browse the version spaces and decide on strategies is the
bottleneck for origin analysis.

We note that the detailed syntactic and semantic analysis
that occurs when a system version is checked is much more
complex and time consuming, but it is performed only once
per system version. In “real world” terms, the amount of time



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. YYY, AUGUST 2005 5

this step takes is comparable to a full system compile, which is
not surprising, given that the analysis tools are fundamentally
special-purpose compilers.

C. The Beagle tool

The matching techniques described above to support origin
analysis have been implemented in a prototype tool named
Beagle.1 Beagle is a research platform that is intended to
help developers gain an understanding of a software system’s
evolutionary history [1], [7]. It incorporates various techniques
and subtools from software metrics, software visualization,
and relational databases into a unified framework. This frame-
work allows users to query, visualize, and navigate through a
system’s change history, and allows users to build persistent,
annotated models of how structural changes have impacted
the design of the system. Here we only give an overview of
Beagle from the point of performing origin analysis. Details
about its architecture and other functionalities are described
elsewhere [7].

Before origin analysis can be performed, the user needs
to check in versions of the software system into the Beagle
repository. For each version, Beagle uses the external tool
SWAGkit [8] to extract static relations between program
entities, and Understand for C++ [9] to calculate various
metrics. The whole check-in process is supported by a Java
tool.

After the factbase has been built, the user can perform
origin analysis for any pair of versions (usually, each pair
of consecutive versions is analyzed). The origin information
is added as annotations to the entities of the system model
that is stored in the Beagle repository. There are nine possible
annotation values for each software entity: unchanged (by far
the most common situation), deleted, added, moved (i.e., to
a different structural container), renamed, split, merged, com-
bined (i.e., satisfies at least two of the previous categories), and
unknown (the default value at the beginning of origin analysis).
In the case of entities that are annotated as unchanged, moved,
renamed, split, or merged, the identities of the entity versions
of the other system version are added (e.g., methods f and
g in the new version were split from method h in the old
version).

Figure 5 shows Beagle’s software architecture from the
perspective of a user performing origin analysis, and Fig. 6
shows a corresponding view of the Beagle user interface (UI).
At this point, the desired system versions have already been
checked in, and thus the salient “facts” about its evolutionary
history have been added to the the repository. The user first
loads the two versions of interest from the repository into the
(in-memory) internal model; these appear as navigable tree
views in the UI (“entity trees”). Then she iteratively selects
entities of interest (the “entity list” in the UI) , applies one
or more “matchers” and views the results (the “candidates
viewer”). In addition to the text widget view shown at the
right side of Fig. 6, other kinds of visualizations are supported
including scatter plots (discussed later in this section). The

1Beagle is named after the ship Charles Darwin sailed on. The Beagle tool
is intended to be a vehicle for exploring the evolution of a software system.

internal model can be incrementally “marked up” (indicated
by various icons in the entity trees and lists), and may be
committed to the repository.
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Fig. 5. Architecture view of Beagle for performing origin analysis.

D. Detecting basic merges/splits at function level

As noted above, the purpose of origin analysis is to decide
if a software entity that appears to be either new (in the new
version of the system) or deleted (from the old version) really
is new or deleted, or if it should more accurately be viewed
as having come from or disappeared into some other software
entity.

For simplicity of explanation, we will assume the user is
considering an “apparently new” entity, which we will call
the target. The basic iterative process for performing origin
analysis is straightforward:

1) the user decides on a candidate entity set of interest from
the old version,

2) she applies one or more “matchers” to the target and the
candidates, and

3) she examines the ranked list and the detailed matcher
output and decides which, if any, of the candidate
matches to accept as the “correct” origin of the target
entity.

Step 1 helps to reduce the computation time by allowing
the user to decrease the number of entities used in performing
the matching algorithms; this is particularly useful in cases
where we know (or hypothesize) that, say, changes must
have happened within the parser subsystem, or that only
“deleted” entities could be involved.

In Step 2, the “matchers” are applied to produce a ranked list
of the “best” matches together with details of the matcher out-
put and hyperlinks to the appropriate source code locations so
that the user can browse and compare. The matchers are plug-
ins to the Beagle tool; currently, there are four basic match-
ers for functions — name matcher, declaration matcher,
metrics matcher, and (call) relation matcher — plus a
meta-utility called expression matcher that allows the re-
sults of the others matchers to be combined into a single query.

Each of the four basic matchers compares the target entity
with each element in the candidate set and computes a number
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Fig. 6. A screenshot of the Beagle tool showing the results of a query.

between 0 and 1, where 1 denotes a perfect match. The
candidates in the result set are ranked by computed simi-
larity, and are associated with detailed information of how
each similarity is computed. Figure 7 shows an example of
candidates produced by relation matcher. Here, we were
trying to find the origin of apparently deleted functions in
heap.c in PostgreSQL in release 5.0 in release 6.4.2. For
function DeleteTypeTuple in release 5.0 (highlighted
on the left), two functions in release 6.4.2 on the right
were found to be very similar to it. The closest match was
DeletePgTypeTuple and why its similarity was 1.0 was
displayed at the bottom: their call relations were exactly the
same.

