
Notes on Notes on Postmodern Programming:
Radio Edit

James Noble
Victoria University of Wellington

Wellington, New Zealand

kjx@mcs.vuw.ac.nz

Robert Biddle
Carleton University

Ottawa, Canada

robert biddle@carleton.ca

ABSTRACT
These notes have the status of letters written to ourselves: we wrote
them down because, without doing so, we found ourselves making
up new arguments over and over again. So began the abstract of
our earlier paperNotes on Postmodern Programming. We now re-
visit the issue of postmodern programming, and attempt to address
some of the questions raised by our exposition. To illustrate the
nature of postmodernism we do not do this directly, but instead
present a series of snapshots, parodies, and imagined conversations
that we hope will help. What do you think of the abstract so far?
Self-reference and a irreverent approach are part of this topic, so
it’s important to chill out and let things flow. We claim that com-
puter science and software design grew up amid the unquestioned
landscape of modernism, and that too often we cling to the oth-
erwise ungrounded values, even as modernism itself is ever more
compromised.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: OO design methods

General Terms
Design

Keywords
Object-Oriented Design, Object-Oriented Programming

0. RADIO EDIT
This paper is a condensed version ofNotes on Notes on Postmod-

ern Programming[23].

1. MANIFESTO

What are you reading?

Some weird thing from OOPSLA [22]: I can’t imagine
where they find this junk.

Copyright is held by the author/owner.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

Figure 1: Notes on Postmodern Programming. Section 0: Man-
ifesto.

Let’s see. Oh, it’s the Bauhaus manifesto, cool.

Bauhaus? Weren’t they a punk band?

No, the real Bauhaus, the architecture and design school
in Germany during the Weimar republic. We studied it
at Art School. I still have a book about it somewhere
[31].

Oh. That’s weird. An architecture school had a com-
munist manifesto? And about programming?

Huh? No, not the communist manifesto. Let’s see. Oh,
it’s not exactly the Bauhaus manifesto. They’ve substi-
tuted words like “programming” instead of “building”.

Really? You’re kidding? Let me google it. Oh yeah. I
guess they’re making some point about programming
being like building, and software engineering being
like architecture. Hmm, only the manifesto says they’re
really the same.

Well, the Bauhaus people were idealists, that’s for sure.

Hmm, some of the other wording seems to be differ-
ent. Maybe it’s a different translation. Where are these
guys from? Maybe they don’t speak American. But
they are idealists. And look where it got the Bauhaus:
total irrelevance!

But lots of modern architecture came straight from the
Bauhaus: all those big rectangular modern office blocks.

112



Well, it was the 60s, I guess everyone was doing the
same thing.

Actually the Bauhaus was in the days of the Weimar
republic: the 1920s. They designed their own modern
building in 1925. It looked nice: not the kind of giant
nightmare of Le Corbusier . . .

What? Modern architecure in the 1920s? No way. But
about that Courvoisier?

Anyway, they were idealists. They thought that the
academic world and the world of industry should work
together.

Really? That’s what I always say. Those university
space-cadets could really learn something. So this thing
is really saying that everybody should work together,
is that all?

Well you’re reading it. What’s the title again?

Um, Notes on Postmodern Programming.

Really? Postmodern? Because the Bauhaus was all
about modernism.

Oh right. So why is this here at all?

Maybe they’re making fun of it?

Really? But it seems so serious. How can they be
advocating moderism and postmodernism at the same
time?

2. ADVENTURE
The Brain of Alan Turing!

Paragraph 5
JIM: Vodka lime tonic in a tall glass.

BOB: Martini, Tanqueray if you have it.

Suddenly you realise what you’ve been missing — you look over
the back of the booth to catch the eye of the waitress and order an
OOPSLA Sunrise (Tequila, Orange juice, and Lingonberry juice).
When you turn around, you realise Alan Turing is sitting across the
booth from you. He is balancing an apple in his left hand.

ALAN: Excuse me, my machine seems to have run out
of tape.

