
Architectural Reconstruction in the Dark

Andrew TrevorsandMichaelW. Godfrey
SoftwareArchitectureGroup

Universityof Waterloo
Ontario,Canada,N2L 3G1�

adtrevors,migod � @uwaterloo.ca

Abstract

Thegoal of architectural reconstructionis to pro-
ducehigh-level modelsof thedesignof a system.The
recover processis usuallyaidedby such information
assourcecode, designdocuments,andusermanuals.
In theabsenceof this typeof information,theprocess
becomesdifficult. Thispaperdetailsan attemptto re-
cover the architecture of the large pieceof telephony
software, where very little about the systemis known
byus.

1 Background

“Characteris whatyouarein thedark”

- Dr. EmelioLizardo

The goal of architecturerecovery is to producehigh-
level modelsof a software system. Generally, these
modelsareproducedby extractinga relationalmodel
of the systemfrom sourcecode,manipulatingit, and
thenmappingasystemstructureontoit (usuallyin the
form of groupingfiles or functionsinto subsystemsor
packages).Therearethreekey sourcesof information
thatarevital to thefeasibilityof thisprocess:

� Thesystem’s sourcecode;

� developmentartifactssuchasa detailedconcep-
tual architecture,or usermanuals;and

� accessto developersor personswho understand
thestructureof thesystem.

In practice, source code is the most important
sourcefor detailedunderstandingof a systemin ar-
chitecturalrecovery. Not only is it the basisfor the
relationalmodelof the system(i.e., what the compo-
nentsare,andhow they interactwith eachother)but
it canserve to help formulatepart of the conceptual
architecture(usuallythedirectorystructureor naming
conventionsof files andfunctionscanhint towardsa
subsystemgrouping). It is alsohelpful in answering
questionsaboutthe system(commentsin codearea
goodsourcefor explainingpeculiaritiesthatonemay
comeacross).

When one is available, a conceptualarchitecture,
which representsthe ”as-designed”view of the sys-
tem, is usually the bestsourcefor determiningwhat
systemstructureto map onto the relational model.
Otherdevelopmentartifacts,suchasusermanualsor
designdocuments,arealsohelpful.

Thedeveloperscanoftenprovidevaluableinforma-
tionaboutthesystemwhichmaybemissing.In theab-
senceof aconceptualarchitecture,thedevelopersmay
beableto suggestpartof onefrom their knowledgeof
thesystem.

While it is obvious that not all threesourcesare
neededin order to performa successfularchitectural
reconstruction,usually having at leastone is a min-
imal requirement. Being given an alreadyextracted
relationalmodel is sufficient as long as the model’s
schemais known and a systemstructurecan be ob-
tainedfrom theconceptualarchitectureor from thede-
velopersthemselves. Conversely, if thesystemstruc-
ture wasnot available from thesesources,onecould
probablybederivedfrom thesourcecodeitself.

However, if thesesourcesarelacking,is reconstruc-



tion still possible?In otherwords,if we have very lit-
tle knowledgeof thesystemandnowayto learnabout
it, andthe developershave no clear ideaof what the
systemstructurelooks like is the entire processstill
feasible?

2 Recreating the Architecture

Thelackof thesourceslistedin thepreviousmakes
it very difficult to recover the architectureof a large
pieceof software. This is the casein our attemptsto
reconstructthearchitectureof largepieceof telephony
software (from hereon called LPOTS) from a com-
pany in Canada.

Wedid nothaveaccessto any sourcecodeor devel-
opmentartifacts,andhave limited accessto develop-
ersor individualsknowledgableaboutthesystem.As
a result,a suitablesystemstructurecouldnot begen-
erated.In orderfor a meaningfularchitecturalmodel
to beproduced,thisstructuremustbedevisedby other
means.

The problemof devising sucha structurefrom an
existing pieceof software is known as ”clustering”.
Therearea numberof automatedor semi-automated
techniquesfor trying to generatetheseclusters,which
arediscussedin thefollowing sections.

2.1 Automatic Clustering Algorithms

Theideaof automaticclusteringis to generateasys-
tem structureby trying to group files and functions
togetherbasedon their interactionswith eachother.
A numberof tools, such as ACDC [3] and Bunch
[1], currentlyexist to do this. Generally, the idea is
thatfiles/functionsthatuseeachotherbelongtogether,
while onesthat don’t belongapart. The criteria for
decidingon groupingsis typically basedon the”high
cohesion/low coupling”principleof softwaredesign.