Fig. 7. Candidate list produced by relation matcher

In Step 3, the user decides if she thinks that the current
evidence is strong enough to make a commitment. The whole
process may be repeated using different candidate sets and/or
different matchers until the user is satisfied that the “correct”
origin of the target entity has been found or, alternatively, that
no such entity exists. In either case, once the decision has been

arrived at, it is recorded as an attribute of the target entity and
the matching candidate(s) (if any) in the Beagle model of the
system.

After several iterations of origin analysis, we may find that
multiple candidate functions appear to have the same origin,
which indicates that a merge or split may have occurred. In
this case, we examine the detailed change of call relations to
see why it happened. A small helper tool for comparing call
relations of two sets of functions is used in this phase.

E. Detecting chained merges/splits at the function level

Sometimes we discover that a set of structural changes,
including merges and splits, may be “chained” together; that
is, the entities involved are heavily interdependent, making it
difficult to perform our typical analysis in one iteration. In
such a case, performing the analysis iteratively can help to
reveal what has occurred.

Here, we present a detailed example taken from our case
study of PostgreSQL from release 6.4.2 to 6.5. At first,
it appeared that three functions in geqo eval.c within
the optimizer geqo subsystem had been deleted. After
performing origin analysis, we found that these functions
had actually been merged into the file joinrels.c in the
optimizer path subsystem in release 6.5.

The call relations of eight functions in geqo eval.c
and joinrels.c in the two releases are shown in Fig. 8
and Fig. 9 respectively. This example is complicated, so
for the sake of simplicity we have adopted some labelling
conventions: a circle with a capital letter label — such as A —
denotes a “function of interest”; a rectangle with a lowercase
label and a number in parentheses — such as h(8) — denotes
a set of functions that are callees of the functions of interest,
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with the number indicating the cardinality of the set. A white
box indicates that this set of callees were callees only in one
version; a grey box indicates that they were callees in both
versions. A grey box that has the same letter label but a smaller
(or larger) number denotes a subset (or superset) of the original
callee set.

Fig. 8. Call relations in release 6.4.2

Fig. 9. Call relations in release 6.5

In the first iteration of origin analysis, we decided that E

had been renamed to I , based on their similar caller sets (not
shown in the diagrams). Then we noticed that both D and H

have seven callees in common with O (since h(8) and h(7)
have seven common functions). After close examination, we
concluded that D and H had been merged into O. Next, we
noticed that — after taking the above merging into account
— the caller and callee sets of C were similar to those of N :
they have one common callee in A, and now D and H had
been matched to O. Also, G now appeared to be similar to N :
they have a matched caller E and I , and one common callee
in j(1) and j(3), plus callee H had been matched O. After
examining the source code, we decided that C and G had
indeed been merged into N , and by similar chain of evidence
that B and F had been merged into M . Thus, we can see that
by applying matching iteratively, we succeeded in detecting
three chained merges that had occurred at the same time.

F. Detecting merges/splits at the file and subsystem level

Merging and splitting can also occur at the file and sub-
system levels. For example, if a new file G is found to be
composed of functions from two old files F1 and F2, then we
can consider that files F1 and F2 have been merged into G

(a similar statement holds for splits at the file level, and for
merges/splits at the subsystem level). Once detected, the user
can enter this information as attributes of the files/subsystems
in question into the model of the system version in the Beagle
repository.

Currently, file- and subsystem-level merges/splits are de-
tected manually in Beagle. We have not automated the detec-
tion of file- and subsystem-level merging/splitting as, in our
experience, it invariably requires the user’s common sense to
decide if merging/splitting really has occurred. While we have
informally experimented with threshold values (e.g., a merge
has occurred if more than 50% of the functions in a “new”
file were in a different file in the old version) and made use of
scatter plot visualizations [10] (see Section III-G), detecting
file- and subsystem-level merging/splitting remains an area of
active research for us.

G. Visualization

Beagle supports a variety of visualization tools for browsing
the evolutionary history of a software system [7]. Among these
is a scatter plot viewer, as shown in Fig. 10. Scatter plots are
well known in clone detection research [11]–[13]; the basic
idea is that entities of interest (say functions or even lines
of code) are lined up along the X and Y axes, and dots
or coloured marks are used to indicate the presence of an
“interesting property” (or “hit”), usually that there is a non-
trivial similarity between two entities.

In clone detection, it is typical to put the same entities
along the X and Y axes (to make the visualization feasible for
large systems, sometimes only subsets of the system’s entities
are used). Of course, the diagonal should be a solid line of
“hits”, but often other patterns reveal themselves too, such as
where several consecutive lines of code in different parts of the
system are similar, indicating that cloning may have occurred.

In origin analysis, we typically put two different versions
of a system along the X and Y axes. Of course, we expect
to see a high degree of similarity along the diagonal, but we
also expect to see breaks, where functions have been changed,
added, or deleted between versions.

