University of

Waterloo

%

School of Computer Science

Course Notes
CS 246

Object-Oriented Software Development

http: //www.student.cs.uwaterloo.ca/ ~cs246

Fall 2009

1 Shell

e After signing onto a computer (login), a mechanism musttdrislisplay
iInformation and perform operations.

e The two main approaches are graphical and command line.
e Graphical interface (desktop):

o use icons to represent programs (actions),
o clicking on an icon launches (starts) a program,
o program may pop up a dialog box for arguments to specify gseaton.

e Command-line interface (shell):

o use text strings (names) to represent programs (commands),
o command is typed after a prompt in an interactive area toistar
o arguments follow the command to specify its execution.

e Graphical interface is convenient, but seldom is prograbiea
e Command-line interface requires more typing, but allowsypamming.
e A shellis a program that reads commands and interprets them.

© Peter A. Buhr

CS 246 3

e It provides a simple programming-language wathng variables and a few
statements.

e Unix shells falls into two basic campsf) andcsh, each with slightly
different syntax and semantics.

e sh variants: ksh, bash

e csh variants: tcsh

e Focus on bash with some tcsh.

e Area (window) where shell runs is calledexminal or xterm.

e Shell line begins with @arompt denoted by (sh) or% (csh) (often
customized).

e A command is typed after the prompt it executed untiEnter/Return
key Is pressed:

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009

$ whoamiEnter # print userid
Ccs246

$ echo Hi There!Enter # print any string
Hi There!

CS 246

e Comment begins with a hash)(and continues to the end of the line.

e Multiple commands can be typed on the command line sepalgtdte
semi-colon.

$ date ;: whoami ; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009

Ccs246

Hi There!

e Commands can be editted on the command line:

o position with<t andr> arrow keys,

o remove characters wittackspace/delete key,

o add new characters,

o pressingenter at any point along the command line.

e Most commands have options, specified with a minus followedrie or
more characters, which specify how the command operates.

CS 246 5

$ uname -p # processor type
sparc

$ uname -s # operating system
SunOS

$ uname -a # all system information
SunOS servicesl6.student.cs 5.8 Generic_117350-56 sun4u sparc SUNW

e Options are normally processed left to right; one option weycel another.
e No standardization for option syntax and names.
e Shells can be nested within each otharlishel).

$ tcsh # start tcsh in bash
% bash # start bash in tcsh
$ exit # exit bash
% exit # exit tcsh
$ exit # exit original bash and terminal
o when the login shell of terminal/xterm terminates, the teatixterm
terminates.

o when the login terminal/xterm terminates, you sign off toeputer
(logout).

e Use commandahsh to set which shell you want to use (bash, tcsh, etc.).

CS 246 6
1.1 File System

e Shell commands interact extensively with the file system.
e Files are containers for data stored on secondary storagal(y disk).

¢ File names are organized in an N-ary tree: directories ategs, files are
leaves.

e Information is stored at specific locations in the hierarchy

CS 246
/

root of the local file system

bin basic UNIX commands
lib system libraries
usr
bin more UNIX commands
lib more system libraries
Include system include files, .h files
tmp system temporary files
ul user files
u2 user files

j.f.d.oe home directory

.cshrc, .emacs, .login, ... hidden files
csS246 course files
al assignment 1 files

g1x.C, g2y.h, g2y.cc

u9 user files
u or home magic directory combining what is under ul-u9

e Directory named/” is the root of the file system.
e bin, lib, usr, include : UNIX commands, system library and include files.

CS 246 3

e tmp : location of temporary files created by commands.

e ul, ..., u9: user files are distributed across these directories.

e U Or home : magic directory combining all users from user directories.
e Directory for a particular user is called th&iome directory.

e Each file has a unique path-name in the file system, referemitieén
absolute pathname.

e An absolute pathnames a list of all the directories from the root to the file
separated by the charactert .

/u2/jfdoe/cs246/al/qix.C # => file q1x.C
/u/jffdoe/cs246/al/qlx.C # => file q1x.C

e A relative pathnameis a short name for a file provided by the shell using
an implicit starting location.

e At sign on, the shell createscarrrent directory variable set to the user’s
home directory.

e Any file name not starting with/” is automatically prefixed with the
current directory to create the necessary absolute patnam

e E.g., if useljfdoe signs on, home and current directory are setffdoe:

CS 246 9

cs246/al/qlx.C # => /ul/jfdoe/cs246/al/qlx.C
e Shell special character” (tilde) expands to user’s home directory.
~/cs246/al/glx.C # => /uljfdoe/cs246/al/qlx.C

e Every directory contains 2 special directories:

o “.” points to current directory.

Jcs246/al/g1x.C # => /uljfdoe/cs246/al/q1x.C
o “..” points to parent directory above the current directory.

..I. .Jusr/include/stdio.h # => [usr/include/stdio.h

1.2 Pattern Matching

¢ Shells provide pattern matching of file namg®&{Qbing) to reduce typing
lists of file names.

e Different shells and commands support slightly differemtds and syntax
for patterns.

e Pattern matching is provided through special characters, {}, [],
denoting differentvildcards.

CS 246 10

e Patterns are composable: multiple wildcards joined intoglex pattern.

e E.g., if the current directory isi/jfdoe/cs246/al with leaf filesqlx.C, g2y.h,
g2y.cc

o » matches 0 or more characters
g~ # => g1x.C, g2y.h, gq2y.cc
o ? matches 1 character
g*.?7? # => qly.cc
o {...} matches any alternative in the set
x.{cc,cpp,C} # => q1x.C, g2y.cc
o [...] matches 1 character in the set

q[12]« # => g1x.C, g2y.h, gq2y.cc
o[l...] (* csh) matches 1 characteot in the set

ql!1]« # => g2y.h, gq2y.cc
o Create ranges using hyphen (dash)

[0-3] #=>0,1,2,3

[a-zA-Z] # => lower or upper case letter

[la-zA-Z] # => any character not a letter

CS 246 11
o Hyphen is escaped by putting it at start or end of set

[-?«]x # => matches any file names starting with -, ?, or x

e Hidden files contain administrative information and start with (dot).

e These files are ignored by globbing patterns, e.daes not match all file
names in a directory.

e Pattern matches all hidden files, e.geshrc, .login, etc.,and “.”, “ ..
e Pattern[!.]x does not match.” and “..” directories.

e On the command line, pressing tlad key after typing several characters of

a file name requests the shell to automatically complete lgnadime.

$ echo cotab # cause completion of file name to counter.cc

e If the completion is ambiguity, the shell “beeps”, and youstnype more
characters to uniquely identifier the file name.

1.3 Quoting
e Quoting controls how the shell interprets strings of characters.
e Backslash(\) : escapeany character, including special characters:

CS 246 12

$ echo W \g \« \2 \[\]\$ WL\ X
WQ*?[]$\ X

Normally multiple spaces are compressed.
e Backquote (") : execute the text as a command, and replace it with the
command output:

$ echo ‘whoami'
CcsS246

e Single quote(”) : do not interpret the string, even backslash:

$echo A\w\lg\lx \2 V[\]\$ WL VL X
WG W A2 [\ VS WAL X

A single quote cannot appear inside single quotes.
e A file name containing special characters is enclosed inesipgptes.
$ rm ‘Book Report 2.txt” # file name with spaces
e Double quote(") : interpret escapes, backquotes, and variables in string:

$eho”™ +?2[]\ \"whoam™\""
«?2[]\ "cs246"

CS 246 13
e Put newline into string for multi-line text.

$ echo "abc

> cdf # pronpt > neans current lineis inconplete
abc
cdf

1.4 Shell Commands

e SOme commands are executed directly by the shell rathetthiea@S
because they read/write the shell’s state.

e cd : change the current directory.

cd [directory]

o argument must be a directory and not a file

o cd : move to home directory, sameas ~

ocd -: move to previous current directory

ocd ~/bin : move to thebin directory contained in the home directory
o cd /usr/include : move to/usr/include directory

ocd ..: move up one directory level

CS 246 14

o If path does not existd fails and current directory is unchanged.
e pwd : print the current directory.

$ pwd
/u/cs246/teaching/notes

e time : execute a command and print a time summary.
o Printsuser time (program CPU)system time(OS CPU) real time

(wall clock)
o Different shells print these values differently:
$ time a.out % time a.out
real 1.210.94u 0.22s 0:01.16
user 0.9
SysS 0.2

o user + systemv real-time (uniprocessor, no OS delay)

e history and “” : print a numbered history of most recent commands
entered and access them.

CS 246 15

$ history $ 12
1 date whoami
2 whoami|cs246
3 cd .. $ 1!
4 Is xxx |whoami
5 cat xXxX |cs246
6 history |$ lls
IS XXX
XXX

o IN rerun command

o !l rerun last command

o Ixyz rerun last command starting with the string?2”

o Use arrow keys\ / V to move forwards / backwards through history
commands.

e alias : define string substitutions for command names.

alias [command-name [=] string |

o sh requires the=" and does not allow spaces before/after it.
o string IS substituted for comman@bmmand -name.
o without arguments, print all currently defined alias nanmes$ strings.

CS 246
o provide nickname for frequently used or variations of a canch

$ alias d="date"

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="cl ear; | ogout”

$ off # clear screen before logging off

Why are quotes necessary for alef
o Good style to always use quotes to prevent problems.
o aliases are composable:

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

o useful for setting command options for particular commands
$ alias cp="cp -I

$ alias mv="nv - "
$ alias rm="rm-i "

which always uses th& eption on commandsp, mv andrm.
o alias can be overridden by quoting the command name:

CS 246 17

$"rm -r xyz
which does not add théeption.
o alias entered on a command line is only in effect for a shelisa.
o two options for making aliases persist across sessions:

1. insert thaalias commands in yousshellirc file,

2. place a list ohlias commands in a file calle@liases in your home
directory and execute that file from youhellrc file.

e echo : write arguments, separated by a space and terminated with a
newline.

$ echo | like ice cream
| like ice cream
$echo " | like ice cream"”

| like ice cream

e eval ;. process each argument and execute.

$ echo “‘dateY “whoam
‘date’ ‘whoami'

$ eval echo “‘dateY “whoamV
Sat Dec 19 09:12:20 EST 2009 cs246

CS 246
o removes quotes, expands variables, etc., then executesaimin

e exit : terminates shell, with optional integer exit status (netcode)N.

exit [N]
o exit status defaults to zero if unspecified.

1.5 System Commands

e Commands executed by UNIX.
e man : print information about command.

$ man bash # print information about “bash” command
$ man man # print information about “man” command

e which : print pathname of a command.

$ which make
/usr/ccs/bin/make

$ which gmake
/software/.admin/bins/bin/gmake

e Is : lists the directories and files in the specified directory.

18

CS 246

Is [-al][file or directory-name-list]

o -a lists all files, including those that begin with a dot
o -l generates bong listing (details) for each file
o no file/directory name implies current directory

e mkdir : creates a new directory at specified location in file hidrarc

mkdir directory-name-list

e cp . copies files, and with the eption, copies directories.

cp [-1] source-file target-file
cp [-1] source-file-list target-directory
cp [-1] -r source-directory-list target-directory

o -i prompt for verification if a target file is being replaced.

o -r recursively copy the contents of a source directory to thgeta
directory.

19

e mv . moves files and/or directories to another location in treeHfierarchy.

mv [-I] source-file target-file
mv [-1] source-file/directory-list target-directory

CS 246 20

o If the target-file does not exist, the source-file is renanogterwise the
target-file is replaced.

o -i prompt for verification if a target file is being replaced.
e rm : removes (deletes) files, and with theption, removes directories.

rm [-if] file-list
rm [-ifr] file/directory-list

o -i prompt for verification for each file/directory being remdve

o -f do not prompt for verification for each file/directory beiregnmoved.

o -r recursively delete the contents of a directory.

o UNIX does not give a second chance to recover deleted files;dreful
when usingrm, especially with globbing, e.gem « (check.snapshot).

e more/less/cat : print a file.

o more/less paginate the contents one screen at a time.
o cat shows the contents in one continuous stream.

e Ipr/lpg/lprm : add, query and remove files from the printer queues.
lpr [-P printer-name] file-list

lpg [-P printer-name |
lporm [-P printer-name] job-number

CS 246 21

o If no printer is specified, the queue is a default printer.
o each job on a printer’'s queue has a unique number.
o use this number to remove a job from a print queue.

$ lpr -P ljp_3016 uml.ps # print file to printer ljp_3016

$ Ipq # check status, default printer ljp 3016

Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

2nd cs246 403 uml.ps 41262 bytes

$ lprm 403 # cancel printing

services203.math: cfA403servicesl16.student.cs dequeued

$ Ipq # check if cancelled

Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes
e cmp/diff : compare 2 files and print minimal differences.

cmp filel file2

diff filel file2

o cmp generates the first difference between the files.

CS 246 22

file x| file y
a a $ cmp xy |
b b x y differ: char 7, line 4
C C
d e
g h
h i
9

o diff generates output describing the changes need to changestHidi
Into the second file (used Ipatch).

$ diff x y
4,5c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<dg

> e

6a6,7 # add lines 6 and 7 of 2nd file
> # after line 6 of 1st file

> g

e grep : (global regular &pression pnt) search and print lines matching

CS 246 23
pattern in files (google).

grep -i -r "pattern-string" file-list

o -i Ignore case Iin both pattern and input files
o -r recursively examine files in directories.
o grep pattern is different from globbing pattern (s@n grep).

$ grep -i fred names.txt # list all lines containing fred in any case
$ grep ™\ \\(begin\|end\){.+}" xtex
A match start of line, match™, match *begin” or “end”, match (",
match O or more characters (notic®, match *}".

1.6 File Permission

e UNIX file structure supports 3 levels of security on each filgioectory:

o user : owner of the file,
o group : arbitrary name associated with a number of userids,
o other : any other user.

e A file or directory can have the following permissions: readte, and
execute/search.

CS 246 24

e Readable and writable allow any of the specified users toosead
write/change a file/directory.

e Executable for files means the file can be executed as a commmagndile
contains a program or shell script.

e Executable for directories means the directory can be Bedroy certain
system operations but not read in general.

e Is -| prints file-permission information for the current diregto

drwx------ 7 ¢sS246 cs246 4096 Cct 20 13:07 ./
drwxr-x--- 5 ¢s246 cs246 4096 COct 15 08:07 ../
drwx------ 2 €S246 cs246 4096 Cct 19 18:19 C++/
drwx------ 2 €S246 cs246 4096 Oct 21 08:51 Tool s/
-TW------ 1 ¢s246 cs246 22714 COct 21 08:50 notes. aux
“TW------ 1 ¢s246 ¢s246 63332 COct 21 08:50 notes. dvi

e Columns are permissions, #-files-in-directory, ownerugrdile size,
change date, file name.

e Permission information is complex:

CS 246 25

d = directory user permission
- =file group permissions
i other permissions

dirwx| [r-x| |--X

e E.g.,drwxr-x---, iIndicates

o directory in which the user has read, write and execute [®stons,
o group has only read and execute permissions,
o others have no permissions at all.

e In general, never allow “other” users to read or write your k.

e Default permissions on a file an@-r----- (usually), which means owner has
read/write permission, and group has only read permission.

e Default permissions on a directory awex------ , which means owner has
read/write/execute.

e chgrp : change group-name associated with file:
chgrp [-R] group-name file-list
o -R recursively modify the group of a directory.

CS 246 26

e Creating/deleting group-names is done by system admiittr.
(/etc/group)

e chmod : add or remove from any of the 3 security levels.
chmod [-R] mode-list file-list
o -R recursively modify the security of a directory.

e mode-list has the fornmsecurity-level operator permission.

e Security levels are denoted hyfor you userg for group,o for other,a for
all (ugo).
e Operator adds permission, - removes permission.

e Permissions are denoted bfor readabley for writable andx for
executable.

e The elements of theode-list are separated by commas.

e E.g., to remove read and write permissions from securitgléegroup and
other for filexyz.

chmod g-r,0-r,g-w,0-wW Xyz # long form

chmod go-rw Xxyz # short form

chmod -R a+r assn2 # make directory and its subfiles
readable to everyone

CS 246 27
1.7 Input/Output Redirection

e Every command has three special files: standard input @)dard output
(1) and standard error (2).

e By default, these are connected to the keyboard (input) aemeks (output).
e Shell provides operatoksfor redirecting input anck for redirecting output
to/from other sources.

$Is -l > xxx # output to file xxx
$ more < XxX # input from file xxx; output to standard output
$ more < xxx > yyy # input from file xxx; output to file yyy

e Command is (usually) unaware of redirection.

e Normally, standard error (e.g., error messages) is notaeitid because of
Its importance.

e To selectively redirect output:

$ a.out > Xxx # redirect standard output
$ a.out 1> xxx # redirect standard output
$ a.out 2> errors # redirect standard error

$ a.out 1> data 2> errors # redirect standard output/error different file
$ a.out > xxx 2>&1 # redirect standard output/error same file

CS 246 28
e To ignore output, redirect to pseudo-fibev/null.

$ a.out 2> /dev/null # ignore error messages

e Shell pipe operatgrmakes standard output for a command the standard
Input for the next command, without creating an intermexife.

$ cat xxx | nl # print xxx with line numbers
$ man Is | more # paginate manual information for Is

e Standard error is not piped unless redirected to standdpadibu

$ a.out 2>&1 | nl # both standard output and error go through pipe
e A pipeline can be arbitrarily long.

1.8 Programming

e A shell program or script is a file containing shell commands that can be
executed.

#l/binftcsh [-x]
shell and OS commands

CS 246 29

e First line should begin with magic commentt!” with shell pathname for
executing script.

e This line forces a specific shell to be used rather than thaking shell.
e If the “#!” line Is missing, the script is run using the invoking shell.
e Optional x Is for debugging and prints trace of the script during execut

e A script can be invoked directly using a specific shell, or asmmand Iif it
has executable permissions:

$ sh scriptfile # direct invocation
$ chmod u+x scriptfile # make script file executable
$./scriptfile # command execution, shell specified in script

e Interactive shell session is just a script reading from stdard input.

1.8.1 Variables
e syntax :(letter | 7~ ") (letter | 77 | digit)«
e case-sensitive

VeryLongVariableName Pagel Income_Tax 75

e Some identifiers are reserved (eify.while), and hencekeywords.

CS 246 30
¢ Variables ONLY hold string values (arbitrary length).
e Variable is declaredynamicallyby assigning a value with operatot™

path=/u/cs246/ # declare and assign
No spaces before or after=".

e A variable’s value is returned using operat®r.”

$ echo $path ${path}
fu/cs246/ /ulcs246/

braces, {...}", allow unambiguous specification of name.
e Referencing an undefined variables returns the empty string

$ echo $pathAl
blank line

e Always use braces to allow concatenation with other text:

$ echo $pathAl ${path}A1l # $pathAl undefined
/u/cs246/A1

e Each shell has a list of local and environment (global) \@es.
e New variables are added to the local list.

CS 246 31
e Local variables are only visible within a shell’'s executmantext.

e Shell begins by copying containing shell’s environmentataes (works
across different shells).

e Login shell starts with a number of useful environment \alag, e.g.:

DISPLAY=services16.student.cs:10.0
EDITOR=emacsclient
HOST=services16.student.cs

PATH=. ..

e Local variable can be moved to shell's environment list.

export path
e A variable can be removed from the local/environment list.

unset path

e When a shell ends, changes to its environment variables taffiect its
containing shell¢nvironment variables only affect subshe)ls

e Beware commands composed in variables.

CS 246 32

$ cmd="l s | nore” # command as value

$ ${cmd} # execute command

Is: cannot access |: No such file or directory

Is: cannot access more: No such file or directory

$ eval ${cmd} # evaluate and execute command

e “${cmd}’ evaluates asl s” /| ‘nor e’, so| andmore are file names.
e “eval ${cmd}’ evaluates asls | more, SO| Is pipe andnore is a command.

1.8.2 Routine

e A routine is defined as follows:
routine_name() { # number of parameters depends on call
commands
}

e Routines may be defined in any order.
e E.g.: create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -einput-file[output-file]"
exit 1 # terminate script with non-zero exit code

CS 246 33
e Invoked like command.

routine_name [args ...]
e All variables are global to every routine in a script.

rnl() {
var=3 # create local var
rtn2 # call rtn2

}

ren2() {

echo ${var} # use local var
unset var # destroy local var

}

e Special shell variables to access arguments/result:

o ${#} number of command arguments, not including command name.
o ${0} refers to script’'s name.

$ echo ${0} # which shell are you using (except csh)

bash
o ${n} refers to the command argument by position, i.e., 1st, 2rg,.3
o ${x} command arguments as a single string, é$.1} ${2} .. .", not

Including command name

CS 246

34

o ${@} command arguments as separate strings,"&g1}" "${2}" ...,
not including command name

o ${?} exit status of the last command executed; O ofteexited normally.
o ${$} process id of executing shell-command.

e Routine may return an integer exit status, which is examurssag${?}.

$ cat scriptfile
#!/bin/bash

ren() {
echo ${#}

number of command-line arguments

echo ${0} ${1} ${2} ${3} ${4} # arguments

echo ${x}
echo ${@}
echo ${$}
return 17

}
rtn al a2 a3 a4 ab

echo ${?}

arguments as a single string
arguments as separate strings
process id of executing shell
exit status

invoke routine
print return value

CS 246 35

$./scriptfile
5

scriptfile al a2 a3 a4

al a2 a3 a4 a5 # 1 string
al a2 a3 a4 a5 # 5 strings
27028

17

e shift [N] : destructively shift parameters to the Isfpositions, i.e.,
${1}=%{2}, ${2}=%${3}, etc., andb{#} is reduced by.

olf nON, 1is assumed.

1.8.3 Arithmetic
e Shell variables have type string, which has no arithmetiC: + "17".

$ i=3 # 1 has string value “3” not integer 3

e To perform arithmetic a string is converted to an integep@s$sible), an

Integer operation performed, and the integer result coesldyack to a
string.

e UNIX commandexpr performs these steps.

CS 246 36
e Basic integer operations, -, %, /, % (modulus), with usual precedence.

$ echo ‘expr 3 +4 -1
6

$ echo ‘expr 3 + ${i} « 2' # escape
9

$ echo ‘expr 3 + ${k}'
expr: non-numeric argument

e bash supports arithmetic as a shell command:
$ echo $((3 + 4 - 1))
Z

$ echo $((3 + ${i} » 2)) # no escape
9
$ echo $((3 + ${k}))

bash: 3 + : syntax error: operand expected (error token is " ")
1.8.4 Control Structures

e Shell supports several control constructs; syntax forastibs presented
(csh is different).

CS 246
1.84.1 Test

e Strings, integers and files can be tested to affect contnl flo
e expn IS test expression, not arithmetic expression.

37

CS 246
test operation
\(expn \) evaluation orderrfust be escapgd
I expn not

expnl -a expn2
expnl -0 expn2

logical and ot short-circuit)
logical or (hot short-circuit)

stringl = string?2 equal (ot ==

stringl != string2 not equal

integerl -eq integer2 | equal

integerl -ne integer2 | not equal

integerl -ge integer2 | greater or equal

integerl -gt integer2 | greater

integerl -le integer2 |less or equal

integerl -lt integer2 |less

-d file exists and directory

-e file exists

-f file exists and reqgular file

-r file exists with read permission
-w file exists with write permission

-x file

exists with executable or searchable

38

CS 246
1.8.4.2 Selection

e An if statement provides conditional control-flow.

If [test] ; then
commands
elif [test] ; then
commands

else
commands
fi

e E.0.:

if [“‘'whoam " = "cs246"] ; then
echo "valid userid"

else
echo "invalid userid"

fi

string compare

CS 246 40

grep "${user}" /etc/passwd > /dev/null # ignore output

check exit status

if [${?} -eq 0] ; then # integer compare
echo "${user} has an account”

else
echo "${user} does not have an account”

fi

If [-x /usr/bin/cat]| ; then # file check
echo "cat command avai | abl e”

else
echo "no cat command”

fi

e Beware unset variables or values with blanks.

if [${var} = 'yes’ |; then ... # var unset => if [= 'yes’ |;

bash: [. =: unary operator expected

if [${var} = 'yes’]; then ... #var=tfa b c’ =>if[abc="yes
bash: [too many arguments

if ["${var}" = ‘yes’]; then ... # var unset => if [" = ‘yes’];

Always quote variables!
e A case statement selectively executes ondNodlternatives based on

CS 246 41
matching a string expression with a series of patterns foha), e.g.:

case expression in

pattern | pattern | ...) commands ;;
*) commands ;; # optional match anything
esac

e \When a pattern is matched, its commands are executed;y@mal control
exits thecase statement.

e If N0 pattern is matched, thmse statement does nothing.
o E.0.

CS 246

usage() {

echo "Usage: ${0} -h -v -f input-file"

exit 1 # terminate script with non-zero exit code
case "${1}" in # process command-line arguments

-h” | --hel p”) usage ;;
-y’ | ’--ver bose”) verbose=yes ;;

£ -file)
shift 1 # access argument
file="${ 1}"
*)”usage - # default
esac

1.8.4.3 Looping
e while statement executes its commands zero or more times.

while [test] ; do
commands
done

e E.0.:

42

CS 246 43

print command-line arguments

while ["${1}" 1=""] ; do # string compare
echo ${1}
shift # destructive
done
=1
while [${i} -It 5] ; do # Integer compare
echo ${i}
i=expr ${i} + 1’
done

while [-f "${file}"]; do # file check
update file variable
done

e for statement is a specializedhile statement for iterating with an index
over list of strings.

for index [in list] ; do
commands
done

e Cannot have integer index.
e If NO list, iterate over arguments.

CS 246 A4
e E.0.:

for args in ${@} ; do # process arguments, non-destructive
echo ${args}
done
$ for count in "one" "two" "three &four” ; do echo ${count} ; done
one
two

three & four
$ for file in +.C ; do cp "${file}" "${file}".old ; done

¢ A while /for loop may contairtontinue andbreak to advance to the next
loop iteration or terminate loop.

for count in "one” "two" "three & four” ; do
if ["‘whoam™ = "cs246"] ; then continue ; fi # next iteration
if .[.${’?} -ne 0] ; then break ; fi # exit loop

done

CS 246 45
#!/bin/bash

#

List and remove unnecessary files in directories

#

Usage: cleanup [[-r | R] [-]] directory-name]+

#

Examples:

cleanup -R .

cleanup -r xxx - yyy -r -1 zzz

#

Limitations

only removes files named: core, a.out, .0, *.d

does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | R] [-i] directory-name]+"
exit 1

}

defaults() { # defaults for each directory
prompt="- " # prompt for removal
depth="-maxdept h 1" # not recursive

CS 246 46

remove() {
for file in find "${1}" ${depth} -type f \(-name “core” -o \
-name ‘a. out” -o -name "+.0” -0 -name x.d” \)’

do
echo "${file}" # print removed file
rm "${pronpt}" "${file}"
done
}
if [${#} -eq 0] ; then usage ; fi # no arguments ?
defaults # set defaults
while ["${1}" =""]; do # process command-line arguments
case "${1}" in
"-h") usage ;; # help ?
or" | "-R") depth="" :; # recursive ?
Lt t-fT) prompt="${1}" ;; # prompt for deletion ?
x) # directory name ?
remove "${1}" # remove files in this directory
defaults # reset defaults
esac
shift # remove argument

done

2 CH

2.1 Program Structure

e A C+ program is composed of comments strictly for peopl@, an
statements for both people and the preprocessor/compiler.

e A source file contains a mixture of comments and statements.

e The C/C+ preprocessor/compiler only reads the statenagaksgnores the
comments.

