
School of Computer Science

Course Notes

CS 246

Object-Oriented Software Development

http: //www.student.cs.uwaterloo.ca / ∼cs246

Fall 2009

1 Shell
• After signing onto a computer (login), a mechanism must exist to display

information and perform operations.

• The two main approaches are graphical and command line.

•Graphical interface (desktop):

◦ use icons to represent programs (actions),
◦ clicking on an icon launches (starts) a program,
◦ program may pop up a dialog box for arguments to specify its execution.

• Command-line interface(shell):

◦ use text strings (names) to represent programs (commands),
◦ command is typed after a prompt in an interactive area to start it,
◦ arguments follow the command to specify its execution.

•Graphical interface is convenient, but seldom is programmable.

• Command-line interface requires more typing, but allows programming.

• A shell is a program that reads commands and interprets them.
c© Peter A. Buhr

2

CS 246 3

• It provides a simple programming-language withstring variables and a few
statements.

• Unix shells falls into two basic camps,sh andcsh, each with slightly
different syntax and semantics.

• sh variants: ksh, bash

• csh variants: tcsh

• Focus on bash with some tcsh.

• Area (window) where shell runs is called aterminal or xterm.

• Shell line begins with aprompt denoted by$ (sh) or% (csh) (often
customized).

• A command is typed after the prompt butnot executed untilEnter/Return
key is pressed:

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009
$ whoamiEnter # print userid
cs246
$ echo Hi There!Enter # print any string
Hi There!

CS 246 4

• Comment begins with a hash (#) and continues to the end of the line.

•Multiple commands can be typed on the command line separatedby the
semi-colon.

$ date ; whoami ; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009
cs246
Hi There!

• Commands can be editted on the command line:

◦ position with⊳ and⊲ arrow keys,
◦ remove characters withbackspace/delete key,
◦ add new characters,
◦ pressingEnter at any point along the command line.

•Most commands have options, specified with a minus followed by one or
more characters, which specify how the command operates.

CS 246 5

$ uname -p # processor type
sparc
$ uname -s # operating system
SunOS
$ uname -a # all system information
SunOS services16.student.cs 5.8 Generic_117350-56 sun4u sparc SUNW,Ultr

•Options are normally processed left to right; one option maycancel another.

• No standardization for option syntax and names.
• Shells can be nested within each other (subshell).

$ tcsh # start tcsh in bash
% bash # start bash in tcsh
$ exit # exit bash
% exit # exit tcsh
$ exit # exit original bash and terminal

◦ when the login shell of terminal/xterm terminates, the terminal/xterm
terminates.
◦ when the login terminal/xterm terminates, you sign off the computer

(logout).

• Use commandchsh to set which shell you want to use (bash, tcsh, etc.).

CS 246 6

1.1 File System
• Shell commands interact extensively with the file system.

• Files are containers for data stored on secondary storage (usually disk).

• File names are organized in an N-ary tree: directories are vertices, files are
leaves.

• Information is stored at specific locations in the hierarchy.

CS 246 7

/ root of the local file system
bin basic UNIX commands
lib system libraries
usr

bin more UNIX commands
lib more system libraries
include system include files, .h files

tmp system temporary files
u1 user files
u2 user files

. . .
jfdoe home directory

.cshrc, .emacs, .login, . . . hidden files
cs246 course files

a1 assignment 1 files
q1x.C, q2y.h, q2y.cc

. . .
u9 user files
u or home magic directory combining what is under u1-u9

• Directory named “/ ” is the root of the file system.

• bin, lib, usr, include : UNIX commands, system library and include files.

CS 246 8

• tmp : location of temporary files created by commands.

• u1, . . . ,u9 : user files are distributed across these directories.

• u or home : magic directory combining all users from user directories.

• Directory for a particular user is called theirhome directory.

• Each file has a unique path-name in the file system, referencedwith an
absolute pathname.

• An absolute pathnameis a list of all the directories from the root to the file
separated by the character “/ ”.

/u2/jfdoe/cs246/a1/q1x.C # => file q1x.C
/u/jfdoe/cs246/a1/q1x.C # => file q1x.C

• A relative pathname is a short name for a file provided by the shell using
an implicit starting location.

• At sign on, the shell creates acurrent directory variable set to the user’s
home directory.

• Any file name not starting with “/ ” is automatically prefixed with the
current directory to create the necessary absolute pathname.

• E.g., if userjfdoe signs on, home and current directory are set to/u/jfdoe:

CS 246 9

cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

• Shell special character “~” (tilde) expands to user’s home directory.

~/cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

• Every directory contains 2 special directories:

◦ “ .” points to current directory.

./cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

◦ “ . .” points to parent directory above the current directory.

. ./. ./usr/include/stdio.h # => /usr/include/stdio.h

1.2 Pattern Matching
• Shells provide pattern matching of file names (globbing) to reduce typing

lists of file names.

• Different shells and commands support slightly different forms and syntax
for patterns.

• Pattern matching is provided through special characters,*, ?, {}, [],
denoting differentwildcards.

CS 246 10

• Patterns are composable: multiple wildcards joined into complex pattern.
• E.g., if the current directory is/u/jfdoe/cs246/a1 with leaf filesq1x.C, q2y.h,

q2y.cc

◦ * matches 0 or more characters

q* # => q1x.C, q2y.h, q2y.cc

◦ ? matches 1 character

q*.?? # => q1y.cc

◦ {. . .} matches any alternative in the set

*.{cc,cpp,C} # => q1x.C, q2y.cc

◦ [. . .] matches 1 character in the set

q[12]* # => q1x.C, q2y.h, q2y.cc

◦ [!. . .] (^ csh) matches 1 characternot in the set

q[!1]* # => q2y.h, q2y.cc
◦ Create ranges using hyphen (dash)

[0-3] # => 0,1,2,3
[a-zA-Z] # => lower or upper case letter
[!a-zA-Z] # => any character not a letter

CS 246 11

◦ Hyphen is escaped by putting it at start or end of set

[-?*]* # => matches any file names starting with -, ?, or *
• Hidden filescontain administrative information and start with “.” (dot).

• These files are ignored by globbing patterns, e.g.,* does not match all file
names in a directory.

• Pattern.* matches all hidden files, e.g.,.cshrc, .login, etc.,and “ .”, “ . .”

• Pattern.[!.]* does not match “.” and “ . .” directories.

•On the command line, pressing thetab key after typing several characters of
a file name requests the shell to automatically complete the file name.

$ echo cotab # cause completion of file name to counter.cc

• If the completion is ambiguity, the shell “beeps”, and you must type more
characters to uniquely identifier the file name.

1.3 Quoting
•Quoting controls how the shell interprets strings of characters.

• Backslash(\) : escapeany character, including special characters:

CS 246 12

$ echo \w \q * \? \[\] \$ \\ \ \ \ \ X
w q * ? [] $ \ X

Normally multiple spaces are compressed.

• Backquote(8) : execute the text as a command, and replace it with the
command output:

$ echo 8whoami 8

cs246

• Single quote(′) : do not interpret the string, even backslash:

$ echo ′\w \q * \? \[\] \$ \\ \ \ \ \ X′

\w \q * \? \[\] \$ \\ \ \ \ \ X

A single quote cannot appear inside single quotes.

• A file name containing special characters is enclosed in single quotes.

$ rm ′Book Report 2.txt′ # file name with spaces

• Double quote(") : interpret escapes, backquotes, and variables in string:

$ echo " * ? [] \\ \" 8whoami 8\""
* ? [] \ "cs246"

CS 246 13

• Put newline into string for multi-line text.