Scatter plots can be used in a variety of ways: a “hit”
can indicate that the computed fingerprints of two entities are
within a given tolerance, or that their caller sets (or callee
sets, or both) are highly similar, or that some other interesting
relationship holds between the two entities. We have used
scatter plots to look for meta-properties and recurring patterns
across the system. Figure 10 shows an example from the case
study of how using a scatter plots can quickly highlight when
functions have been moved between files; this is particularly
useful for finding file merges and splits. In our case study, we
found that looking at a scatter plot after some origin analysis
had been performed helped to find further incidents of function
merging and splitting, and was also very helpful in detecting
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Fig. 10. Scatter plot showing function movement between versions.

merging and splitting at the file level. Being able to see various
relationships between many pairs of functions at the same time
was an invaluable tool in exploring the evolutionary history of
PostgreSQL.

IV. CASE STUDY: APPLYING ORIGIN ANALYSIS TO
POSTGRESQL

We have performed a case study on the use of origin analysis
to detect merging and splitting using PostgreSQL as the
subject system. PostgreSQL is an open source object-relational
database management system (ORDBMS), originally based on
the POSTGRES system which was developed at the University
of California at Berkeley. The original POSTGRES project
started in 1986; it was abandoned in 1993 only to be reborn
the following year as Postgres95. An SQL language interpreter
was then added, and its performance and maintainability were
greatly improved due to many internal changes. In 1996, the
project was renamed as PostgreSQL, and since then many new
features have been added. It continues to evolve and is in
widespread used, especially within the Linux community. We
have chosen to study it as it is a well known piece of software
of significant size and complexity that is in wide use.

For our case study, we selected 12 releases of PostgreSQL
starting from 6.2 (Oct. 1997) to 7.2 (Feb. 2002). We decided
to focus on the backend subsystem, which implements all of
the server functions. The backend subsystem is the largest
in PostgreSQL; it comprises about 70% of the total code base.

Table I summarizes the growth of the backend subsystem
of PostgreSQL. The number of subsystems is the number of
directories in the source code tree that contain files of source
code. The number of .c files was calculated from this Unix
command

find . -name "*.c" | wc -l
after compilation. The number of functions reported here are
those that were successfully analyzed by SWAGkit and loaded
into Beagle; it ignores a very small number of functions that
the SWAGkit extractor was unable to parse. Finally, LOC
refers to the sum of the lines of code (LOC) of all of the
.c and .h files after compilation.

TABLE I
GROWTH OF POSTGRESQL

Release Date # subsys # files # fcns # LOC
6.2 1997-10-02 50 328 3262 186,037
6.3.2 1998-04-7 49 346 3321 193,980
6.4.2 1998-12-20 49 358 3372 203,875
6.5 1999-06-9 49 365 3529 216,433
6.5.1 1999-07-15 49 365 3533 216,533
6.5.2 1999-09-15 49 365 3536 215,644
6.5.3 1999-10-13 49 365 3536 215,815
7.0 2000-05-8 49 380 3974 244,362
7.0.3 2000-11-11 49 380 3980 244,561
7.1 2001-04-13 49 384 4191 257,906
7.1.3 2001-08-15 49 384 4202 258,393
7.2 2002-02-4 50 388 4531 279,385

Over the four and a half years of the case study window, the
number of subsystems was almost constant while at the same
time, there was a significant increase in the number of source
(.c ) files (18%), functions (39%), and LOC (50%). This
suggested to us that the system architecture of the backend
subsystem was fairly stable, while at the same time significant
changes and additions were occurring within. That is, the
backend subsystem of PostgreSQL seemed to be a good
candidate for studying origin analysis.

A. Summary of structural changes

We performed origin analysis on each consecutive pair of
the 12 releases, including six major releases (e.g., 6.4.2 to
6.5) and five minor releases (e.g., 7.0 to 7.0.3). We have
summarized the number of each type of structural change
detected in each release in Table II. The second through fourth
columns show the situation before performing origin analy-
sis: the number of matched program entities (we considered
subsystems, files, and functions in our study), the number
of apparently deleted entities, and the number of apparently
added entities. The fifth through eighth columns show the
number of matched, added, and deleted entities after origin
analysis; we note that the number matched in Vold and Vnew

may no longer be the same, since merging and splitting may
have been found to have occurred. The ninth through twelfth
columns show the numbers of each kind of broad change that
were observed.

Perhaps unsurprisingly, the total number of structural
changes that were found to have occurred in the six major
releases is much greater than those of five minor releases.
Although move and rename had the largest numbers of in-
stances in overall, merges/splits occurred in seven release
changes. The four largest number of merges/splits all occurred
in major releases and there were no merges or splits observed
in three minor releases. These observations conformed to our
expectation that most structural changes occur during major
release updates.