2.1.1 Comment

e Comments document what a program does and how it does it.

e A comment may be placed anywhere a whitespace (space, talneygs
allowed.

e There are two kinds of comments in C/C+ (same as Java):

Java/ C /[CH
[x ... %/
/I remainder of line

N =

© Peter A. Buhr
47

CS 246 48

e First comment begins with the start symbe],and ends with the terminator
symbol,+/, and hence, can extend over multiple lines.

e Cannot be nested one within another

[« .. Ix ... +« ... =l
T 1

end comment treated as statements
e Be extremely careful in using this comment to elide/comnrmaritcode:

[+ attempt to comment-out a number of statements
while (...) {
[« ... nested comment causes errors x/

it (...){

[+ ... nested comment causes errors x/

}
*/

e Second comment begins with the start symlipand continues to the end
of the line, i.e., only one line long.

e Can be nested one within another:

/[l ... Il ... nested comment

CS 246 49
SO it can be used to comment-out code:

/[while (...) {
/l [+ ... nested comment does not cause errors =/

oot)

/l /l ... nested comment does not cause errors
/l }
/Il '}

2.1.2 Statement

e C+ Is actually composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edigsprbgranbefore
compilation .

2. The template (generic) language adds new types and esdtiming
compilation .

3. The C programming language specifying basic declarstmal control
flow to be executedfter compilation.

4. The C+H programming language specifying advanced demas and
control flow to be executedfter compilation.

e A programmer uses the four programming languages as fallows

CS 246 50

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

e C Is composed of languages 1 & 3.

e A preprocessor statement ist@haracter, followed by a series of tokens
separated by whitespace, which is usually a single line abtenminated
by punctuation.

e The syntax for a C/C+ statement (both template and regslarseries of
tokens separated by whitespace and terminated by a semi¢dlis an
exception)

CS 246 51
2.2 First Program
e Java

import java.lang.x, /[implicit
class hello {
public static void main(String[] args) {
System.out.printin("Hel | o Wor | d! *);
System.exit(0);

}
}
o CH

#include <iostream> /I Insert contents of file 1ostream
using namespace std; // direct naming of I/O facilities

iInt main() { /[program starts here

cout << "Hello Wrld!'" << endl;

return O; /[return O to shell, optional
}

e #include <iostream> copies basic I/O descriptions (no equivalent in Java).

e using namespace std allows imported 1/O names to be accessed directly,
l.e., without qualification.

CS 246 52

e int main() Is the routine where execution starts.
e curly braces{ ... }, denote a block of code, i.e., routine bodynadin.

ecout << "Hello Wrld!'" << endlprints"Hel |l o Wrl d!" to standard
output, callectout (System.out in Java).

e endl start newline aftetHel | o Wor |l d! " (println in Java).

e Optionalreturn 0 returns zero to the shell indicating successful completiol
of the program; non-zero usually indicates an error.

e main magic! If no value is returned, 0 is implicitly returned.

e Routineexit (JavaSystem.exit) stops a program at any location and returns
a code to the shell, e.gxit(0).

e Compile withg++ command:

% g++ firstprogram.cc # compile program
% a.out # execute program; execution permission

C program-files use suffix; C+ program-files use suffixes / .cpp / .cc.

CS 246 53
2.3 Declaration

¢ A declaration introduces names or redeclares names froviopee
declarations in a program.

2.3.1 Identifier

e Name used to refer to a variable or type.
e syntax :(letter | ~ ") (letter | 77 | digit)«
e case-sensitive

VeryLongVariableName Pagel Income_ Tax 75

e Some identifiers are reserved (eify.while), and hencekeywords.

54

CS 246
2.3.2 Basic Types
Java C/CH
boolean | bool (C <stdbool.h>)
char char / wchar _t
byte char / wchar_t Integral types
Int Int
float float real-floating types
double | double
label type, implicit

e C/C+H treatchar andwchar_t (unicode characters) as an integral type.
e Java typeshort andlong are created using type qualifiers.

2.3.3 Variable Declaration

e Declaration in C/CH+ same as Java: type followed by list ehtifiers.

Java/ C/ CH
char a, b, c, d;
int i, j, k;

double X, vy, z;
Id :

CS 246 55
e Declarations may be intermixed among executable statesmeatblock.

e Declarations may have an initializing assignment (excempfi¢lds in
struct /class):

Int 1 = 3;

e C/C+ do not check for uninitialized variables. (maybe)
Int i
cout << | << endl; // 1 has undefined value

¢ Variable names can be reused in different blocks, includmdgines and
classes, I.e., possibly hiding\erriding) prior variables.

Int 1, ... Il first |
{int k=11, ... /I second i (override first), both i’s used in bloc
{inti=1... /[third 1 (override second)

e Labels can only be declared in a routine and cannot be odemid.e., each
label is unique within a routine body.

2.3.4 Type Qualifier
e C/C+ provide two basic integral typebar andint.

CS 246

56

e Other integral types are generated using type qualifiers.
e C/C+H+ provide signed (positive/negative) and unsignedi{pe only)

Integral types.

Integral types

range

signed char / char
unsigned char

signed short int / short
unsigned short int
signed int /int
unsigned int
signed long int /long

unsigned long int
signed long long int

unsigned long long int

/ unsigned short

/ unsigned long
/ long long

/ unsigned long long

at least 127 to 127 (SCHAR_MIN / SCHAR_MAX)

at leas to 255 (UCHAR_MAX)

at least 32767 t0 32767 (SHRT_MIN / SHRT_MAX)
at leas to0 65535 (USHRT_MAX)

at least 32767 t0 32767 (INT_MIN / INT_MAX)

at leas to 65535 (UINT_MAX)

at least 2147483647 t0 2147483647

(LONG_MIN / LONG_MAX)

at leasiD t0 4294967295 (ULONG_MAX)

at least 9223372036854775807

t0 9223372036854775807 (LLONG_MIN / LLONG_M
at leasi0 t0 18446744073709551615 (ULLONG_MAX

e Range of values fant is machine specific: 2 bytes for 16-bit computers
and 4 bytes for 32/64-bit computers.

e long Is 4 bytes for 16-bit computers and 8 bytes for 32/64-bit cotars.
e #include <limits.h> provides sizes for integer types (e T _MAX, etc.).
e #include <stdint.h> provides typesu]intN_t for signed /unsigned N = 8,

CS 246 57

16, 32, 64 bits.

integral typesrange

int8_t -127 10 127 (INT8_MIN / INT8_MAX)

uints_t 0 to 255 (UINT8_MAX)

int16_t -32767 t0 32767 (INT16_MIN / INT16_MAX)

uint16_t 0 t0 65535 (UINT16_MAX)

int32_t -2147483647 t0 2147483647 (INT32_MIN / INT32_MAX)

uint32_t 0 t0 4294967295 (UINT32_MAX)

int64_t -9223372036854775807 t0 9223372036854775807
(INT64_MIN / INT64_MAX)

uint64_t 0 to 18446744073709551615 (UINT64_MAX)

e C/C+ provide two basic real-floating typfisat anddouble .
e One additional real-floating type is generated using a tyaifter.

real-float typesrange, precision, architecture

float ~ 1038 to 10°8, ~ 7 digits, IEEE
double ~ 103%t0 10°°8 ~ 16 digits, IEEE
long double |~ 107%9%%t0 10"32 ~ 34 digits, IEEE

e C/C+ support write-once/read-only constant variabldg tyipe qualifier

CS 246 58
const (Javafinal), in any variable declaration context.

Java C/C+H
final short x = 3, y;|lconst short int X =3,y =X + 7;
y =X+ 7; disallowed
final char ¢ = ’X’; | const char ¢ = X

e C/C+const identifiermustbe assigned a value at declaration (or by a
constructor’s declaration); the value can be the resulhahgression:

e A constant variable can appear in read-only contexts dfteinitialized.

2.3.5 String

e Strings are supported in C by language and library facslitie
e Language facility ensures string constant is terminatel avcharactet 0.

e E.g., string constantabc” is actually an array of the 4 charactei®”, 'b’,
‘c’, and’\ 07, which occupies 4 bytes of storage.

e Zero value is asentinelused by C string routines to locate the string end.
e Drawbacks:
1. A string cannot contain a character with the valuE.

CS 246 59

2. String operations needing the length of a string musaliyesearch for
\'0’, which is expensive for long strings.

3. Management of variable-sized strings is the progransmesponsibility,
with complex storage management problems.

e C+ solves these drawbacks by providingtiéng type using a length
member and managing all of the storage for the variabledsangs.

e Unlike Java, instances of the Cstring type are not constant.

¢ Values can change so a companion type 8kéngBuffer in Java is
unnecessatry.

e It is seldom necessary to iterate through the characters atang
variable!

CS 246

60

Java String methods

C char [] routines

C+H string members

+, concat
compareTlo

length

charAt

substring

replace

IndexOf, lastindexOf

strcpy, strncpy
strcat, strncat
strcmp, strncmp
strlen

[]

strstr
strcspn
strspn

n
== I=
length
[]
substr
replace

find, rfind

find_first_of, find_last_of
find_first_not_of, find_last _not_of
c_str

<, <=, >, >=

e All of the C+ stringfind members returstring::npos if a search is

unsuccessful.

CS 246 61

string a, b, c; // declare string variables

cin >> c; /I read white-space delimited sequence of characters
cout << ¢ << endl; // print string

a="abc"; /I set value, a is “abc”

b = a; /[copy value, b is “abc”

c=a+ b; /[concatenate strings, c is “abcabc”

if (a==0D0b) /[compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; /I subscript, ch is ‘b’, zero origin

c[4] = X”; I/l subscript, ¢ Is “abcaxc”, must be character constant

string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length
c.replace(2, 1, d); /I replace starting at position 2 for length 1 and insert d, c Is
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p |
c.rfind("ax"); /I search for last occurrence of string “ax”, p is 5
c.find_first_of("aei ou"); // search for first vowel, p is O

c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is :
c.find_last_of("aei ou"); // search for last vowel, p is 5

c.find_last_not_of("ael ou”); // search for last consonant (not vowel), p is 7

© C 0O T
A I I N

e Memberc_str returns a pointer tohar = value in a string (\ 0" delimited).

e Routinegetline(stream, string, char) allows different delimiting
characters on input:

CS 246 62

getline(cin, ¢, 77); // read characters until = ” => cin >> ¢

getline(cin, ¢, ‘@); // read characters until ‘@’
getline(cin, ¢, \'n”); // read characters until newline (default)

2.3.6 Constants

e Java and C/C+ share almost all the same constants for tletyaass
(except for unsigned).

e A designated constanindicates its type with suffixes./l for long, LL/Il for
long long,U/u for unsigned, and/f for float.

e Unlike Java, there is nD/d suffix for double constants.

e The type of an integralndesignated constant
(octal/decimal/hexadecimal) is the smallesttype that holds the value,
and the type of an undesignated real-floating constatuduble .

CS 246

63

boolean

decimal

octal, prefixo0
hexadecimal, prefiRX or 0x

false, true

123, -456L, 789u, 21UL
0144, -045I, 0223U, 067ULL
Oxfe, -OX1fL, Ox1leU, OxffUL

real-floating

1, 1., -1., -7.3E3, -6.6e-2F, E/e exponent

character, single charact

:m/’ /\ V44

string, multi-characte

abc™, "\ "\ ""

e Use the right constant with types character or string:

char ch = "a": // use ‘a’
char *str = ‘a”; /| use “a”
string str = ‘a’; /I use “a”

e An escape seguence allows special characters to appeananacter or
string constant and starts with a backslash,

AV VT AL An V012 \ xf 3"

e The most common escape sequences are (see a C+H textbodtikei®) D

CS 246 64

1\ backslash

7"\ single and double quote

\t7,\'n” | tab, newline

N0’ zero, string termination character
\ooo” |octal valuepoo up to 3 octal digits
\ xhh’ hexadecimal valudh up to 2 hexadecimal digits (not in Java)

e Sequence of octal/hex digits is terminated by first charaiean octal/hex
digit.

2.3.7 Type Constructor

e A type constructor is a declaration that builds a more complex type from
the basic types.

constructor Java C/CH
enumerationenum Colour { R, G, B} |enum Colour { R, G, B}
pointer any-type =p;
referenceclass-type r; any-type &r; (C+ only)
structure class struct Ofr class
array|int v[] = new int [10]; int v[10];
Int m[][] = new int [10][10]; | int m[10][10];

CS 246 65

2.3.7.1 Enumeration

e An enumerationis a type defining a set of named constants with only
assignment, comparison and implicit cast to integer omarst

enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit humbering

Day day = Sat; /[variable declaration, initialization

enum {Yes, No} vote = Yes; /[anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type/variable declaration, explicit nu
colour = B; /[assignment

day = colour; /[fails C++, works C

e Names in an enumeration are caltlmerators.
e Enumerators can be numbered explicitly.
e Enumeration in C+ denotes a new type; enumeration in Cas &dirint.

e C/C+H enumeration only has underlying tyipg; Java enumeration can give
names (and operations) to any value.

e Java enumerator names must always be qualified.
e C/CH enumerator names are undgualifiedunique in a lexical scope.
e Trick to count enums:

enum Colour { Red, Green, Yellow, Blue, Black, No_Of Colours },

CS 246 66

No_ Of Colours is 5, which is the number of enumerator colours.
e In C, enum must always be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

2.3.7.2 Pointer/Reference

e pointer/referenceis an indirect mechanism to access a type instance.
¢ All variables have an address in memory, éng.x = 5, y = 7:

type int int
variable/value x 5 y 7
address 100 200

¢ Value of a pointer/reference is the address of a variable.
e Accessing this address is different for a pointer or refeeen
e Two basic pointer/reference operations:
1.referencing. obtain address of a variable; unary opera&an C+:

&x — 100
&y — 200

CS 246 67
2.dereferencing retrieve value at an address; unary operatorC+-:

*(&x) — *(100) — 5
*(&y) — %(200) — 7

e Compiler automatically does first dereferencex s®really «(&x).

e Note, unary and binary use of operatéss for reference/deference and
conjunction/multiplication.

e By convention, no variable is placed at thell address(pointer),null in
Java, 0 in C/C+.

e Pointer/reference variable contains the memory addreasather variable
(indirection) or null pointer (or an undefined address if uninitialized).

CS 246 638

Int * int
&pl — 50
pl 100 —/; 5 X &pz — 60
/ &p3 — 70
50 , 100
7 *(&pl) — 100 pl = &X;
2 A *(&p2) — 200 p2 = &y; p2 = pl;
bel 200 717 «&p3) —0 p3=0
60 200 +(x(&pl)) — 5 «pl

null/lundefined *(*x(&p2)) — 7 p2
P310/0x34fe7| address (pointer) **(&p3)) — ? «p3

70
e Because of implicit 1st dereferengs, is 100 andxpl is 5.

e Multiple pointers/references may point to the same memddyess
(dashed line).

e Dereferencing null/undefined pointer is undefined as nabziat the
addressl{ut not necessarily an errgr

e EXplicit dereference is an operation usually associatékl a/pointer:

*p2
*pl

*pl;

y = x; [/l value assignment
*p2 *x 3. —

X =Y * 3

CS 246 69
e Address assignment does not require dereferencing:

p2 = pl,; // address assignment

e p2 is assigned the same memory addregslase., p2 points atx; values of
x andy do not change.

e Having to perform explicit dereferencing can be tedious emdr prone.

pl = p2 = 3; /I implicit deference
unreasonable gsl is assigned addressm2 times 3.

e Reasonable if value pointed to by is assigned value pointed to bg
times 3.

¢ A pointer that provides implicit dereferencing isederence
e However, implicit dereferencing generates an ambigudusatson for:

p2 = pl,;

e Should this expression perform address or value assigniaemhow are
both cases specified?

e C provides only a pointer; C+ provides a pointer and a r&stlireference;
Java provides only a general reference.

CS 246
e C/C+ pointer:
1. created using thetype-constructor,

70

2. may point to any type (i.e., basic or object type) in anyage location

(i.e., global, stack or heap storage),

3. and no implicit referencing or dereferencing.

o Type qualifiers can be used to modify pointer types:

_
const short int w = 25; p3 300 [
const short int «p3 = &w; -
int + const p4 = &x; 04! 100 L=
(int &p4 = X;) L -
const long int z = 37, C i i
) ’ 5 I : » |
const long int =« const p5 = &z; Poy 308 | L

o p3 may point at anygonst short int variable.
o Pointer can change to point at different variables, but #iae/of the

variables cannot be changed through the pointer.

o p4 may only point at variable.

CS 246 71

o Pointer cannot change to point at a different variable, lheitvalue of the
variable can be changed through the pointer.

o p5 may only point at variable.
o Pointer cannot change to point at a different variable, ard/alue of the
variablez cannot be changed through the pointer.
e C+ reference

1. created using th& type-constructor,

2. may point to any type (i.e., basic or object type) in anyage location
(l.e., global, stack or heap storage),

3. restricted to a constant pointer to user created
(non-temporary/non-constant) storage,

4. and always has implicit dereferencing.

o Constant-pointer restriction of a C+ reference is egentato a Java
final reference ok const pointer with implicit dereferencing.

o Java reference can vary what it points to, but it can onlyfdoilobjects
In heap storage.

o C+ constant-pointer restriction has two implications:
1. A CH reference must be initialized at the point of dedlara

CS 246 72

x Initializing expression has implicit referencing becaaseaddress is
alwaysrequired,;

Int &rl = &x; // error, unnecessary & before x
2. No need for address assignment after a C+ referencedtaia
because the address cannot change.

x Java interprets reference assignment rl1 as address assignment
and has no mechanism to perform value assignment between
reference types.

e Pointer/reference type-constructor is not distributed acoss the
identifier list:

int pl, p2; only pl is a pointer, p2 is an integer, should bt «p1,
int & rx =i, ry = i; only rxis a reference, ry is an integer, should ibe &rx -

e C+ idiom for declaring pointers/references is misleagdormy works for
single versus list of variables.

Int«= 1, k;
double & x = d, y = d;
Gives false impression of distribution across the idemtifs.

CS 246 73
2.3.7.3 Aggregation (Structure/Array)

e Like Java, C+ has “objects”, but it does not subscribe tathteon that
everything is either a basic type or an object.

e Instead, aggregation is performed by structures and araagscomputation
IS performed by routines.

e An object type is the composition of a structure and routines
e In C+, a routine can exist without being embedded stract /class .

Structure is a mechanism to group together heterogeneous valuesding|
(nested) structures:

Java C/CH
class Foo { struct Foo {
public int 1 = 3; Int 1; // no initialization
... Il more fields ... I/ more members
} }; /I semi-colon terminated

e Components of a structure are calleémbers subdivided into data and

routine/function membetsn C+.
1Java subdivides members into fields (data) and methodsr{esiit

CS 246 74

¢ All members of a structure are accessible (public) by déefaxcluding
Javapackage visibility).

e A structure member cannot be directly initialized (unliked) , and a
structure is terminated with a semicolon.

e As for enumerations, a structure can be defined and instalectsred in a
single statement.

struct S {int i; } s; // definition and declaration

e In C, struct must always be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration
e Recursive types (lists, trees) are defined using a pointer in a structure:

struct Node {
/[data members
Node =xlink; I/l pointer to another Node

%

e A bit field allows direct access to individual bits of memory:

CS 246 75

struct S {
int i : 3; I/l 3 bits
int j: 7; Il 7 bits
int k:6; // 6 bits

3

i=2: /10
j=5; /101
k =9 // 1001

¢ A bit field must be an integral type.
e Unfortunately, bit-fields are not portable.

¢ On little-endian architectures (e.g., like Intel/AMD x8®)e compiler
reverses the bit order.

e However, the compiler does not implicitly reverse the bdear

e Hence, the bhit-fields in variabkabove must be reversed for little-endian
architectures.

e While it is unfortunate C/C+ bit-fields lack portability)ey are the
highest-level mechanism to manipulate bit-specific infation.

Union Is a heterogeneous aggregation mechanism, where all member
overlay the same storage:

CS 246 /6

union U {
char c;
int i u C i d
double d;:
}u;

e Used to access internal representation or save storageismgat for
different purposes at different times.

union U {
float f;
struct {
unsigned int sign : 1;
unsigned int exp : 8;
unsigned int val : 23;

}s;
int 1;
}ou;
u.f = 3.5; cout << hex << u.f << "\t" << u.i << endl;
u.i = 3; cout << u.i << "\t" << u.f << end|;
u.f = 3.5e3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val << er
uf = -3.5e-3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val << er

produces:

CS 246 77

3.5 40600000
3 4.2039e-45
O 8a 5ac000
1 76 656042

e Reusing storage is dangerous and can usually be accomplisihia other
techniques.

Array IS a mechanism to group together homogeneous values.

e Unlike Java, a C/C+ array is a contiguous sequence of coetta
reference to the object sequence.

Java C/CH
Int X[] = new int [6] Int X[6]
X| 1T =6/1|7[5/0]8]|-1 X175 0| 8|-1

e Hence, array variables can have dimensions specified onaraleen and
all the array elements are implicitly allocated.

e Be careful not to write:

int b[10, 20]; // not int b[10][20]

CS 246 /8

e C+ only supports a compile-time dimension valget+ allows a runtime
expression.

int r, c;

cin >> r >> c; /[input dimensions

Int array(r]; /[dynamic dimension, g++ only
Int matrix[r][c]; /[dynamic dimension, g++ only

e Subscripting, [], selects an array element, and can be used on the left ant
right of assignment.

X[3]; /I 3rd element
X[i]; /[ith element
X[i + 1] =x[t/3]-y; /I left/right of assignment

e An array name without a subscript meahs i.e., the starting address of the
first element.

e Like Java, an array is subscripted from at O to dimension - 1.

e However, a C/C+ array Is simple because dimension infaonas not
stored with an array object.

e Hence, no equivalent to Javadéngth member for arraysjo subscript
checking and no array assignment.

CS 246 79
e Declaration of a pointer to an array is complex in C/C+ .
e Because no array-size information, the dimension valuariarray pointer
IS unspecified:
Int arr[10];
int *xparr = arr; /I think parr[], pointer to array of N ints
e However, no dimension information results in the followegbiguity:

int xpvar = &i; /I think pvar[] and i[1]
int xparr = arr; Il think parr[]

e Variablespvar and parr have the same type but one is pointing at a
variable and the other an array!

e To read a complex declaration, parenthesize type quallfesed on
priority, read inside parenthesis outwards, start withalde name and end
with type name on the left.

const long int « const a[5] = {0,0,0,0,0}; x| ——wl 1 1 1 1
const long int % const (&x)[5] = a; S O A S
const long int (= const ((&X)[5])) = a&; T

L
x . reference to an array of 5 constant pointers to constagtilttegers

CS 246 80
2.3.8 Type Equivalence

e In Java/C/C+, two types are equivalent if they have the saanee, called
name equivalence

struct T1 { struct T2 { /I identical structure
int 1, j, k; int 1, j, k;
double X, vy, z; double x, vy, z;
} }
T1 t1, t11 = t1; /[allowed, t1, t11 have compatible types
T2 t2 = t1; /[fails, t2, t1 have incompatible types

e TypesT1 andT2 arestructurally equivalence, but have different names so
they are incompatible, i.e., initialization of variah#fails.

e An aliasis a different name for same type, so alias types are eqguivale
e C/CH+ providegypedef to create a synonym for an existing type:

typedef short int shrintl; // shrintl => short int
typedef shrintl shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrintl s1; /[implicitly rewritten as: short int sl
shrint2 s2; /[implicitly rewritten as: short int s2
shrint3 s3; /[implicitly rewritten as: short int s3

CS 246 81

¢ All combinations of assignments are allowed amemhgs2 ands3, because
they have the same type nanmshért int .

e Java provides no mechanism to alias types.

2.3.9 Type-Constructor Constant

enumerationenumerators

pointer 0 or NULL indicates a null pointer
structure struct { double r, i; } ¢c ={3.0, 2.1},
array Int v[3] ={1, 2, 3},

e C/C+ useD to initialize pointers versusull in Java.
e System include-files define the preprocessor varisbleL aso.
e Structure and array initialization can only occur as pad declaration.

struct {int I; struct { double r,i; }s;}d={1, {30, 21} }, /I nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

e Values in initialization list are placed into a variableritag at the
beginning of the structure or array.

e Not all the members/elements must be initialized.
e A nested structure or multidimensional array is createdgibraces.

CS 246 82
e String constants can be used as a shorthand array initiahhge:
char s[6] = "abcde"; rewritten as char s[6] = { “a’, ’b’, ¢/, ’d’, e/, \ 0" };

e It IS possible to leave out the first dimension, and its vasuafierred from
the number of constants in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 67?)
int v[]={0, 1, 2, 3, 4}/ 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

CS 246 83
2.4 EXxpression
Java C/CH priority
unary., (), [], call ., ->, (), [], call, dynamic_cast |high
cast+, -, !, ~ cast,+, -, I, ~, &, *
new new, delete, sizeof
binaryx, /, % x, 1, %
+, - +, -
bit shift<<, >>, >>> <<, >>
relationalk, <=, >, >=, instanceof |<, <=, >, >=
equality==, = == I=
pitwise& and &
A exclusive-or N
| or |
logical&& short-circuit &&
1 ||
conditional?: ?:
assignment, +=, -=, +=, /=, %= = +=, -=, %=, [=, %=
<<=, >>=, >>>=, &=, =, =<z, >>=, &=, M, |=
comma low

CS 246 84

e Like algebra, operators are prioritize and performed frogh o low.

e Operators with same priority are done left to right, exceptnary,?, and
assignment operators, which associate right to left.

Int **a, **b, C, d, *W[lO];
A =xb >Cc? (xa=x«b,d-1): xwW[3] 7 + 3;
(x(xa)) = ((x(+xb)) > c) ? (((xa) = (+b)), (d - 1))) : ((GW)[3]) = 7) + 3));
e Order of evaluation of subexpressions and argument evaituigt
unspecified (Java left to right).