$ echo "abc
> cdf # prompt > means current line is incomplete
abc
cdf

1.4 Shell Commands
• Some commands are executed directly by the shell rather thanthe OS

because they read/write the shell’s state.

• cd : change the current directory.

cd [directory]

◦ argument must be a directory and not a file
◦ cd : move to home directory, same ascd ~
◦ cd - : move to previous current directory
◦ cd ~/bin : move to thebin directory contained in the home directory
◦ cd /usr/include : move to/usr/include directory
◦ cd . . : move up one directory level

CS 246 14

◦ If path does not exist,cd fails and current directory is unchanged.

• pwd : print the current directory.

$ pwd
/u/cs246/teaching/notes

• time : execute a command and print a time summary.

◦ Printsuser time (program CPU),system time(OS CPU),real time
(wall clock)
◦ Different shells print these values differently:

$ time a.out
real 1.2
user 0.9
sys 0.2

% time a.out
0.94u 0.22s 0:01.16

◦ user + system≈ real-time (uniprocessor, no OS delay)

• history and “!” : print a numbered history of most recent commands
entered and access them.

CS 246 15

$ history
1 date
2 whoami
3 cd . .
4 ls xxx
5 cat xxx
6 history

$!2
whoami
cs246
$!!
whoami
cs246
$!ls
ls xxx
xxx

◦ !N rerun commandN
◦ !! rerun last command
◦ !xyz rerun last command starting with the string “xyz”
◦ Use arrow keys△ / ▽ to move forwards / backwards through history

commands.

• alias : define string substitutions for command names.

alias [command-name [=] string]

◦ sh requires the “=” and does not allow spaces before/after it.
◦ string is substituted for commandcommand -name.
◦ without arguments, print all currently defined alias names and strings.

CS 246 16

◦ provide nickname for frequently used or variations of a command:

$ alias d="date"
$ d
Mon Oct 27 12:56:36 EDT 2008
$ alias off="clear; logout"
$ off # clear screen before logging off

Why are quotes necessary for aliasoff?
◦Good style to always use quotes to prevent problems.
◦ aliases are composable:

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

◦ useful for setting command options for particular commands.

$ alias cp="cp -i"
$ alias mv="mv -i"
$ alias rm="rm -i"

which always uses the -i option on commandscp, mv andrm.
◦ alias can be overridden by quoting the command name:

CS 246 17

$ "rm" -r xyz
which does not add the -i option.
◦ alias entered on a command line is only in effect for a shell session.
◦ two options for making aliases persist across sessions:

1. insert thealias commands in your.shellrc file,
2. place a list ofalias commands in a file called.aliases in your home

directory and execute that file from your.shellrc file.

• echo : write arguments, separated by a space and terminated with a
newline.

$ echo I like ice cream
I like ice cream
$ echo " I like ice cream "
I like ice cream

• eval : process each argument and execute.

$ echo ′ 8date 8′ ′ 8whoami 8′
8date 8 8whoami 8

$ eval echo ′ 8date 8′ ′ 8whoami 8′

Sat Dec 19 09:12:20 EST 2009 cs246

CS 246 18

◦ removes quotes, expands variables, etc., then executes command

• exit : terminates shell, with optional integer exit status (return code)N.

exit [N]

◦ exit status defaults to zero if unspecified.

1.5 System Commands
• Commands executed by UNIX.

•man : print information about command.

$ man bash # print information about “bash” command
$ man man # print information about “man” command

• which : print pathname of a command.

$ which make
/usr/ccs/bin/make
$ which gmake
/software/.admin/bins/bin/gmake

• ls : lists the directories and files in the specified directory.

CS 246 19

ls [-al] [file or directory-name-list]

◦ -a lists all files, including those that begin with a dot
◦ -l generates along listing (details) for each file
◦ no file/directory name implies current directory

•mkdir : creates a new directory at specified location in file hierarchy.

mkdir directory-name-list

• cp : copies files, and with the -r option, copies directories.

cp [-i] source-file target-file
cp [-i] source-file-list target-directory
cp [-i] -r source-directory-list target-directory

◦ -i prompt for verification if a target file is being replaced.
◦ -r recursively copy the contents of a source directory to the target

directory.

•mv : moves files and/or directories to another location in the file hierarchy.

mv [-i] source-file target-file
mv [-i] source-file/directory-list target-directory

CS 246 20

◦ if the target-file does not exist, the source-file is renamed;otherwise the
target-file is replaced.
◦ -i prompt for verification if a target file is being replaced.
• rm : removes (deletes) files, and with the -r option, removes directories.

rm [-if] file-list
rm [-ifr] file/directory-list

◦ -i prompt for verification for each file/directory being removed.
◦ -f do not prompt for verification for each file/directory being removed.
◦ -r recursively delete the contents of a directory.
◦ UNIX does not give a second chance to recover deleted files; becareful

when usingrm , especially with globbing, e.g.,rm * (check.snapshot).
•more/less/cat : print a file.
◦more/less paginate the contents one screen at a time.
◦ cat shows the contents in one continuous stream.
• lpr/lpq/lprm : add, query and remove files from the printer queues.

lpr [-P printer-name] file-list
lpq [-P printer-name]
lprm [-P printer-name] job-number

CS 246 21

◦ if no printer is specified, the queue is a default printer.
◦ each job on a printer’s queue has a unique number.
◦ use this number to remove a job from a print queue.

$ lpr -P ljp_3016 uml.ps # print file to printer ljp_3016
$ lpq # check status, default printer ljp_3016
Spool queue: lp (ljp_3016)
Rank Owner Job Files Total Size
1st rggowner 308 tt22 10999276 bytes
2nd cs246 403 uml.ps 41262 bytes
$ lprm 403 # cancel printing
services203.math: cfA403services16.student.cs dequeued
$ lpq # check if cancelled
Spool queue: lp (ljp_3016)
Rank Owner Job Files Total Size
1st rggowner 308 tt22 10999276 bytes

• cmp/diff : compare 2 files and print minimal differences.

cmp file1 file2
diff file1 file2

◦ cmp generates the first difference between the files.

CS 246 22

file x file y
a a
b b
c c
d e
g h
h i

g

$ cmp x y
x y differ: char 7, line 4

◦ diff generates output describing the changes need to change the first file
into the second file (used bypatch).

$ diff x y
4,5c4 # replace lines 4 and 5 of 1st file
< d # with line 4 of 2nd file
< g

> e
6a6,7 # add lines 6 and 7 of 2nd file
> i # after line 6 of 1st file
> g

• grep : (global regular expression print) search and print lines matching

CS 246 23

pattern in files (google).

grep -i -r "pattern-string" file-list

◦ -i ignore case in both pattern and input files
◦ -r recursively examine files in directories.
◦ grep pattern is different from globbing pattern (seeman grep).

$ grep -i fred names.txt # list all lines containing fred in any case
$ grep ′^\\\(begin\|end\){.*}

′
*.tex

^ match start of line, match “\”, match “begin” or “ end”, match “{”,
match 0 or more characters (notice “.”), match “}”.

1.6 File Permission
• UNIX file structure supports 3 levels of security on each file or directory:

◦ user : owner of the file,
◦ group : arbitrary name associated with a number of userids,
◦ other : any other user.

• A file or directory can have the following permissions: read,write, and
execute/search.

CS 246 24

• Readable and writable allow any of the specified users to reador
write/change a file/directory.

• Executable for files means the file can be executed as a command, e.g., file
contains a program or shell script.

• Executable for directories means the directory can be searched by certain
system operations but not read in general.