From minor release change 6.5 to 6.5.1, however, we
found ten splits or, more precisely, ten instances of partial
clone elimination (we describe this pattern in section IV-
B) combined with pipeline expansion. These splits resulted
from the introduction of a standardized way of expression
tree walking using the Template Method design pattern [14];
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TABLE II
SUMMARY OF ORIGIN ANALYSIS RESULTS FOR POSTGRESQL

BEFORE ORIGIN ANALYSIS AFTER ORIGIN ANALYSIS ORIGIN ANALYSIS RESULTS

Vold → Vnew Matched Deleted Added Matched Matched Deleted Added Moved Renamed Merged Split

Vold Vnew

6.2 → 6.3.2 3389 219 286 3517 3521 91 154 95 29 13 3
6.3.2 → 6.4.2 3467 208 263 3515 3515 160 215 0 48 0 0
6.4.2 → 6.5 3517 213 368 3616 3601 114 284 20 70 22 2
6.5 → 6.5.1 3876 9 13 3878 3888 7 1 0 2 0 10
6.5.1→ 6.5.2 3886 3 6 3886 3888 3 4 0 0 0 2
6.5.2→ 6.5.3 3892 0 0 3892 3892 0 0 0 0 0 0
6.5.3 → 7.0 3383 509 954 3583 3596 309 741 86 114 2 14
7.0 → 7.0.3 4336 1 7 4336 4336 1 7 0 0 0 0
7.0.3 → 7.1 3640 703 913 3725 3726 618 827 19 65 1 2
7.1 → 7.1.3 4547 6 17 4551 4551 2 13 4 0 0 0
7.1.3 → 7.2 4365 199 533 4420 4427 144 471 12 42 0 11

TABLE III
PERCENTAGE CHANGE IN APPARENTLY ADDED AND DELETED ENTITIES

AS A RESULT OF PERFORMING ORIGIN ANALYSIS.

% change in % change in

Vold → Vnew # deleted # added

6.2 → 6.3.2 58 46
6.3.2 → 6.4.2 23 18
6.4.2 → 6.5 46 23
6.5 → 6.5.1 22 92
6.5.1→ 6.5.2 0 33
6.5.2→ 6.5.3 0 0
6.5.3 → 7.0 39 22
7.0 → 7.0.3 0 0
7.0.3 → 7.1 12 9
7.1 → 7.1.3 67 24
7.1.3 → 7.2 28 12

Overall 30 19

this design change eliminated near-duplicate code in many
routines that visit an expression tree recursively. We found
this surprising, as we did not expect to see a major design
restructuring implemented by a minor release.

We also noticed that as a result of implementing this same
walker mechanism, another split occurred from release 6.5.1
to 6.5.2 and six more splits occurred in release 6.5.3 to
7.0. This was not the only case we observed of a “ripple
effect” where a series of related structural changes spanned
multiple releases. We had a similar observation for a series
of function renamings, where the leading underscore character
was removed from one function in 6.4.2 to 6.5, three functions
in 6.5.3 to 7.0, and five functions in 7.0.3 to 7.1.

Table III further summarizes the results in terms of how
much “noise” (i.e., false positives) was eliminated from the set
of entities that appear to have been added or deleted. Overall,
we were able to reduce the number of “apparently deleted”
entities by 30% and the number of “apparently added” entities
by 19%. We consider that these are significant results.

B. Two more patterns

In addition to the merge/split cases patterns described in
section II-B, we discovered two more patterns in the course
of our case study that we had not anticipated:

1) Parameterization — Two similar functions F1 and F2

are combined into a new function G by adding a
parameter to distinguish different functionalities.
An indicator of this phenomenon is

• in1 ∪ in2 ≈ in

• out1 ≈ out2 ≈ out

• decl1 ∼ decl2 ∧ decl1 + paramnew ∼ decl

where decl1, decl2 and decl are function declarations
for F1, F2 and G respectively, paramnew is the new
parameter in decl, and “∼” denotes lexical similarity.
An example of this pattern (Table IV) occurred
when the functions RelationSetLockForRead and
RelationSetLockForWrite in release 6.4.2 were
merged to form LockRelation in release 6.5. The
two old functions set a lock on a relation in either
read/write mode. The new merged function added a
parameter to distinguish the different lock mode.

2) Partial clone elimination — A chunk of code found in
two functions F1 and F2 are clones. These clones are
extracted out to form a new function G, which is called
by its parent functions F1 and F2.

V
old
 V
new


in1


out1


F1


F2
in2


out1'


out2'


out2

out


in1


in2


out1'


out2'


G
 out


F2


F1


in


Fig. 11. Partial clone elimination

An indicator of this phenomenon is
• in1 ∩ in2 ≈ ∅
• out1 ≈ out2 ≈ out

• in = {F1, F2}
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where out1 and out2 are the callee sets of the common
clone segment within F1 and F2.
An example of this pattern (Table IV) occurred when a
common recursive walking idiom of an expression struc-
ture in functions finalize primnode , fix opid ,
and other functions in release 6.4.2 were extracted out
to form a new function expression tree walker
in release 6.5.
Partial clone elimination differs from clone elimination
in the amount of duplicated code that the parent func-
tions share. If we attempted to define a hard boundary
to distinguish between the two cases, the distinction
would be fairly arbitrary. The reason that we consider
it worthwhile to distinguish between them is that the
intents behind the the two patterns are different. In clone
elimination, the original parent functions are clones and
perform the same tasks, while in case of partial clone
elimination, they are not clones and merely perform the
same subtasks. Considering that maintainers usually add
or modify the code after they clone from somewhere
else, it would not be surprising to see, as we did in our
case study, that instances of partial clone elimination
outnumber those of clone elimination.