YOU: Tape?

ALAN: Yes. Tape. It’s supposed to be infinite, you
see.

YOU: Infinite?

ALAN: The Tape. Infinite. Yes.

He holds the apple in his hand.

ALAN: Consider this apple. Almost too good to be
true, really. What does it represent? Any apple. The
apple from the tree of knowledge of good and evil. The
apple from the tree of life.

He puts the apple on the table and opens it. Its logo
glows across the dim bar. Due to very expensive prod-
uct design, the logo is the right way up when the screen
is open. Alan Turing presses the power button while
holding down the “Command-V” key combination.

Figure 2: Photograph of Wellington, New Zealand, showing
lack of order, and wilfulness.

ALAN: If you hold down “Command-V” you get all
the bootup details instead of the stupid grey screen
with the little twizzy spinning thing. All the cool stuff
about ethernet addresses and all. What’s odd is that
this seems to make the machine boot up quicker, al-
though it doesn’t of course. How could it? You could
set “nvram boot-args = -v” but this is more tactile. I
wish I’d had one of these back at Bletchley Park.

You drink more tequila.

ALAN: The apple isn’t really here — I’m not really
here — I’m just a talking point, a puppet created by
some underachieving professor who’s never written a
program and couldn’t write a theorem to save his life.
If you stood up for a moment you’d see that I’m just
a collection of latex and pneumatics. Like Stephen
Hawking or Davros — same thing really.

He gestures behind him. As he does so, you see a “Weta Digital”
trademark tattooed on the inside of his forearm.

You drink more tequila.
When you look up, Alan Turing has vanished. The stereo seems

to be playing a recording of Kylie Minogue singing Alvin Lucier’s
“I am sitting in a room” remixed with John Cage’s “Four Minutes
Thirty-Three Seconds.”

Go to Paragraph 14.

3. LE CORBUSIER

The Plan is the generator.

Without a plan, you have lack of order, and wilfulness.

The Plan holds in itself the essence of sensation.

The great problems of to-morrow, dictated by collec-
tive necessities, put the question of “plan” in a new
form.

Modern life demands, and is waiting for, a new kind of
plan, both for the house and for the city.

— Le Corbusier [28]

113



4. MORE ADVENTURE

Paragraph 9
BOB: So, if there were three key points they would be
that:

• Modernism is ultimately the idea of a big story of
progress, that liberty, socialism, etc. will eventu-
ally lift humankind from the mud to the stars: all
will be equal, educated, happy . . .

• Postmodernism: both fulfills modernism: in post-
modernity everyone is equal, educated, liberated,
free; and replaces it, because this equality, educa-
tion, liberation, salvation, freedom turns out not
to be like we thought.

• Computer Science / Software Engineering / Pro-
gramming is deeply implicated in all of this as a
participant: programs and programmes are part
of the infrastructure of society, and have been
greatly affected by the these developments.

JIM: Too fricken weak: this needs to be rephrased
properly.

BOB: Ahh, who cares?

BOB: As I was saying:

• Computer Science is equally an instigator, be-
cause it provides much of the underlying tech-
nologies accelerating the shift into postmoder-
nity.

JIM: Three points!?!

BOB: So? Who’s counting?

Turn to Paragraph 10.

5. NO BIG PICTURE

This postmodern programming stuff just seems to be
an excuse to create software by sticking stuff together.

Yeah, there doesn’t really seem to be any theory at all.
Losers.

Adam was the Average Joe all of America was hoping
for.

Or there’s a whole bunch of theories. How could that
ever work?

Yeah, it would be an a band where everyone played
different instruments and they all just made it all up as
they went along. Losers.

But . . .

Yeah, well, you know what I mean. Losers.

This week, Survivor is on Wednesday.

Well, the human mind can only understand one thing
at a time, that’s for sure.

Yeah, who ever heard of, like, a movie being split up
with lots of other movies? Losers.