Anotherautomaticclusteringapproachreliesonthe
identificationof patterns.Suchexamplesincludeclus-
tering functionswhich useor are being usedby the
samefunctions,or by identifying well known design
patterns(e.g., functionb, c, andd areonly ever called
from a, anda is beingcalledoften,thena, b, c, andd
might beinvolvedin a facadepattern).

The problemwith automaticclusteringtechniques
is thatthey arenot entirelyaccurate.Any clustergen-

eratedby sucha tool, especiallyonefor a systemas
largeasLPOTS,wouldhave to bevalidated.

2.2 Use Cases & Scenarios

Usecasesareoften very useful for identifying re-
latedfunctions/filesthatcanbegroupedtogether. The
ideabehindit is to identify a list of key usecases,and
thentracetheir execution(eitherwith automatedtools
or manually). If similar usecasesareusingmany of
thesamefunctions,thenthereis agoodpossibilitythat
thosefunctionsshouldbegroupedtogether.

The problemwith using usecasesas a meansto
identify systemstructurein LPOTSis twofold. Firstly,
neitherthesourcecodenor anexecutableis available
sotracingtheexecutionof atestcaseisveryhard(sim-
ply trying to constructa pathfrom a list of a thousand
or morefunctionsis not possible).Secondly, even if
theabovewasavailable,theknowledgeneededto gen-
erateenoughusecasesto provide suitablecoverageof
thesystemis lacking.Thisbeingthecase,it is unlikely
thatusecasescouldbeusedto solelyproduceasystem
structure.

3 Case Study: LPOTS

Architecturalreconstructionof the LPOTS system
(whosecodebaseis several MLOC) was donewith
theintentof supplyinghigh-level diagramsof thesys-
tem.In orderto createthesediagrams,weweregivena
relationalmodelof thesystem,whichwecouldmanip-
ulateandvisualizeusingSWAGKit [2]. We werealso
given a systemstructurewhich we could useto map
onto themanipulatedrelationalmodel,thusgiving us
anarchitecturalmodel.

However, this systemstructurewasinsufficient be-
causeit only mappedfunctionsinto morethanpack-
ages. When we tried to visualize this architectural
model,thediagramsweretooclutteredandincompre-
hensibleto beuseful.Whatwasneededwasto further
groupthesepackagesuntil wewereleft with ahandful
(probably15 or fewer) of top-level entities.

We attemptedto useautomaticclusteringtools like
Bunch, but were unsuccessfulin obtaininga cluster.
Other methods,such as tracing usecases,were not
feasiblebecauseof our lack of knowledgeaboutthe
system(aswell asthesize).

2



Our final attemptwas to usean automaticlayout
tool to provideaninitial layoutfor thesystem,andthen
clusterpackagesthat areclosetogetherinto a single
package,aswell aslook for patternsin thelayout.

This approachseemedto yield results that were
promising than our previous attempts. The layout
that was given had the packagesclusteredinto sev-
eral groupsin a top-down fashionresemblinga lay-
eredarchitecture((i.e),onegroupat top,anothergroup
underneath,and so on). Investigationof this layout
with lsedit (a visualizationtool in SWAGKit) seemed
to supportthe ideaof a layeredarchitectureasit was
found that mostpackagesinteractedwith otherpack-
agesin thesamecluster, or thosein theclusterbelow.
As well, a few of thepackageslocatedin asmallclus-
ter nearthetop, interactedwith almostall otherpack-
ages,indicatingapossiblelibrary or utility package.

Overall, theresultsof this attemptseempromising.
The next stepwill be to locate(or createone if not
found)aclusteringtool whichcanrecognizethesepat-
ternsin layouts,andclusteraccordingly. Othercluster-
ing toolswill alsobeinvestigatedin orderto generate
alternative clusterings,all of which we hopeto vali-
date/invalidateby consultingwith systemexperts.

References

[1] S. Mancoridis,B.S. Mitchell, Y. Chen,andE.R.
Gansner. Bunch:A ClusteringTool for theRecov-
ery and Maintenanceof Software SystemStruc-
tures.In Proc.of ICSM1999, 1999.

[2] SWK Software Architecture Toolkit. Website.
http://www.swag.uwaterloo.ca/swagkit.

[3] VassiliosTzerposand R. C. Holt. ACDC: An
Algorithm for Comprehension-Driven Clustering.
In Proc. of WCRE 2000, Brisbane, Australia,
November2000.

3