C. Combination of patterns

As is common with the application of design patterns
[14], we found that multiple patterns of merging/splitting
may be applied on the same entities at the same time.
For example, the creation of a standardized expression tree
walker mechanism mentioned above involved a combination
of partial clone elimination and pipeline expansion (although
we counted it only as one instance in Table. III). In this
combination, partial clone elimination was first applied on
functions that share common code for visiting an expression
tree, which resulted the creation of a new function called
expression tree walker . Then, pipeline expansion was
further applied on the “parent” functions (where the clones
had just been removed from): each of the parents split off the
logic that detailed the peculiar way it walked the tree into a
new adaptor [14] function, call it my walker , which the new,
slimmed-down parent became the sole client of.

When different merge/split patterns are applied at the same
time, the change of call relations can be complex and hard to
reason about. As we adopt a semi-automatic approach, we are
still able to explore complex situations. Without losing any
existing flexibility, we intend to add more automated support
for pattern detection in the future.

D. Instances of different patterns

In Table IV, we list the total number of instances we found
for each merge/split pattern as well as some examples.

We were surprised to find only one instance of service
consolidation in our case study. A possible reason for this
is that situations for this change to occur are relatively rare
and developers may be hesitant to merge different services
after-the-fact if they are unsure that these services should
be combined into one. Patterns that relate to removing code

duplicates, including clone elimination, parameterization, and
partial clone elimination tended to have a relatively large
number of instances. This suggests that much effort had been
invested in eliminating duplicate code fragments, routines, and
idioms in the PostgreSQL source. It also suggests that clones
are good starting points for merge/split detection, and that
clone detection, although it is different from origin analysis,
can help to improve techniques in origin analysis.

When we considered these instances as a group, we
found that the names of the entities themselves often
provided clues about the type of the change, such as
when gettypelem and typtoout were merged to form
getTypeOutAndElem , and when appendStringInfo
split off enlargeStringInfo . This indicates that entity
names are a valuable source of information in merge/split
detection.

E. Groups of merges/splits at the function level

Three major groups of splits were detected:
1) 17 splits in ten files from four subsystems caused by

the implementation of the walker mechanism mentioned
above,

2) six splits in four files from two subsystems caused by
a mutator mechanism that supports a standard way to
modify an expression tree, and

3) four splits in four files in subsystem access caused
by a callback mechanism that allows tuple processing
during index building.

All three groups were caused by the introduction of a new
mechanism. We wondered how a group of changes scattered
in different subsystems spanning multiple releases could be
performed. After we examined the CVS log of PostgreSQL,
we found that all these changes had the same author. This
reminded us the fact that PostgreSQL has a core development
team, which enables the common owner of a large number of
files to restructure modules relatively easily without worrying
about “breaking” what other developers might be doing. It
would be interesting to investigate whether the group change
phenomena are different in other OSS projects without a core
development team. We intend to investigate this in the future.

F. Merges/splits at the file and subsystem level

We found three groups of merges/splits at the file
level. The first group consisted of three splits (the
files catalog utils.c , analyze.c , and parse.c in
the old system version) and seven merges (files named
parse XXX.c for various values of XXX in the new system
version), and corresponded to a large-scale restructuring in
the parser subsystem from release 6.2 to 6.3.2. Functions
in the “old” files were redistributed throughout the subsystem;
some were placed in existing files, while others were grouped
into “new” files. It is interesting to note that the functions
themselves were not merged or split, but were left intact.
For example, the functions in analyze.c were moved into
seven files, and a new file parse agg.c was formed from
the function agg error from catalog utils.c , four
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TABLE IV
OCCURRENCES OF PATTERN INSTANCES FOUND IN POSTGRESQL.

EXAMPLES

Pattern Merge/Split # found Functions in Vold Functions in Vnew Version IDs

clone elimination merge 7 getAttrName, get attname → get attname 6.2 → 6.3.2
service consolidation merge 1 gettypelem, typtoout → getTypeOutAndElem 6.4.2 → 6.5
pipeline expansion split 6 appendStringInfo → appendStringInfo, 6.4.2 → 6.5

(+ 23) enlargeStringInfo

parameterization merge 3 RelationSetLockForRead, 6.4.2 → 6.5
RelationSetLockForWrite → LockRelation

partial clone elimination merge 27 finalize primnode,

fix opid, ... → expression tree walker 6.5 → 6.5.1

functions from analyze.c , and the function ParseAgg
from parse.c . So in this case, it is a regrouping at the file
level.

The second group consisted of two merges, and re-
sulted from a “clean up” of the optimizer subsys-
tem from release 6.4.2 to 6.5; most of the functions
in the files geqo eval.c and geqo paths.c in the
optimizer geqo subsystem were merged into other files in
the subsystem optimizer path . In this case, the regroup-
ing occurred at the function level.

The third group consisted of one split and two merges, and
corresponded to a redesign of the utils/adt subsystem
from release 6.5.3 to 7.0. In detail,

• the file dt.c was deleted, and its functions were
distributed (with some renaming) between the files
datetime.c and timestamp.c ,

• all of the functions in the old version of the file
datetime.c were merged (with some renaming) into
the new versions of the files date.c and nabstime.c ,
and

• all of the functions in the old version of the file date.c
were merged (with some renaming) into the new version
of the file nabstime.c .