Get the door. It’s a cheesy good time from Dominos.

Nobody would ever get used to it.

Yeah. And they want to force it on us. No way, loosers.

Right.

Yeah.

Tonight, on Viewer’s Choice Pay-Per-View. Wrestle-
mania. Check channels 300 and up.

Yep.

Losers.

I’m going to make a collect call, by dialing down the
center.

You could never learn to deal with it.

Yeah.

And you can imagine how it would creep in. All of a
sudden it could get jumbled up. You wouldn’t know
what was what. It would be like getting some other
drink when you were expecting a cold refreshing Coca-
Cola.

6. YET MORE ADVENTURE

Paragraph 23
We claim that computer science and software design grew up amid
the unquestioned landscape of modernism, and that too often we
cling to the otherwise ungrounded values, even as modernism itself
is ever more compromised.

There are implications for practical programming. When we
work within modernism, this affects our programs, systems, lan-
guages, and applications. When we work within modernism, this
affects the way we organise ourselves. The ways in which our work
is affected may be useful, or may not, we may like it, or we may
not, but the effects will be there nonetheless.

This affects we way we do things, even, and actually especially,
when we try to do themright. With our technology: all those lan-
guages, all those toolsets, all those environments. And with our-
selves, and how we organise how we work, how we succeed, how
we fail. From the beginning of codification in Garmisch [19], this
is how we think about what we do. Even when we don’t.

Others have raised similar issues, and before we did. Wall’s re-
marks [30] show how the success of Perl is related to his new ap-
proach; the exposition of Hall et al. [24] shows how pervasive the
impact of the traditional approach is on our organisations.

All this has an impact on our past and our future, because it con-
cerns reuse and reusability. Whether and how much these are pos-
sible relates to our view of how things must be done. Our discipline
has a long history with reuse, but it is history itself affected by the
stories we tell [7].

The idea of modernism points the way, and the style it engen-
ders, progress, functionality, efficiency, all help us to follow. It
brings hope, and soon comes confidence, but too often arrogance.
It becomes easy to overlook the questions that arise. Is this the right
way? Why is this so difficult? Couldn’t we do this another way?
What are those people doing over there? Where is the coffee? But
if we repeat our own big stories to ourselves, if we repeat them
louder and longer, the questions can soon be forgotten.

114



7. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers,

Principles, Techniques, and Tools. Addison-Wesley, 1986.
[2] Alfred V. Aho and Jeffrey D. Ullman.Principles of Compiler

Design. Addison-Wesley, 1977.
[3] American National Standards Institute, 1430 Broadway, New

York, NY 10018, USA.Military Standard Ada Programming
Language, February 17 1983. Also MIL-STD-1815A.

[4] Ronald M. Baecker and Aaron Marcus.Human Factors and
Typography for More Readable Programs. Addison-Wesley,
Reading, MA, USA, 1989.

[5] Kent Beck.Extreme Programming: Embrace Change.
Addison-Wesley, 2000.

[6] Samuel Beckett.En attendant Godot. English translation by
the author.Grove Press, 1954.

[7] Robert Biddle, Angela Martin, and Robert Biddle. No name:
Just notes on software reuse.SigPlan Notices: Proceedings
of the OOPSLA Onward Track, 38(2):76–96, December
2003.

[8] Lewis Carroll.Alice in Wonderland, volume 11 ofProject
Gutenberg. Project Gutenberg, P.O. Box 2782, Champaign,
IL 61825-2782, USA, 1991.

[9] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare.Structured
Programming. Academic Press, 1972.

[10] Edsger W. Dijkstra. My hopes of computing science. In
Proc. 4th Int. Conf. on Software Engineering, Munich, pages
442–448. IEEE andhttp:
//www.cs.utexas.edu/users/EWD/ewd07xx/,
September 1979.

[11] Umberto Eco. Reflections on the name of the rose.
ENCOUNTER, 64, April 1985.

