CS246 [Winter 2011] Assignment 6

Version 0.0 Not yet released

Version 1.0 Removed commas from set constructor, so, { ”a” ”b” ”c”} but not { ”a”, ”b”, ”c”}
Version 1.1 Added ‘How to submit’ section.

Version 1.2 Added makefile
Version 1.3 Fixes to grammar
Version 1.4 Minor typos
You are to produce an interpreter for a language called SL (set language) that has sets of strings as its only form of data. It has declarations, assignments, input/output and set expressions.

In Assignment 5 you were to create very simple interpreter, which supported no interesting form of expressions. Your interpreter for A6 will have operators such as + and < with precedence as well as nesting using parentheses. This assignment provides practice in using files, inheritance, accessing command line arguments, use of list<T> and downcasting.
The SL language. Here is an example program in the SL language.

set abc = { ”a” ”b” ”c”}; // Variable abc is declared and initialized to contain

 // elements ”a”, ”b”, ”c”

output abc; // Print to std output elements (”a”, ”b”, ”c”) of abc

set s = {”d” ”c”} + abc; // Declare s, initialized to {”a”, ”b”, ”c” “d”}

write s to ”s.elm”; // Write the four elements of s to Unix file s.elm
set tmp = {}; // Declare tmp, initially empty

read tmp from ”s.elm”; // Read elements from file s.elm into tmp

set eq = {};

eq = tmp == s; // Set eq to {“true”} if tmp and s are identical sets,

 // otherwise, set eq to {“false”}.

A set is output (or written) in alphanumeric order, with each element on its own line. A set is read from a file, using C++ definition of reading (using >>) into a string variable. SL has no comments, so it does not allow // at the right part of a line. A variable must be declared before being used (DBU is required). Variables cannot be re-declared.

The operators supported in SL expressions are +, *, - (set union, intersection, subtraction) as well as these three comparison ==, <, > i.e., set equality, strict subset, strict superset. Operators are executed from left to right, with three priority levels, from high to low: (1) *, (2) + and -, (3) comparisons. Comparisons return a set value of {”true”} or {”false”}.

Set values are assigned using the = operator, in the assignment statement.

Quoted strings (string literals) are surrounded by double quotes. They cannot contain escape characters.

Expressions occur on the right side of assignment statements and declarations.

Scanner provided. You will be given a scanner (which you are to use). It reads programs and translates them to sequences of tokens. For example, the above program would be translated to the following.
x:set

x:abc

=

{

":a
":b
":c

}

;

x:output

x:abc

;

x:set

x:s

=

{

":d

":c

}

+

x:abc

;

x:write

x:s

x:to

":s.elm

;

x:set

x:tmp

=

{

}

;

x:read

x:tmp

x:from

":s.elm

;

x:set

x:eq

=

{

}

;

x:eq

=

x:tmp

e

x:s

;

E
As can be seen, each token appears on a separate line. There are two kinds of tokens: skinny and fat. A skinny token, such as = or +, appears as a single character. A fat token is written as a character, such as x then a colon : and then the “value” of the token. For example, x:abc is the identifier abc while “:Alice is the string Alice. See file tokennames.h for a listing of all tokens. The final token E (for EOF) is added by the scanner for convenience of the interpreter.

A token in the source program, such as “Alice” is called a raw token. A token that has been scanned, such as “:Alice is called a cooked token. The scanner translates each raw token into a cooked token (it “cooks” the token).

The scanner can be used for various languages. As a result, some tokens, such as >>, may be recognized by the scanner, but not accepted by your interpreter. This does not cause problems. When >> is (erroneously) part of the user program, it is scanned without error message, but it will cause a syntax error in the interpreter.

The “driver” program. You are to write a C++ program called “driver” which reads a token stream (as illustrated above) for an SL program from the standard input and executes it, producing output on the standard output stream for each SL “output” or “print” statement. The program can use read and write statements for I/O on files.