We can see that file-level merges/splits occur both in
significantly smaller numbers and much less frequently than
function-level merges/splits. Furthermore, we note that file-
level merges/splits seem to occur only during major releases;
this is perhaps unsurprising since structural changes at the file
level often represent a major design-level change in the code,
and the resulting “ripple effect” may have a large impact on
the rest of the system. Such changes upset the stability of the
system as a whole, and so are less likely to be effected during
a minor release cycle.

Finally, we note that we did not notice any instances of
subsystem merging/splitting in the case study. This is because
the subsystem structure was almost constant throughout the
history of PostgreSQL.

G. Summary: Merging and splitting in PostgreSQL

In summary, we found that merging and splitting accounted
for about 12% of the total number of structural changes in
our case study of the evolution of PostgreSQL. While detecting
where merges and splits had occurred required time and effort,

it improved our understanding of how and why some of the
major design changes had been made to the system.

We note that while we are fairly confident that we have
no false positives in our findings, we may have missed some
merges and splits also. That is, merging and splitting may be
even more widespread than we have found so far.

We found that we generally spent between two and four
hours performing origin analysis on a pair of system versions
between major releases, less time for minor releases. Detecting
moves was the easiest, while detecting merges and splits and
chained changes were the most time consuming. We could
have spent more time on each pair of versions, but we stopped
when we felt that our efforts were no longer being rewarded.
It is not clear to us if a practitioner would be willing to spend
this amount of effort to gain an accurate view of a software
system’s evolutionary history, but we note that it need only be
done once per release, and an active developer would have a
much easier time performing origin analysis on his/her own
system than we did as outsiders to the PostgreSQL project.
That is, ignoring the learning curve for the tool itself, we
consider our results to be an upper bound on the cost of
performing origin analysis.

H. Discussion and future work

The empirical data and our experience with the case study
has provided some insight into the advantages and potential
disadvantages of our approach, which we now discuss.

We found that our approach was simple but flexible, which
was an advantage in exploring this new conceptual terrain.
It did not require a structural change pattern to be specified
beforehand, and this enabled us to discover patterns that were
actually used by developers, not conceived by researchers.
The flexibility was also useful in detecting chained changes.
How changes are chained together depends largely on the
relationship between the software entities involved, thus is
hard to model. By including the user as an active part of the
analysis process with strong tool support, it makes the complex
change situations easier to understand.

Our approach is mostly programming language independent.
Only the (external) analysis tools that parse the source code
are dependent on the programming language. The output from
the analysis tools is converted into a general procedural/object-
oriented model, and the Beagle tool (e.g., the matchers, the
visualizers, the system models) uses this abstracted schema
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as its internal meta-model for the systems being examined.
Currently, only C/C++ is fully supported, but work on a Java
extractor for SWAGkit was recently completed by one of the
authors, and a Java version of the metrics tool Understand
exists.

Matching techniques work best when the attributes they are
comparing — e.g., name, declaration, metrics, call relations —
are highly similar. In our case study, we found that if one (non-
trivial) attribute of a pair of entity versions was exactly the
same, such as both have the same non-empty declaration, often
the candidate turns out to be a “real” match. Also if more than
one of the attributes are highly similar, such as both name and
call relations, often the candidate turned out to be a real match.
For this reason, we are developing an expression matcher that
supports queries of similarities from multiple matchers. We
are also investigating heuristics for what combinations work
well together.

When software entities undergo significant changes, which
is common when merging and splitting occur, we have found
the matchers that compared semantic attributes — such as
the name, declaration, and call relations — to be the most
useful. This might be because developers tend to preserve
these semantic attributes as much as possible in maintenance
activities. In particular, the call relation matcher often provided
not only the origin information about a software entity, but
also its change of interaction with other entities, which in turn
enabled us to discover some of the context behind the design
change. Also, the candidate list produced by the call relation
matcher is usually small, as the callers and callees have to
be matched to be considered as a vote in matching, which
restricts the candidates to a small subset of entities. As future
work, we plan to include more relations into our study, such
as global variable use.

One potential disadvantage of our approach is that it re-
quires significant human interaction, including choosing enti-
ties to be matched and deciding which of the candidates is the
“real” match. Although in many cases, such as moving and
renaming, it is easy for the user to decide on the real matches,
there were cases for which the reasoning about the relations
between different software entities involves considerable work.
We are considering two ways to improve this: (a) to reduce
the time window of origin analysis, such as for every month
instead of every two releases, and (b) to provide more support
for reasoning, such as assigning software entities different
weights according to significance and visualizing relation
differences.

V. RELATED WORK

A. Refactoring

Refactoring is a commonly performed preventive main-
tenance activity; its intent is to improve some aspects of
the design of an existing system while leaving the outward
functionality of the system mostly unchanged. Opdyke was the
first to use the term in its present sense [4], but Fowler’s book
is the best known distillation of this body of knowledge [3].
Refactoring can be performed at various levels of detail: within
and between functions, classes, packages/subsystems, and up

to the architectural level; however, as used in Fowler’s widely
read book, the term mostly concerns function- and class-level
design changes [3]. It presents a catalogue of “bad smells”
to look for in code, as well as a set of appropriate actions
(refactorings) to take in each case. There are several research
tools that perform “bad smell detection” on software systems
based on this catalogue [15], [16].