(i+j)~(k+j) /I either + done first
(i=])+()=1) /[either = done first
g(i1)+f(k)+nh(j); /[g, f, or h called in any order

f(p++, p++, p++); /[arguments evaluated in any order

e Referencing (address-of§, and dereference, operators do not exist in
Java because access to storage is restricted.

e Find address of any variable in any storage context, &g&s.d, &v[5].

e Arrow operator, >, is unigue to C/C+ and is an anomaly among
programming languages.

e EXists because the priority of selection operatdrs'incorrectly higher

85

CS 246
than dereference operataf’,'so «p.f executes agp.f) instead of(xp).f.

e -> operator performs a dereference and member selection oothect
order, i.e.p->f is implicitly rewritten as(xp).f.
e Unlike Java, the C/CH remainder operatar,only accepts integral

operands.
e Assignment is an operator; useful foascade assignmerto initialize

multiple variables of the same type:

a=Db=c=0,; /I cascade assignment

X =Yy =2+ 4

e Other uses of assignment in an expression are discouragedk.,

assignment only on left side.

e C/C+ allows any expression to appear as a statement:
3; jt+i; (i+j)x(k+]j) sinX);

e Complex assignment operators, eligs, += rhs, are implicitly rewritten:
temp = &(lhs); *temp = xtemp + rhs;

e Hence, the left-hand sidihs, is evaluated only once:

CS 246 86

vl rand() % 5 | += 1; // only calls random once
virand)) % 5] =v[rand() % 5] + 1; // calls random twice

e Comma expression is a series of expressions separated logasom

a, f+g, k@3)/2 m[i][j] <« valuereturned

e Expressions evaluated left to right with the value of rigbsitnexpression
returned as result.

e Comma expression allows multiple expressions to be eveduata context
where only a single expression is allowed.

e Dimension problenm[10, 20] actually means[20] becausdo0, 20 is a
comma expression not a dimension list.

e Subscripting problemm[3, 4] meanan[4], 4th row of matrix.
e Operators-+ / -- are discouraged because subsumed by genreral=.

2.4.1 Conversion

e Conversion implicitly/explicitly transforms a value froome type to
another.

e TWo kinds of conversions:

CS 246 87

o widening/promotion conversion, no information is lost:

char — shortint — long int — double
X7’ 7 7 7.000000000000000

o harrowing conversion, information can be lost:

double — long int — short int — char
(7777.77777777777 77777 12241 \ xdl’

e C/C+ support both implicit widening and narrowing convens (Java only
Implicit widening).

¢ Implicit narrowing conversions can cause problems:

int i; double r;
| = r = 3.5 Il'r->35
r=1= 3.5 /[r-> 3.0 72?7
¢ Better to perform narrowing conversions explicitly usoegpstoperator.
Int 1, double X, vy;
| = (int) Xx; /I explicit narrowing conversion
| = (int) x / (int) y; /I explicit narrowing conversions for integer division
| = (int)(x / y); /[alternative technique

e C/C+ supports casting among the basic types and user dé&yiesl

CS 246 38

e g++ has a cast extension allowing construction of structuresairay/
constants in executable statements not just declarations:

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;

rin((int [2][3]D{ {93, 67, 72}, {77, 81, 86} }); /I g++ only
c = (Complex){ 2.1, 3.4 }; /[g++ only

¢ In both cases, a cast indicates the meaning and structune cbnhstant.

2.4.2 Math Operations

e #include <cmath> provides real-float mathematical routines.
¢ All arguments and the return value are tyjagble .

CS 246

e Standard math constants are also available.

operation routine | operation routine
arccox |acos(x) | xmody |fmod(x, y)
arcsirk |asin(x) | logx log10(x)
arctarx |atan(x) | InX log(x)

[X] ceil(x) | X pow(X, V)
COSX cos(x) | Sinx sin(X)
COSIX cosh(x) | sinhx sinh(X)

el exp(X) | /X sqrt(x)

X| fabs(x) | tanx tan(x)

| X] floor(x) | tanhx tanh(x)

89

CS 246

M_E
M_LOG2E
M_LOG10E
M_LN2
M_LN10
M_PI

M Pl 2
M_PI_4

M_1 Pl

M_2 Pl

M_2 SQRTPI
M_SQRT?2
M_SQRT1 2

e These constants are inadequate for computation Ustagdouble .

2.7182818284590452354

1.4426950408889634074

0.43429448190325182765
0.69314718055994530942
2.30258509299404568402
3.14159265358979323846
1.57079632679489661923
0.78539816339744830962
0.31830988618379067154
0.63661977236758134308
1.12837916709551257390
1.41421356237309504880
0.70710678118654752440

Il e

/[log 2 e
/l log 10 e
/Il log e 2
/l log e 10
Il pi

Il pi/2

Il pil4

/Il 1/pi

Il 2/pi

Il 2/sqrt(pi)
Il sqrt(2)

Il 1/sqrt(2)

e Some systems provideng double versions, e.gM_PII.

90

CS 246
2.5 Control Structures

91

Java

C/C+H

block| { intermixed decls/stmts }

{ intermixed decls/stmts }

selection't (pool-exprl) stmtl

else if (bool-expr2) stmt2

else stmtN

if (cond-exprl) stmtl
else if (cond-expr2) stmt2

else stmtN

switch (integral-expr) {
case cl: stmtsl; break:

case cN: stmtsN: break:
default : stmtsO:

}

switch (integral-expr) {
case cl: stmtsl; break:

case cN: stmtsN: break:
default : stmtsO:;

}

100PING| \yhile (bool-expr) stmt

while (cond-expr) stmt

do stmt while (bool-expr) ;

do stmt while (cond-expr) ;

for (init-expr;bool-expr;incr-expr) stmt

for (init-expr;cond-expr;incr-expr) stmt

transfen break [label]

break

continue [label]

continue

goto label

return [expr]

return [expr]

throw [expr]

throw [expr]

label| label : stmt

label : stmt

CS 246 92
2.5.1 Block

e Block is a series of statements bracketed by brace$, which can be
nested.

e Block serves two purposes: bracket several statementa situgle
statement and introduce local declarations.

e When a statement is required, good practice is to always useldock to
allow easy insertion and removal of statements to or from blok.

e Putting local declarations precisely where they are needadelp reduce
declaration clutter at the beginning of an outer block.

e However, it can also make locating them more difficult.

2.5.2 Conditional

e C/C+ uses a@onditional expressionin control structures to cause
conditional transfer (Java uses a boolean expression).

¢ A conditional expression is evaluated and implicitly telsier not equal to
zero, l.e.cond-expr = expr != 0.

e Boolean expressions are converted to Ofétse and 1 fortrue before
comparison to zero, e.g.:

CS 246 93

if (x>y)... implicitly rewritten as if ((x>y)!=0)...
e Hence, other expressions are allowed in a conditional ¢Qdiam):

if (x) ... implicitly rewritten as if ((x)!=0)...

while (x)... while ((x) = 0)...

e \Watch for the common mistake in a conditional:

if (x=y)... implicitly rewritten as if ((x=y)!=0)...
which assignyg to x and testx != 0 (possible in Java for one type).

2.5.3 Selection

e C/C+ selection statements af@ndswitch (same as Java, except for
boolean versus conditional expression).

e An if statement selectively executes one of two alternativesdas the
result of a comparison, e.g.:

if (x>y) max = X;
else max =y,

e Java/C/CH+ have theangling elseproblem of associating aise clause
with its matchingf in nestedf statements.

CS 246 94

e E.g., reward WIDGET salesperson who sold more than $10,@0thvof
WIDGETS and dock pay of those who sold less than $5,000.

Dangling Else Fix Using Null Else Fix Using Blocks
If (sales < 10000) If (sales < 10000) If (sales < 10000) {
If (sales < 5000) If (sales < 5000) If (sales < 5000)
Income -= penalty; Income -= penalty; Income -= penc
else // incorrect match!!! else ; // null statement }
Income += bonus; else } else {
Income += bonus; Income += bonus;
}

e A switch statement selectively executes ond\ddilternatives based on
matching an integral value with a series of case clauses, e.g

CS 246 95

switch (day) { I/l integral expression

case MON: case TUE: case WED: case THU: /I case value list
cout << " PROGRAM' << endl;
break ; /I exit switch

case FRI:
wallet += pay;
/l FALL THROUGH

case SAT:
cout << "PARTY" << endl;
wallet -= party;

break ; /] exit switch
case SUN:

cout << "REST" << endl;

break ; /I exit switch
default :

cerr << "ERROR' << endl;

exit(-1); // terminate program

}

e Once a case clause is matched, its statements are execudexnhrdrol
continues to th@ext statement.

e break statement is used at end of a case clause tx@kith statement.

CS 246 96

e It IS @ common error to forget the break.

e If N0 case clause is matched and theredefault clause, its statements are
executed, and control continues to tiext statement.

e Otherwise, thewitch statement does nothing.
e Only one label for eachase clause but a list ofase clauses is allowed.

2.5.4 Conditional Expression Evaluation

e Conditional expression evaluationperforms partial evaluation
(short-circuit) of expressions.

&& | only evaluates the right operand if the left operand is true
|| |only evaluates the right operand if the left operand is false
?. |only evaluates one of two alternative parts of an expression

e && and|| are similar to logicak and| for bitwise (boolean) operands, i.e.,
both produce a logical conjunctive or disjunctive result.

e However, short-circuit operators evaluate operandsylamitil a result is
determined, short circuiting the evaluation of other opdma

| < size && key != array]i] // may only evaluate left operand of &&

CS 246 97

e Hence, short-circuit operators are control structures@middle of an
expression becausd && e2 = &&(el, e2) (unless lazy evaluation).

e Logical & and| evaluate operands eagerly, evaluating both operands.

e Conditional?: evaluates one of two expressions, and returns the result of
the evaluated expression.

e Acts like anif statement in an expression:

abs2 = (a<0?-a:a)+2/if (a<0){
abs2 = -a;
} else {
abs2 = a;:
}
abs2 += 2;

2.5.5 Looping

e C/C+ looping statements awdile , do andfor (same as Java, except for
boolean versus conditional expression).

e While statement executes its statement zero or more times.

CS 246 o8
e Beware of accidental infinite loops.

X = 0; X = 0;
while (x < 5); /[extra semicolon! while (x < 5) // missing block
X =X+ 1; y=y+X
X =X+ 1;
e do statement executes its statement one or more times.
do {

... Il executed at least once
} while (x<5);
e for statement is a specializadile statement for iterating with an index.

Init-expr;

while (cond-expr) { for (init-expr; cond-expr; incr-expr) {
stmt; stmt;
Incr-expr;

} }

e Many ways to use thfar statement to construct iteration:

for (i=1;,i<=10;i+=1){ /[count up
// loop 10 times
} /'t has the value 11 on exit

CS 246 99

for (1=10; 1 <=1 1-=1){ /[count down
// loop 10 times

} /1 has the value O on exit

for (p=1; p!= NULL; p = p->link) { /I pointer index
// loop through list structure

} /I p has the value NULL on exit

for (1=1,p=1L1<=10& p!=NULL; i +=1, p = p->link) { // 2 indi
// loop until 10th node or end of list encountered

}

e Comma expression is used to initialize and increment 2 eéxlic a context
where normally only a single expression is allowed.

e Defaulttrue value inserted if no conditional is specifiedfem statement.
for (; ;) /[rewritten as: for (; true ;)

e continue /break statements available in all iteration constructs to adeanc
to the next loop iteration or terminate loop.

CS 246 100

for (1=0;;1+=1){ /I Infinite loop, conditional is “true”
if (x >y) break: /I exit loop
If (x ==y) continue ; /I start next iteration

\

e C/C+goto label allows arbitrary transfer of contreVithin a routine from
thegoto to statement marked with label variable.

e Label variable is declared by prefixing an identifier aridd a statement,
where the label has routine scope.

L1: i += 1; /[associated with expression
L2:if (...) ... /[associated with if statement
L2: ; /[associated with empty statement
e Transfer control backwards/forwards with respect to cod®utine body.
L1: ;
'glo.to L1, Il transfer backwards, up

goto L2Z; /[transfer forward, down

L2: :

CS 246 101
e Can transfer into and out of control structures.

goto L1; // highly discouraged
for (i=-5i<0i+=1){
L1 /I loop index uninitialized
goto L2;
Lo
L2: ;
2.6 Structured Programming

e Structured programming is about managing (restricting) control flow
using a fixed set of well-defined control-structures.

e A small set of control structures used with a particular pangming style
make programs easier to write and understand, as well agaimain

e Most programmers adopt this approach so there is a uni@saimon)
approach to managing control flow (e.g., like traffic rules).

CS 246 102

e Developed during the 1970’s to overcome the indiscriminesat of the
GOTO statement.

e GOTO leads to convoluted logic in programs (i.e., does NQdpstt a
methodical thought process).

e |.e., arbitrary transfer of control results in programg @@ difficult to
understand and maintain.

e Restricted transfer reduces the points where flow of cootrahges, and
therefore, is easy to understand.

g JaqunN
ST oWwNjoA
7861 1sndny

103

WOV)
j0
SUONEOTUNUIWO.)

‘weibold B JO SUOISIOA OM | JO SMO|4 [013u0?) |e21B0 °| “Big

(sajnpow g)
2d weiboiyq

B-ig

........

CS 246

......

(suwnjod g)
Ld weiboud

|

—

g g e)) J’H G-z r-zl r-i’ e Lpd! b) Tl Ll Tl L)

ta_te

5

|
} -i:‘:__‘—gﬁ;l-‘i‘ij iLelg

l

3 :—L@ﬁ Gl

=

&

61s

CS 246 104
e There are 3 levels of structured programming:

classical

o sequence: series of statements

o if-then-else: conditional structure for making decisions

o While: structure for loops with test at top

Can write any program (actually only needile or onewhile andifs).
extended

o classical control structures

o case/switch: conditional structure for making decisions

o repeat-until/do-while: structure for loops with test attbm
modified

o extended control structures

o one or more exits from arbitrary points in a loop

o exits from multiple nested control structures

o exits from multiple nested routine calls

Eliminates the need foflag variables.

CS 246 105
2.6.1 Multi-Exit Loop

e A multi-exit loop (or mid-test loop) is a loop with one or more exit
locations occurringvithin the body of the loop.

e While-loop has 1 exit located at the top:

while i < 10 do loop -- infinite loop
exit when i >= 10; -- loop exit
| reverse condition
end while end loop
e Repeat-loop has 1 exit located at the bottom:

do loop -- infinite loop
exi.t.\./vhen | >= 10; -- loop exit
while (i < 10) end loop | reverse condition

e EXit condition can appear in other locations in the loop body

loop
exi.t. When | >= 10;

end]bbp

CS 246

e Or allow multiple exit conditions:

loop
exi.t. When | >= 10;
exi.t. When j >= 10;

end]bbp

e Eliminates priming (copied) code necessary wittile :

read(input, d);
while ! eof(input) do

read(input, d):
end while

loop

read(input, d);
exit when eof(input);

endlbap

e C/C+ idioms for this situation are:

C

CH

while ((d = getc(stdin)) = EOF)

while (cin >> d)

106

e Results in expression side-effects and precludes analf/disvithout code

duplication.

CS 246 107
e E.g., print the status of streasin after every read for debugging:

while (cin >> d) { loop
cout << cin.good() << endl; cin >> d;
cout << cin.good() << endl;
exit when cin.fail();

}

cout << cin.good() << endl; end 'Ié)lop

e The loop exit is always outdented or clearly commented (¢in)ogo it can
be found without having to search the entire loop body.

e This Is the same indentation rule as for e of the if-then-else:
if ... then If ... then

.e.lée elsé' |
end |f | end h; -

e A multi-exit loop can be written in C/C+ in the following way

CS 246 108

for (;;) { while (true) { do {
if (i >=10) break: if (i >= 10) break; if (i >= 10) break:
if (j >= 10) break; If (”j'>: 10) break; If (”j'>: 10) break;
y y 1 while (true):

e Thefor version is more general as it can be easily modified to haveg lo
Index or a while condition.

for (int 1 =0;1<10;1+=1) {// loop index
for (; x <vy;) {/l while condition

¢ In general, the programming language and code-typing shoeld allow
Insertion of new code without having to change existing code

e E.g., write linear search such that:

o no invalid subscript for unsuccessful search
o Index points at the location of the key for successful search

e Use onlyif andwhile :

CS 246 109

| = -1; found = O;

while (1 < size -1 & ! found) { // rewrite: &(i<size-1, !found)
| += 1;
found = key == list[i];

}

if (found) { ... /[found

} else { ... // not found

}

¢ Allow short-circuit operators.

for (i =0;i< size & key != list[i]; i += 1){};
Il rewrite: if (1 < size) if (key != list[i])

if (1 <size) {... // found
} else { ... /[not found
}

e Logical & is incorrect because it evaluates both operands.
e Alternatively, use multi-exit loop.

CS 246 110

for (1=0;;1+=21){/lor for (I =0;1<size;i+=1)
If (1 >= size) break;
if (key == list[i]) break;

}

if (1 <size) {... // found

} else { ... /[not found
}

e The extra test after the loop can be eliminated by introdydimto the
loop body.

for (i=0:i+=1)/{

if (1 >=size) {... // not found
break ;
} I exit
if (key == list[i]) { ... // found
break ;
} I exit
} [l for

e E.g., an element is looked up in a list of items, if it is nothe list, it is
added to the end of the list, If it exists in the list its asated list counter is
Incremented.

CS 246 111

for (1=0;;1+=1){
if (1 >= size) {
list[size].count = 1,
list[size].data = key;
size += 1;
break ;
} I exit
If (key == list[i].data) {
list[i].count += 1,
break ;
} I exit
} Il for

2.6.2 Static Multi-Level Exit

e Static multi-level exit exits multiple control structures where exit points
areknown at compile time.

e Labelled exit break/continue) often provides this capability:

CS 246 112

Java C/CH
L1: { {
... declarations declarations ...
L2: switch (...) { switch (...) {
L3: for (...) { for (...) {
... break L1; ... // exit block ... goto L1; ...
... break L2; ... /[exit switch ... goto LZ; ...
... break L3; ... /I exit loop ... goto L3; ...
} } L1,
} \ 5 .;.
\ \ L3:. .;.

e Labelledbreak/continue transfer control out of the control structure with
the corresponding label, terminating any block that it pagerough.

e Commonly used with nested loops:

CS 246 113
Java C/CH
L1: for (;;) { /I while (flagl && ...) for (;;) {
L2: for (;) { /I while (flag2 && ...) for (;;) {
L3: for (;) { /I while (flag3 && ...) for (;;) {

if (...) break L1; // exit 3 levels
if (...) break L2: // exit 2 levels

if (...) break L3: // or break, exit 1 level

}
}
}

if (...) goto L1:
It (....j.goto L2;
if () goto L3,
} L3:. .;.

}L2:
} L1,

e Eliminates flag variables, which are the variable equivaiea goto.
e Normal and labellethreak are agoto with restrictions:

o Cannot be used to create a loop (i.e., cause a backward hratieh
program); hence, all situations that result in repeatedugi@n of
statements in a program are clearly delineated.

o Cannot be used to branahto a control structure.
e The simple case (exit 1 level) of multi-level exit is a mudt# loop.

CS 246 114
e Why is it good practice to label all exits?

e Only usegoto to simulate labelledbreak and continue .

e return statements can generate multi-exit loop and multi-level ex

e Static multi-level exits appear infrequently, but are ertely concise and
execution-time efficient.

2.7 Preprocessor

e Preprocessor manipulates the text of the progoafrecompilation.
e Program you see is not what the compiler sees!

e The three most commonly used preprocessor facilities drstisution, file
Inclusion, and conditional inclusion.

2.7.1 Substitution

e #define statement declares a preprocessor variable, and its \&éliehe
text after the name up to the end of line.

CS 246 115

#define Integer int
#define begin {
#define end }
#define Pl 3.14159
#define gets =

#define set

#define with =

Integer main() begin /[same as: int main() {
Integer x gets 3, v; /[same as: int X = 3, v,
X gets PI; /[same as: x = 3.14159;
set y with X; /[same as. y = X;

end /[same as: }

e Preprocessor can transform the syntax of C/C+ progoAscguraged.

e Variables can be defined and optionally initialized on thepation
command with optionD.
% g++ -DDEBUG=2 -DASSN ... source-files
Same as putting the followingdefine s in a program without changing the
program:

#define DEBUG 2
#define ASSN

CS 246 116

e Predefined preprocessor-variables exist identifyingward and software
environment, e.gmcpu is kind of CPU.

e Replacetdefine with enum (see Section 2.3.7.1, p. 65) for integral types;
otherwise useonst declarations (see Section 2.3.4, p. Sma(in Java).

enum { arraySize = 100 },
enum { PageSize = 4 x 1024 };

Int array[arraySize], pageSize = PageSize,
const double Pl = 3.14159;

e enum Uses no storage whikmnst declarations do.

e #define can declare macros with parameters, which expand during
compilation, textually substituting arguments for paréeng e.g.:

#define MAX(a, b) ((a > Db) ? a: b)
z = MAX(X, Yy), /[implicitly rewritten as: z = (X >y) ? X y)

e Useinline routines in C/C+ rather thatefine macros.
2.7.2 File Inclusion

e File inclusion copies text from a file into a C/C+ program.
e An included file may contain anything.

CS 246 117

¢ An include file normally imports preprocessor and C/C+
templates/declarations for use in a program.

¢ All included text goes through every compilation step, peeprocessor,
compiler, etc.

e Java implicitly inclusions by matching class names withridgnes in
CLASSPATH directories, then extracting and including declarations.

e The#include statement specifies the file to be included.
e C convention uses suffixi” for include files containing C declarations.

e C+ convention drops suffix#” for its standard libraries and has special
file names for equivalent C files, e.gstdio versusstdio.h.

#include <stdio.h> I/l C style
#include <cstdio> /| C++ style
#include "user.h"

e A file name can be enclosed+4» or " " .
e <> means preprocessor only looks in the system include dmesto

"" means preprocessor starts looking for the file in the saneetoiry as
the file being compiled, then in the system include direesori

CS 246 118

e System filedimits.h andunistd.h contains many usefuidefine s, like the
null pointer constantiULL (e.g., sedusr/include/limits.h).

2.7.3 Conditional Inclusion

e Preprocessor has #mstatement, which may be nested, to conditionally
add/remove code from a program.

e Conditional ofif uses the same relational and logical operators as C/C+,
but operands can only be integer or character values.

#define DEBUG 0 /l declare and initialize preprocessor variable
#If DEBUG == /l level 1 debugging

include "debugl. h”

#elif DEBUG == 2 /I level 2 debugging

include "debug2.h"

#élse /[non-debugging code

#rendif

e By changing value of preprocessor variabIEBUG, different parts of the
program are included for compilation.

CS 246 119
e To exclude code (comment-out), useonditional a® implies false.

#if O
/| code commented out
#endif
Independent of language structure, can overlap definibodsroutines.

e It IS also possible to check if a preprocessor variable isyddfpr not
defined by usingtifdef or #ifndef :

#ifndef = MYDEFS _H /[if not defined

#define = MYDEFS H 1 // make it so

#tendif
e Used in artinclude file to ensure its contents are only expanded once.

e Note difference between checking if a preprocessor varisdlefined and
checking the value of the variable.

e The former capability does not exist in most programminglayes, i.e.,
checking if a variable is declared before trying to use it.

CS 246 120

2.8 Input/Output

e Input/Output (1/0) is divided into two kinds:
1. Formatted I/O transfers data with implicit conversion of internal values
to/from human-readable form.
o Conversion is based on the type of variables and format codes

2. Unformatted I/O transfers data without conversion, e.g., internal intege
and real-floating values.

CS 246
2.8.1 Formatted I/O

121

Java C CH
File, Scanner, PrintStream FILE ifstream, ofstream
Scanner in = new in = fopen("f", "r"); ifstream in("f");

Scanner(new File("f"))

PrintStream out = new out = fopen("g", "W) |ofstream out("g")
PrintStream("g")
In.close() close(in) scope endsn.close()
out.close() close(out) scope endsyut.close()
nextint() fscanf(in, " %", &) in >> T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, "%", &c)
next() fscanf(in, "%", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()
in.clear()

skip("regexp) fscanf(in, " %[regexd") |in.ignore(n, c)
out.print(String) fprintf(out, " %", i) out << T

forintf(out, "% ", f)

fprintf(out, " %", c)

fprintf(out, " %", s)

CS 246 122

e Formatted I/O occurs to/fromsream file.

e C+ has three implicit stream filesin, cout andcerr, which are
automatically declared and opened (Javaihasut anderr).

e C hasstdin, stdout andstderr, which are automatically declared and opened
e Includeiostream has all necessary declarations ¢or, cout andcerr.

e cin reads input from the keyboard (unless redirected by shell).

e cout writes to the terminal screen (unless redirected by shell).

e cerr writes to the terminal screen even wheut output is redirected.

¢ Error and debugging messages should always be writtendo :

o normally not redirected by the shell,
o unbuffered so output appears immediately.

e Stream files other than 3 implicit ones require declarindhdde object:

#include <fstream> // required for stream-file declarations
ifstream infile("nmyinfile"); /I input file
ofstream outfile(“nyoutfile"); /I output file

e Type of the filefstream or ofstream, indicates whether the file can be read
or written.

CS 246 123

e Declarationopers a file making it accessible through the variable name,
e.g.,infile andoutfile are used for file access.

e Check for successful opening of a file using the stream menaibez.g.,
infile.fail(), which returngrue if the open failed andalse otherwise.

e Connection between the file name in the program and opersyisigm file
IS done at the declaration:

o infile reads from fileryi nfil e
o outfile writes to filenyout fil e

where both files are located in the directory where the pragsarun.
e C+ 1/O library overloads the bit-shift operators and>> to perform I/O.

e C I/O library usesscanf(outfile,. . .) andfprintf(infile,. . .), which have short
formsscanf(...) andprintf(...) for stdin andstdout.

e Parameters in C are always passed by value, so argumdstabmust be
preceded witl& (except arrays) so they can be changed.

e Both I/O libraries can cascade multiple 1/O operations, irgut or output
multiple values in a single expression.

CS 246
2.8.1.1 Formats

124

e Format of input/output values is controlled vianipulators defined in

#include iomanip:

oct

dec

hex

left / right (default)

boolalpha / noboolalpha (default)
showbase / noshowbase (default)
fixed (default) /scientific
setprecision(N)

setw(N)

setfill("ch)

end|

skipws (default) /noskipws

values in octal

values in decimal

values in hexadecimal

values with padding after / before values

bool values as false/true instead of 0/1

values with / without prefix O for octal & Ox for hex
float-point values without / with exponent

fraction of float-point values in maximum of N colum
NEXT VALUE ONLY in minimum of N columns
padding character before/after value (default blank)
flush output buffer and start new lineytput only)
skip whitespace charactensgut only)

e manipulators applies to all constants/variables aft@vién to the next I/O
expression for a specific stream file.

e Except manipulator setw, which only applies to the next value in the

/O expression.

e endl is not the same dsn’

; only endl flushes for interactive output.