• ls -l prints file-permission information for the current directory:

drwx------ 7 cs246 cs246 4096 Oct 20 13:07 ./
drwxr-x--- 5 cs246 cs246 4096 Oct 15 08:07 ../
drwx------ 2 cs246 cs246 4096 Oct 19 18:19 C++/
drwx------ 2 cs246 cs246 4096 Oct 21 08:51 Tools/
-rw------- 1 cs246 cs246 22714 Oct 21 08:50 notes.aux
-rw------- 1 cs246 cs246 63332 Oct 21 08:50 notes.dvi

• Columns are permissions, #-files-in-directory, owner, group, file size,
change date, file name.

• Permission information is complex:

CS 246 25
user permissiond = directory

- = file
other permissions

group permissions

rwxd r-x --x

• E.g.,drwxr-x---, indicates

◦ directory in which the user has read, write and execute permissions,
◦ group has only read and execute permissions,
◦ others have no permissions at all.

• In general, never allow “other” users to read or write your files.

• Default permissions on a file arerw-r----- (usually), which means owner has
read/write permission, and group has only read permission.

• Default permissions on a directory arerwx------, which means owner has
read/write/execute.

• chgrp : change group-name associated with file:

chgrp [-R] group-name file-list

◦ -R recursively modify the group of a directory.

CS 246 26

• Creating/deleting group-names is done by system administrator.
(/etc/group)
• chmod : add or remove from any of the 3 security levels.

chmod [-R] mode-list file-list

◦ -R recursively modify the security of a directory.
• mode-list has the formsecurity-level operator permission.
• Security levels are denoted byu for you user,g for group,o for other,a for

all (ugo).
•Operator+ adds permission, - removes permission.
• Permissions are denoted byr for readable,w for writable andx for

executable.
• The elements of themode-list are separated by commas.
• E.g., to remove read and write permissions from security levels group and

other for filexyz.

chmod g-r,o-r,g-w,o-w xyz # long form
chmod go-rw xyz # short form
chmod -R a+r assn2 # make directory and its subfiles

readable to everyone

CS 246 27

1.7 Input/Output Redirection
• Every command has three special files: standard input (0), standard output

(1) and standard error (2).
• By default, these are connected to the keyboard (input) and screen (output).
• Shell provides operators< for redirecting input and> for redirecting output

to/from other sources.

$ ls -l > xxx # output to file xxx
$ more < xxx # input from file xxx; output to standard output
$ more < xxx > yyy # input from file xxx; output to file yyy

• Command is (usually) unaware of redirection.
• Normally, standard error (e.g., error messages) is not redirected because of

its importance.
• To selectively redirect output:

$ a.out > xxx # redirect standard output
$ a.out 1> xxx # redirect standard output
$ a.out 2> errors # redirect standard error
$ a.out 1> data 2> errors # redirect standard output/error different files
$ a.out > xxx 2>&1 # redirect standard output/error same file

CS 246 28

• To ignore output, redirect to pseudo-file/dev/null.

$ a.out 2> /dev/null # ignore error messages

• Shell pipe operator| makes standard output for a command the standard
input for the next command, without creating an intermediate file.

$ cat xxx | nl # print xxx with line numbers
$ man ls | more # paginate manual information for ls

• Standard error is not piped unless redirected to standard output:

$ a.out 2>&1 | nl # both standard output and error go through pipe

• A pipeline can be arbitrarily long.

1.8 Programming
• A shell program or script is a file containing shell commands that can be

executed.

#!/bin/tcsh [-x]
. . . # shell and OS commands

CS 246 29

• First line should begin with magic comment: “#! ” with shell pathname for
executing script.

• This line forces a specific shell to be used rather than the invoking shell.

• If the “#! ” line is missing, the script is run using the invoking shell.

•Optional -x is for debugging and prints trace of the script during execution.

• A script can be invoked directly using a specific shell, or as acommand if it
has executable permissions:

$ sh scriptfile # direct invocation
$ chmod u+x scriptfile # make script file executable
$./scriptfile # command execution, shell specified in script

• Interactive shell session is just a script reading from standard input.

1.8.1 Variables

• syntax :(letter | ′_′) (letter | ′_′ | digit)*
• case-sensitive:

VeryLongVariableName Page1 Income_Tax _75

• Some identifiers are reserved (e.g.,if , while), and hence,keywords.

CS 246 30

• Variables ONLY hold string values (arbitrary length).

• Variable is declareddynamicallyby assigning a value with operator “=”:

path=/u/cs246/ # declare and assign

No spaces before or after “=”.

• A variable’s value is returned using operator “$”.

$ echo $path ${path}
/u/cs246/ /u/cs246/

braces, “{. . .}”, allow unambiguous specification of name.

• Referencing an undefined variables returns the empty string.

$ echo $pathA1
blank line

• Always use braces to allow concatenation with other text:

$ echo $pathA1 ${path}A1 # $pathA1 undefined
/u/cs246/A1

• Each shell has a list of local and environment (global) variables.

• New variables are added to the local list.

CS 246 31

• Local variables are only visible within a shell’s executioncontext.

• Shell begins by copying containing shell’s environment variables (works
across different shells).

• Login shell starts with a number of useful environment variables, e.g.:

DISPLAY=services16.student.cs:10.0
EDITOR=emacsclient
HOST=services16.student.cs
PATH=. . .

• Local variable can be moved to shell’s environment list.

export path

• A variable can be removed from the local/environment list.

unset path

•When a shell ends, changes to its environment variables do not affect its
containing shell (environment variables only affect subshells).

• Beware commands composed in variables.

CS 246 32

$ cmd=′ls | more′ # command as value
$ ${cmd} # execute command
ls: cannot access |: No such file or directory
ls: cannot access more: No such file or directory
$ eval ${cmd} # evaluate and execute command

• “${cmd}” evaluates as:′ls′ ′|′ ′more′ , so| andmore are file names.
• “eval ${cmd}” evaluates as:ls | more, so| is pipe andmore is a command.

1.8.2 Routine

• A routine is defined as follows:

routine_name() { # number of parameters depends on call
commands

}

• Routines may be defined in any order.
• E.g.: create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -e input-file [output-file]"
exit 1 # terminate script with non-zero exit code

}

CS 246 33

• Invoked like command.

routine_name [args . . .]

• All variables are global to every routine in a script.

rtn1() {
var=3 # create local var
rtn2 # call rtn2

}
rtn2() {

echo ${var} # use local var
unset var # destroy local var

}

• Special shell variables to access arguments/result:
◦ ${#} number of command arguments, not including command name.
◦ ${0} refers to script’s name.

$ echo ${0} # which shell are you using (except csh)
bash

◦ ${n} refers to the command argument by position, i.e., 1st, 2nd, 3rd, ...
◦ ${*} command arguments as a single string, e.g.,"${1} ${2} . . .", not

including command name

CS 246 34

◦ ${@} command arguments as separate strings, e.g.,"${1}" "${2}" . . .,
not including command name
◦ ${?} exit status of the last command executed; 0 often⇒ exited normally.
◦ ${$} process id of executing shell-command.

• Routine may return an integer exit status, which is examinedusing${?}.

$ cat scriptfile
#!/bin/bash
rtn() {

echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # arguments
echo ${*} # arguments as a single string
echo ${@} # arguments as separate strings
echo ${$} # process id of executing shell
return 17 # exit status

}
rtn a1 a2 a3 a4 a5 # invoke routine
echo ${?} # print return value

CS 246 35

$./scriptfile
5
scriptfile a1 a2 a3 a4
a1 a2 a3 a4 a5 # 1 string
a1 a2 a3 a4 a5 # 5 strings
27028
17

• shift [N] : destructively shift parameters to the leftN positions, i.e.,
${1}=${2}, ${2}=${3}, etc., and${#} is reduced byN.

◦ If no N, 1 is assumed.