While Fowler’s book is aimed mainly at object-oriented
systems, many of the refactoring patterns listed in Fowler’s
book are of interest to our work in origin analysis, as
they involve moving, renaming, merging, and/or splitting
methods/functions. These include: push down/pull up/move
method; hide method; form template method; extract/inline
method; rename method; replace method with method object;
and parameterize method.

We note that Fowler’s catalogue is aimed at the (inten-
tional) design level; his patterns are at the level of what-
would-a-developer-be-thinking and serve as intellectual tools
for the software developer/maintainer. Our patterns are more
low level, and correspond more closely to what-would-a-
developer-do-to-the-code; consequently, they may be easier to
detect semi-automatically, and this is why we have chosen this
approach.

B. Detecting refactorings via changes in metrics values

Demeyer et al. have also investigated the idea of trying
to discover refactoring activities that have taken place within
a software system [17]. While their broad goals are similar
to ours, their approach is quite different. They analyze the
source code to generate a set of ten characteristic metrics
about the classes and methods, such as number of lines of
code, number of method calls within a method (i.e., fan-out),
or the number of methods defined in a class. They then use
this information together with knowledge of the source code
inheritance hierarchy to guess where particular refactorings
might have occurred.

For example, if a set of methods each experience a similar
reduction in the number of method calls, lines of code, and
number of statements, then this makes them a good candidate
for the Split Method / Factor Out Common Functionality
refactoring (similar to our clone elimination pattern). With
this knowledge in hand, the developer then browses the source
code to find where the missing functionality might have been
moved to.

Fundamentally, their approach relies on comparing metric
values of program entities (based on a syntactic analysis of
the program) and then browsing the source code to decide if a
given refactoring did indeed occur. Our approach incorporates
semantic knowledge of the source code, and allows the user
to ask semantically richer questions such as Do f and g

call the same functions? rather than Do f and g have the
same fan-out?. Additionally, as they point out, their approach
is susceptible to the renaming of program entities, whereas
discovering and recording incidents of renaming is a key
activity of our approach. Once a rename or move has been
detected, we take this into account in any future queries on
the code.
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We note that their ultimate goal, refactoring detection, is
different from our goal of finding out “Are these new/deleted
entities really new/deleted, or did they come from somewhere
else within the system?” Thus, detecting entity renaming is
not a high priority for them, and they chose not to take entity
names into account in their analysis of call sets, etc. However,
if they had performed a semantic analysis to determine which
entities were involved in which relations, this additional in-
formation could have reduced the number of false positives in
their queries, and also allowed them to more easily examine
entities with highly similar call sets where the cardinalities
were not identical. We note that based on their reported results,
their approach of using metrics values appears to be both
reasonable and effective for their purposes; however, a metrics-
only approach is clearly insufficient for our goal of origin
analysis.

Finally, we note that their approach focuses on object-
oriented software systems, whereas so far we have concen-
trated on procedural languages.

C. Clone detection

Origin analysis borrows some techniques from software
clone detection [6], [18], [19]; however, the aim of origin
analysis — to detect where, how, and why structural changes
have occurred — is distinct from that of clone detection, and
some of the details and tradeoffs are different. Clone detection,
per se, is usually performed on a single version of a software
system to see if any two (or more) components strongly
resemble one another. The goal is to detect where cloning may
have occurred in the past, with a view to possibly reorganizing
the source code and refactoring the commonalities into a single
place within the system. Origin analysis is performed across
two versions of a system, and the goal is to build a model
of where, how, and why structural changes have occurred.
We note that Johnson, one of the earlier researchers in clone
detection, did include an example of using a scatter plot to
show how versions of a system differ [12].

As mentioned above, origin analysis consists of entity and
relationship analysis. We chose to use an existing metrics-
based clone detection technique [6] for entity analysis as it was
simple and fast to implement and made version comparison
a trivial matter of computing a few numerical results. In
principle, any clone detection technique could be substituted,
although adopting a finely-grained approach based on com-
paring Abstract Syntax Trees (ASTs) or Program Dependence
Graphs (PDGs) [19] would mean that comparing a target
entity to a candidate set would go from a near-constant time
operation to a linear or polynomial time operation, depending
on the technique used.

Finally, we note that as far as we are aware, our relationship
analysis technique is novel, and could be applied as a clone
detection technique in its own right, although we have not yet
done so.

D. Intelligent merging and renaming detection

The software configuration management (SCM) community
— both research and industry — has developed “intelligent”

tools for performing versioning and merging. Such tools are
capable of modelling software systems as more than just sets
of files of text characters; typically, they have some under-
standing of the structure of the source code, and may be able to
model changes to, say, individual functions or model “change-
sets” (changes to a set of files that implement a single bug fix,
for example). However, while these ideas have been discussed
and even implemented within the SCM community for several
years now [20], [21], the use of tools that implement them is
not yet standard industrial practice. Consequently, we decided
to investigate techniques for reconstructing information about
structural changes that did not assume the use of such tools.