I

CS 246

2.8.1.2 Input

125

e Java formatted input uses arplicit Scanner attached to an input file to
convert characters to basic types.

e C/C+ formatted input haisnplicit character conversion for all basic types
and is extensible to user-defined types.

Java

C

CH

import java.io.x;
Import java.util.Scanner;
Scanner in =

new Scanner(new File("f"));
PrintStream out =

new PrintStream("Q");
int 1, j;
while (in.hasNext()) {

| = In.nextInt();] = in.nextIint();

out.printin("1 : " +i+" | "+);
}
In.close();
out.close();

#include <stdio.h>
FILE «in = fopen("f", "r"):

FILE «out = fopen("g", "W');

int 1, j;
for (5){
fscanf(in, "%%l", &i, &);
if (feof(in)) break;
fprintf(out,” i : % | : %@\ n" ,i,));
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out(g);

int i, j;
for (5 {
in >> i >> j;
if (in.fail()) break;
out << "1:" <<
<<"| " <<j<<en

}

/[infout closed implicith

e Input values for a stream file are C/C+ undesignated cotsstarB.5e-1,

CS 246 126
etc., separated by whitespace.

e EXxcept for characters and character stringsich are not in quotesso
cannot read strings containing white spaces.

e Type of operand indicates the kind of constant expectedarstieam, e.g.,
an integer operand means an integer constant is expected.

e Input starts reading where the last read left off, and saars to obtain
necessary number of constants.

e Hence, the placement of input values on lines of a file is cdidrtrary.

e Unlike Java, C/C+ must attempt to relagforeend-of-file is set and can be
tested for.

e End of file is the detection of the physical end of a fileere is no
end-of-file character.

e From a keyboardkctrl>-d (press thectrl> andd keys simultaneously)
causes the shell to close the current input file marking iysiglal end.

e In C+H, end of file can be detected in two ways:

o stream membezof returnstrue if the end of file is reached arfdise
otherwise.

CS 246 127

o stream membdail returnstrue for invalid constant OR no constant if
end of file is reached, arfdlse otherwise.

e Safer to checkail and then checkof.
for (5;) {
cin >> I
If (cin.eof()) break; // should use “fail()”
cout << | << endl;
}

e If "abc” is entered (invalid integer constanil becomesrue buteof is
false.

e Generates infinite loop as invalid data is not skipped foseghent reads.
e When bad data is readtream must be reset and bad data cleared

CS 246 128

#include <iostream>
using namespace std;

iInt main() {
int n;
cout << showbase; Il prefix hex with Ox
cin >> hex; /l hex constants
for (;;) {
cout << "Enter hexadeci mal nunber: “;
cin >> n;
if (cin.fail()) { /[problem ?
if (cin.eof()) break; I/l eof ?
cout << "I nvalid hexadeci mal nunber” << endl;
cin.clear(); /Il reset stream failure
cin.ignore(numeric_limits<int>::max(), \' n”); // skip until newlin
} else {

cout << hex << "hex:" << n << dec << " dec:" << n << enc

!
}
cout << endl;

}
e After an unsuccessful reacdlear() resets the stream.
e ignore skipsn characters, e.gcin.ignore(5) or until a specified character.

CS 246 129

e Alternatively, streams have a conversionvéid «: if fail(), a null pointer;
otherwise nonnull pointer.

cout << cin; /I print fail() status of stream cin
while (cin >>1) ... /I read and check pointer to = 0

e In C, routinefeof returnstrue when eof is reached aristanf returnseOF.
e Read in file-names, which may contain spaces, and proceldileac

#include <fstream>
using namespace std;

int main() {
ifstream fileNames("fil eNanmes"); // requires char » argument
string fileName;

for (;;) { /I process each file
getline(fileNames, fileName); /[may contain spaces
If (fileNames.fail()) break; // handle no terminating newlin
ifstream file(fileName.c_str()); // access char *
/I read file
}

CS 246 130
2.8.1.3 Output

e Java output style converts values to strings, concatesttags, and prints
final long string:

System.out.printin(1 +

e C/C+ output style supplies a list of formats and values, autgut
operation generates the strings:

+]); // build a string and print it

cout << | << << | << end]; /I print each string when formed

e There is no implicit conversion from the basic types to stimC+ (but
one can be constructed).

e While it Is possible to use the Java string-concatenation gle in C+, it
IS Incorrect style.

e Use manipulators is generate specific output formats:

CS 246 131

#include <iostream> /[cin, cout, cerr
#include <iomanip> /[manipulators
using namespace std;

int i = 7; double r = 2.5; char ¢ = "z’; char »s = "abc";
cout << "1:" << setw(2) << |

<< 7 << fixed << setw(7) << setprecision(2) << r

<< (. << Cc<< S << s << end

#include <stdio.h>
forintf(stdout, "1:9%2d r: %.2f ¢c:% s:%\n", i, r, c, s);

I 7 r. 250 c:z s:abc

2.8.2 Unformatted I/O

e Unformatted I/O transfers data without conversion, e.g., internal integer
and real-floating values.

e Uses same mechanisms as formatted 1/O to connect prograla to fi
(open/close).

e read andwrite routines transfer bytes without conversion from/to a file.

CS 246 132

#include <iostream>
#include <fstream>
using namespace std;

Int main() {
ofstream outfile(" XxXX"); /I open output file “xxx”
if (outfile.fail()) { I/l successful open ?
cerr << "Error!" << endl;
exit(-1);
}
double d = 3.0;
outfile.write((char %)&d, sizeof(d)); // coercion
outfile.close(); /I close file before attempting read
ifstream infile(" xxx"); /I open input file “xxx”
if (infile.fail()) { /[successful open ?
cerr << "Error!" << endl;
exit(-1);
double e;

infile.read((char «)&e, sizeof (d)); // coercion
cout << e << endl;
infile.close();

CS 246 133
e read andwrite take achar x pointer and length.

read(char xbuffer, streamsize num);
write(char xbuffer, streamsize num);

e To pass any kind of pointer for unformatted I/O requiresarcion, which
IS a caswithout a conversion.

e Coercion breaks the type system; use it very sparin@gd would be
unnecessary if buffer type wasid «).

2.9 Dynamic Storage Management

e Java Is ananaged languageC/C+ are unmanaged.

e C/C+ do not havgarbage collectionof dynamically allocated storage
after a variable is no longer accessible.

e Instead, an additional dynamic storage-management operatused to
free storage.

e C+ provides dynamic storage-management operatienwsdelete and C
providesmalloc/free.

¢ Do not mix the two forms in a C+ program.

CS 246 134
Java C CH
class Foo { struct Foo { struct Foo {
char a, b, c; char a, b, c; char a, b, c;
} 3 |3
Foo p = new Foo(); Foo xp = (Foo x)malloc(sizeof (Foo0)); || Foo xp = new Foo();
p.c = 'R; p->c = 'R; p->c = 'R;

I/l p garbage collected

free(p); // explicit free

delete p; /I explicit free

¢ Allocation has 3 steps:

1. determine size/alignment of allocation,

2. allocate heap storage of correct size/alignment,

3. coerce undefined storage to correct type.

e Each step is explicit in C; C+ operatogw performs all 3 steps implicitly.
e Parenthesis after the type name in tle&y operation are optional.
e Storage for dynamic allocation comes from an area calleti¢lag.

e Before storage can be used, it must be allocated.

FOO *p;
p->c = 'R

/I forget to allocate or initialize pointer
/[places 3 at some random location in memory

Uninitialized variables.

CS 246 135
e After storage is no longer neededntstbe explicitly deleted.

Foo «xp = new Foo0;
p = new Foo; /I forgot to free previous storage

Called amemory leak

e After storage is deleted, mustnot be used:
delete p;
p->c = 'R /I result of dereference is undefined
Called adangling pointer.

e Unlike Java, C/C+ allovall types to be dynamically allocated not just
object types, e.gnew int.

e As well, C/C+ allowall types to be allocated on the stack, i.e., local
variables of a block:

CS 246 136
Java CH
{ /| basic & reference stack heap |1 / all types stack heap
int I A _ Int i; A _
double d; ! double d; |
ObjType obj = d ObjType obj; d
new ObjType();
obj - } I/ implicit delete obj
} /I garbage collected
Y y

e Stack allocation eliminates explicit storage-managemer{simpler) and
IS more efficient than heap allocation — use it whenever podde.

e Dynamic allocation in C+ should be used only when:
o a variable’s storage must outlive the block in which it i®a#ited:

ObjType »rtn(...) {
ObjType xobj] = new ObjType();
... Il use obj
return obj; // storage outlives block
} /I obj deleted later

o when each element of an array of objects needs initializatio

CS 246 137

ObjType *v[10]; // array of object pointers
for (inti=0;i<10;i+=1){
v[i] = new ODbjType(i); // each element has different initialization

e Declaration of a pointer to an array is complex in C/C+ .

e Because no array-size information, the dimension valuariarray pointer
IS often unspecified:

Int xparr = new int [10]; /[think arr[], pointer to array of 10 ints
e Java notation:
int parr[] = new int [10];

cannot be used because parr[] is actually rewritten ast parr[N], where
N is the size of the initializer value.

e As well, no dimension information results in the followingnhiguity:

Int «xpvar = new int; pvar no sizal’
P
Int xparr = new Iint [10]; // parr[] parr| — e|rS1L4O 5/7|3/5(9|8|8|0(4|6

CS 246 138

e Variablespvar andparr have the same type but one is an array, which pose
a problem when deleting a dynamically allocated array.

e To solve the problem, special syntax is used to distingunekéd cases:

delete pvar; /Il single element
delete [] parr; /[multiple elements

e [] indicates multiple elements (but unknown number and size of
dimensions) and array-size is stored with the array.

e Never do this:

delete [] parr, pvar; // => (delete [] parr), pvar;
which is an incorrect use of a comma expressiainjs not deleted.

e Declaration of a pointer to a matrix is complex in C/CH, girg. «x[5]
could mean:

CS 246 139

X | ™9 _'_'J X __——9|2/6/4|0
- | |
__>l : | |
— - L _ _
- - -
T8

e Left: array of 5 pointers to an array of unknown number ofgetes.

e Right: pointer to matrix of unknown number of rows with 5 colos of
Integers.

e Forx and[] which applied first?

e Dimension is higher priority (as subscript, see Section2.83), so
declaration is interpreted &g (x(x[5])) (left).

e Only the left example (above) of declaring a matrix can beegalized to
allow a dynamically-sized matrix.

CS 246 140

Int main() {
int «m[5]; Il'5 rows
for (intr=0;,r<5;r+=1){
m[r] = new int [4]; /[4 columns per row

for (int c =0;c<4;,c+=1){/ initialize matrix
mir][c] = r + c;

}
for (iInt r=0;r<5;r+=1){ /[print matrix
for (int ¢c =0; c < 4,c+:1){
cout << m[r][c] << ", ";
}
cout << endl,
}
for (intr=0;,r<5;r+=1){
delete [] m[r]; I/l delete each row
}
} /[implicitly delete array “m”

2.10 Command-line Arguments
e Starting routinenain has exactly two overloaded interfaces.

CS 246 141

int main(); // “void” parameter type for C
Int main(int argc, char xargv[]); // parameter names may be different

e The second form is used by the shell to pass command-lineremgs,
where the command line string-tokens are transformed iM@3+C
arguments.

e argc IS the number of string-tokens on the command line, inclgdie
command name.

e With command name, number of tokens is one greater than in dav

e argv IS an array of pointers to the character strings that makekgnt
arguments.

% ./a.out -option infile.cc outfile.cc

0 1 2 3
argc =4 // number of command-line tokens
argv[0] = "./a.out\0" /I not included in Java
argv[l] = "-option\ 0"
argv[2] = "infile.cc\0"
argv[3] = "outfile.cc\0"
argv[d] =0 // mark end of variable length list

e Because shell only has string variables, a shell argumer&2f does not

CS 246

142

mean integer 32, and may have to converted.
e Routinemain usually begins by checkingrgc for command-line

arguments.

Java

C/ICH+

class Prog {
public static void main(String[] args) {
switch (args.length) {

case O: ... /[no args
break ;

case 1: ... args[O] ... // 1 arg
break ;

case ... /I others args
break ;

default : ... /[usage message

System.exit(-1);

int main(int argc, char »argv[]) {
switch (argc) {

case 1. ... /Il no args
break;

case 2: ... args[l] ... // 1 arg
break ;

case ... I/l others args
break ;

default : ... /[usage message
exit(-1);

e Arguments are processed in the raagg/[1] throughargv[argc - 1], I.e.,

starting one greater than Java.

e Process following arguments from shell command line:

CS 246 143
cmd [infile-file = cin [outfile-file = cout [size = 20 [code = 51]]]]

e Note, dynamic allocatiorstrtol (atoi has no mechanism to check for errors),
andgoto ; no duplicate code.

#include <iostream>
#include <fstream>
#include <cstdlib> /] strtol, exit

#include <cerrno> I/l errno, ERANGE
using namespace std;

bool convert(int &val, char xbuffer) { /[convert C string to integer
char xendptr; /I buffer pointer
val = strtol(buffer, &endptr, 10); /[convert string to integer

return errno !'= ERANGE && endptr != buffer && »endptr == "\ 0”; // val
} /I convert

Int main(int argc, char sargv[]) {
const unsigned int sizeDeflt = 20, codeDeflt = 5;
iIstream =xinfile = &cin; /I default value
ostream =outfile = &cout; /I default value
Int size = sizeDeflt, code = codeDeflt; /I default value

CS 246 144

switch (argc) {
case 5:
if (! convert(code, argv[4])) goto usage; // invalid integer ?
// FALL THROUGH
case 4.
if (! convert(size, argv[3])) goto usage; // invalid integer ?
// FALL THROUGH

case 3:
outfile = new ofstream(argv[2]);
if (outfile->fail()) goto usage; I/l open failed ?
// FALL THROUGH

case 2.
infile = new ifstream(argv[1]);
If (infile->fail()) goto usage; I/l open failed ?
/[FALL THROUGH

default : /[all defaults
break ;

usage:

cerr << argv[0] << " [infile-file [outfile-file[size ="
<< sizeDeflt << " [code =" << codeDeflt << "]]]]" <<
exit(-1); /I TERMINATE

// do something
If (infile '= &cin) delete infile; I/l close file, do not delete cir
If (outfile '= &cout) delete outfile; /I close file, do not delete co

CS 246 145
2.11 Routine

C CH
void p(OR T f(// parameters void p(OR T f(// parameters
T1 a // pass by value T1 a, I/l pass by value
T2 &b, /[pass by reference
T3 ¢ =3 /[optional, default value
))
{ /I routine body { /I routine body
/I intermixed decls/stmts /Il intermixed decls/stmts
} }

e C+ routines are not part of aggregation (not combined injaa), e.g.,
routinemain is not defined in a type.

e A routine is either arocedure or afunction based on the return type.

e A procedure does NOT return a value that can be use in an axpnes
Indicated with return type ofoid :

void proc(...) { ...}
e A procedure can return values through the argument/paesmetchanism.

CS 246 146

e A procedure terminates when control runs off the end of n@euliody or a
return statement is executed:

void proc() {
... return; ...
... Il run off end

}

¢ A function returns a value that can be use in an expressiahhance must
execute aeturn statement specifying a value:

int func() {
... return 3; ...
return a + b;

}

e A return statement can appear anywhere in a routine body, and naultipl
return statements are possible.

e A routine with no parameters has parametad in C and empty parameter
list in C+:

.rtn(void) { ...} /I C: no parameters
.rn() { ...} /[C++. no parameters

CS 246 147

e In C, empty parameters mean no information about the numiagpes of
the parameters is supplied.

e Routines cannot be nested in other routines.
¢ All routines are embedded in the global (external) level soarce file.
e Global scopecontains types, variables and routines:

// global scope
enum Colour { R, G, B }; Il type

Colour colour = B; /l variable
Int main() { /I routine

colour = R;

Colour colour = G; // local scope, hides previous variables
}

e Global variables are allocated in declaration order anti@tzded In
reverse order at program exier file but no order among files

e Gobal area is a separate memory from the stack and heap.

2.11.1 Argument/Parameter Passing

e Arguments are passed to parameters by:
o value: parameter is initialized by the argument (usually bitewt®py).

CS 246 148

o reference parameter is a reference to the argument and is initiatazed
the argument’s address.
pass by value pass by reference
argument

copy ﬁaddress-of (&)

parameter

e Java/C, parameter passing is by value, i.e., basic typeslgadt references
are copied.

e C+, parameter passing is by value or reference dependitigeanpe of
the parameter.

e Argument expressions are evaluate@ny order.

e For value parameters, each argument-expression resuisiied on the
stack to become the corresponding parameteich may involve an
Implicit conversion

e For reference parameters, each argument-expressiohisaferenced

(address of) and this address is pushed on the stack to beaheme
corresponding reference parameter.

CS 246

struct Complex { double r, i; };

void r(int i, int &ri, Complex ¢, Complex &rc) {
n=1=3;
rc = ¢ = (Complex){ 3.0, 3.0 };

int main() {
int i1 =1, 12 = 2;
Complex c1 = {10,101}, ¢c2 ={ 2.0, 2.0 };
r(11, i2, c1, c2);

}

e \Which arguments change?
e What if routine call is changed to:

r(11, 3, cl, c2); // fails!
r(i1, i1 + i2, cl, c2), /I fails!

Cannot change a constant or temporary variables!

149

¢ Value passing is most efficient for basic and small strustbexause the

values are accessed directly in the routine.

e Reference passing is most efficient for large structuresaatrays because

the values are not duplicated in the routine.

e Use type qualifiers to create read-only reference paramstethe

CS 246 150
corresponding argument is guaranteed not to change:

void r(const int &I, const Complex &c, const int v[5]) {
| = 3; /[assignments disallowed, read only!
c.r = 3.0;
v[0] = 3;

}
r(1+, (Complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 });

e Provides efficiency of pass by reference for large varialsesurity of pass
by value because argument cannot change, and allows ctsatah
temporary variables as arguments.

e C+ parameter can havedafault value, which is passed as the argument
value if no argument is specified at the call site.

void r(int i, double g, char ¢ = "+’, double h =35) {...}

r(1, 2.0, 'b’, 9.3); /I maximum arguments
r(1, 2.0, 'b”"); /I h defaults to 3.5
r(1, 2.0); /I ¢ defaults to +’, h defaults to 3.5

e In a parameter list, once a parameter has a default valysam@meters to
the right must have default values.

CS 246 151

e In a call, once an argument is omitted for a parameter withfaudtevalue,
Nno more arguments can be specified to the right of it.

2.11.2 Array Parameter

e Array copy is unsupported so arrays cannot be passed by ealyby
reference.

e Therefore, all array parameters are implicitly referena@ameters, and
hence, do not have a reference symbol.

e A formal parameter array declaration can specify the finsteshision with a
dimension value[10] (which is ignored), an empty dimension i}, or a
pointer,x:

double sum(double v[5]); double sum(double v[]); double sum(double v);
double sum(double +m[5]); double sum(double «m[]); double sum(double xm)

e Good programming practice uses the middle form becauseatlgl
Indicates the variable is going to be subscripted.

e An actual declaration cannot uge it must use:

CS 246 152

double sum(double v[]) { // formal declaration
double =xcv; /[actual declaration, think cv[]
CV =V, // address assignment

¢ Routine to add up the elements of an arbitrary-sized arrayadrix:

double sum(int cols, double v[]) { double sum(int rows, int cols, double «m[])

double total = 0.0; double total = 0.0;
for (int c=0; c<cols;c+=1) for (int r=0;r<rows;r+=1)
total += v[c]; for (int c=0;c<cols;c+=1)
return total; total += m{r][c];
} return total;
}

2.11.3 Overloading

e Overloading occurs when a name has multiple meanings in the same
context.

e Most languages have some overloading.

e E.g., most built-in operators are overloaded on both iatemnd
real-floating operands, I.e., theoperator is different fot + 2 than for
1.0 + 2.0.

CS 246 153
e Overloading requires the compiler to disambiguate amoeqgtidal names
based on some criteria.
e The normal criterion is type information.
¢ In general, overloading is done on operations not variables

int 1; /[variable overloading disallowed
double 1i;
void r(int) {} /l routine overloading allowed

void r(double) {}
e Power of overloading occurs when type of a variable changeperations
on the variable are implicitly reselected to the variableisw type.
e E.g., after changing a variable’s type framn to double , all operations
Implicitly change from integral to real-floating.

e Number and types of the parametbetg not the return typeare used to
select among a name’s different meanings:

CS 246 154

Int r(int 1, int j) { ...} /I overload name r three different ways
Int r(double x, double y) { ...}
int r(int k) { ...}

(1, 2); /[iInvoke 1st r based on integer arguments
r(1.0, 2.0); I/l iInvoke 2nd r based on double arguments
r¢ 3); I/l invoke 3rd r based on number of arguments

e Implicit conversions between arguments and parametersaizse
problems:

r(1, 2.0); // ambiguous, convert either argument to integer or double
e Use explicit cast to disambiguate:

r(1, (int)2.0) /[1str
r((double)1, 2.0) /I 2nd r

e Overlap between overloading and default arguments fompeaiters with
same type:

Overloading Default Argument

nt r(int i, int j){...} int r(int i, int j=2){...}
int r(int 1){intj=2,...}
r(3);// 2nd r r(3); /l default argument of 2

CS 246 155

e If the overloaded routine bodies are essentially the samsg a default
argument, otherwise use overloaded routines.

2.11.4 Routine Pointer

e The flexibility and expressiveness of a routine comes froen th
argument/parameter mechanism, which generalizes a eoatiross any
argument variables of matching type.

e However, the code within the routine is the same for all dathese
variables.

e To generalize a routine further, it is necessary to pass as@m argument,
which is executed within the routine body.

e Most programming languages allow a routine pointer (Jas ahot) for
further generalization and reuse.

e As for data parameters, routine pointers are specified wiypbea (return
type, and number and types of parameters), and any routitehmag this
type can be passed as an argument, e.g.:

CS 246 156

int f(int v, |int (xp)(int)|) {return p(v +2) + 2;}

int g(int 1) { return 1 - 1;

Int h(int 1) { return 1/ 2;}

cout << f(4, g) << endi; // pass routines g and h as arguments
cout << f(4, h) << endi;

e Routinef is generalized to accept any routine argument of the formrms
anint and takes aimt parameter.

e Within the body off, the parametay is called with an appropriatiet
argument, and the result of callipgs further modified before it is returned.

e A routine pointer is passed as a constant reference in ihyrtailh
programming languages; in general, it makes no sense t@el@rcopy
routine code, like copying a data value.

e C/C+H+ require the programmer to explicitly specify the refece via a
pointer, while other languages implicitly create a refesen

e Two common uses of routine parameters are fix-up and cak-madines.

e A fix-up routine is passed to another routine and called if an unusual
situation is encountered during a computation.

e E.g., when inverting a matrix, the matrix may not be inveetiib its
determinant is O (singular).

CS 246 157

e Rather than halt the program for a singular matrix, inveutire calls a
user supplied fix-up routine to possible recover and coetimiih a
correction (e.g., modify the matrix):

int singularDefault(/« info about error «/) { return O; }
int invert(int »matrix[], int rows, int cols,
int (xsingular)(/+ info about error %/) = singularDefault) {

If (determinant(matrix, rows, cols) == 0) {
// compute correction to continue the computation
correction = singular(/« info about error */),

}

e A fix-up parameter generalizes a routine as the correctitreracs specified
for each call, and the action can be tailored to a particidaga.

e Giving fix-up parameter a default value, eliminates havongrovide a
fix-up argument.

e A call-back routine is used in event programming.

e \WWhen an event occurs, one or more call-back routines aredc@higgered)
and each one performs an action specific for that event.

CS 246 158

e E.g., a graphical user interface has an assortment of athezawidgets”,
such as buttons, sliders and scrollbars.

¢ \WWhen a user manipulates the widget, events are generateseating the
new state of the widget, e.g., button down or up.

e A program registers interest in transitions for differemtigets by
supplying a call-back routine, and each widget calls itgpiad call-back
routine(s) when the widget changes state.

e Normally, a widget passes the new state of the widget to ealtihack
routine so it can perform an appropriate action, e.g.:

iInt callback(/= info about event %/) {
/[examine event information and perform appropriate action
/I return status of callback action

}

.rééisterCB(closeButton, callback);

e Call-back programming become difficult if it depending oe ttumber of
times it is called or previous argument values.

CS 246 159

2.12 Object

e ODbject-oriented programming was developed in the mid-$30Dahl and
Nygaard and first implemented in SIMULAG7Y.

e ODbject programming is based on structures, used for orgniagically
related data:

unorganized organized
struct Person {
int people age[30]; Int age;
bool people_ sex[30]; bool sex;
char people name[30][50]; char name[50];

} people[30];

e Both approaches create an identical amount of information.
e Difference is solely in the information organization (andmory layout).

e Computer does not care as the information and its manipuladilargely
the same.

e Structuring is an administrative tool for programmer uisteending and
convenience.

CS 246

160

e ODbjects extend organizational capabilities of the stmechy allowing

routine members.

structure form

object form

struct Complex {
double re, im:
%

double abs(const Complex &This) {
return sqrt(This.re = This.re +
This.im = This.im);

}
Complex x; // structure
abs(x); /[call abs

struct Complex {
double re, im;
double abs() const {
return sqrt(re = re +

im % im);
}
I}
Complex x; // object
x.abs(); /I call abs

e Each object provides both data and the operations necessary
manipulate that data in one self-contained package.

e Routine member is constant, and cannot be assigneddengt, member).
e \What is the scope of a routine member?

e Structure creates a scope, and therefore, a routine membaccess the
structure members, e.ghs member can refer to membeaesandim.

e Structure scope is implemented vid a const this parameter, implicitly
passed to each routine member (like left example).

CS 246 161

double abs() { return sqgrt(this->re % this->re + this->im x this->im); }
(this should be a reference rather than a pointer.)
e Except for the syntactic differences, the two forms aretidah

e Like Java, the use of implicit parametehis, e.g.,this ->f, is seldom
necessary in C+.

e Member routines are accessed like other members, using erealection,
x.abs, and called with the same formabs().

e NO parameter needed because of implicit structure scopaitis
parameter.

e Add arithmetic operations:

struct Complex {

éémplex add(Complex c) {
Complex sum = { re + c.re, Im + c.im };
return sum;

}
%

e TOo sumx andy, write x.add(y).