1.8.3 Arithmetic

• Shell variables have type string, which has no arithmetic:"1" + "17".

$ i=3 # i has string value “3” not integer 3

• To perform arithmetic a string is converted to an integer (ifpossible), an
integer operation performed, and the integer result converted back to a
string.

• UNIX commandexpr performs these steps.

CS 246 36

• Basic integer operations,+, -, *, /, % (modulus), with usual precedence.

$ echo 8expr 3 + 4 - 1 8

6
$ echo 8expr 3 + ${i} * 2 8 # escape *
9
$ echo 8expr 3 + ${k} 8

expr: non-numeric argument

• bash supports arithmetic as a shell command:

$ echo $((3 + 4 - 1))
7
$ echo $((3 + ${i} * 2)) # no escape
9
$ echo $((3 + ${k}))
bash: 3 + : syntax error: operand expected (error token is " ")

1.8.4 Control Structures

• Shell supports several control constructs; syntax for sh/bash is presented
(csh is different).

CS 246 37

1.8.4.1 Test

• Strings, integers and files can be tested to affect control flow.

• expn is test expression, not arithmetic expression.

CS 246 38

test operation
\(expn \) evaluation order (must be escaped)
! expn not
expn1 -a expn2 logical and (not short-circuit)
expn1 -o expn2 logical or (not short-circuit)
string1 = string2 equal (not ==)
string1 != string2 not equal
integer1 -eq integer2 equal
integer1 -ne integer2 not equal
integer1 -ge integer2 greater or equal
integer1 -gt integer2 greater
integer1 -le integer2 less or equal
integer1 -lt integer2 less
-d file exists and directory
-e file exists
-f file exists and regular file
-r file exists with read permission
-w file exists with write permission
-x file exists with executable or searchable

CS 246 39

1.8.4.2 Selection

• An if statement provides conditional control-flow.

if [test] ; then
commands

elif [test] ; then
commands

. . .
else

commands
fi

• E.g.:

if [" 8whoami 8" = "cs246"] ; then # string compare
echo "valid userid"

else
echo "invalid userid"

fi

CS 246 40

grep "${user}" /etc/passwd > /dev/null # ignore output
check exit status
if [${?} -eq 0] ; then # integer compare

echo "${user} has an account"
else

echo "${user} does not have an account"
fi
if [-x /usr/bin/cat] ; then # file check

echo "cat command available"
else

echo "no cat command"
fi

• Beware unset variables or values with blanks.

if [${var} = ′yes′]; then . . . # var unset => if [= ′yes′];
bash: [: =: unary operator expected
if [${var} = ′yes′]; then . . . # var=“a b c” => if [a b c = ′yes′

bash: [: too many arguments
if ["${var}" = ′yes′]; then . . . # var unset => if [“” = ′yes′];

Always quote variables!

• A case statement selectively executes one ofN alternatives based on

CS 246 41

matching a string expression with a series of patterns (globbing), e.g.:

case expression in
pattern | pattern | . . .) commands ;;
. . .
*) commands ;; # optional match anything

esac

•When a pattern is matched, its commands are executed up to;;, and control
exits thecase statement.

• If no pattern is matched, thecase statement does nothing.

• E.g.

CS 246 42

usage() {
echo "Usage: ${0} -h -v -f input-file"
exit 1 # terminate script with non-zero exit code

}
case "${1}" in # process command-line arguments
′-h′ | ′--help′) usage ;;
′-v′ | ′--verbose′) verbose=yes ;;
′-f′ | ′--file′)

shift 1 # access argument
file="${1}"
;;

*) usage ;; # default
esac

1.8.4.3 Looping

• while statement executes its commands zero or more times.

while [test] ; do
commands

done

• E.g.:

CS 246 43

print command-line arguments
while ["${1}" != ""] ; do # string compare

echo ${1}
shift # destructive

done
i=1
while [${i} -lt 5] ; do # integer compare

echo ${i}
i= 8expr ${i} + 1 8

done
while [-f "${file}"] ; do # file check

. . . # update file variable
done

• for statement is a specializedwhile statement for iterating with an index
over list of strings.

for index [in list] ; do
commands

done

• Cannot have integer index.

• If no list, iterate over arguments.

CS 246 44

• E.g.:

for args in ${@} ; do # process arguments, non-destructive
echo ${args}

done
$ for count in "one" "two" "three & four" ; do echo ${count} ; done
one
two
three & four
$ for file in *.C ; do cp "${file}" "${file}".old ; done

• A while /for loop may containcontinue andbreak to advance to the next
loop iteration or terminate loop.

for count in "one" "two" "three & four" ; do
. . .

if [" 8whoami 8" = "cs246"] ; then continue ; fi # next iteration
. . .

if [${?} -ne 0] ; then break ; fi # exit loop
. . .

done

CS 246 45

#!/bin/bash
#
List and remove unnecessary files in directories
#
Usage: cleanup [[-r | R] [-i] directory-name]+
#
Examples:
cleanup -R .
cleanup -r xxx -i yyy -r -i zzz
#
Limitations
only removes files named: core, a.out, *.o, *.d
does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | R] [-i] directory-name]+"
exit 1

}
defaults() { # defaults for each directory

prompt="-i" # prompt for removal
depth="-maxdepth 1" # not recursive

}

CS 246 46

remove() {
for file in 8find "${1}" ${depth} -type f \(-name ′core′ -o \

-name ′a.out′ -o -name ′
*.o

′ -o -name ′
*.d

′ \) 8

do
echo "${file}" # print removed file
rm "${prompt}" "${file}"

done
}
if [${#} -eq 0] ; then usage ; fi # no arguments ?
defaults # set defaults
while ["${1}" != ""] ; do # process command-line arguments

case "${1}" in
"-h") usage ;; # help ?
"-r" | "-R") depth="" ;; # recursive ?
"-i" | "-f") prompt="${1}" ;; # prompt for deletion ?
*) # directory name ?

remove "${1}" # remove files in this directory
defaults # reset defaults
;;

esac
shift # remove argument

done

2 C++

2.1 Program Structure
• A C++ program is composed of comments strictly for people, and

statements for both people and the preprocessor/compiler.

• A source file contains a mixture of comments and statements.

• The C/C++ preprocessor/compiler only reads the statementsand ignores the
comments.

2.1.1 Comment

• Comments document what a program does and how it does it.

• A comment may be placed anywhere a whitespace (space, tab, newline) is
allowed.

• There are two kinds of comments in C/C++ (same as Java):

Java / C / C++
1 /* . . . */
2 // remainder of line

c© Peter A. Buhr

47

CS 246 48

• First comment begins with the start symbol,/*, and ends with the terminator
symbol,*/, and hence, can extend over multiple lines.
• Cannot be nested one within another:

/* . . . /* . . . */ . . . */
↑ ↑

end comment treated as statements

• Be extremely careful in using this comment to elide/comment-out code:

/* attempt to comment-out a number of statements
while (. . .) {

/* . . . nested comment causes errors */
if (. . .) {

/* . . . nested comment causes errors */
}

}
*/

• Second comment begins with the start symbol,//, and continues to the end
of the line, i.e., only one line long.
• Can be nested one within another:

// . . . // . . . nested comment

CS 246 49

so it can be used to comment-out code:

// while (. . .) {
// /* . . . nested comment does not cause errors */
// if (. . .) {
// // . . . nested comment does not cause errors
// }
// }

2.1.2 Statement

• C++ is actually composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edits) the programbefore
compilation .

2. The template (generic) language adds new types and routinesduring
compilation .

3. The C programming language specifying basic declarations and control
flow to be executedafter compilation.

4. The C++ programming language specifying advanced declarations and
control flow to be executedafter compilation.

• A programmer uses the four programming languages as follows:

CS 246 50

user edits→ preprocessor edits→ templates expand→ compilation
(→ linking/loading→ execution)

• C is composed of languages 1 & 3.