[12] Richard P. Gabriel. LISP: Good news, bad news, how to win
big. AI Expert, 6(6):30–39, 1991.

[13] Douglas R. Hofstadter.Godel, Escher, Bach: An Eternal
Golden Braid. Basic Books, Inc., 1979.

[14] Richard Horn.Memphis: Objects, Furniture and Patterns.
Simon & Schuster, 1986.

[15] Guy L. Steele Jr. Both ways, now.http:
//www.poppyfields.net/filks/00041.html.

[16] Bill Manhire and Gregory O’Brien.The Brain of Katherine
Mansfield. Auckland University Press, 1988.
http://www.het.brown.edu/people/easther/
brain/index.html.

[17] Paul Morley.Words and Music: A History of Pop in the
Shape of a City. Bloomsbury, 2003.

[18] Robin Murray.Fordism and Post-Fordism, pages 167–276.
Academy Editions, 1992.

[19] P. Naur and B. Randell, editors.Software Engineering:
Report of a conference sponsored by the NATO Science
Committee. NATO Scientific Affairs Division, Brussels,
1969.

[20] Greg Nelson.Systems programming with Modula-3.
Prentice-Hall, Inc., 1991.

[21] Theodor Holm Nelson.Computer Lib / Dream Machines.
None listed, 1974.

[22] James Noble and Robert Biddle. Notes on postmodern
programming. In Richard Gabriel, editor,Proceedings of the
Onward Track at OOPSLA 02, the ACM conference on
Object-Oriented Programming, Systems, Languages and
Applications, pages 49–71, Seattle, USA, 2002.
http://www.dreamsongs.org/.

[23] James Noble and Robert Biddle. Notes on notes on
postmodern programming.SIGPlan Notices: Proceedings of
the OOPSLA 2004 Onward Track, To Appear, 2004.

[24] Hugh Robinson, Fiona Hovenden, Pat Hall, and Janet
Rachel. Postmodern software development.Computer
Journal, 41(6), 1998.

[25] Ravi Sethi.Programming languages (2nd ed.): concepts and
constructs. Addison Wesley Longman Publishing Co., Inc.,
1996.

[26] A. Silberschatz, J. Peterson, and P. Galvin.Operating System
Concepts. Addison-Wesley, 3 edition, 1991.

[27] John Simpson, editor.Oxford English Dictionary. Oxford
University Press, OED onlinehttp://oed.com/ edition,
2004.

[28] Le Corbusier Translated by Frederick Etchells.Towards a
New Architecture. Dover Publications republication of 1931,
1986.

[29] Adriaan van Wijngaarden, B. J. Mailloux, J. E. L. Peck,
C. H. A. Koster, M. Sintzoff, C. H. Lindsey, L. G. L. T.
Meertens, and R. G. Fisker. Revised report on the
algorithmic language ALGOL 68.Acta Informatica,
5(1–3):1–236, December 1975.

[30] Larry Wall. Perl, the first postmodern computer language.
http://www.wall.org/˜larry/pm.html, Spring
1999.

[31] Frank Whitford.Bauhaus (World of Art). Thames & Hudson,
1984.

8. M-X DOCTOR
I am the psychotherapist. Please, describe your prob-
lems. Each time you are finished talking, type RET twice.
I don’t know if postmodern programming is meant to be
serious or a joke.
Why do you think it is meant to be serious?
Well, there are some good points about the way things
really are.
Are you afraid of that?
A bit, because it means that we have been deluding our-
selves about the nature of computer science. But maybe
it is meant to be a joke.
Why do you think maybe it is meant to be a joke?
Well, they include lots of stuff from books and cartoons
and movies, and they make fun of computer science. Can
they be serious and joking at the same time?
I could ask the same thing myself.
I guess they could be making serious points in a post-
modern way.
Why do you say that?
I suppose a postmodern point of view would involve a
number of different influences stuck together, some seri-
ous, some funny, just like modern life. I mean postmodern
life. Does that make sense?
Please allow me to do the questioning.

115