CS 246 162

e Because addition is a binary operatiadd needs a parameter as well as the
Implicit context in which it executes.

e Like Java, C+ allows overloading members in a type.

2.12.1 Operator Member
e It IS possible to use operator symbols for routine names:

struct Complex {

éémplex operator +(Complex ¢) {
return (Complex){ re + c.re, Iim + c.im }; // remove sum
}

J

e Addition routine is called, andx andy can be added by.operator +(y) or
y.operator +(x), which is only slightly better.

e For convenience, CH+ implicit rewrites+ y asx.operator +(y).

CS 246 163
Complex x = { 3.0, 52}, y={-91, 74 };

cout << "X:" << xre << "+" << x.im << "1" << endl:

cout << "y:" << yre << "+ << yim << """ << end|
Complex sum = x + v;

cout << "sum " << sum.re << "+" << sum.im << "|" << endl:

2.12.2 Constructor

e A constructor is a special member useditaplicitly perform initialization
after object allocation to ensure the object is valid befme.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
... Il other members

I3
e Constructor name is overloaded with the type name of thetsire!.

e Constructor without parameters is thiefault constructor, for initializing
a new object to a default value.

CS 246 164

Complex x; x.Complex();
Complex »y = new Complex;
y->Complex();

Complex x; implicitly
Complex xy = new Complex; rewritten as

e Unlike Java, C+ does not initialize all object members tfadk values.

e Constructor is responsible for initializing members initialized via other
constructors

e Because a constructor Is a routine, arbitrary executiorbegrerformed
(e.g., loops, routine calls, etc.) to perform initializati

e A constructor may have parameters but no return type (not waie).
e Never put parenthesis to invoke default constructor for Edaeclarations.

Complex x(); /I routine with no parameters and returning a complex
e Once a constructor is specified, structure initializatioa disallowed:

Complex x = { 3.2 }; // disallowed
Complex y = { 3.2, 4.5 }; // disallowed

e Replaced using overloaded constructors with parameters:

CS 246 165

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; }
Complex(double r) {re=r, im=0.; }
Complex(double r, double i) {re=r1, im=1,}

I3
e Unlike Java, constructor argument(s) can be specdit a variable for
local declarations:

imolicitl Complex x; x.Complex();
Complex x, y(1.0), z(6.1, 7.2); P it y Complex y; y.Complex(1.0);
rewritten as Complex z; z.Complex(6.1, 7.2);

e Dynamic allocation is same as Java:

Complex «x = new Complex(); // parenthesis optional
Complex sy = new Complex(1.0);
Complex xz = new Complex(6.1, 7.2);

e If only non-default constructors are specified, an objectrazot be
declared without an initialization value:

CS 246 166

struct Foo {
Foo(int i) {...}

J
Foo X; /I disallowed!!!
Foo x(1); /[allowed

Must create a default constructor to allow first declaration

e Unlike Java, constructor cannot be called explicitly attsthanother
constructor, so constructor reuse done through a sepaesidar:

Java CH
class Foo { struct Foo {
int 1, J; int i, j;
void common(int p){i=p;j=1
Foo() { this(2); } /I explicit call Foo() { common(2); }
\ Foo(int p){i=p;]J=1;} Foo(int p) { common(p); }
I3

2.12.2.1 Constant

e Constructors can be used to create object constantgfiike
type-constructor constants):

CS 246 167

Complex x, vy, z;

X = Complex(3.2); /Il complex constant with value 3.2+0.0i

y = x + Complex(1.3, 7.2); [// complex constant with value 1.3+7.2i

z = Complex(2); // 2 widened to 2.0, complex constant with value 2.0+

e Previous operator for Complex is changed because type-constructor
constants are disallowed for a type with constructors:

Complex operator +(Complex ¢) {
return Complex(re + c.re, im + c.im); // create new complex value
}

2.12.2.2 Conversion
e Constructors are implicitly used for conversions:

Int I,

double d;

Complex X, v;

X = 3.2 X = Complex(3.2);

y = x + 1.3; implicitly y = x.operator +(Complex(1.3));

y =X +1; rewrittenas Y = X.operator +(Complex((double)i);
y = X + d; y = X.operator +(Complex(d));

CS 246 168
¢ Allows built-in constants and types to interact with usefxaed types.

e Note, two implicit conversions are performed on variabtex + i: int to
double and therdouble to Complex.

e Implicit constructor conversion is turned off with qualifiexplicit :

struct Complex {

.e.x.plicit Complex(double r) {re =r;, im = 0.; } /[turn off
/[implict conversion
I3
e However, this capability fails for commutative binary ogtens.

e 1.3 + x, fails because it is rewritten &@%.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typdouble .

e Solution, move operator out of the
object type and made into a routine, which can also be catledixed form:

CS 246 169

struct Complex { ... }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

: operator +(X, V)

}

X + y, . ..

1.3 + X; implicitly operator +(Complex(1.3), X)
X+ 1

, rewritten as operator +(x, Complex(1.3))

W X

e Compiler first checks for an appropriate operator in obpgoet and if
found, applies conversions only on the second operand.

e If N0 appropriate operator in object type, the compiler &sdor an
appropriate routine (it is ambiguous to have both), anduhfih applies
applicable conversions tmth operands.

¢ In general, commutative binary operators should be wrdieroutines to
allow implicit conversion on both operands.

¢ /O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &o0s, Complex ¢) {

}

return os << c.re << "+" << c.im << "1 ";
cout << "X:" << x; /I rewritten as: <<(cout.operator<<(“x:"), x)

CS 246 170

e Standard C+ convention for I/O operators to take and retigineam
reference to allow cascading stream operations.

e << operator in objectout Is used to first print string value, then overloaded
routine<< to print the complex variable.

e Why write as a routine versus a member?

2.12.3 Random Numbers

e Random numbers are values generated independently, i.e., new values d
not depend on previous values (independent trials).

e E.g., lottery numbers, suit/value of shuffled cards, valuslted dice, coin
flipping.

e While programmers spend most of their time ensuring contpouadues are
not random, random values are useful:

o online gambling, computer simulation, cryptography, cabep graphics,
etc.

e A random-number generatoris an algorithm that computes independent
values.

CS 246 171

e If the algorithm uses deterministic computation, it getespseudo
random-numbersversus “true” random numbers, as output is predictable

e All pseudo random-number generatos (PRNG) involve some technique
for scrambles the bits of a value, e.g., multiplicative reence:

seed = 36969 x (seed & 65535) + (seed >> 16); // scramble bits

e Multiplication of large values adds new least-significaim$ Bnd drops
most-significant bits.

bits 63-32 bits 31-0
0| 3e8e36

5f | 718c25el

ad3e | 7b5f 1dbe
bc3b|ac69ff 19
1070f | 2d258dc6

e By dropping bits 63-32, bits 31-0 become scrambled aftein eadltiply.

e E.9., generate fixed sequence of LARGE random values that repeats afte
232 values (but might repeat earlier):

CS 246 172

class PRNG {
uint32_t seed ; /[results on 32/64-bit architectures
public :

PRNG(uint32_t s = 362436069) {
seed = s; // set seed

}

void seed(uint32_ t s) { I/l reset seed
seed = s; I/l set seed

}

uint32_t operator ()() { /[l TO,UINT_M/

seed = 36969 x (seed & 65535) + (seed >> 16); // scramble
return seed_;

}

uint32_t operator ()(uint32_t u) { // [0,u]
return operator ()() % (u + 1);

}

uint32_t operator ()(uint32_t |, uint32_t u) { Il [l,u]
return operator)(u -1) + I;

}

I3
e Creating a member with the function-call operator najne€functor)
allows these objects to behave like a routine.

CS 246 173

PRNG prng;
prng(); /[[O,UINT_MAX]
prng(5); /1'10,9]

prng(5, 10); // [5,10]

e Large values are scaled using modulus; e.g., generate d6manumber
between 5-21.:

PRNG prng;

for (inti=0;i<10;i+=1){
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << end];
cout << prng(5, 21) << end;

}

e By initializing PRNG with a different “seed” each time the program is run,
the generated sequence is different:

PRNG prng(getpid()); // process id of program
prng.seed(getpid());

2.12.4 Copy Constructor / Assignment
e There are multiple contexts where an object is copied.

CS 246 174

1. declaration initialization@bjType obj2 = obj1)
2. routine call (argument- parameter)
3. assignmentopj2 = objl)

e Cases 1 & 2 involve a newly allocated object with undefinedesl(unless
a member has a constructor).

e Case 3 Involves an existing object that may contain prelyoz@mputed
values.

o C+ differentiates between these situations: initial@matnd assignment.

e Constructor with a&onst reference parameter is used for initialization
(declarations and parameters), calledd¢bpy constructor:

Complex(const Complex &c) { ... }
e Declaration initialization:
Complex y = x Implicitly rewritten as Complex y; y.Complex(X);

o “="1s misleading as copy constructor is called not assignropatator.
o value on the right-hand side of™is argument to copy constructor.

e Parameter initialization:

CS 246 175

Complex rtn(Complex a, Complex b);
Complex X, v;

rn(x, y)
o call results in the following implicit action inn:

Complex rtn(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with argume

e If a copy constructor is not defined, an implicit one is getetdhat does a
shallow copy/(bit-wise copy), I.e., copies the object including pointers.

e Assignment routine is used for assignment:

Complex &operator =(const Complex &c) { ... }

o value on the right-hand side of™is argument to assignment operator.
o usually most efficient to use reference for parameter analréype.

e If an assignment operator is not defined, an implicit one regated that
does a shallow copy.

e \When an object type contains pointers, it is often necedsaityp adeep
copy, I.e, copy the contents of the pointed-to storage rather tiha
pointers.

CS 246

ObjType obj2 = obj1

/\

shallow copy

:

lhs

\

3

™

deep copy

2.12.5 Initialize const /Object Member

Initialize

L7

176

= rhs

shallow copy |

deepcopy | 7

assignment

e C/C+const members and local objects of a structure must be initialated
declaration:

CS 246
ldeal (Java-like)

177
Structure

struct Bar {
Bar(int 1) {...}

/l no default constructor

} bar(3);
struct Foo {
const int 1| =3;

Bar x const p = &bar;

Bar &rp = bar;
Bar b(7);
} X

struct Bar {
Bar(int 1) {...}
// no default constructor
} bar(3);
struct Foo {
const int I
Bar « const p;
Bar &rp;
Bar Db;
} x ={ 3, &bar, bar, 7 };

e Left: not allowed because fields cannot be directly iniiadl.
¢ Right: not allowed because cannot supply argumehtusing this syntax.

e Try using a constructor:

CS 246 178
Constructor/assignment Constructor/initialize
struct Foo { struct Foo {
const int I; const int I;
Bar x const p; Bar « const p;
Bar &rp; Bar &rp;
Bar b; Bar b;
Foo() { Foo() : // declaration order
| = 3; /| after declaration I(3),
p = &bar; p(&bar),
rp = bar ; rp(bar),
b(7); /I not a statement b(7) {
}

1

J

e Left: not allowed becaussponst has to be initialized at point of declaration.
¢ Right: special syntax to indicate initialized at point ottation.
e Ensuresonst /object members are initialized before used in constructor

body.

e Must be initialized in declaration order to prevent use bedo

Initialization.

e Syntax may also be used to initialize any local members:

CS 246

struct Foo {
Int k;
Foo() : ..., k(14) {
k =14
}
I3

2.12.6 Destructor

e A destructor (finalize in Java) Is a special member used to perform

/I Initialize k
/I or assign k

uninitialization at object deallocation:

Java C+H
class Foo { struct Foo {
1.‘i.n.alize() {...} .~.F.oo() { ... } /Il destructor

179

e An object type has one destructor; its name is the charactdoflowed by
the type name (like a constructor).

e A destructor has no parameters nor return type (not evier):

CS 246 180

e A destructor is only necessary if an object depends/chanites
environment e.g., opening/closing files, allocating/freeing dynaatic
allocated storage, etc.

e An independent object like aComplex object, requires no destructor.

e A destructor is invokedbefore an object is deallocated, either implicitly at
the end of a block or explicitly by delete :

{ { /I allocate local storage
Foo X, y(X); Foo X, y; X.Foo(); y.Foo(x);
Foo xz = new FooO; Foo xz = new Foo0; z->F00();
.. implicitly .
delete z; rewritten as z->~Foo(); delete z;

y.~Foo(); x.~Foo();
} } /I deallocate local storage

e For local variables in a blocklestructors must be called in reverse order
to constructors because of dependencegs.,y depends oH.

e A destructor is more common in C+ than a finalize in Java dubddack
of garbage collection in C+.

CS 246 181

e If an object type performs dynamic storage allocation, itdependent and
needs a destructor to free the storage:

struct Foo {
int «i; /[think int i[]
Foo(int size) { I = new int[size]; } // dynamic allocation
~Foo() { delete [] 1I; } /[must deallocate storage

I3
e C+ destructor is invoked at a deterministic time (blockrtegation or
delete), ensuring prompt cleanup of the execution environment.

¢ Javafinalize Is invoked at a non-deterministic time during garbage
collection ornot at all, so cleanup of the execution environment is
unknown.

2.13 Type Nesting
e Type nesting is useful for controlling visibility for typeames:

CS 246 182

struct Foo {

enum Colour { R, G, B }; // nested type
Int g;
int r) { ...}
struct Bar { I/l nested type
Colour c; Il Ok, static reference
Int s() { g =3;r0); } /I fails, dynamic reference
\ I3
Foo::Colour colour = Foo::R; [l must qualify
Foo f; f.g; f.r();
Foo::Bar b; b.c; Db.s(); /[must qualify

e References inside the nested type do not require qualdrcati
e However, nesting aggregate types only imply static scomogdynamic

e Hence, references ;ito membergy andr in Foo fail because no dynamic
scope relationship between types andFoo.

e References outside the object must be qualified with typeabpe”;:”.

e C+ selection operator™, e.g.,Foo.Colour, cannot be used because it
requires an object not a type.

CS 246 183
2.14 Declaration Before Use

e C/C+ haveDeclaration Before UsgDBU), e.g., a variable declaration
must appear before its usage in a block:

{

cout << | << endl;

int 1 = 4; /[declaration after usage
}
/[prints 4

e A compiler can handle some DBU situations, but there are gnais
cases:

int 1 = 3;
{

cout << | << endl; /I which 1?
int 1 = 4;
cout << | << endl;

}
/I prints 3 4

e C always requires DBU.
e C+ requires DBU in a block and among types but not within a&typ

CS 246 184

e Java only requires DBU in a block, but not for declarationsniamong
classes.

e DBU has a fundamental problem specifyimgitually recursive references:

void f() { /[f calls g
90); /I g is not defined and being used

void g)) { // g callsf
f0); /I fis defined and can be used

e Caution: these calls cause infinite recursion as there is nade case.

e Cannot type-check the call tpin f to ensure matching number and type of
arguments and the return value is used correctly.

e Interchanging the two routines does not solve the problem.

e A forward declaration introduces a routine’s type before its actual
declaration:

CS 246 185

Int f(int i, double); // routine prototype: parameter names optional
/[and no routine body
|nt f(Int 1, double d) { // type repeated and checked with prototype

}

e Prototype parameter names are optional (good documemyatio

e Actual routine declaration repeats routine type, whichtmastch
prototype.

e Routine prototypes also useful for organizing routines soarce file.

void g(int 1); I/l forward declarations

void f(int i);

Int main();

Int main() { /[actual declarations, any order
f(5);
9(4);

void g(int i) {...}
void f(int i) {...}

e E.g., allowingmain routine to appear first, and for separate compilation.
e Like Java, C+ does not (usually) require DBU within a type:

CS 246 186

Java CH

/[any g must be nested in a class|void g() {} // not selected

class T { struct T {
void f() { ¢ = Colour.R; g(); } void f) {c =R; g(); } // c, R, g not DBU
void g() { ¢ = Colour.G; f(); } void g() {c=G; f(); } // c, G not DBU
Colour c; enum Colour { R, G, B }; /I type must be DB
enum Colour { R, G, B }; Colour c;

% I3

e Unlike Java, C+ requires a forward declaration for muiuedicursive
declaration@mongtypes:

Java CH
class T1 { struct T1 {
T2 t2; T2 t2; // DBU failure, size?
T1(0) { t2 = new T2(); }
; I3
class T2 { struct T2 {
T1 t1; T1 t1;
T2(0) { t1 = new T1(); } \
T1 t1 = new T1(); T1 t1;

CS 246 187
e Caution: these types cause infinite expansion as there is agdcase.

e Java version compiles becausé2 are references not objects, and Java cal
look ahead atr2; C+ version fails because DBU ar2.

e An object declaration and usage requires the object’s sidar@mbers so
storage can be allocated, initialized, and usages typekelde

e Solve using Java approach: break definition cycle usingvaaiat
declaration and pointer.

Java CH
struct T2; /I forward

class T1 { struct T1 {

T2 t2; T2 «t2; [/ pointer, break cycle

T1() { t2 = new T2(); } T1() { t2 = new T2; } // DBU failure, size’
c;Iass T2 { s’truct T2 {

T1 t1; T1 t1;

T2() { t1 = new T1(0; }| };

e Forward declaration of2 allows the declaration of variablel::t2.

CS 246 188
e Note, a forward declaration only introduces the name of a.typ

e Given just a type name, only pointer/reference declaratiorihe type are
possible, which allocate storage for an address versusjaatob

e C+’'s solution still does not work as the constructor canusa typer2.

e Use forward declaration and syntactic trick to move memieéndion
after both types are defined

struct T2; // forward

struct T1 {
T2 «t2; [/ pointer, break cycle
T1(); /[forward declaration

I3

struct T2 {
T1 t1;

%

T1::T1() {t2 = new T2; } // can now see type T2

e Use of qualified nam&1::T1 allows a member to be logically declared in
T1 but physically located later.

CS 246 189
2.15 Abstraction/Encapsulation

e Abstraction is the separation of interface and implementation allovang
object’s implementation to change without affecting usagach is
essential for reuse and maintenance.

e E.g., a user of typ€omplex should not have or need direct access its
Implementation to perform operations:

struct Complex {
double re, im; /I implementation data
... Il interface routine members

I3
¢ Possible to change from Cartesian to polar coordinates sedinterface
remains constant.

e Developing good interfaces for objects is important.

e Encapsulationis hiding the implementation for security or financial
reasonsgccess contrd.

e Abstract data-type (ADT) is a user-defined type that practices abstraction
and encapsulation.

CS 246 190

e Abstraction and encapsulation are neither essential noqrered to
develop software.

e E.g., users could follow a convention of not directly acasgshe
Implementation.

e However, relying on users to follow conventions is dangsrou
e Encapsulation is provided by a combination of C and C+ festu

e C features work largely among source files, and are indydiettl into
separate compilation.

e C+ features work both within and among source files.
e Like Java, C+ provides 3 levels of visibility control for jelt types:

Java CH-

class Foo { struct Foo {

private ... private : /I within and friends

/[private members

protected ...| protected : /I within, friends, inherited

e /I protected members

public ... public : /I within, friends, inherited, users
. /I public members
’ %

CS 246 191
e Java requires encapsulation specification for each member.

e C+ groups members with the same encapsulation, i.e., allbees after a
label, private , protected or public , have that visibility.

e Visibility labels can occur in any order and multiple timasan object type.

e Only the object type can access the private memisersnplementation
members are normally private

e Public members define an object typgiterface, i.e., what a user can
access.

e \While a user can see private and protectedmembers, thegptdaan
accessed, preventing user code from violating abstraction

e struct has an implicipublic inserted at the beginning, i.e., all members are
public.

e class has an implicifprivate inserted at the beginning, i.e., all members are
private.

CS 246

192
struct S{ |class C {
/I public: /I private:
Int z; Int X;
private : protected :
Int X; int v;
protected :| public:
int v; int z;
I3 3

e Use abstraction to preclude object copying by hiding copystmictor and
assignment operator:

class Foo {
Foo(const Foo &); /[undefined
Foo &operator =(Foo &); // undefined

public :

I}

Foo X, V,;

ren(X); /[fails for pass by value

X =Y, /] falls

e Useful to prevent object forgery (lock, boarding-passenei or copying
that does not make sense (file, database).

CS 246 193

e Encapsulation introduces a new problem for routines oeatsfcan object
used to implement binary operations for an object.

e An outside routine may need to access an object’s implernenidut it
cannot access private members.

e C+ provides a mechanism to state that an outside routinbwerl access
to its implementation, callefitiendship (similar to package visibility in
Java).

class Complex {
friend Complex operator +(Complex a, Complex b);

I}
Complex operator +(Complex a, Complex b) { ... }

e Thefriend prototype indicates a routine with the specified name and typ
may access this object’s implementation:

CS 246 194

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im;

public :

double abs() { return sqgrt(re » re + im = im); }
Complex() { re = 0.; im = 0.; }
Complex(double r) {re =r;, im = 0.; }
Complex(double r, double 1) {re =1, Im =1, }

I}

Complex operator +(Complex a, Complex b) { ... }

ostream &operator <<(ostream &os, Complex ¢) { ... }

2.16 Separate Compilation

e Like Java, C/C+ useource files to provide another mechanism for
encapsulation.

CS 246 195

file.java file.cc
enum Colour { R, G, B }; I/l export lenum Colour { R, G, B }; // local
class C { /Il export
private static int 1 /I private | static int I /I private
private static void f() {} // private |static void f() {} /I private
public static int j; /I export |Int |; Il export
public static void g() {} // export |void g() {} /I export
}
class D { /I export |class D { // local
private int i; Il private int i, /I private
private void f() {} I/ private void f(); /I private
public :
public int j; /Il public int j; /I public
public void g() {} /Il public void g(); Il public
} }

e Like Java, C/C+H implicitly exports variables and routiriesn a source file.

e In C/CH, to encapsulate global variables and routines wuace file, the
declaration must be qualified withtatic .

e Unlike Java, C/C+ do NOT implicitly export types from a soeifile.
e Java implicitly looks inx.class files for exported content.

CS 246 196

e C/C+ require the use of the preprocessor and forward dcemas to
access exported content.

e Programmer must explicitly divided program into interfacel
Implementation in two (or more) files.

e Interface is composed of the prototype declaration(s)gbssibly some
Implementation).

e Implementation is composed of actual declarations and.code

e Interface is entered into one or more include filésfi{es), and the
Implementation is entered into one or more source fiksfiles).

CS 246 197
file.java file.n—file.cc
enum Colour { R, G, B }; I/l export |lenum Colour { R, G, B }; // public
class C { /Il export
private static int 1i; /[private
private static void f() {} // private o _
public static int j; /I export | extern int j; /I public
public static void g() {} / export |extern void g(); /I public
} |
class D { /I export |class D { /I public
private int i; /| private int i; /I private
private void f() {3 /| private void f(); /I private
public :
public int j; Il public int j; /I public
public void g() {} /I public void g(); /I public
}
static int i; /[private
static void f() {} /I private
Int j; /I public
void g() {} /I public
void D:f() {} /[private
void D:g() {} /I public

CS 246 198

e extern qualifier means the actual variable or routine definitiorcated
elsewhere.

e extern On routine prototypes is optional, but good documentation.
e Static class-variables must be declared once (versus ddjinea .cc file.

.h .CC

class C {
static char c; // defn|char C::c = “a”; /I decl

e Encapsulation is provided by giving a user access to thedecfile(s) and
the compiled source file(s), but not the implementation engtwrce file(s).

e Most software supplied from software vendors comes this way

e E.g.,Complex prototype information is placed into fiamplex.h, which
users include in their programs.

CS 246 199

#ifndef _ COMPLEX_H_

#define __COMPLEX_H__ I/l protect against multiple inclusion

#include <iostream> /| access: ostream
/[Inject no names, use gualification
extern void complexStats(); /I interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std:..ostream &os, Complex c);
double re, im; /I exposed implementation
public :
Complex();
Complex(double r);
Complex(double r, double 1);
double abs();
I3
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std:.ostream &os, Complex c);
#endif // _ COMPLEX H

e Complex implementation information is placed in fil@mplex.cc.

CS 246 200

#include "conpl ex. h" /I do not copy interface
#include <cmath> /[access: sqrt

using namespace std; /[Inject names

// global, private declarations

static int cplxObjCnt = O; /l private, defaults to O

/I interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
Complex::Complex() { re = 0.; im = 0.; cplxObjCnt += 1; }
Complex::Complex(double r) { re = r; Im = 0.; cplxObjCnt += 1; }
Complex::Complex(double r, double i) { re = r; Im = 1, cpIxObjCnt += 1,
double Complex::abs() { return sgrt(re » re + Im x im); }
complex operator +(complex a, complex b) {

return complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &o0s, complex c) {

return os << c.re << "+" << c.im << "I ";
}
e .cc file includes the.h file so that there is only one copy of the constants,
declarations, and prototype information.

e cplxObjCnt is qualified withstatic to make it a private variable to this
source file.

CS 246 201

e NO user can access it, but each constructor implementagioimcrement it
when aComplex object is created.

e Users calkomplexStats to print the number o€omplex objects created so
far in a program.

e Notice, all the member routines Gbmplex are separated into a forward
declaration and an implementation after the object typewaig the
Implementation to be placed in the file.

e Note, by reading theh file, it may be possible to determine the
Implementation technique used, so there is only partiahpesalation.

e To provide complete encapsulation requires abstract tyddmore
expensive) references:

CS 246 202

#ifndef _ COMPLEX_H_
#define _ COMPLEX_H_

I/l protect against multiple inclusion

#include <iostream> /| access: ostream
/[Inject no names, use gualification
extern void complexStats(); /I interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std:..ostream &os, Complex c);

struct Compleximpl; /[hidden implementation, nested class
Compleximpl &impl; // indirection to implementation

public :
Complex();

Complex(double r);

Complex(double r, double 1);

~Complex();

Complex(const Complex &c); /[copy constructor

Complex &operator=(const Complex &c); /[assignment operator
double abs();

%

extern Complex operator +(Complex a, Complex b);

extern std::ostream &operator <<(std:.ostream &os, Complex c);

#endif // __ COMPLEX H_

CS 246 203

#include "conpl ex. h" /I do not copy interface
#include <cmath> /[access: sqrt

using namespace std; /[Inject names

// global, private declarations

static int cplxObjCnt = O; /l private, defaults to O

struct Complex::Compleximpl { // actual implementation, nested class
double re, im;
I3

/I interface declarations

void complexStats() { cout << cplxObjCnt << endl; }

Complex::Complex() : impl(xnew Compleximpl) {
impl.re = 0.; impl.im = 0.; cpIxObjCnt += 1,

}

Complex::Complex(double r) : impl(xnew Compleximpl) {
Impl.re = r; impl.im = 0.; cplxObjCnt += 1;
}

Complex::Complex(double r, double 1) : impl(xnew Compleximpl) {
impl.re = r; impl.im = i; cplxObjCnt += 1;
}

Complex::~Complex() { delete &impl; }

Complex::Complex(const Complex &c) : impl(xnew Compleximpl) {
Impl.re = c.impl.re; impl.im = c.impl.im; cplxObjCnt += 1;

}

CS 246 204

Complex &Complex:.operator =(const Complex &c) {
Impl.re = c.impl.re; impl.im = c.impl.im; return *this;
}

double Complex::abs() {
return sqrt(impl.re = impl.re + implim = impl.im);
}

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &o0s, Complex c) {
return os << c.impl.re << "+" << c.impl.im << "1 ";

e A copy constructor and assignment operator must be usedidecamplex
objects now contain a reference pointer to the implemeanrtiati

e E.9., copying the reference pointer can result in two comphgects
pointing at the same complex value and both may eventudéyngt to
delete it (dangling pointer).

e As well, overwriting a reference pointer may lose the onlynper to the
storage so it can never be freed (memory leak).

e An encapsulated object is compiled using theempilation flag and
subsequently linked with other compiled source files to farprogram:

CS 246 205

g++ -c complex.cc

e Creates filecomplex.o containing a compiled version of the source code.

e TO use an encapsulated object, a program specifies the apcesgdude
file(s) to access the object’s interface:

#include "conpl ex. h”
#include <iostream>
using namespace std;
iInt main() {
Complex x, vy, z;
X = Complex(3.2);
y = x + Complex(1.3, 7.2);
z = Complex(2);

cout << "X:" << x << " y:" <«<y<<" z:" << z << end;

}

e Then links with any necessary executables:

g++ usecomplex.cc complex.o # other .o files if necessary

e Notice,iostream is included twice, once in this program and once in

complex.h, which is why each include file needs to prevent multiple
Inclusions.