• A preprocessor statement is a# character, followed by a series of tokens
separated by whitespace, which is usually a single line and not terminated
by punctuation.

• The syntax for a C/C++ statement (both template and regular)is a series of
tokens separated by whitespace and terminated by a semicolon. ({} is an
exception)

CS 246 51

2.2 First Program
• Java

import java.lang.*; // implicit
class hello {

public static void main(String[] args) {
System.out.println("Hello World!");
System.exit(0);

}
}

• C++

#include <iostream> // insert contents of file iostream
using namespace std; // direct naming of I/O facilities

int main() { // program starts here
cout << "Hello World!" << endl;
return 0; // return 0 to shell, optional

}

• #include <iostream> copies basic I/O descriptions (no equivalent in Java).
• using namespace std allows imported I/O names to be accessed directly,

i.e.,without qualification.

CS 246 52

• int main() is the routine where execution starts.

• curly braces,{ . . . }, denote a block of code, i.e., routine body ofmain.

• cout << "Hello World!" << endl prints"Hello World!" to standard
output, calledcout (System.out in Java).

• endl start newline after"Hello World!" (println in Java).

•Optionalreturn 0 returns zero to the shell indicating successful completion
of the program; non-zero usually indicates an error.

•main magic! If no value is returned, 0 is implicitly returned.

• Routineexit (JavaSystem.exit) stops a program at any location and returns
a code to the shell, e.g.,exit(0).

• Compile withg++ command:

% g++ firstprogram.cc # compile program
% a.out # execute program; execution permission

C program-files use suffix.c; C++ program-files use suffixes.C / .cpp / .cc.

CS 246 53

2.3 Declaration
• A declaration introduces names or redeclares names from previous

declarations in a program.

2.3.1 Identifier

• name used to refer to a variable or type.

• syntax :(letter | ′_′) (letter | ′_′ | digit)*
• case-sensitive:

VeryLongVariableName Page1 Income_Tax _75

• Some identifiers are reserved (e.g.,if , while), and hence,keywords.

CS 246 54

2.3.2 Basic Types

Java C / C++
boolean bool (C <stdbool.h>)
char char / wchar_t
byte char / wchar_t integral types
int int
float float real-floating types
double double

label type, implicit

• C/C++ treatchar andwchar_t (unicode characters) as an integral type.
• Java typesshort andlong are created using type qualifiers.

2.3.3 Variable Declaration

• Declaration in C/C++ same as Java: type followed by list of identifiers.
Java / C / C++

char a, b, c, d;
int i, j, k;
double x, y, z;
id :

CS 246 55

• Declarations may be intermixed among executable statements in a block.

• Declarations may have an initializing assignment (except for fields in
struct /class):

int i = 3;

• C/C++ do not check for uninitialized variables. (maybe)

int i;
cout << i << endl; // i has undefined value

• Variable names can be reused in different blocks, includingroutines and
classes, i.e., possibly hiding (overriding) prior variables.

int i; . . . // first i
{ int k = i, i; . . . // second i (override first), both i′s used in block!

{ int i = i; . . . // third i (override second)

• Labels can only be declared in a routine and cannot be overridden; i.e., each
label is unique within a routine body.

2.3.4 Type Qualifier

• C/C++ provide two basic integral typeschar andint .

CS 246 56

•Other integral types are generated using type qualifiers.

• C/C++ provide signed (positive/negative) and unsigned (positive only)
integral types.

integral types range
signed char / char at least -127 to 127 (SCHAR_MIN / SCHAR_MAX)
unsigned char at least0 to 255 (UCHAR_MAX)
signed short int / short at least -32767 to 32767 (SHRT_MIN / SHRT_MAX)
unsigned short int / unsigned short at least0 to 65535 (USHRT_MAX)
signed int / int at least -32767 to 32767 (INT_MIN / INT_MAX)
unsigned int at least0 to 65535 (UINT_MAX)
signed long int / long at least -2147483647 to 2147483647

(LONG_MIN / LONG_MAX)
unsigned long int / unsigned long at least0 to 4294967295 (ULONG_MAX)
signed long long int / long long at least -9223372036854775807

to 9223372036854775807 (LLONG_MIN / LLONG_MAX
unsigned long long int / unsigned long long at least0 to 18446744073709551615 (ULLONG_MAX)

• Range of values forint is machine specific: 2 bytes for 16-bit computers
and 4 bytes for 32/64-bit computers.

• long is 4 bytes for 16-bit computers and 8 bytes for 32/64-bit computers.

• #include <limits.h> provides sizes for integer types (e.g.,INT_MAX, etc.).

• #include <stdint.h> provides types[u]intN_t for signed /unsigned N = 8,

CS 246 57

16, 32, 64 bits.

integral typesrange
int8_t -127 to 127 (INT8_MIN / INT8_MAX)
uint8_t 0 to 255 (UINT8_MAX)
int16_t -32767 to 32767 (INT16_MIN / INT16_MAX)
uint16_t 0 to 65535 (UINT16_MAX)
int32_t -2147483647 to 2147483647 (INT32_MIN / INT32_MAX)
uint32_t 0 to 4294967295 (UINT32_MAX)
int64_t -9223372036854775807 to 9223372036854775807

(INT64_MIN / INT64_MAX)
uint64_t 0 to 18446744073709551615 (UINT64_MAX)

• C/C++ provide two basic real-floating typesfloat anddouble .

•One additional real-floating type is generated using a type qualifier.

real-float typesrange, precision, architecture
float ≈ 10−38 to 1038,≈ 7 digits, IEEE
double ≈ 10−308 to 10308,≈ 16 digits, IEEE
long double ≈ 10−4932 to 104932,≈ 34 digits, IEEE

• C/C++ support write-once/read-only constant variables with type qualifier

CS 246 58

const (Javafinal), in any variable declaration context.

Java C/C++

final short x = 3, y;
y = x + 7;
final char c = ′x′ ;

const short int x = 3, y = x + 7;
disallowed
const char c = ′x′ ;

• C/C++const identifiermustbe assigned a value at declaration (or by a
constructor’s declaration); the value can be the result of an expression:

• A constant variable can appear in read-only contexts after it is initialized.

2.3.5 String

• Strings are supported in C by language and library facilities.

• Language facility ensures string constant is terminated with a character′\0′ .

• E.g., string constant"abc" is actually an array of the 4 characters:′a′ , ′b′ ,
′c′ , and′\0′ , which occupies 4 bytes of storage.

• Zero value is asentinelused by C string routines to locate the string end.

• Drawbacks:

1. A string cannot contain a character with the value′\0′ .

CS 246 59

2. String operations needing the length of a string must linearly search for
′\0′ , which is expensive for long strings.

3. Management of variable-sized strings is the programmer’s responsibility,
with complex storage management problems.

• C++ solves these drawbacks by providing astring type using a length
member and managing all of the storage for the variable-sized strings.

• Unlike Java, instances of the C++string type are not constant.

• Values can change so a companion type likeStringBuffer in Java is
unnecessary.

• It is seldom necessary to iterate through the characters of astring
variable!

CS 246 60

Java String methods C char [] routines C++ string members
strcpy, strncpy =

+, concat strcat, strncat +
compareTo strcmp, strncmp ==, !=, <, <=, >, >=
length strlen length
charAt [] []
substring substr
replace replace
indexOf, lastIndexOf strstr find, rfind

strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of

c_str

• All of the C++ stringfind members returnstring::npos if a search is
unsuccessful.