Language grammar. The grammar for the SL language is as follows:

program ::= statements

statements ::= { declaration | assignment | output | read | write | print }

declaration::= x:set x ”=” expression ”;”

assignment ::= x ”=” expression ”;”

print ::= x:print stringconst ”;”

output ::= x:output x ”;”

read ::= x:read x x:from stringconst ”;”

write ::= x:write x x:to stringconst ”;”

expression ::= comparison { (”==” | ”<” | ”>”) comparison }

comparison ::= term { (”+” | ”-”) term }

term ::= factor { ”*” factor }

factor ::= x | ”(” expression ”)” | ”{” { stringconst } ”}”

In the grammar, the notation “x:ccc” for example, x:set means the identifier set. Similarly for x:write etc. By itself x means any identifier.

In the grammar, the notation “stringconst” means a (quoted) string constant, e.g., “Hello”.

The notation in the grammar { … } means zero or more replications while | means a choice.

Use recursive descent. Your interpreter should be structured as a recursive descent parser. For discussion of this see:

http://en.wikipedia.org/wiki/Recursive_descent_parser
You should use one function for each non-terminal: program, statements, declaration, assignment, output, read, write, expression, comparison, term and factor. Note that expression, comparison, term and factor are recursive. Besides parsing the program, you will also interpret it on the fly. This means using the “driver” program to allocate (during declarations), assign (during assignments) and retrieve (during expressions and outputs) values of variables (always string sets). The output is printed on the terminal (to standard output). The expression, comparison, term and factor functions should return a string set (actually, an extended string set, as described below.).

Dumper. As the first part of this assignment, you are to produce a “dumper” program that reads a sequence of cooked tokens (produced by the given scanner) and then produces a corresponding sequence of raw tokens. Each raw token (except semicolon) should be followed by a single blank. The semicolon token should be followed by a new line. If your “dumper” program receives the command line flag –cooked then it should output cooked tokens (one per line) instead of raw tokens.

For example, suppose the token stream (which is read by the dumper) begins as:

x:set

x:abc

=

{

":a

":b

":c

}

;

x:output

x:abc

;
E

Your dumper should print the following (assuming there is no –cooked flag):

set abc = { "a" "b" "c" } ;

output abc ; // Do not output the E token
In other words, each token from the token stream is turned back into its original representation as written in a source program, although the white space may vary. When the dumper reads the eof token “E”, unscanning stops with no more output (without outputting the “E”).

Your dumper should be “idempotent” meaning that if it repeatedly reads cooked tokens and dumps cooked tokens, each sequence of cooked tokens will be identical character for character including white space.

Implementation. Your “driver” program should begin by reading the entire token stream into a token buffer, which is implemented as a list (C++ template) of tokens. Operations on this STL list, such as rewind, as provided by the list template can be used. The interpreter (implemented by the driver) will repeatedly request a token from the buffer, and the iterator can keep track of which token to fetch next from the list.

You will be provided with a set of files; located in: ~holt/fi*/asgn06
Ideally you should use your strSet class from a previous assignment. If that is not possible for you, you can use a version from the provided files.

Use a C++ STL map to represent the variables in the program as a pair, where the name of the variable is the pair’s key and pair’s target is an extended string set object.

The provided files will include “tokennames.h”. Use token names such as plusToken defined in that file rather than literal constants such as ‘+’.

The “dvr” shell script. You are to create a shell script named dvr (make it executable with chmod u+x dvr) which pipes the output of scan (provided to you) into driver (which you are to write). The “dvr” script can be done this way.

./scan < $1 | ./driver # You write driver. Scan is given to you

I/O Files. Your program should use standard input and output (and error output). You should use named files only for implementing the read and write statements.

Hints.

See Buhr slides (S2.7) for description of file I/O. You may want to use “noskipws” as a basis for reading the input character by character.

See Buhr slide (S2.8) for how to read command line arguments. You are to test for the “–cooked” argument, to see if your dumper should be writing cooked tokens.