CS 246 206
2.17 Inheritance

e Objectorientedlanguages providanheritance for writing general,
reusable program components.

Java CH
class Base { ... } struct Base { ...}
class Derived extends Base { ... }|struct Derived : public Base { ... };

e Inheritance has two orthogonal sharing concepts: impléatien and type.

2.17.1 Implementation Inheritance

e Implementation inheritance reuses program componentsimpasing a
new object’s implementation from an existing object, tgkatvantage of
previously written and tested code.

e Substantially reduces the time to compose and debug a neetdipe.
e One way to understand this technigue is to model it via ekphiclusion:

CS 246 207
Inclusion Inheritance
struct Base { struct Base {
Int I, Int I,
int r(...) {...} int r(...) {...}
Base() { ... } Base() { ... }

struct Derived {
Base b; // explicit inclusion

int s(...) {bi=3Dbr(.) ...

Derived() { ... }

} d;

d.b.i = 3; // inclusion reference
d.b.r(...); /I inclusion reference
d.s(...); /I direct reference

struct Derived : public Base { // implicit ir

int s(...){1=3;r(..); ...
Derived() { ... }
}d;
d.i = 3; /I direct reference
d.r(...); /I direct reference
d.s(...); // direct reference

}

e Inclusion implies explicitly creating an object membgrio aid in the

Implementation.

e Object typeDerived inherits fromBase type via ‘public Base” clause.

e Inheritance implicitly:

o Creates an anonymous object member

CS 246 208

o opensthe scope of anonymous member so its members are accessible
without qualification, both inside and outside the inhagtobject type.

e Constructors and destructors must be invoked for all intpfideclared
objects in the inheritance hierarchy as done for an expheinber in the
Inclusion.

Base b; b.Base(); // implicit, hidden declaration
Derived d; Implicitly Derived d; d.Derived();
rewritten as - ..

d.~Derived(); b.~Base(); // reverse order of constri

e If base type has members with the same name as derived typm ki like
nested blocks: inner-scope name hides (overrides) ootgresname.

e Still possible to access outer-scope names usthgdalification to specify
the particular nesting level.

CS 246 209
Java CH
class Basel { struct Basel {
int i; int i;
} 13
class Base2 extends Basel { struct Base2 : public Basel {
Int i Int i // hides Basel::
} I3
class Derived extends Base2 { struct Derived : public Base2 {
Int i Int 1, I/l hides BaseZ2::i
void s() { void r() {
int 1 = 3; Int 1 = 3; // hides Derived::i
this .i = 3; Derived::i = 3; // this.i
((Base2)this).i = 3; // super.i Base2::i = 3;
((Basel)this).i = 3; Base2::Basel:i = 3;
} }
} 13

e E.g.,Derived declaration first create an invisibBase object in theDerived
object, like inclusion, for the implicit referencesBase::i andBase::r in

Derived::s.
e Friendship is not inherited.

CS 246 210

class C {
friend class Base;

J

class Base {
/I access C’s private members

I3

class Derived : public Base {
/[not friend of C

I3

e Unfortunately, having to inherit all of the members is natays desirable;
some members may be inappropriate for the new type (e.g &argy).

e As a result, both the inherited and inheriting object mustdry similar to
have so much common code.

e In general, routines provide smaller units for reuse thameeobjects.

2.17.2 Type Inheritance

e Type inheritance extends name equivalence to allow rositméandle
multiple types, callegholymorphism, e.g.:

CS 246 211

struct Foo { struct Bar {
Int I, Int I,
double d; double d;
} b

void r(Foo f) { ...}
r(f); // valid call
r(b); /I should also work

e Since types-oo andBar are identical, instances of either type should work
as arguments to routirre

e Even If typeBar has more members at the end, routimaly accesses the
common ones at the beginning as its parameter isfkgpe

e However, name equivalence precludes ther¢al) even thouglb is
structurally identical td.

e Type inheritance relaxes name equivalence by aliasing tlegidged name
with its base-type names.

CS 246 212

struct Foo { struct Bar : public Foo { // inheritance
Int i /l remove Foo members
double d;

} Vb

void r(Foo f) { ...}
r(f); [/ valid call, derived name matches
r(b); // valid call because of inheritance, base name matches

e E.g., create a new typdycomplex that counts the number of timabs is
called for eactMycomplex object.

e Use both implementation and type inheritance to simplifydnog type
Mycomplex:

struct Mycomplex : public Complex {
int cntCalls; // add

Mycomplex() : cntCalls(0) {} /[add

double abs() { // override, reuse complex’s abs routine
cntCalls += 1;
return Complex::abs();

}
Int calls() { return cntCalls; } /l add

CS 246 213

e Derived typeMycomplex uses the implementation of the base type
Complex, adds new members, and overridds to count each call.
e Why is the qualificatiorComplex:: necessary iMycomplex::abs?

¢ Allows reuse ofComplex’s addition and output operation fétycomplex
values, because of the relaxed name equivalence providsgéy
Inheritance between argument and parameter.

e Now variables of type&omplex are redeclared tBlycomplex, and member
calls returns the current number of callsabs for any Mycomplex object.

e Implementation inheritance provides reusgide an object type; type
Inheritance provides reuseltsidethe object type by allowing existing code
to access the base type.

e |.e, any routine that manipulates the base type also matgsithe derived
type.

¢ Two significant problems with type inheritance.

1. o Complex routineoperator + is used to add th®lycomplex values
because of the relaxed name equivalence provided by tyeeitanhce:

CS 246 214

Int main() {
Mycomplex X;
X =X + X;

}

o However, the result type fromperator + is Complex, not Mycomplex.

o Assignment of @&omplex (base type) taMycomplex (derived type) fails
because th€omplex value is missing thentCalls member!

o Hence, avlycomplex can mimic aComplex but not vice versa.

o This fundamental problem of type inheritance is called
contra-variance.

o C+ provides various solutions, all of which have problemd are
beyond this course.

void r(Complex &c) { c.abs(); }
iInt main() {
Mycomplex X;
x.abs(); /I direct call of abs
r(X), /[indirect call of abs
cout << "X:" << x.calls() << endl;

}

o While there are two calls tabs on objectx, only one is counted!

CS 246 215

e public inheritance means both implementation and type inhemanc
e private inheritance means only implementation inheritance.

class bus : private car { ...
Use implementation froroar, butbus is not acar.

e No direct mechanism in C+ for type inheritance without iempentation
Inheritance.

2.17.3 Constructor/Destructor

e Constructors aranplicitly executed top-down, from base to most derived
type.

e Mandated by scope rules, which allow a derived-type coaogirudo use a
base type’s variables so the base type must be initializetd fir

e Destructors arenplicitly executed bottom-up, from most derived to base
type.

e Order is mandated by the scope rules, which allow a deriypd-tiestructor
to use a base type’s variables so the base type must be almeid last.

e Javafinalize must beexplicitly called from derived to base type.

CS 246 216

e Unlike Java, C+ disallows calls to other constructors atdtart of a
constructor.

e TO pass arguments to other constructors, use the same sytax
Initializing const members.

Java CH
class Base { struct Base {
Base(int 1) {...} Base(int i) {...}
I3 %
class Derived extends Base { struct Derived : public Base {
Derived() { super(3); ... } Derived() : Base(3) { ...}
Derived(int i) { super(i); ...} Derived(int 1) : Base(1) {...}
5 %

2.17.4 QOverloading

e Overloading a member routine in a derived class hides alosxded
routines in the base class with the same name.

CS 246 217

class Base {
public :
void mem(int i) {}
void mem(char c) {}

I3
class Derived : public Base {
public :
void mem() {} // hides both versions of mem in base class
I3

e Hidden base-class members can still be accessed:
o Selectively provide explicit s for each hidden one.

class Derived : public Base {
public :
void mem() {}
void mem(int i) { Base:mem(1); }
void mem(char ¢) { Base::mem(c); }
I3

o Collectively provide implicit members for all of them.

CS 246 218

class Derived : public Base {
public :
void mem() {}
using Base::mem; // bring all base mem routines into this interface

I3

o Use explicit qualification to call members (violates absian).
Derived d;
d.Base::mem(3);

d.Base::mem(‘a”);
d.mem();

2.17.5 Abstract Class

e Abstract classcombines type and implementation inheritance for
structuring new types.

CS 246

219

Java

abstract class Shape {
private int colour;

public abstract void move(int x, inty);

}

abstract class Polygon extends Shape {
private int edges;

public abstract int sides();

}

class Rectangle extends Polygon {
private int x1, yl1, x2, y2;

public void move(int x, int y) {...}
public int sides() { return 4; }

}

class Square extends Rectangle {

public void move(int x, int y) {...}

C++
class Shape {
int colour;
public :
virtual void move(int x, inty) = 0;
I3
class Polygon : public Shape {
Int edges;
public :
virtual int sides() = 0;
I3

class Rectangle : public Polygon {
int x1, y1, x2, y2;
public :
void move(int x, int y) {..}
int sides() { return 4; }

c’Iass Square : public Rectangle {
public :
void move(int x, int y) {..}

%

e Strange initialization to O means this membaist be defined by any

derived type.

CS 246 220

e Cannot instantiate objects from an abstract class, but cascthre
pointer/reference to it.

2.17.6 Multiple Inheritance

e Multiple inheritance allows a new type to apply type and implementation
Inheritance multiple times.

class X : public Y, public Z, private P, private Q { ...}

e X type is aliased to types andz with implementation, and also uses
Implementation fronP andQ.

e Interface class(pure abstract-clasg provides only types and constants,
providing type inheritance.

e Java only allows multiple inheritance for interface class.

CS 246

221

Java

CH

interface Polygon {

public int sides();
public void move(int x, int y);

}

interface Rectilinear {
final public int angle = 90;

}

class Rectangle implements Rectilinear,

Polygon {

private int x1, yl1, x2, y2;
public void move(int X, int y) {}
public int sides() { return 4; }

}

class Square extends Rectangle {

public void move(int x, int y) {}

class Polygon {
public :
virtual int sides() = O;
virtual void move(int X, int y) = 0O;

I3
class Rectilinear {
public :
enum { angle = 90 };
I3

class Rectangle : public Polygon,
public Rectilinear {
Int x1, y1, x2, y2;
public :
void move(int x, int y) {}

int sides() { return 4; }

c’Iass Square : public Rectangle {
public :
void move(int x, int y) {}

J

e Restrict multiple inheritance to on@ublic type and one or tw@rivate

types.

CS 246 222
2.17.7 Virtual Routine

e \When a member is called, it is usually obvious which one isked even
with overriding:

struct Base {

void r() { ...}
s’truct Derived : public Base {
void r() { ...} /[override Base::r
Iéase b;
b.rQ); /[call Base::r
Derived d;

d.r(); /[call Derived::r

e However, it Is not obvious for arguments/parameters and
pointers/references:

void s(Base &b) { b.r(); }

s(d); /[inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); /[Base::r or Derived::r ?

¢ Inheritance masks the actual object type, but both callsldhovoke

CS 246 223

Derived::r because argumehtand referencep point at an object of type
Derived.

e If variabled is replaced withb, the calls should invokBase::r.

¢ To invoke the routine defined in the referenced object, utle member
routine withvirtual.

e To invoke the routine defined by the type of the pointer/efiee, do not
gualify the member routine withirtual.

e CH uses non-virtual as the default because it is more gfficie
e Javaalwaysuses virtual for all calls to objects.

e Once a base type qualifies a member as virtuad,virtual in all derived
types regardless of the derived type’s qualification for timember

e Programmer may want to access membeBase even if the actual object
IS of typeDerived, which is possible becaugerived contains a Base.

e C+ provides mechanism to override the default at the dal si

CS 246 224

Java CH-

class Base { struct Base {

public void f() {3 // virtual void f() {} /[non-virtual

public void g() {} // virtual void g() {} /[non-virtual

public void h() {} // virtual virtual void h() {} // virtual
} I3
class Derived extends Base { | struct Derived : public Base {

public void g() {} // virtual void g() {}; /[non-virtual

public void h() {} // virtual void h() {}; /I virtual
} ;
final Base bp = new Derived(); | Base &bp = snew Derived(); // polymorphic ass
bp.f(); /| Base.f bp.f0); I/l Base::f, pointer type
(Base)bp).g(); // Derived.g bp.g(); /[Base:.g, pointer type
bp.g(); /I Derived.g ((Derived &)bp).g(); // Derived:.g, pointer type
((Base)bp).h(); // Derived.h bp.Base::h(); /[Base::h, explicit selection
bp.h(); /I Derived.h bp.h(); /[Derived::h, object type

e Java casting does not provide access to base-type’s meautgres.

¢ Virtual members are only necessary to access derived mestteough a
base-type reference or pointer.

e If a type is not involved in inheritancdirfal class in Java), virtual members

CS 246 225
are unnecessary so use more efficient call to its members.

e C+ virtual members are gualified in the base type as oppasknt tderived
type.

e Hence, CH+ requires the base-type definer to presuppose éroved
definers might want the call default to work.

e Good programming practice for inheritable object types esrmake all
routine members virtual.

e Any type with virtual members and a destructor needs to made t
destructor virtual so the most derived destructor is cdledugh a
base-type pointer/reference.

e Virtual routines are normally implemented by routine penst

class Base {
Int X, vy; // data members
virtual void mi(...); // routine members
virtual void m2(...);

%

e May be implemented in a number of ways:

CS 246 226

X X X
VRT
ml — T = ml — T = — T =ml
m2 — T "= m2 — T "= m2
copy direct routine pointer indirect routine pointer

2.17.8 Down Cast

e Type inheritance can mask the actual type of an object tiraug
pointer/reference.

e Like Java, C+ provides a mechanism to dynamically detegrthe actual
type of an object pointed to by a polymorphic pointer/refee

e The Java operatamnstanceof and the C+ operatatynamic_cast perform a
dynamic check of the object addressed by a pointer/refergrat
coercion):

CS 246 227

Java CH
Base bp = new Derived(); Base xbp = new Derived,
Derived *dp;
If (bp instanceof Derived)| dp = dynamic_cast <Derived *>(bp);
((Derived)bp).rtn(); if (dp!=0) {// 0 => not Derived
dp->rtn(); // only in Derived

e TO usedynamic_cast on atype, the type must have at least one virtual
member.

2.17.9 Abstraction

e Inherited object types can access and modify public aneépretd members
allowing access to some of an object’s implementation.

CS 246 228

class Base {
private :
int Xx;
protected :
Int v;
public :
int z;
I3

class Derived : public Base {
public :
Derived() { x; y; z; }; /'y and z allowed

int main() {
Derived d;
d.x; d.y; d.z; /I z allowed

}

2.18 Template

e Inheritance provides reuse for types organized into a fubyathat extends
name equivalence.

¢ Alternate kind of reuse with no type hierarchy and types atesquivalent.

CS 246 229
e E.g., overloading, where there is identical code but dsifetypes:

int abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }

e Template routine eliminates duplicate code by using tygesoapile-time
parameters:

template <typename T> T abs(T val) { return val >= 0 ? val : -val; }

e template Introduces type paramet€mused to declare return and parameter
types.

e At a call, compiler infers typ@& from argument(s), and constructs a
specialized routine with inferred type(s):

cout << abs(1) << << abs(-1)<<endl // T->Iint
cout << abs(1.1) << " " << abs(-1.1) << endl; // T -> double

e Template type prevents duplicating code that manipulatesent types.

e E.g., collection data-structures (e.g., stack), have comoode to
manipulate data structure, but type stored in collectiaresa

CS 246 230

template <typename T, int N = 10> struct Stack {
T elems[N]; // maximum N elements
Int size;
Stack() { size = 0; }
void push(T e) { elems]size] = e; size += 1; }
T pop() { size -= 1; return elems|size]; }

I3

e Type parametef, declares the element type of arlgms, and return and
parameter types of the member routines.

e Integer parameteN, denotes the maximum stack size.

e For template types, the compiler cannot infer the type patamso it must
be explicitly specified:

CS 246 231

Stack<int, 20> si; /I stack of int
Stack<double > sd; /l stack of double
Stack< Stack<int> > ssi; /| stack of stack of int
si.push(3);

sd.push(3.0);
ssi.push(si);

int i = si.pop();
double d = sd.pop():
si = ssi.pop();

e There must be a space between the two ending chevrons-as parsed as
operator>> .

e Compiler requires a template definition for each usage solbtie
Interface and implementation of a template must be inrefile,
precluding some forms of encapsulation.

2.18.1 Standard Library

e C+ Standard Library provides different kinds of contageector, map,
list, stack, queue, deque.

¢ In general, nodes are either copied into the container ait@oito from the
container.

CS 246 232

e Copying implies node type must have default and/or copytcoci®r so
Instances can be created without having to know constractuments.

e Standard library containers use copying and requires nogeé¢ to have a
default constructor.

e Most containers use aterator to traverse its nodes so knowledge about
container implemented is hidden.

e Iterator capabilities depend on container, e.g., a sihgked list has
unidirectional traversal, doubly-linked list has bidimeaal traversal, etc.

e Containers provides iterator(s) as a nested object tygeJist<Node> has
list<Node>::iterator.

e Iterator operator++" moves forward to the next node, ungibssedhe end
of the container.

e For bidirectional iterators, operator “--" moves in the@ese direction to

++",

2.18.1.1 \ector

e Like Java arrayyector has random access, length, subscript checkit)g (
and assignmentector also has dynamic sizing.

CS 246

233

std::vector<T>

vector() create empty vector
vector(int n) create vector with n empty elements
int size() vector size

bool empty()
T operator [](Int 1)
T at(int 1)

size() ==
access ith element, NO subscript check
access ith element, subscript checking

vector &operator =(const vector &)
void push_back(const T &x)

void pop_back()

void resize(int n)

void clear()

vector assignment

add x after last element

remove last element

add or erase elements at end so size() :

erase all elements

e vector IS alternative to C/C+ arrays.

CS 246 234

#include <vector>

int i, elem;
vector<int> v; I/ think: int v[O]
for (5;) {
cin >> elem;
if (cin.fail()) break;
v.push_back(elem); // add elem to vector
}
vector<int> c; I/ think: int c[O]
C =V, /[array assignment
for (1=csize() -1, 0<=11-=1){
cout << c.at(i) << " "; /I subscript checking
}
cout << endl,
v.clear(); /[remove ALL elements

e Dynamic sizing impliesector’'s elements are allocated on the heap.

¢ \Vector declaratiommay specify an initial size, e.gvector<int> v(size), like
a dimension.

e To reduce dynamic allocation, it is more efficient to dimenswhen the
size is known.

CS 246

Int size:
cin >> size; /I read dimension
vector<int> v(size); /I think int v[size]

e Matrix declaration is a vector of vectors:

vector< vector<int> > m;

e Again, it is more efficient to dimension, when size is known.

#include <vector>
vector< vector<int> > m(5); // 5 rows
for (int r=0;r<msize); r += 1) {

mlr].resize(4), /Il 4 columns per row
for (int ¢ = 0; ¢ < m[r].size(); ¢ += 1) {
mlr][c] = r+c; /I or m.at(r).at(c)

}
for (int r=0;r<msize); r += 1) {
for (int ¢ = 0; ¢ < m[r].size(); ¢ += 1) {

}

cout << m[r][c] << *, ;
cout << endl;

235

CS 246 236
e Cannot specify number of columns at declaration, so eachgaaro sized.

e Before values can be assigned into a row, a row can be dimatsio a
specific sizem[r].resize(4).

¢ All loop bounds are controlled using dynamic size of the rove@umn.
e Iterator is necessary for management operations (versadirig using

subscripting).
std::vector<T>:.iterator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first eleme
iterator insert(iterator posn, const T &x)|insert x before posn
iterator erase(iterator posn) erase element at posn

CS 246 237

begin() end()

l '

¢ ¢
t o1 2 34f

rend() rbegin()

e erase andinsert should take subscript so iterator is unnecessary!
e Iterator returns a pointer to an element.

CS 246 238

vector<int> v;
for (iInt 1=0;1<5;1+= 1)/ create
v.push_back(2 * 1); // values: 0, 2, 4, 6, 8

v.erase(v.begin() + 3); /l remove V[3] : 6

// find position of value 4 using iterator (versus subscript)
vector<int >::iterator f;

for (f = v.begin(); f != viend() && «f = 4; f ++);

v.insert(f, 33); I/l insert before position with value 4

/[print reverse order using iterator (versus subscript)
vector<int >::reverse _iterator r;
for (r = v.rbegin(); r !'= v.rend(); r ++)

cout << xr << endl:

e Cannot insert or erase during iteration using an iterator.

2.18.1.2 Map

e map (dictionary) has random access, sorted, unigue-key aumrtarl pairs
(Key, Val).

CS 246 239

std::map<Key,Val> / std::pair<Key,Val>
map() create empty map
int size() map size
bool empty() size() ==
T operator [](int i) access ith element
int count(Key key) 0 = no key, 1= key
map &operator =(const map &)| map assignment
insert(pair<Key,Val>(k, v)) Insert pair
erase(Key k) erase key k
void clear() erase all elements

e First subscript for key creates an entry and initializes défault or
specified value.

CS 246 240

map<string, int> m, c; [l Key => string, Val => int
m[red"]; /I create, set to O for int
m[green"] = 1; /I create, set to 1

m[bl ue"] = 2; /I create, set to 2

m[green”] = 5; /I overwrite 1 with 5

cout << m[green"] << endl;

cC =m; /[map assignment

m.insert(pair<string,int>(“yel l ow', 3)); // m[*yellow”] = 3
if (m.count("bl ack”)) /I check for key “black”
m.erase(" bl ue"); /I erase pair(“blue”, 2)
m.clear(); /I remove ALL elements

e Iterator to search and return values in key order.

std::map<T>::iterator / std::map<T>::reverse_iterator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first eleme
iterator find(Key &k) find position of key k

iterator insert(iterator posn, const T &x)|insert x before posn

iterator erase(iterator posn) erase element at posn

CS 246 241

e Iterator returns a pointer to an elemeatr, with fieldsfirst (key) and
second (value).

#include <map>
map<string,int >::iterator f = m.find("green"); // find key position
if (f!= m.end()) /[found ?

cout << "found " << f->first << 7 7 << f->second << endl;

for (f = m.begin(); f '= m.end(); f ++) /I increasing order
cout << f->first << 7 7 << f->second << endl;

map<string,int >::reverse_iterator r;
for (r = m.rbegin(); r '= m.rend(); r ++) I/l decreasing order
cout << r->first << ’ 7 << r->second << endl;

2.18.1.3 Single/Double Linked

e If random access is not required, use more efficient single
(stack/queue/deque) or double (list) linked-list corgain

e Examinelist, stack/queue/deque are simpler.

242

ItS

CS 246
std::list<T>
list() create empty list
list(int n) create list with n empty elemen
int size() list size

bool empty()

size() ==

list &operator =(const list &)
T front()

T back()

void push_front(const T &x)
void push_back(const T &x)
void pop_front()

void pop_back()

void clear()

list assignment

first element

last element

add x before first element
add x after last element
remove first element
remove last element

erase all elements

e Iterator returns a pointer to a node.

CS 246 243

std::list<T>::iterator / std::list<T>::reverse _iterator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first elemel
iterator insert(iterator posn, const T &x)|insert x before posn

iterator erase(iterator posn) erase element at posn

CS 246 244

#include <list>
struct Node {
char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

I}
list<Node> dl; /I doubly linked list
for (int 1=0;i1<10;i1i+=1){ /I create list nodes
Node n(“a’+i, i, i+0.5); /l node to be added
dl.push_back(n); /[copy node at end of list
}

list<Node>::iterator f;
for (f = dl.begin(); f !'= dl.end(); f ++) { // forward order

cout << "C:" << (+fle << " 11" << foi<< " d!" << f->d << endl;
}
while (0 < dl.size()) { /I destroy list nodes

dl.erase(dl.begin()); /I remove first node
}

2.18.1.4 Foreach

e Template routindor _each provides an alternate mechanism to iterate
through a container.

e An action routine is called for each node in the containesipgsthe node

CS 246 245
to the routine for processing (Lisipply).

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) { cout << i << " ";} // print node
Int main() {
list< int > int_list;
vector< int > int_vec;
for (Int 1 =0;1<10;1+=1) { /] create lists
Int_list.push_back(i);
Int_vec.push_back(1);
}
for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

e Type of the action routine igid rtn(T), whereT is the type of the
container node.

e E.g.,print has annt parameter matching the container node-type.

e More complex actions are possible by constructing a “fuumctibject”,
called afunctor, using the routine-call operator.

CS 246 246

e E.g., an action to print on a specified stream must store tbarstand have
anoperator () allowing the object to behave like a function:

struct Print {

ostream &stream; /[stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i<<" ";}
%
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e EXpressiorPrint(cout) creates a constaRtint object, andor_each calls
operator ()(Node) in the object.

2.19 Namespace

e C+H namespacas used to organize programs and libraries composed of
multiple types and declarations.