CS 246 61

string a, b, c; // declare string variables
cin >> c; // read white-space delimited sequence of characters
cout << c << endl; // print string
a = "abc"; // set value, a is “abc”
b = a; // copy value, b is “abc”
c = a + b; // concatenate strings, c is “abcabc”
if (a == b) // compare strings, lexigraphical ordering
string::size_type l = c.length(); // string length, l is 6
char ch = c[4]; // subscript, ch is ′b′ , zero origin
c[4] = ′x′ ; // subscript, c is “abcaxc”, must be character constant
string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length 3,
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d, c is
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is
p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5
p = c.find_first_of("aeiou"); // search for first vowel, p is 0
p = c.find_first_not_of("aeiou"); // search for first consonant (not vowel), p is 1
p = c.find_last_of("aeiou"); // search for last vowel, p is 5
p = c.find_last_not_of("aeiou"); // search for last consonant (not vowel), p is 7

•Memberc_str returns a pointer tochar * value in a string (′\0′ delimited).

• Routinegetline(stream, string, char) allows different delimiting
characters on input:

CS 246 62

getline(cin, c, ′ ′); // read characters until ′ ′ => cin >> c
getline(cin, c, ′@′); // read characters until ′@′

getline(cin, c, ′\n′); // read characters until newline (default)

2.3.6 Constants

• Java and C/C++ share almost all the same constants for the basic types
(except for unsigned).

• A designated constantindicates its type with suffixes:L/l for long,LL/ll for
long long,U/u for unsigned, andF/f for float.

• Unlike Java, there is noD/d suffix for double constants.

• The type of an integralundesignated constant
(octal/decimal/hexadecimal) is the smallestint type that holds the value,
and the type of an undesignated real-floating constant isdouble .

CS 246 63

boolean false , true
decimal 123, -456L, 789u, 21UL

octal, prefix0 0144, -045l, 0223U, 067ULL
hexadecimal, prefix0X or 0x 0xfe, -0X1fL, 0x11eU, 0xffUL

real-floating .1, 1., -1., -7.3E3, -6.6e-2F, E/e exponent
character, single character′a′ , ′\′ ′

string, multi-character"abc", "\"\""

• Use the right constant with types character or string:

char ch = "a"; // use ′a′

char *str = ′a′ ; // use “a”
string str = ′a′ ; // use “a”

• An escape sequence allows special characters to appear in a character or
string constant and starts with a backslash,\.

"\\ \" \t \n \012 \xf3"

• The most common escape sequences are (see a C++ textbook for others):

CS 246 64
′\\′ backslash
′\′ ′ , "\"" single and double quote
′\t′ , ′\n′ tab, newline
′\0′ zero, string termination character
′\ooo′ octal value,ooo up to 3 octal digits
′\xhh′ hexadecimal value,hh up to 2 hexadecimal digits (not in Java)

• Sequence of octal/hex digits is terminated by first character not an octal/hex
digit.

2.3.7 Type Constructor

• A type constructor is a declaration that builds a more complex type from
the basic types.

constructor Java C/C++
enumerationenum Colour { R, G, B } enum Colour { R, G, B }

pointer any-type *p;
referenceclass-type r; any-type &r; (C++ only)
structure class struct or class

array int v[] = new int [10]; int v[10];
int m[][] = new int [10][10]; int m[10][10];

CS 246 65

2.3.7.1 Enumeration
• An enumeration is a type defining a set of named constants with only

assignment, comparison and implicit cast to integer operations:

enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering
Day day = Sat; // variable declaration, initialization
enum {Yes, No} vote = Yes; // anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type/variable declaration, explicit number
colour = B; // assignment
day = colour; // fails C++, works C

• Names in an enumeration are calledenumerators.

• Enumerators can be numbered explicitly.

• Enumeration in C++ denotes a new type; enumeration in C is alias forint .

• C/C++ enumeration only has underlying typeint ; Java enumeration can give
names (and operations) to any value.

• Java enumerator names must always be qualified.

• C/C++ enumerator names are unqualified⇒ unique in a lexical scope.

• Trick to count enums:

enum Colour { Red, Green, Yellow, Blue, Black, No_Of_Colours };

CS 246 66

No_Of_Colours is 5, which is the number of enumerator colours.

• In C, enum must always be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

2.3.7.2 Pointer/Reference

• pointer/referenceis an indirect mechanism to access a type instance.

• All variables have an address in memory, e.g.,int x = 5, y = 7:

x 5 7

100 200

int int

address

variable/value

type

y

• Value of a pointer/reference is the address of a variable.

• Accessing this address is different for a pointer or reference.

• Two basic pointer/reference operations:

1. referencing: obtain address of a variable; unary operator& in C++:

&x → 100
&y → 200

CS 246 67

2.dereferencing: retrieve value at an address; unary operator* in C++:

*(&x) → *(100) → 5
*(&y) → *(200) → 7

• Compiler automatically does first dereference, sox is really*(&x).

• Note, unary and binary use of operators&/* for reference/deference and
conjunction/multiplication.

• By convention, no variable is placed at thenull address(pointer),null in
Java, 0 in C/C++.

• Pointer/reference variable contains the memory address ofanother variable
(indirection) or null pointer (or an undefined address if uninitialized).

CS 246 68

null/undefined
address (pointer)

y

200

7

int

100

5 x

0 / 0x34fe7p3

70

60

200p2

int *

50

100p1 &p1 → 50
&p2 → 60
&p3 → 70
*(&p1) → 100 p1 = &x;
*(&p2) → 200 p2 = &y; p2 = p1;
*(&p3) → 0 p3 = 0;
((&p1)) → 5 *p1
((&p2)) → 7 *p2
((&p3)) → ? *p3

• Because of implicit 1st dereference,p1 is 100 and*p1 is 5.

•Multiple pointers/references may point to the same memory address
(dashed line).

• Dereferencing null/undefined pointer is undefined as no variable at the
address (but not necessarily an error).

• Explicit dereference is an operation usually associated with a pointer:

*p2 = *p1; ≡ y = x; // value assignment
*p1 = *p2 * 3; ≡ x = y * 3;

CS 246 69

• Address assignment does not require dereferencing:

p2 = p1; // address assignment

• p2 is assigned the same memory address asp1, i.e.,p2 points atx; values of
x andy do not change.

• Having to perform explicit dereferencing can be tedious anderror prone.

p1 = p2 * 3; // implicit deference

unreasonable asp1 is assigned address inp2 times 3.

• Reasonable if value pointed to byp1 is assigned value pointed to byp2
times 3.

• A pointer that provides implicit dereferencing is areference.
• However, implicit dereferencing generates an ambiguous situation for:

p2 = p1;

• Should this expression perform address or value assignment, and how are
both cases specified?

• C provides only a pointer; C++ provides a pointer and a restricted reference;
Java provides only a general reference.

CS 246 70

• C/C++ pointer:

1. created using the* type-constructor,
2. may point to any type (i.e., basic or object type) in any storage location

(i.e., global, stack or heap storage),
3. and no implicit referencing or dereferencing.

◦ Type qualifiers can be used to modify pointer types:

const short int w = 25;
const short int *p3 = &w;

int * const p4 = &x;
(int &p4 = x;)

const long int z = 37;
const long int * const p5 = &z; 37 z

5 x

25 w

308p5

100p4

300p3

◦ p3 may point at anyconst short int variable.
◦ Pointer can change to point at different variables, but the value of the

variables cannot be changed through the pointer.
◦ p4 may only point at variablex.

CS 246 71

◦ Pointer cannot change to point at a different variable, but the value of the
variable can be changed through the pointer.
◦ p5 may only point at variablez.
◦ Pointer cannot change to point at a different variable, and the value of the

variablez cannot be changed through the pointer.