Of the research in this area, the work that is the most
closely related to origin analysis is that of Hunt et al. ,
who have investigated the problem of renaming detection of
identifiers (including functions, global and local variables)
between successive versions of a software system [22], [23].
Their goal is to aid in the well-known SCM problem of
merging program variants. This problem arises when two (or
more) variant branches of a software system are created from
a common parent; if changes are made to the same parts of
the system in both variants, then extreme care must be taken
when the variants are merged back into a common baseline.
In particular, if identifiers of the parent version have been
renamed in one of the variants and code has been added or
changed in the other variant that uses the old identifier names,
then the merging must take this into account, and the merging
process itself will likely be very complex and error prone.

Traditionally, text-based differencing and merging algo-
rithms are used to perform the merging of the variants; that is,
the SCM tool treats the program sources as plain text in this
context, and does not use any special knowledge of the rich
syntactic and semantic information that source code contains.
However, text-based approaches obviously do not fare well in
the presence of identifier renaming.

The approach of Hunt et al. involves scanning and (limited)
parsing of the system code, and followed by a kind of multi-
phase token-based clone detection. First, the source files are
converted to token streams, and the places where identifiers
are declared and used are noted. Next, they compare the
identifiers in the base and variant versions by performing a
straightforward comparison of the tokens sequences around
the identifier declaration for variable and method signatures
(“declaration similarity”) and method definitions (“implemen-
tation similarity”). Then they compare the token sequences
around the vicinities of the uses (or references) of the iden-
tifiers in both versions (“reference similarity”); this bears
some explanation. Suppose that there is an identifier idold

that is defined and referenced several times in the parent
version. For each such reference in the parent, they look for
a corresponding reference in the variant at approximately the
same place in the code (as determined by similar neighbouring
token sequences). If such an identifier reference is found, call
it idnew, then a match is registered between (the definition of)
idold in the parent and idnew in the variant. At the end of the
pass, the number of pairwise matches are recorded. Finally,
they use an expert system to weigh the relevance of each
suggested matching, based on the declaration, implementation,
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and reference similarities computed above.
Hunt’s renaming detection is similar in its practical goal

to origin analysis: it attempts to find instances of identifiers
having been renamed. However, the underlying problem that
renaming detecting tries to aid in — source variant merging
in the presence of identifier renaming — is different from that
of origin analysis — long- and short-term program compre-
hension in the presence of refactoring. Hunt’s approach is, by
design, lower level and computationally more expensive in that
it extracts and compares token streams of source code variants.
In origin analysis, the “expensive” analysis is performed only
once, when each system version is checked into the repository
(and the analysis is roughly comparable to the complexity
of compilation); when versions are compared, entity analysis
involves comparing vectors of (pre-computed) numbers, and
relation analysis involves comparing (relatively small) sets of
program entities. We also note that we consider origin analysis
to be a semi-automatic comprehension task, and we have
designed the Beagle tool to support trial-and-error, incremental
system model building. Finally, we note that Hunt’s approach
does not explicitly consider merging, splitting, and cloning of
software entities, which is the focus of our work here.

E. Gold’s conceptual change framework

Gold et al. have proposed a framework for understand-
ing conceptual changes in evolving software systems [24].
The framework attempts to characterize types of conceptual
changes via transformations in the locality and interpretation
of regions of source code. Their work is derived from a case
study of commercial COBOL systems.

Gold’s approach is to create a set of “concepts” for a given
software application, and then create a set of source code
“indicators” for the concepts. The source code is then analyzed
to look for indicators of the various concepts; if one is found
and matched, then the position in which it occurs is noted and
a “hypothesis” for the concept is generated. This model can
then be applied to different versions of the software system,
and can be used to trace the “morphological evolution” of the
system’s concepts. Often, this means that an initially well-
designed software system can be seen to exhibit a visible
loss in conceptual integrity as it ages; this is because concept
indicators tend to become scattered as the code segments that
contain them are added, deleted, moved, split, and merged.

We note that Gold’s approach is aimed at high-level com-
prehension of software system evolution, a higher level than
that of origin analysis. It attempts to track the morphological
evolution — including merging and splitting — of system
“concepts” over time, whereas origin analysis addresses the
morphological evolution of files and functions.

VI. SUMMARY

Merging and splitting source code artifacts are common
activities during development and maintenance, yet it is com-
mon for the original context of these design changes (the
scope, rationale, intent, etc.) not to be recorded. In this paper,
we have discussed a set of techniques for applying origin
analysis to detect instances of merging and splitting in source

code. We presented a set of merge/split patterns, and showed
how reasoning about call relationships can aid in detecting
their occurrence. Finally, we performed a case study on the
PostgreSQL system. We found that merging and splitting of
functions and files had occurred throughout its history, and
that the techniques for detecting merging/splitting that we
implemented in the Beagle tool were helpful in building a
model of how the system had changed. In turn, we found that
this knowledge was helpful in discovering some of the original
context for these design changes.
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