
Acacia and Acacia and
CppETSCppETS

Michael W. GodfreyMichael W. Godfrey
Software Architecture Group Software Architecture Group

(SWAG)(SWAG)
University of WaterlooUniversity of Waterloo

IWPC 2002 CppETS and Acacia 2

Acacia, Acacia, cia[ocia[o], CCia, …], CCia, …
• Related projects from ATT Research

– cia C extractor, cql query engine, dot
layout engine, ciao GUI interface

• Acacia is the C++ instantiation
– CCia is the command line extractor

• Integrated with cql, dot, ciao

–Mostly work of Emden Gansner

IWPC 2002 CppETS and Acacia 3

AcaciaAcacia
• CCia extracts “facts” about C++ entities

and relationships
– Can then query factbase to produce textual or

graphical output

• CCia is a command line extractor
– Based on EDG C++ front end
– Use like g++

• Supports –U –D –I flags
• Supports all-at-once or separate-then-merge

extractions

IWPC 2002 CppETS and Acacia 4

C++ source

entity.db
relationship.db

CCia
ciao / cql

Textual
output

Graphical
output

dot /
GraphViz

User
queries

Extraction Querying

IWPC 2002 CppETS and Acacia 5

CCiaCCia in a nutshellin a nutshell
• Extracts info about “external declaration”-level entities and

their relationships
– No explicit modelling of local variables, parameters
– No modelling of control structures (e.g., loops) or variable

values.

• Entities include:
– Files, global variables and functions, macros, types (incl.

classes, enums, structs, unions), subparts of types (class
methods, member variables, enum values, struct subparts)

• Relationships include:
– “References” (var. references, fcn calls, param types),

inheritance, file inclusion, type containment, friendship,
template instantiation

IWPC 2002 CppETS and Acacia 6

Entity Info:Entity Info:
""cdefcdef --u" outputu" output

1 id <8 digit hex uniqueID> 053d4d71
2 name <name> CardPlayer
3 kind fi, fu, v, m, t, s
4 file <name> entry.h
5 dtype <datatype string>
6 tclass enum, typdef, struct, class, union, template
7 bline 8
8 hline 12
9 eline 84

10 def def, dec, (macro) undef def
11 checksum <unimplemented>
12 pparam param type list (string)
13 tparam <template param> (string)
14 scope priv/pub/prot/extern/static/unspec
15 ptype name of parent type, if part of class/struct/union etc
16 spec static(s), const/enum val(c), inline(i), virtual(v),
17 signature I if a type, how entity is referred to, eg struct s, enum C::t
18 selected <unused>

IWPC 2002 CppETS and Acacia 7

Relationship info:Relationship info:
""crefcref --u" outputu" output

<19 columns for entity 1 info> ; <19 columns for entity 2 info> ;

39 usage relation line nums 22.43.46;
40 rkind reference, inheritance, containment,

friendship, typedef, instantiation
41 <unused>
42 pkind private or protected if that kind of

inheritance used (public not mentioned)

IWPC 2002 CppETS and Acacia 8

Example textual queriesExample textual queries
• Find all member variables of the class Player:

% ksh cdef -u v - ptype=Player
db18647e;hand;variable;Player.h;CardPile *; regular;37;0;37;def;

00000000;;;protected;Player;;;
65f4a2eb;numOfSuit;variable;Player.h;vector<int, alloc>;regular;

43;0;43;def;00000000;;;protected;Player;;;
[remaining output deleted]

• Print the name and beginning line num of all function declarations
in SmartPlayer.cc:

% ksh cdef -u fu - def=def file=SmartPlayer.cc | cut -d ';' -f 2,7
playCard;81
followSuit;48
findARandomCard;21

• Find all instances of inheritance relationships from entities in file
main.C to any other classes:

% ksh cref -u - - - - tclass1=class file1=main.C rkind=inheritance

IWPC 2002 CppETS and Acacia 9

Example ciao query

• Find all functions in non-
system files that reference
a method or variable of
any of the Player classes

Entity 1 info

Relationship info

Entity 2 info

IWPC 2002 CppETS and Acacia 10

IWPC 2002 CppETS and Acacia 11

CCia:CCia: Ups and downsUps and downs
• Works pretty well on straightforward code

– I’ve used it as a drop-in replacement for cfx with PBS

• Not very robust
– Can’t handle embedded languages
– Requires complete header info

• Some quirks and problems:
– CCia is based on an older (pre-ANSI) third-party front

end
• Doesn’t do well with namespaces, templates

– Some bugs remain in both front-end and back-end;
unlikely to be fixed.

IWPC 2002 CppETS and Acacia 12

Querying: Ups and downsQuerying: Ups and downs
• Ups

– Once you’ve figured out how it works, you can
move mountains if you are good at
grep/cut/awk/bash/perl/grok etc. ☺

• Downs
– Need to use grep/cut/awk/bash/perl/grok

etc. /
– Poor documentation a problem

IWPC 2002 CppETS and Acacia 13

Thoughts on CppETSThoughts on CppETS
• Good idea to survey the world of C++ extractors

– It’s a hard language to compile …
– Can get both interesting qualitative and quantitative answers
– Some questions:

• Are we ready for a more rigorous workout?
• What are we most interested in finding out?

• Currently, CppETS is not systematic in its approach
– What are the hard or interesting issues in building a C++

extractor? vs. Java?
e.g., Implicit vs. explicit construction/destruction, operator

overloading, multiple/virtual inheritance
– Should it look more like a compiler test suite?