• C++ reference

1. created using the& type-constructor,
2. may point to any type (i.e., basic or object type) in any storage location

(i.e., global, stack or heap storage),
3. restricted to a constant pointer to user created

(non-temporary/non-constant) storage,
4. and always has implicit dereferencing.

◦ Constant-pointer restriction of a C++ reference is equivalent to a Java
final reference or* const pointer with implicit dereferencing.
◦ Java reference can vary what it points to, but it can only point to objects

in heap storage.
◦ C++ constant-pointer restriction has two implications:

1. A C++ reference must be initialized at the point of declaration.

CS 246 72

∗ initializing expression has implicit referencing becausean address is
alwaysrequired;

int &r1 = &x; // error, unnecessary & before x
2. No need for address assignment after a C++ reference declaration

because the address cannot change.
∗ Java interprets reference assignmentr2 = r1 as address assignment

and has no mechanism to perform value assignment between
reference types.

• Pointer/reference type-constructor is not distributed across the
identifier list:

int * p1, p2; only p1 is a pointer, p2 is an integer, should beint *p1, *
int & rx = i, ry = i; only rx is a reference, ry is an integer, should beint &rx =i,

• C++ idiom for declaring pointers/references is misleading; only works for
single versus list of variables.

int * i, k;
double & x = d, y = d;

Gives false impression of distribution across the identifier list.

CS 246 73

2.3.7.3 Aggregation (Structure/Array)

• Like Java, C++ has “objects”, but it does not subscribe to thenotion that
everything is either a basic type or an object.

• Instead, aggregation is performed by structures and arrays, and computation
is performed by routines.

• An object type is the composition of a structure and routines.

• In C++, a routine can exist without being embedded in astruct /class .

Structure is a mechanism to group together heterogeneous values, including
(nested) structures:

Java C/C++

class Foo {
public int i = 3;
. . . // more fields

}

struct Foo {
int i; // no initialization
. . . // more members

}; // semi-colon terminated

• Components of a structure are calledmembers subdivided into data and
routine/function members1 in C++.
1Java subdivides members into fields (data) and methods (routines).

CS 246 74

• All members of a structure are accessible (public) by default (excluding
Javapackage visibility).

• A structure member cannot be directly initialized (unlike Java) , and a
structure is terminated with a semicolon.

• As for enumerations, a structure can be defined and instancesdeclared in a
single statement.

struct S { int i; } s; // definition and declaration

• In C, struct must always be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

• Recursive types (lists, trees) are defined using a pointer in a structure:

struct Node {
. . . // data members
Node *link; // pointer to another Node

};

• A bit field allows direct access to individual bits of memory:

CS 246 75

struct S {
int i : 3; // 3 bits
int j : 7; // 7 bits
int k : 6; // 6 bits

};
i = 2; // 10
j = 5; // 101
k = 9; // 1001

• A bit field must be an integral type.

• Unfortunately, bit-fields are not portable.

•On little-endian architectures (e.g., like Intel/AMD x86), the compiler
reverses the bit order.

• However, the compiler does not implicitly reverse the bit order.

• Hence, the bit-fields in variables above must be reversed for little-endian
architectures.

•While it is unfortunate C/C++ bit-fields lack portability, they are the
highest-level mechanism to manipulate bit-specific information.

Union is a heterogeneous aggregation mechanism, where all members
overlay the same storage:

CS 246 76

union U {
char c;
int i;
double d;

} u;

i dcu

• Used to access internal representation or save storage by reusing it for
different purposes at different times.

union U {
float f;
struct {

unsigned int sign : 1;
unsigned int exp : 8;
unsigned int val : 23;

} s;
int i;

} u;
u.f = 3.5; cout << hex << u.f << "\t" << u.i << endl;
u.i = 3; cout << u.i << "\t" << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val << endl;
u.f = -3.5e-3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val << endl;

produces:

CS 246 77

3.5 40600000
3 4.2039e-45
0 8a 5ac000
1 76 656042

• Reusing storage is dangerous and can usually be accomplished via other
techniques.

Array is a mechanism to group together homogeneous values.

• Unlike Java, a C/C++ array is a contiguous sequence of objects not a
reference to the object sequence.

Java C/C++
int x[] = new int [6] int x[6]

x -1805716 1 7 5 0 8 -1x

• Hence, array variables can have dimensions specified on a declaration and
all the array elements are implicitly allocated.

• Be careful not to write:

int b[10, 20]; // not int b[10][20]

CS 246 78

• C++ only supports a compile-time dimension value;g++ allows a runtime
expression.

int r, c;
cin >> r >> c; // input dimensions
int array[r]; // dynamic dimension, g++ only
int matrix[r][c]; // dynamic dimension, g++ only

• Subscripting, [], selects an array element, and can be used on the left and
right of assignment.

x[3]; // 3rd element
x[i]; // ith element
x[i + 1] = x[t / 3] - y; // left/right of assignment

• An array name without a subscript means&x, i.e., the starting address of the
first element.

• Like Java, an array is subscripted from at 0 to dimension - 1.

• However, a C/C++ array is simple because dimension information is not
stored with an array object.

• Hence, no equivalent to Java’slength member for arrays,no subscript
checking, and no array assignment.

CS 246 79

• Declaration of a pointer to an array is complex in C/C++ .

• Because no array-size information, the dimension value foran array pointer
is unspecified:

int arr[10];
int *parr = arr; // think parr[], pointer to array of N ints

• However, no dimension information results in the followingambiguity:

int *pvar = &i; // think pvar[] and i[1]
int *parr = arr; // think parr[]

• Variablespvar and parr have the same type but one is pointing at a
variable and the other an array!

• To read a complex declaration, parenthesize type qualifiersbased on
priority, read inside parenthesis outwards, start with variable name and end
with type name on the left.

const long int * const a[5] = {0,0,0,0,0};
const long int * const (&x)[5] = a;
const long int (* const ((&x)[5])) = a;

00000

x

x : reference to an array of 5 constant pointers to constant long integers

CS 246 80

2.3.8 Type Equivalence

• In Java/C/C++, two types are equivalent if they have the samename, called
name equivalence.

struct T1 { struct T2 { // identical structure
int i, j, k; int i, j, k;
double x, y, z; double x, y, z;

} }
T1 t1, t11 = t1; // allowed, t1, t11 have compatible types
T2 t2 = t1; // fails, t2, t1 have incompatible types

• TypesT1 andT2 arestructurally equivalence, but have different names so
they are incompatible, i.e., initialization of variablet2 fails.

• An alias is a different name for same type, so alias types are equivalent.

• C/C++ providestypedef to create a synonym for an existing type:

typedef short int shrint1; // shrint1 => short int
typedef shrint1 shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrint1 s1; // implicitly rewritten as: short int s1
shrint2 s2; // implicitly rewritten as: short int s2
shrint3 s3; // implicitly rewritten as: short int s3

CS 246 81

• All combinations of assignments are allowed amongs1, s2 ands3, because
they have the same type name “short int ”.

• Java provides no mechanism to alias types.

2.3.9 Type-Constructor Constant

enumerationenumerators
pointer 0 or NULL indicates a null pointer
structure struct { double r, i; } c = { 3.0, 2.1 };
array int v[3] = { 1, 2, 3 };

• C/C++ use0 to initialize pointers versusnull in Java.

• System include-files define the preprocessor variableNULL as0.
• Structure and array initialization can only occur as part ofa declaration.

struct { int i; struct { double r, i; } s; } d = { 1, { 3.0, 2.1 } }; // nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

• Values in initialization list are placed into a variable starting at the
beginning of the structure or array.