Note that ctl-D typed at the terminal produces EOF.

You are to use an STL “map” to store string sets and to look them up based on their declared names. See Buhr notes page (S2.23). You can use the “count” member of a map to determine if a particular variable name exists in the map.

To produce output from the SL “output” statement, call the output function of the string set class.

Any error messages you produce should start with the word ERROR, should fit on a single line, and should be output to the error stream.

Generally, you do not need to try to recover from an error in the user program; you can just abort the program.

Write an extended string set class. You are to write a class called extStrSet (extended string set) which inherits from the strSet class. The extStrSet class should add three comparison operators to strSet (see SL grammar). The logic of your interpreter (your driver) should use objects of type extStrSet. The extStrSet class has (inherits) the operators of strSet (notably, +, -, *).

Downcasting. There is a problem of using the operators of strSet, as follows. Each strSet operator, such as +, returns an object X of type strSet (and not extStrSet). Unfortunately, such an X cannot be supplied as an argument to an operator (such as <) in extStrSet, because < expects arguments of type extStrSet (not strSet). To solve this problem, we can downcast X to turn it into an object of class extStrSet. Here is a function that can be used for this downcasting:

extStrSet& ss2extss (const strSet& ss) // Down cast from strSet to extStrSet

 { return *(extStrSet*)&ss ; }

This converts (downcasts) ss from type strSet to extStrSet as follows. It takes the address of s (in &ss), converts this pointer to a pointer to extStrSet by using (extrSet*), and then uses * to return an object of type extStrSet. You can use this function to convert each result of +, -, * to extStrClass. This allows you to write your driver (interpreter) using extStrSet (and in effect not strSet).

Downcasting can be dangerous, as the derived class may assume that there is data in the object which is not actually there. In the case of downcasting setStr to extStrSet there is no danger in that extStrSet contains no data. See Buhr’s notes on “contravariance” (S2.21.2, pg 254) for a discussion of this sort of need for downcasting.
You are to use these classes:
scan – given to you

token.h - given you you

token.cpp – you write this

tokenbuffer.h – given to you

tokenbuffer.cpp – you write this

dumper.cpp – you write this. This is a main program. It uses tokenbuffer to read tokens

strset3.h – given to you (essentially same as in A5)

strset3.cpp – ideally yours from A5, but use strset3.o if needed

strset3.o – use only if you are missing strset*.cpp

extstrset3.h – given to you

extstrset3.cpp – you write this

driver.cpp – you write this. This is a main program. It operates as the interpreter

dvr – you write this. It is the shell script that combines scan and driver.

driver – given to you as an executable
makefile – given to you

How to submit. You will be using Marmoset to submit and test your program. Tests available on Marmoset will account for your correctness marks for the assignment.

Please submit file ‘sl_interpreter.zip’ to project ‘A6’ on Marmoset. Your zipped file should contain the following files:
makefile

token.h

token.cpp

tokenbuffer.h

tokenbuffer.cpp

dumper.cpp

strset3.h

strset3.cpp or strset3.o

extstrset3.h

extstrset3.cpp

driver.cpp

dvr

Notes on using ‘makefile’. You will be using ‘make’ utility to compile executable files (dumper, driver) for this assignment. Its usage is as follows.

‘make dumper’ should generate an executable file dumper

‘make driver’ should generate an executable file driver

‘make clean’ remove all compiled binaries
If you wish to use your own strset3.* files from assignment 5, simply copy these files into working directory, and invoke ‘make driver’. This will overwrite existing strset3.o file.

If you wish to use strset3.o provided, ensure that strset3.cpp file doesn’t exist in your working directory. This will keep make utility to use strset3.o file provided. Invoking ‘make clean’ will not erase strset3.o.

‘makefile’ provided is set to compile all binaries with –g and –O0 flags. This means you can use GDB to debug your program at any time.