CS 246 247
e E.g., namespacsd contains all the 1/O declarations and container types.
e Names in a namespace form a declaration region, like theesaioplock.

e Analogy in Java is a package, lm#mespace does NOT provide
abstract/encapsulation (use.cc files).

e Unlike Java packages, C+ allows multiple namespaces tefeed in a
file, as well as, among files.

e Types and declarations do not have to be added consecutively

Java source files C+ source file
package Foo; // file namespace Foo {
public class X ... /] export one type /I types / declarations
// local types / declarations }

_ namespace Foo {
package Foo; // file /I more types / declarations
public enum Y ... /[export one type]

/I local types / declarations namespace Bar {
package Bar: // file /I types / declarations
public class Z ... /Il export one type J

// local types / declarations

CS 246

e Contents of a namespace can be accessed using full-quakinds:

e Or by importing individual items or conditionally importrall of the

Java

CH+r

Foo.T t = new Fo00.T(); | Foo::T «t = new Foo:T();

namespace content.

248

Java

C+H

iImport Foo.T; | using Foo:.T,;
Import Foo0.x; | using namespace Foo;

/[import individual (conflicts)
// import all (non-conflicting)

¢ Global variables are in an unnamed namespace accessihlangualified

CS 246 249

namespace Foo { /[start namespace
enum Colour { R, G, B };
int i = 3;
}
namespace Foo { /[add more
class C { int i; };
int | = 4;
namespace Bar { /[start nested namespace
typedef short int shrint;
int | = 5;
}
}
int j = 0; /l global
iInt main() {
int | = 3; /l local
cout << j << endl; /[local
cout << ::j << endl; /I global
using namespace Foo; // conditional import: Colour, i, C, Bar (not |)
Colour c; /I Foo::Colour
C x; I/l Foo::C
cout << | << endl; /Il Foo::i
using Foo:ij; /[import: conflict

cout << Foo:j << << Bar:;j << endl; /I qualification
using namespace Bar; // conditional import: shrint (not))
shrint s = 4; /[Bar::shrint

3 Tools
3.1 Compilation

header files C/C++ source files

—

cpp
-E, -D, -l
preprocessed source cod

cclplus
- -W, -v, -g, -S, -01/2/3, -c

assembly code

¢]

as
object code
other object-code ¢ } -0, -, -L
files and libraries ~ '@
Ja.out object

250

CS 246 251

e Compilation is the process of translating a program from human to
machine readable form.

e The translation is performed by a tool calledamnpiler.

e Compilation is subdivided into multiple steps, using a nemdi tools.

e Often a number of options to control the behaviour of eagh. ste

e Option are presented fgr+, but other compilers have similar options.
e General format:

g++ option-list x.cc %.0 ...

3.1.1 Preprocessor

e Preprocessor (cpp) takes a C+ source file, removes comna@ntexpands
#include , #define , and#if directives.

e Options:

o -E run only the preprocessor step and writes the preproces§outado
standard out.

% g++ -E =.cCc ...
... much output from the preprocessor

CS 246 252

o -D define and optionally initialize preprocessor variablesfithe
compilation command:

% g++ -DDEBUG=2 -DASSN ... %.cC *.0 ...

same as putting the followingdefine s in a program without changing
the program:

#define DEBUG 2
#define ASSN

e If both -D and#define for same nametdefine redeclares name.

e -| directory search directory for include files; can be referenced by name
using<...>.

3.1.2 Compiler (cclplus)

e Compiler (cclplus) takes a preprocessed file and convextS+thlanguage
Into assembly language for the target machine.

e Options:
o -Wkind generate warning message for this “kind” of situation.
« -Wall print ALL warning messages.

CS 246 253

x -Werror make warnings into errors so program does not compile until
fixed.

o -v show each compilation step and its details:

% gt++ -V x.CC *.0 ...
... much output from each compilation step

E.g., system include-directories wheg looks for system includes.

#include <...> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/1486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

o -g add symbol-table information to object file for debugger
o -S compile source file, writing assemble code to fibairce-file.s

o -01/2/3 optimize translation to different levels, where ebxsiel takes
more compilation time and possibly more space in executable

o -c compile/assemble source file but do not link, writing obemte to file
source-file.o

CS 246 254
3.1.3 Assembler

e Assembler (as) takes an assembly language file and converishject
code (machine language).

3.1.4 Linker

e Linker (Id) takes the implicito file from translated source and expliait
files from the command line, and combines them into a new bbjec
executable file.

e Linking options:
o -0 gives the file name where the combined object/ executablacsg.
x If no name Is specified, default narasut is used.

o -l library search library when linking, e.glm for math library
o -L directory search in directory for library

3.2 Debugging

e Debuggingis the process of determining why a program does not have ar
iIntended behaviour.

e Often debugging is associated with fixing a program afterlaria

CS 246 255

e However, debugging can be applied to fixing other kinds obf@ms, like
poor performance.

e Before using debugger tools it is important to understandtwhbu are
looking for and if you need them.

3.2.1 Debug Print Statements

e An excellent way to debug a program isdtart by inserting debug print
statements (i.e., as the program is written).

e It takes more time, but the alternative is wasting hourstgyto figure out
what the program is doing.

e The two aspects of a program that you need to know are: where th
program is executing and what values it is calculating.

e Debug print statements show the flow of control through a anogand
print out intermediate values.

e E.g., every routine should have a debug print statemenedigginning and
end, as in:

CS 246 256
int p(...) {

/I declarations
cerr << "Enter p " << parameter variables << endl;

cerr << "EXit p " << return value(s) << endl;
return r;

}

e Result is a high-level audit trail of where the program iscaang and what
values are being passed around.

e Finer resolution requires more debug print statements pontant control
structures:

if (a>b)/{
cerr << "a > b" << endl ; /I debug print
for (...){
cerr << "X=" << x << ", y=" <<y << endl; // debug print
} else {
cerr << "a <= b" << endl: /I debug print

CS 246 257

e By examining the control paths taken and intermediate gagi@merated, it
IS possible to determine if the program is executing colyect

e Unfortunately, debug print statements can generate enm@mounts of
output.

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which
vital. (Sherlock Holmes, The Reigate Squires)

e Gradually comment out#(f) debug statements as parts of the program
begin to work to remove clutter from the output, but do noetkethem
until the program works completely.

e \When you go for help, either from your instructor or an adgigou should
have debug print statements in your program.

e In general, debug print statements never appear in thegrogou hand in
for marking.

3.2.2 Assertions

e Assertions enforce pre-conditions, post-conditions, and invasiawhich
document program assumptions.

CS 246 258

e Macroassert provides a mechanism to perform a check, and if the check
fails, to print the check and abort the program.

Int main() {
vector<int> a, b;
/I read values into a, b
assert(("must be the sanme size", a.size() == b.size()));
for (int 1 =0;;1+=1){
assert((" nust have an unequal element”, i < a.size()));
if (afi] '= b[i]) break;

}
}

e Note, use of comma expression.
e \WWhen run with incorrect data produces:

% ./a.out
Assertion failed: (" nmust be the sane size", a.size() == b.size()), file tes
Abort (core dumped)

e Assertions can significantly increase a program’s cost.

e Compiling a program with preprocessor variaRIREBUG defined removes
all asserts.

CS 246 259
% g++ -DNDEBUG ... # all asserts removed

3.2.3 Errors

e Debug print statements do not prevent errors, they simplyngiinding
errors.

e What you do about an error depends on the kind of error.
e Errors fall into two basic categories: syntax and semantic.

e Syntax error Is in the arrangement of the tokens in the programming
language.

e These errors correspond to spelling or punctuation errbeswwriting in a
human language.

e Fixing syntax errors is usually straight forward espegidlthe compiler
generates a meaningful error message.

e Alwaysreadthe error message carefully addeckthe statement in error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal in
Bohemia)

e Difficult syntax errors are:

CS 246 260

o Forgetting a closing or «/, as the remainder of the progransigallowed
as part of the character string or comment.

o Missing a{ or }, especially if the program is properly indented (editors
can help here)

e Semantic error is incorrect behaviour or logic in the program.

e These errors correspond to incorrect meaning when writirsghuman
language.

e Semantic errors are harder to find and fix than syntax errors.

e A semantic or execution error message only tells why thenarmgtopped
not what caused the error.

¢ In general, when a program stops with a semantic error, gteraent that
caused the error is not usually the one that must be fixed.

e Must work backwards from the error to determine the causheptoblem.

In solving a problem of this sort, the grand thing isto able to reason
backwards. Thisis very useful accomplishment, and a very easy one,
but people do not practise it much. In the everyday affairs of lifeit is
more useful to reason forward, and so the other comes to be neglected.
(Sherlock Holmes, A Sudy in Scarlet)

CS 246 201

e Reason from the particular (error symptoms) to the generabi(cause).

o locate pertinent data : categorize as correct or incorrect

o look for contradictions

o list possible causes

o devise a hypothesis for the cause of the problem

o use data to find contradictions to eliminate hypotheses

o refine any remaining hypotheses

o prove hypothesis is consistent with both correct and irrmmesults, and
account for all errors

e E.g., an infinite loop with nothing wrong with the loop; thetialization is
wrong.

| = 10;

while (1 !=5){
| += 2:

}

e Difficult semantic errors are:

o Forgetting to assign a value to a variable before using ihiexression.
o Using an invalid subscript or pointer value.

CS 246 262

e Finally, if a statement appears not to be working propeny,|doks correct,
check the syntax.

if (a=Db){
cerr << "a == b" << endl:
}

When you have eliminated the impossible whatever remains, however
Improbable must be the truth. (Sherlock Holmes, Sgn of Four)

3.3 Debugger

e An interactive, symboliclebuggereffectively allows debug print
statements to be added and removed to/from a program dyakynic

¢ You should not rely solely on a debugger to debug a program.

e You may work on a system without a debugger or the debuggemuiay
work for certain kinds of problems.

e A good programmer uses a combination of debug print statenaerwl a
debugger when debugging a complex program.

e A debugger does not debug your program for you, it merelyshigiphe
debugging process.

CS 246 263

e Therefore, you must have some idea about what is wrong witb@am
before starting to look or you will simply waste your time.

3.3.1 GDB

e The two most common UNIX debuggers are: dbx and gdb.
e File test.cc contains:

1 void r(int a[]) {

2 int i = 100000000;

3 ali] += 1; // really bad subscript error
4}

5 Int main() {

6 int a[10] = { 0, 1 };

7 r(a);

8}

e Compile program using the flag to include names of variables and
routines for symbolic debugging:

% g++ -g test.cc
e Start gdb:

CS 246 264

% gdb ./a.out
... gdb disclaimer
(gdb) < gdb prompt

e Like a shell, gdb uses a command line to accept debugging eomsn
e run command begins execution of the program:

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /l really bad subscript error

o If there are no errors in a program, running in GDB Is the sase a
running in a shell.
o If there is an error, control returns to gdb to allow examorat

e backtrace command prints a stack trace of calleditine activations.
(gdb) backtrace

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:7

e print command prints variables accessible in the current roudibect, or
external area.

CS 246 265

(gdb) print |
$1 = 100000000

o $1 is the name of a history variable (like history variables shall).
o Name$N can be used in subseguent commands to access previous va
of i.
e Can print any CH expression:

(gdb) print a

$2 = (int x) Oxffbefa20
(gdb) p xa

$3 =0

(gdb) p a[1]

$4 =1

(gdb) p a[1]+1

$5 =2

(gdb) p $3

$6 = 0

e Set variable command changes the value of a variable in the current mutin
object or external area.

CS 246 266

(gdb) set variable i = 7

(gdb) p |
$7 =7
(gdb) set var a[0] = 3
(gdb) p a[0]
$8 = 3
(gdb) p $3
$9 =0
e Change the values of variables while debugging to:

o Investigate how the program behaves with new values witremampile
and restarting the program,
o to make local corrections and then continue execution.

e frame [n] command moves theurrent stack frame to thenth routine
activation on the stack.

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 ali] += 1; // really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:7
7 r(a);

CS 246 267

o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.
o All subsequent commands apply to the current frame.

e TO trace program executionreakpoints are required.

e break command establishes a point in the program where execution
suspends and control returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 6.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

o Set breakpoint using routine name or source-file:line-remmb

o If program is not compiled withgflag, only the location is given.
o Commandnfo breakpoints prints breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:6
2 breakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Breakpoints numbered consecutively framand can be disabled, enabled
or deleted at any time using commands:

CS 246 268

(gdb) disable 1 temporarily disable breakpoint 1
(gdb) enable 1 re-enable disabled breakpoint 1
(gdb) delete 1 remove breakpoint completely 1

(Pretend none of these commands are entered.)
e Run program again to get to the breakpoint:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:6

6 int a[10] ={ 0, 1 };
(gdb) p a[7]
$10 = 0

e Once a breakpoint is reached, execution of the program caordaued In
several ways.

e Step [n] command executes the nexlines of the program and stop.

CS 246 269

(gdb) step

7 rCa);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; Il really bad subscript error
(9db)

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1; /I really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.

o <Return> without a command repeats the last command.

o If the next line Is a routine call, control enters the routamel stops at the
first line.

e Next [n] command, likestep, but routine calls are treated as a single
statement, so control stops at the statement after theneocdll instead of

CS 246 270
the first statement of the called routine.

(gdb) run

Breakpoint 1, main () at test.cc:6

6 int a[10] = { 0, 1 };

(gdb) next

7 rC a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; Il really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1; /[really bad subscript error

e continue command continues execution until the next breakpointashied.

CS 246 271

(gdb) run

Breakpoint 1, main () at test.cc:6

6 int a[10] = { 0, 1 };

(gdb) s

7 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 ali] += 1; /I really bad subscript error
(gdb) p |

$4 = 100000000

(gdb) set var i = 3
(gdb) c

Continuing.

Program exited normally.

e finish command finishes execution of the current routine and stoihea
statement after the routine call.

CS 246 2172
(gdb) run

Breakpoint 1, main () at test.cc:6

6 int a[10] = { 0, 1 };

(gdb) c

Continuing.

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error
(gdb) set var i = 3

(gdb) fin

Run till exit from #0 r (a=0xffbefa20) at test.cc:3
main () at test.cc:8

8 }

(gdb) c

Continuing.

Program exited normally.

o Print the value returned by the finished routine, if any.

e During debugging, it is useful to print variables each tifme program
stops at a breakpoint.

e Normally, requires typing arint commands each time the program stop.
e display command is like the print command, with the addition of pngt

CS 246 273
each time the program stops.

(gdb) run

Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) display a[0]

1: a[0] = 67568

(gdb) s

7 r(a);

1. a0] =0

(gdb) s

r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;

o Each displayed variable is numbered, in this casse,numbered 1.
o Use number to stop displaying a variable vralisplay n command.
o If a variable goes out of scope, the display stops printing.

e list command lists source code.

CS 246 274

(gdb) list

2 int i = 100000000;
3 afi] += 1;

4}

5 int main() {

6 Int a[10];

7 r(a);

8 }

(gdb) list 3

1 wvoid r(int a[]) {

2 int i = 100000000;
3 afi] += 1;

4}

5 int main() {

6 Int a[10];

7 r(a);

8 }

o With no argument, list code around current execution |locati
o with argument line number, list code around line number

e (uit command terminate gdb.

CS 246 275

(gdb) run

iBIr'eakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) quit

The program is running. Exit anyway? (y or n) y

3.4 Compiling Complex Programs

e Separate compilation has an advantage and disadvantage.

e Advantage: saves significant amounts of computer and péoptedy
recompiling only the portions of a program that are changed.

e In theory, if an expression is changed, only that expressemus to be
recompiled.

e In practice, the unit of compilation is much coarseanslation unit (TU),
which is a file in C/C+.

e In theory, each line of code (expression) could be put in arsp file, but
Impractical (and doesn’t work).

e S0 a TU should not be too big and not be too small.

CS 246 276

e Disadvantage: TUs must depend on each other because amrsigaaes
many forms of information, especially types.

e Not a problem when all the code is in a single TU (except for DBU

e As a program grows, the number of TUs grow, so does the deperde
among TUs.

e Now, when one TU is changed, it may require other TUs to chamafe
depend on some or all of the shared information.

e [For a large numbers of TUs, the dependencies turn into a nigkdre with
respect to recompiled.

3.4.1 Dependences

e Dependences in C/C+H normally occur as follows:

o executable depends anfiles
o .0 files depend oncC files
o .C files depend orh files

CS 246

X.h
xX.C

y.h
y.C

Z.h
z.C

source tree

277
dependencies

#include "v.h 4 OO

#include " x.h" =00 2:00 300
X.0 ™ X.C—™ x.h

include "zh" 01

#include "y.h" iy out y.o —™y.C—=vyh)

#include "y.h" zo—*>=zC—*>2zh

#include " z.h"

e The hierarchicasource treeis compiled as follows:

% g++ -c z.C
% g++ -c y.C
% g++ -c x.C

% g++ X.0 y.0 z.0

generates z.0
generates y.o

generates X.0
generates a.out

e If a change is made tph, which files need to be recompiled? (all!)
e Doesany change tg.h require these recompilations?

e There is no mechanism to know the kind of change made withile agfig.,
changing a comment, type, variable.

e S0 dependence Is coarse grain, basedroichange to a file.

CS 246 278
e One way to denote file changes is witime stamys.

e UNIX stores in the directory the time a file is last changedhwecond
precision.

e Establishing dependencies means establishing a tempdeaimg in the
dependence graph so the root has the newest (or equal) tohtbaleafs
the oldest (or equal) time.

3.4.2 Make

e Mmakeis a UNIX command that takes a dependence graph and uses file
change-times to trigger rules that bring the dependengengra to date.

e A make dependence graph expresses a relationship betweeduzipand a
set of sources.

e Make does not express a relationship among sources, onexikts at the
source-code level and is important.

e E.g., source.C depends on sourceh butx.C is not a product ok.h like
X.0 IS a product ok.C andx.h.

e Two most common UNIX makes are: make and gmake (on Limake IS
gmake).

CS 246 279

e Like shells, there is minimal syntax and semanticafiake, which is
mostly portable across systems.

e Most common non-portable features are specifying depemneieand
Implicit rules.

¢ A basic makefile consists of string variables with initialion and a list of
targets and rules.

¢ This file can have any name, hutke implicitly looks for a file called
makefile or Makefile if no file is specified.

e Each target has a list of dependencies, and possibly a setrohands
specifying how to re-establish the target.

variable = value

target : dependencyl dependency? ...
commandl
command?2

e Commands must be indented by one tab character.

e make IS invoked with a target, which is a subnode or root of a depand
hierarchy.

CS 246 280

e make builds the dependency graph and decorates the edges wéh tim
stamps for the specified files.

e If any of the dependency files (leafs) are newer than the téitggroot), or
If the target file does not exist, the commands are executeddoghell to
update the target (generate a new product).

e Makefile for previous dependencies:

a.out : X.0 y.0 z.0
g++ X.0 y.0 z.0 -0 a.out

X.0 : X.C x.h y.h z.h

g++ -g -Wall -c x.C
y.0 : y.C y.h z.h

g++ -g -Wall -c y.C
z.0 : 2.C z.h y.h

g++ -g -Wall -c z.C

e Check dependency relationship by:

% gmake -n -f Makefile a.out
g++ -g -Wall -c x.C

g++ -g -Wall -c y.C

g++ -g -Wall -c z.C

g++ X.0 y.0 z.0 -0 a.out

CS 246 281

o -n only checks the dependencies and shows rules to be trigfeese
off to trigger rules)

o -f Makefile Is the dependency file (leave off if nampim]akefile)
o a.out target name to be updated (leave off if first target)

¢ Eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
$H{CXX} ${OBIECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets/dependencies/commands

FH{CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

F{CXX} ${CXXFLAGS} y.C
z.0 . z.C z.h y.h

F{CXX} ${CXXFLAGS} z.C

e Eliminate common rules:

CS 246 282

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step

$H{CXX} ${OBIECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets/dependencies

y.0 : y.C y.h z.h
z.0 : 2.C z.h y.h

clean :
rm -rf ${OBJECTS} ${EXEC}

o gmakeknows how to construct simple rules when files have specific
suffixes and when special variable names are used.

o These rules use variabl8gC XX} and${CXXFLAGS}.
o Targetclean removes product files that can be rebuilt to save space.

gmake clean
¢ Eliminate dependencies:

CS 246 283

CXX = g++ # compiler

CXXFLAGS = -g -Wall -MMD # compiler flags

OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.0=.d} # substitute “.0” with “.d”

EXEC = a.out # executable name

${EXEC} : ${OBJIECTS} # link step

${CXX} ${OBJECTS} -0 ${EXEC)

clean : # remove files that can be regenerated
rm -rf ${DEPENDS} ${OBJECTS} ${EXEC}

-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)
o g++ flag MMD generates a dependency graph for only user source-files
file contents

X.d | X.0: Xx.C x.h y.h z.h
y.d|y.0o: y.C y.h z.h
z.d|z.0: z.C z.h y.h
o g++ flag -MD generates a dependency graph for user/system source-file

o -include reads thed files containing dependencies.

CS 246 284
3.5 Source Code Management

e UNIX files only support thesurrent version of the program.
e As a program develops/matures, it changes in many ways.

e UNIX files do not support this temporal notion of a prograra,,ihistory of
program over time.

e Access to older versions of a program, supporting operatiga backing
out of changes because of design problems.

e Another issue is sharing program files among multiple deet®each
making independent changes.

e Current sharing allows damaging the contents of the filesifoultaneous
writes.

e Approaches:

o Make copies of some or all of the project files before makingnges.
Wastes storage for unchanged files and burden of managineocips.

o Share files using group file permissions.

Simultaneous access is unsafe and developers cannot aesfashin
Isolation.

CS 246 285

o Giving each developer a separate copy of the code base.

Merging in changes from different developers is tricky anaet
consuming.

e To solve these problemssaurce control systems used to manage
cooperative work.

3.5.1 CVS

e Concurrent Versions System(CVS) is a source control system with the
following features:
o Master copy of all project files is kept inrapository.
o Multiple versions of files are automatically stored in thpasitory.
o Developers can check out a complete copy of the project.

o Helpful integration back into the repository using text gieg.
Programmer has to deal with conflicts.

3.5.2 Repository
e Group members must add this line to their shell startup file:

CS 246 286

sh:

% CVSROOT=/u/userid/cs246/cvsroot

% export CVSROOT

csh:
% setenv CVSROOT /u/userid/cs246/cvsroot

e For remote access:

CVS_ RSH=ssh

export CVS_RSH
CVSROOT=userid@student.cs.uwaterloo.ca:/u/userid/cs246/cvsroot
export CVSROOT

e Shared repository is created at accessible location inlthsyfstem:

% cd cs246

% cvs init # make repository directory cvsroot

% chgrp -R c¢s246_75 cvsroot # set group on directory and subfiles

% chmod -R g+rwx cvsroot # allow group members access to ALL files
% mkdir cvsroot/assn6 # specific project

e cvs int creates and initializes the repository.
e Other directories undewsroot represent projects (can have any name).

CS 246 287
3.5.3 Checking Out

e checkout command creates a working copy of the project:

% cvs checkout assn6 # checkout initial project

cvs checkout: Updating assn6

% cd assn6 # move Into project directory
% Is # administration directory CVS
CVS

e Creates project directory in current directory and urasroot.

e A checked out copy can be modify in any way without other dapets
seeing these changes until committed.

e Only check out once and continue working.

3.5.4 Adding

e add command schedules new files (in current directory) for amlulinto
the repository:

CS 246

% ...

% Is
CVS Makefile x.C x.h y.C y.h zC 1z.nh
% cvs add =« # add all files

CVS
CVS
CVS
CVS
CVS
CVS
CVS
CVS

CVS

add:
add:
add:
add:
add:
add:
add:
add:

add:

create files: Makefile x.C x.h y.C y.h z.h z.C

cannot add special file ‘CVS’; skipping
scheduling file ‘Makefile’ for addition
scheduling file ‘x.C’ for addition
scheduling file ‘x.h’ for addition
scheduling file ‘y.C’ for addition
scheduling file ‘y.h’ for addition
scheduling file ‘z.C’ for addition
scheduling file ‘z.h’ for addition

use ‘cvs conmit’ to add these files permanently

e Addition only occurs on cvs commit.
e Forgetting cvs add is a common mistake.
e Do not put all files into repository, e.g«o0, .d, a.out.

3.5.5 Checking In
e commit updates the repository with the changes made in checkaadtdny.

288

CS 246 289

% cvs commit -m "initial files"

cvs commit: Examining .

RCS file: /uluserid/cs246/cvsroot/assn6/Makefile,v
done

Checking in Makefile;
/uluserid/cs246/cvsroot/assn6/Makefile,v <-- Makefile
initial revision: 1.1

done

RCS file: /uluserid/cs246/cvsroot/assn6/x.C,v
done

Checking in x.C;
/uluserid/cs246/cvsroot/assn6/x.C,v <-- x.C
initial revision: 1.1

done

RCS file: /uluserid/cs246/cvsroot/assn6/x.h,v
done

Checking in x.h;
/uluserid/cs246/cvsroot/assn6/x.h,v <-- x.h
Initial revision: 1.1

done

e If -m flag not used, cvs prompts for a change description using itor.ed

CS 246 290
e Always make sure that your code compiles and runs before cotinng.
e It is unfair to pollute the source base with bugs.

3.5.6 Editting/Removal
e Edited files (in current directory) do not require any CVS coamd.:

% vi y.h y.C # edit files y.h y.C
e Implicitly schedules files for update, which occurs on cvshaout.
e remove command tell CVS to remove existing files from the repository

% rm z.h z.C # remove files z.h z.C
% cvs remove z.h z.C # remove from repository
cvs remove: scheduling ‘z.h’ for removal

cvs remove: scheduling ‘z.C’ for removal

cvs remove: use ‘cvs commit” to remove these files permanently
e Schedules files for removal, which occurs on cvs commit.
e In fact, any removed file can always be retrieved from old ieais
e Commit edits and removals.

CS 246 291

% cvs commit -m "changes to y. and renove z. *'
cvs commit: Examining .

Checking in y.C;
/u/userid/cs246/cvsroot/assn6/y.C,v <-- y.C
new revision: 1.2; previous revision: 1.1
done

Checking in y.h;
/u/userid/cs246/cvsroot/assn6/y.h,v <-- y.h
new revision: 1.2; previous revision: 1.1
done

Removing z.C;
/u/userid/cs246/cvsroot/assn6/z.C,v <-- z.C
new revision: delete; previous revision: 1.1
done

Removing z.h;
/u/userid/cs246/cvsroot/assn6/z.h,v <-- z.h
new revision: delete; previous revision: 1.1
done

3.5.7 Update

e Cannot commit changes if other developers have checkecdaimges during
a checkout.

CS 246 292
e Changes must now be merged and then committed.

e update command merges changes into repository.

e Causes merged file in current directory to be updated.

e Merge algorithm is generally very good if changes do not layer

e Overlapping changes result in a conflict, which must be wesbmanually.

% cvs commit

cvs commit: Examining .

cvs commit: Up-to-date check failed for ‘Makefile’

cvs [commit aborted]: correct above errors first!

% cvs update

cvs update: Updating .

RCS file: /u/userid/cvsroot/assn6/Makefile,v

retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into Makefile

e Conflict is marked irviakefile:

CS 246

CXX = g++ # variables and initialization
<<<<<<< Makefile
CXXFLAGS = -g -MMD

CXXFLAGS = -g -Wall
>S>S>S>>>> 1.3

e You have to resolve the conflict.

3.5.8 Versions

e Each time a file is committed, it receives a new version number
¢ \ersion number is displayed during commit, and at other sime
e Cvs status prints version information.

¢ Old versions are accessible using:

cvs update -p -r 1.2 Makefile # -p prints to standard output
which prints version 1.2 of Makefile to standard output.

e Differences between versions can be generated:

cvs diff -r 1.2 -r 1.1 Makefile
which shows the differences between version 1.2 and velsihn

293

CS 246 294
3.5.9 Tagging

e \VVersion numbers are nondescript and often too low level (itde changes
here and there).

e It IS possible to give a meaningful, symbolic name to a versoften at a
stable point or before big changes.

e tag command adds a symbolic name to the current version of every fi
checked out:

cvs tag debugl # name current version “debugl”
e Use symbolic name like version number:

cvs update -p -r debugl
e TO compare named versions:

cvs diff -r debugl -r debug?2

4 Software Engineering

e Software Engineering(SE) Is the social process of designing, writing, and
maintaining computer programs.

e SE attempts to find good ways to help people understand armadiogev
software.

e However, what is good for people is not necessarily goodrifercomputer.

e Many SE approaches are counter productive in the develdpofien
high-performance software.

e E.g.: The computer does not execute the documentation!

e Documentation is unnecessary to the computer, and sigmifecaounts of
time are spent building it so it can be ignored (program comnts)e

e Remember, th&uth is always in the code.

e However, without documentation, developers have dificdésigning and
understanding software.

e E.g., designing by anthropomorphizing the computer isasald good
approach (desktops/graphical interfaces).
(© Peter A. Buhr

295

CS 246 296

e Software tools spend significant amounts of time undoing &g and
coding approaches to generate efficient programs.

e It IS Important to know these differences to achieve a badostween
programs that are good for people and good for the computer.

4.1 Software Crisis

e Large software systems-(100,000 lines of code) require many people and
months to develop.

e These projects normally emerge late, over budget, and deaordt well.
e Today, hardware costs are nil, and people costs are great.

e While commodity software is available, someone still hawiibe it.

e Since people produce softwase software cost is great.

e Coupled with a shortage of software personseproblems.

e Unfortunately, software is complex and precise, which nepuime and
patience.

CS 246 297
4.2 Software Development

e Techniques for program development for small, medium, amgel systems.
e Objectives:

o plan and schedule software projects

o produce reliable, flexible, efficient programs
o produce programs that are easily maintained
o reduce the cost of software

o reduce program failure

e E.g., atypical software project:

o estimate 12 months of work
o hire 3 people for 4 months
o make up milestones for the end of each month

e However, first milestone iIs reached after 2 months instedd of
e To finish on time, hire 2 more people, but:

o new people require training
o work must be redivided

This takes at least 1 month.

CS 246 298

e Now 2 months behind with 9 months of work to be done in 1 month by
people.

e TO get the project done:
o must reschedule
o trim project goals
e Often, adding manpower to a late software project makesai.la

e lllustrates the need for a methodology to aid in the devekmof software
projects.

4.2.1 Programming Methodology

e System Analysis (next year)

o Study the problem, the existing systems, the requiremdradgeasibility.

o Analysis is a set of requirements describing the systems)puitputs,
processing, and constraints.

e System Design

o Breakdown of requirements into modules, with their relagioips and
data flows.

CS 246 299

o Results in a description of the various modules required the data
Interrelating these.

e Implementation
o writing the program
e Testing & Debugging
o get it working
e Operation & Review
o was it what the customer wanted and worth the effort?
e Feedback
o If possible, go back to the above steps and augment the pegewxeded.

4.2.2 System Design

¢ In designing a system of any size it must be modularized.

e Modularization is the division of the system into smaller parts on some
systematic basis.

e Modularization is necessary to:
o make it easier to design and implement

CS 246 300

o make it easier to read

o make it easier to maintain and modify
o abstract the data structures

o abstract the algorithms

e TWO basic strategies exist to systematically modularizgstem:

o top-down or functional decomposition
o bottom-up

e Both techniques have much in common and so examine only one.

4.2.3 Top-Down Design

e Start at highest level of abstraction and break down prolateoncohesive
units.

e Then refine each unit further generating more detail at eacsiah.
e This recursive process is calletepwise refinement

e Each subunit is divided until a level is reached where thé&sae
comprehensible, and can be coded directly.

e Unit are independent of a programming language, but ulehgahust be
mapped into constructs like:

CS 246 301

o generics (templates)
o modules

o classes

o routines

e Details look at data and control flow within and among units.

e Implementation programming language is often chosen didy the
system analysis/design process.

4.2.4 Factoring

e Factoring is the modularization of code in one module into multiple
modules.

e Stop factoring when:

o cannot find a well defined function to factor out
o Interface to the module would be as complicated as the maoidelé

e Factoring is done to:

o reduce module sizex 30-60 lines of code, I.e., 1-2 screens with
documentation

o make system easier to understand

CS 246 302

o eliminate duplicate code
o localize modifications

e Avoid having the same function performed in more than oneute(treate
useful general purpose modules)

e Separate work from management:

o Higher-level modules only make decisions (managementrahather
routines to do the work.

o Lower-level modules become increasingly detailed andiipec
performing finer grain operations.

e In general:

o do not worry about little inefficiencies unless the code iBoeied a
LARGE number of times

o put thought into readability of program

o avoid high levels of nesting (3-5 levels is fine)

4.3 System Modelling

e System modellinginvolves modelling a complex system in an abstract wa
to provide a specific description of how the system works.

CS 246 303

e Design grows from nothing to become a model of sufficientitietdoe
transformed into a functioning system.

e Design provides high-level documentation of the systemufmerstanding
(education) and for making changes in a systematic manner.

e Top-down successive refinement is a foundational mechamssa in all
system design.

e System modelling has multiple viewpoints:

o class model describes static kinds and structure of system

o object model: describes dynamic (temporal) behaviour of system
objects

o interaction model : describes the kinds of interactions among objects
e Multiple design tools (past and present) for supportingesysdesign, most

are graphical and all are programming language independent

o flowcharts (1920-1970)

o pseudo-code

o Warnier-Orr Diagrams

o Hierarchy Input Process Output (HIPO)

o UML

CS 246 304
e Design tools can be used in various ways:

o sketchout high-level design or complex parts of a system,
o blueprint the entire system abstractly with high accuracy,
o generateinterfaces directly.

e Key advantage of design tool is the generic, abstract mddbesystem,
which can be transformed into any format.

e Key disadvantage is the design tool is seldom linked to th#ementation
mechanism, so the two often differ
(implementation = truth).

e As with design strategies, design tools have much in commdrsa only
one Is studied.

4.3.1 UML

e Unified Modelling Language (UML) is a graphical notation for describing
and designing software systems, with emphasis on the ebjesited style.

e UML can handle class, object and interaction modellingciifoon class
modelling)

e Note/comment

CS 246 305

comment textr - - - - - target

e Class diagramcollection of class templates and associated relatiosship
e Class specifies a template for objects : name, attribut@satopns.

class/struct name routine operation

attribute-list
operation-list

optional -

e aftribute : value description (field)
[visibility | name [“” [type] [“[" multiplicity “]”]
[“="default] [“ {” property-list “}"]]
o Visibility : access of attribute information by other class
+ = public, — = private, #= protected,~ = package
o name : required identifier for attribute (like field name irusture)

CS 246 306

o type : restriction on kind of objects associated with atitigb
Boolean, Integer, Float, String, class-name

o multiplicity : restriction on number of objects associateth attribute
0..(N|x), from O toN or unlimited,N short forN..N, % short for 0.x

o default : value of newly created object
o property : additional aspects of attribute, e{greadonly}

e Operation : action changing or returning object state (method)
[visibility | name [“(" [parameter-list] “)"] [“.” return-type]
[“[” multiplicity “]"1[* {” property-list “}"]
o Visibility : access of attribute information by other class
+ = public, — = private, #= protected,~ = package
o hame : required identifier for operation (like method namstincture)

o parameter-list : input/output values for operation
[direction | parameter-name “:” type [“[" multiplicity “]"]
[“="default] [“ {” property-list “}"]]
o direction : direction of parameter data flow
“In” (default) | “out” | “inout”
o return-type : output from operation

o property-list : additional aspects of operation, e{geadonly}

CS 246 307

VendingMachine

- printer : Printer

- nameServer . NameServer
attributes - Id : Integer

- sodaCost : Integer

- maxStockPerFlavour : Integer
- stock : Integer [1..4]

+ buy(In flavour : Flavours, inout card : WATCard) : Boolean
+ inventory : Integer[1..4]
operations+ restocked

+ cost : Integer

+ getld : Integer

e Include attributes defining model structure (no countersoraries, etc.)
e Leave out constructor operations as they do not contriloutieet model.
e Object diagram : instance of a class.

object name : class name

optional { attributes : values

CS 246 308
e Association: a named conceptual/physical connection among objects.

Person ownership Car

-4

class diagram

name : String ’i 1 ’;_) kind : String
owned oWNS
. . Fred:Person Honda:Car
object diagram
name="Fredrick’ kKind="Clivic”
Mary:Person Honda:Car
name="Mary” kind="CRV”
Peg:Person Honda:Car
name="Margaret’ kind="CRV"”

e association is “ownership”

CS 246 309

o personowns O or more cars (*)
personowns 1 to 5 cars

o car isowned by O or more people (*)
car isowned by 1 person

e Association is inherently bidirectional even if name inegla specific
direction: employer worksFor| employee

e Association can be represented as an attribute or a line.

Person Car
name : String kind : String
owner : Car owned : Person
Person ownership Car
name : String| 1 1| kind : String

Use attribute if many lines to a single class.
e Association may be implemented in a number of ways:

o pointer from one object to another
o related elements in arrays

CS 246

e Assocliation Class association that is also a class

Person Car
name kind
Owns
bill of sale
licence
Mary:Person Honda:Car
name="Mary” kind="Civic”
Oowns
Ted’s Honda
L345YH454

o people without cars do not need “owns” fields
cars without owners do not need “owns” fields

o not real class because it cannot logically exist withoubeission

310

CS 246 311

e Aggregationis an association between an aggregate (collection) and its
members.

1 *
vector I elements

o an aggregate is not complete without its members
o but members exist outside of the aggregate (pointer to elesnhe

e Compositionis stronger aggregation where components do not exit autsic
of composite.

1 *
vector €® clements

o copy elements
e Generalization : reuse through form of inheritance.

CS 246 312

Super Super Super
Sub Sub Sub
Inheritance multiple inheritance

o Inheritance establishes “is-a” relationship on type, angbe of attributes
and operations.

o Association class can be implemented with forms of multipkeeritance
(mixin).

e Sequence diagram describes control-flow among objects with respect to
particular scenario.

o show static frame of program animation (call sequence).

CS 246

sd name

class name

4>

= New object

call

self-call

-

. Other-calls

_ _ _returns

delete >'<

313

CS 246 314
o show control flow

loop [for all things]

opt ’ [condition |

alt /) [condition]

o complex and specific
o more concise to use pseudo-code (or actual code If it exists)
o use to show important/complex control flow sequences

e UML is significantly more general, supporting very complesdriptions
of relationships among entities.

CS 246 315

¢ VERY large visual mechanisms, with several confusing gicgh
representations.

e Code = truth

4.4 Programming Language Selection
e Imperative, functional, logic
o Imperative : prescribes a sequence of actions directeddogtétte of

variables, which are allowed to have multiple values (vary)

o functional : like imperative, but variables are restricteanly one value
(I.e., constant)

o logic : series of logical expressions that are proven cooemcorrect
through unification
e Scripting : specialized languages (often only string typdymamically
typed) for specific purpose (shell, GUI, awk, Perl)
e interactive/interpreted : not compiled, can be typed amteted
Immediately (basic, shell)

e managed language : hide aspects of implementation to $ympli
programming, e.g., hide memory management via garbagectiokh,

CS 246 316

execution via virtual machine

e static/dynamic type-system : variable types are fixed afl@tme or
allowed to vary at runtime.

e reification : manipulate program symbol-table and code @ime,
possibly with dynamic compilation.

e Useful language properties for SE:
o abstraction/encapsulation : separate implementation iinterface, and
hide implementation

o module/package : high-level bundling of types/varialdegé with global
Initialization, e.g., container library
* requires transitive closure of modules over program fdrahmzation
(cycles?)
o class : aggregate data and code into single type
o coroutines : retain control flow knowledge across routirie ca

o concurrency . multiple simultaneous threads of executiiwmefently
difficult and complex)

o polymorphism : generalization data/code across multypes with
similar structure and behaviour

o libraries : error-free, efficient, reusable abstractions:

CS 246 317

x data structures, math, GUI, distributed/web
o compilation/runtime errors : specific, comprehensiblermessages

o efficiency : after it works, after its good code, then make=stis
efficient

x efficiency should never be an afterthought; it comes frondgoo
programming practice

x nevertheless, programs have execution hot-spots thateesira
attention

o security : subscript checking, type checking, virtual maehdynamic
checking, etc.

e Java : Imperative, managed, static typing (inconsisteiitirb§. object
types), reification, abstraction/encapsulation, pacgkagjass (strongly
object-oriented), concurrency, medium polymorphisngedrbraries, good
error reporting, average to poor efficiency

e C+: Imperative, not managed, static typing (consisteritib& object
types), abstraction/encapsulation, weak packages, cagses, no

concurrency, strong polymorphism, average librariesy pomr reporting,
average to excellent efficiency

e Ada : imperative, many good features, but not used much arg/mo

CS 246 318
e Cobol, Fortran, PL/I : legacy languages, updated but sladgppearing
e Python/Ruby : scripting
e Haskell, Scheme, Erlang (Industrial) : functional

4.5 Development Processes

e There are different conceptual approaches for develomftg/are, e.g.:

waterfall : break down project based on activity and divide activiaesss
a timeline
o activities : (cycle of) requirements, analysis, desigmlicg, testing,
debugging
o timeline : assign time to accomplish each activity up to @coj
completion time

iterative/spiral : break down project based on functionality and divide
functions across a timeline

o functions : (cycle of) acquire/verify data, process daemagate data
reports

o timeline : assign time to perform software cycle on each fioncup to
project completion time

CS 246 319

staged delivery: combination of waterfall and iterative

o start with waterfall for analysis/design, and finish witbrétive for
coding/testing

agile/lextreme: short, intense iterations focused largely on code (versus
documentation)

o often analysis and design are done dynamically
o often coding/testing done in pairs

e Pure waterfall is problematic because all coding/testommes at end-
major problems can appear near project deadline.

e Pure agile can leave a project with “just” working code, attéelor no
testing / documentation.

e Selecting a process depends on:

o kind/size of system

o quality of system (mission critical?)
o hardware/software technology used
o kind/size of programming team

o working style of teams

o hature of completion risk

CS 246 320
o consequences of failure
o culture of company

e Meta-processes specifying the effectiveness of processes

o Capability Maturity Model Integration (CMMI)
o International Organization for Standardization (ISO) @00

e Requirements

o procedures cover key aspects of processes

o monitoring mechanisms

o adequate records

o checking for defects, with appropriate and correctiveoacti
o regularly reviewing processes and its quality

o facilitating continual improvement

4.6 Design Patterns

e Design patternshave existed since people/trades developed formal
approaches.

e E.g., parent’s raising children, mason’s building pyraicadhedral.

CS 246 321
e Pattern is a common/repeated issue; it can be a problem or a solution.

e Name and codify common patterns for educational and comeatian
purposes.

e Software pattern are solutions to problems:

o hame : descriptive name
o problem : kind of issues pattern can solve

o solution : general elements composing the design, andrélaironships,
responsibilities, and collaborations

o consequences : results and trade-offs of applying therpatte
(alternative/implementation issues)

CS 246

4.6.1 Pattern Catalog

creational | structural behavioural
class factory method|adapter |interpreter
template
object| abstract factory adapter |responsibility chair
builder bridge command
prototype composite iterator
singleton decorator| mediator
facade |memento
flyweight | observer
Proxy state
strategy
visitor

—

e Scope : applies to classes or objects

e Purpose : class/object creation issues, structural fomohpahavioural

Interaction

322

CS 246 323
e Class

factory method/abstract . abstract class/template defining structure (and
possibly some implementation) for creating other classes

struct F { Il factory/abstract-class
virtual void m1() = O;
virtual void m2() = 0;

I3

struct P1 : public F { /I products
void ml();
void m2();

I3

struct P2 : public F {
void ml();
void m2();

CS 246
adapter/wrapper : convert interface into another

struct T1 { struct T2 {
virtual void x(...); virtual void x(...);
virtual void y(...); virtual void z(...);
I3 :

struct T1TZ2 : public T1, privat’e T2 { [/ adapter/wrapper
vo!d X(...) { T2:x(...); }
void y(..){...z(...); ...}

void p(T1t1) {...}
T1T2 t; // make use of T2 code with T1 routine
p(t);

324

CS 246 325
template method: provide pre/post actions for subclass methods

class TM {
virtual void doAction() = O;
protected :
virtual void action() {
pre-code doAction(); post-code
}
I3

class AM : public TM {
void doAction() {...}
public :
void action() { TM::action(); }
I3

CS 246 326

e Object
adapter: convert interface into another

struct T1 { struct T2 {
virtual void x(...); virtual void x(...);
virtual void y(...); virtual void z(...);

I3 I3

struct T2toT1 : public T1 { // adapter/wrapper
T2 &t2;

T2toT1(T2 &t2) : t2(t2) {}
void x(...) { t2.x(...); }

void y(...) { ... t12.z(...); ... }

I3

void p(T1t1){...}

T2 t2;

T2toT1 t(t2), /[any T2

p(t),

CS 246

iterator : abstract mechanism to traverse container

list<Node>::iterator ni;
for (ni = top.begin(); ni !'= top. end() ++ni) { /I traverse list

327

cout << "C:" << ni->¢c << " 1:" << ni->i << endl;
}
singleton: single instance of class
.h file .cc file
class Singleton { #include "Singl eton. h”
struct Impl { Singleton::Impl Singleton::impl(3, 4);

Int X, v, Singleton::Impl::Impl(int X, int y)
Impl(int x, int y), - X(X), y(y) {

; void Singleton::m() { ... }
static Impl impl;

public :
\ void m();

Singleton x, vy, z; /l all access same value

CS 246 328
proxy : frontend for another object to control access

struct T {
void ml(...);
void m2(...);

I3

struct SProxyT : public T { /[static
void mi(...) { ... T:mi(...); ...}
void m2(...) { ... T:m2(...); ... }

I3

struct DProxyT : public T { /[dynamic
T «t;
DProxyT() { t = NULL; }
~DProxyT() { if (t = NULL) delete t; }
void mil(...) {if (t=NULL)t=new T, t->ml(...); ...}
void m2(...) { ... don'tneedt ... }

CS 246 329
decorator : attach additional responsibilities to an object dynaithyca

struct Abstract { struct Concrete : public Abstract {
virtual void m1(...) = 0; void ml(...);
virtual void m2(...) = 0O; void m2(...);

% ;

struct Decorator : public Abstract { /I generalize

Abstract «parent;
Decorator(Abstract &parent) : parent(&parent) {}
void ml(...) { parent->m1(...); } /I forward
void m2(...) { parent->m1(...); } /I forward

I3

struct Decorateel : public Decorator { // specialize

bécorateel(Abstract &parent, ...) : Decorator(parent), ... {}
void ml(...) { decorate Decorator.:ml1(...); decorate }
void m2(...) { decorate Decorator::m2(...); decorate }

I3

struct Decoratee2 : public Decorator {...} // specialize

Concrete c;
Decorateel d1(c); Decoratee2 d2(c); // decorate ¢ two ways
di.ml(...); d2.mi(...);

CS 246 330
observer: 1 to many dependency change updates dependencies

struct Observee { I/l generalize
Observer &oer,
Observee(Observer &oer) : oer(oer) {}
virtual void update() = O;

J§
struct Observer {
list<Observee x> oees; /I list of observees
static void perform(Observee x0ee) { oee->update(); }
void attach(Observee &oee) { oees.push_back(&oee); }
void deattach(Observee &oee) { oees.remove(&oee); }
void notify() { for_each(oees.begin(), oees.end(), perform); }
I3

struct Oee : private Observee { // specialize
Oee(Observer &oer) : Observee(oer) { oer.attach(xthis); }
~Q0Oee() { oer.deattach(xthis); }
void update() { perform update action }

I}

Observer oer;

Oee oeel(oer), oee2(oer); Il reqgister

oer.notify(); /[trigger updates

CS 246 331
visitor : perform operation on elements of heterogeneous container

struct Visitor {
void visit(N1
void visit(N2

n) { perform action on node }
n) { perform action on node }

Qo Ro

J§
struct Node {

virtual void action(Visitor &v) = O;
I3

struct N1 : public Node {
void action(Visitor &v) { v.visit(«this); } // overload
I3

struct N2 : public Node {
void action(Visitor &v) { v.visit(«this); } // overload
I3

Visitor v;
list<Node > |;
for (inti=0;i<10;i+=1){
l.push_back(1 % 2 == 0 ? (Node x)new N1 : (Node x)new N2),
}

for (list<Node *>:iterator it = l.begin(); it !'= l.end(); ++it) {
(xit)->action(v);

CS 246 332
4.7 Testing

e A major phase in program development is testings0%).

e This phase often requires more time and effort than desidrcading
phases combined.

e Testing is not debugging.

e Testingis the process of “executing” a program with the intent of
determining differences between the specification anchho#igults.

o Good test is one with a high probability of finding a differenc
o Successful test is one that finds a difference.

e Debugging is the process of determining why a program doekawe an
Intended testing behaviour and correcting it.

4.7.1 Human Testing

e Human testing : systematic examination of program to discover problems

e Studies show 30-70% of logic design and coding errors caretextdd in
this manner.

e Code inspectionlooks for common problems:

CS 246 333

o data errors: wrong types, mixed mode, overflow, zero divice,
subscript, initialization problems, poor data-structure

o logic errors: comparison problems=/ !=, </ <=), loop initialization /
termination, off-by-one errors, boundary values, incorfermula, end
of file, incorrect output

o Interface errors: missing members or member parametargpsulation
/ abstraction issues

e Desk checking: single person “plays computer”, executing program by
hand.

e \Walkthrough : team of people examine program by hand, often “grilling”
the developer.

4.7.2 Machine Testing

e Machine Testing: systematic running of program using test data, which is
designed to discover problems.

e Should be done after human testing.
e Exhaustive testing is usually impractical (too many cases)

e Test-case desigimvolves determining subset of all possible test cases witl
the highest probability of detecting the greatest numberafrs.

CS 246 334
e TWO major approaches:

o Black-Box Testing: program’s design / implementation is unknown
when test cases are drawn up.
o White-Box Testing : program’s design / implementation is used to
develop the test cases.
e Start with the black-box approach and supplement with wihae tests.
e Black-Box Testing

o equivalence partitioning
x partition all possible input cases into equivalence classe
x select only one representative from each class for testing
x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours

x Since there are many types of invalid data, invalid hoursatam be
partitioned into equivalence classes

o boundary value testing

CS 246 335
x test cases which are below, on, and above boundary cases

39, 40, 41 (hours)
44, 45, 46 "
-1, 0, 1 "

o cause-effect graphing

x used to generate test cases representing combinationadifions

x construct boolean logic-graphs, which are converted tesoectables
(describing test inputs and expected outputs)

o error guessing

x surmise, through intuition and experience, what the lileglprs are
and then test for them
e \White-Box (logic coverage) Testing

o develop test cases to cover (exercise) important logicsgatiough
program

o try to test every decision alternative at least once

o test all combinations of decisions (often impossible dugize)

o test every routine and member for each type

o cannot test all permutations and combinations of execution

CS 246 336
4.7.3 Testing Mechanics

e Unit testing : test each routine/class/module separately before mtegr
Into, and tested with, entire program.
o requires construction of drivers to call the unit and pagssit values

o requires construction of stub units to simulate the unitedaluring
testing

o allows a greater number of tests to be carried out in parallel
e Integration testing : test if units work together as intended.

o after each unit is tested, integrate it with tested system.

o done top-down or bottom-up : higher-level code is driveva,dr-level
code Is stubs

o In practice, a combination of top-down and bottom-up testsusually
used.

o detects interfacing problems earlier
e Once system is integrated:

o Functional testing : test if performs function correctly.

o Regression testing test if new changes produce different effects from
previous version of the system (diff results of old / new w@ns).

CS 246 337

o System testing test if program complies with its specifications.

o Performance testing: test if program achieves speed and throughput
requirements.

o Volume testing: test if program handles large volumes of test data,
possibly over long period of time.

o Stress testing test if program handles extreme volumes of data over a
short period of time, e.g., can air-traffic control-systemmdie 250 planes
at same time?

o Usability testing : test whether users have the skill necessary to operat
the system.

o Security testing: test whether programs and data are secure, i.e., can
unauthorized people gain access to programs, files, etc.

e If a problem is discovered, make up additional test casesromin on this
particular issue.

4.7.4 Tester

e A program should not be tested by its writer, but in practigs dften
oCcurs.

CS 246 338

e Testing can be very hard on the ego because you have to sednpbuD
own faults.

e Remember, the tester only tests what they thinks it should do

e Any misunderstandings the writer had while coding the piogare carried
over into testing.

e Any system written for an end user must be tested by the emdaise
determine if it is acceptable.

e Acceptance testing checking if the system satisfies what the user orderet

e Points to the need for a written specification to protect loghend user
and the supplier.

5 Conclusion

e Final exam is (largely) based on sections 2.12 (Objectshdo e
e Last 2 final exams and answers are available (see courseii®ebesating)
e Last version of course note is up.
o Send me any corrections you find during studying.
e assignment 6 extension : Sunday, Dec 6 @ 23:55
e Course topics:

o 2 programming language : sh and C+, dangerous in both ;-)

o Tools : compiler, debugger (maybe), make, CVS (maybe) :rialg
(memory errors)

o SE : for the work place

e review (Erik), newsgroup, appointment
e Think like a computer to understand it and write good program

e Fran Allen’s talk today at 2:00 in DC1302
High Performance Computers and Compilers. A Personal Perspective

e Good luck on assignment 6 and the final exam.
| want you all to succeed!

339