• Not all the members/elements must be initialized.

• A nested structure or multidimensional array is created using braces.

CS 246 82

• String constants can be used as a shorthand array initializer value:

char s[6] = "abcde"; rewritten as char s[6] = { ′a′ , ′b′ , ′c′ , ′d′ , ′e′ , ′\0′ };

• It is possible to leave out the first dimension, and its value is inferred from
the number of constants in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 6?)
int v[] = { 0, 1, 2, 3, 4 } // 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

CS 246 83

2.4 Expression

Java C/C++ priority
unary., (), [], call ., ->, (), [], call, dynamic_cast high

cast,+, -, !, ~ cast,+, -, !, ~, &, *
new new , delete , sizeof

binary*, /, % *, /, %
+, - +, -

bit shift <<, >>, >>> <<, >>
relational<, <=, >, >=, instanceof <, <=, >, >=
equality==, != ==, !=
bitwise& and &

^ exclusive-or ^
| or |

logical&& short-circuit &&
| | | |

conditional?: ?:
assignment=, +=, -=, *=, /=, %= =, +=, -=, *=, /=, %=

<<=, >>=, >>>=, &=, ^=, |= <<=, >>=, &=, ^=, |=
comma , low

CS 246 84

• Like algebra, operators are prioritize and performed from high to low.

•Operators with same priority are done left to right, except for unary,?, and
assignment operators, which associate right to left.

int **a, **b, c, d, *w[10];
**a = **b > c ? (*a = *b, d - 1) : (*w)[3] * 7 + 3;
(*(*a)) = (((*(*b)) > c) ? ((((*a) = (*b)), (d - 1))) : ((((*w)[3]) * 7) + 3));

•Order of evaluation of subexpressions and argument evaluation is
unspecified (Java left to right).

(i + j) * (k + j); // either + done first
(i = j) + (j = i); // either = done first
g(i) + f(k) + h(j); // g, f, or h called in any order
f(p++, p++, p++); // arguments evaluated in any order

• Referencing (address-of),&, and dereference,*, operators do not exist in
Java because access to storage is restricted.

• Find address of any variable in any storage context, e.g.,&x, &s.d, &v[5].

• Arrow operator, ->, is unique to C/C++ and is an anomaly among
programming languages.

• Exists because the priority of selection operator “.” is incorrectly higher

CS 246 85

than dereference operator “*”, so *p.f executes as*(p.f) instead of(*p).f.

• -> operator performs a dereference and member selection in thecorrect
order, i.e.,p->f is implicitly rewritten as(*p).f.

• Unlike Java, the C/C++ remainder operator,%, only accepts integral
operands.

• Assignment is an operator; useful forcascade assignmentto initialize
multiple variables of the same type:

a = b = c = 0; // cascade assignment
x = y = z + 4;

•Other uses of assignment in an expression are discouraged!; i.e.,
assignment only on left side.

• C/C++ allows any expression to appear as a statement:

3; j + i; (i + j) * (k + j); sin(x);

• Complex assignment operators, e.g.,lhs += rhs, are implicitly rewritten:

temp = &(lhs); *temp = *temp + rhs;

• Hence, the left-hand side,lhs, is evaluated only once:

CS 246 86

v[rand() % 5] += 1; // only calls random once
v[rand() % 5] = v[rand() % 5] + 1; // calls random twice

• Comma expression is a series of expressions separated by commas:

a, f + g, k(3) / 2, m[i][j] ← value returned

• Expressions evaluated left to right with the value of rightmost expression
returned as result.

• Comma expression allows multiple expressions to be evaluated in a context
where only a single expression is allowed.

• Dimension problemm[10, 20] actually meansm[20] because10, 20 is a
comma expression not a dimension list.

• Subscripting problemm[3, 4] meansm[4], 4th row of matrix.

•Operators++ / -- are discouraged because subsumed by general+= / -=.

2.4.1 Conversion

• Conversion implicitly/explicitly transforms a value fromone type to
another.

• Two kinds of conversions:

CS 246 87

◦ widening/promotion conversion, no information is lost:
char → short int → long int → double
′\x7′ 7 7 7.000000000000000

◦ narrowing conversion, information can be lost:
double → long int → short int → char

77777.77777777777 77777 12241 ′\xd1′

• C/C++ support both implicit widening and narrowing conversions (Java only
implicit widening).

• Implicit narrowing conversions can cause problems:

int i; double r;
i = r = 3.5; // r -> 3.5
r = i = 3.5; // r -> 3.0 ???

• Better to perform narrowing conversions explicitly usingcastoperator.

int i; double x, y;
i = (int) x; // explicit narrowing conversion
i = (int) x / (int) y; // explicit narrowing conversions for integer division
i = (int)(x / y); // alternative technique

• C/C++ supports casting among the basic types and user definedtypes.

CS 246 88

• g++ has a cast extension allowing construction of structure andarray
constants in executable statements not just declarations:

void rtn(const int m[2][3]);
struct Complex { double r, i; } c;
rtn((int [2][3]){ {93, 67, 72}, {77, 81, 86} }); // g++ only
c = (Complex){ 2.1, 3.4 }; // g++ only

• In both cases, a cast indicates the meaning and structure of the constant.

2.4.2 Math Operations

• #include <cmath> provides real-float mathematical routines.

• All arguments and the return value are typedouble .

CS 246 89

operation routine
arccosx acos(x)
arcsinx asin(x)
arctanx atan(x)
⌈x⌉ ceil(x)
cosx cos(x)
coshx cosh(x)
ex exp(x)
|x| fabs(x)
⌊x⌋ floor(x)

operation routine
x mody fmod(x, y)
logx log10(x)
lnx log(x)
xy pow(x, y)
sinx sin(x)
sinhx sinh(x)√

x sqrt(x)
tanx tan(x)
tanhx tanh(x)

• Standard math constants are also available.

CS 246 90

M_E 2.7182818284590452354 // e
M_LOG2E 1.4426950408889634074 // log_2 e
M_LOG10E 0.43429448190325182765 // log_10 e
M_LN2 0.69314718055994530942 // log_e 2
M_LN10 2.30258509299404568402 // log_e 10
M_PI 3.14159265358979323846 // pi
M_PI_2 1.57079632679489661923 // pi/2
M_PI_4 0.78539816339744830962 // pi/4
M_1_PI 0.31830988618379067154 // 1/pi
M_2_PI 0.63661977236758134308 // 2/pi
M_2_SQRTPI 1.12837916709551257390 // 2/sqrt(pi)
M_SQRT2 1.41421356237309504880 // sqrt(2)
M_SQRT1_2 0.70710678118654752440 // 1/sqrt(2)

• These constants are inadequate for computation usinglong double .

• Some systems providelong double versions, e.g.,M_PIl.

CS 246 91

2.5 Control Structures

Java C/C++
block { intermixed decls/stmts } { intermixed decls/stmts }

selection if (bool-expr1) stmt1
else if (bool-expr2) stmt2
. . .
else stmtN

if (cond-expr1) stmt1
else if (cond-expr2) stmt2
. . .
else stmtN

switch (integral-expr) {
case c1: stmts1; break ;
. . .
case cN: stmtsN; break ;
default : stmts0;

}

switch (integral-expr) {
case c1: stmts1; break ;
. . .
case cN: stmtsN; break ;
default : stmts0;

}
looping while (bool-expr) stmt while (cond-expr) stmt

do stmt while (bool-expr) ; do stmt while (cond-expr) ;

for (init-expr ;bool-expr ;incr-expr) stmt for (init-expr ;cond-expr ;incr-expr) stmt
transfer break [label] break

continue [label] continue
goto label

return [expr] return [expr]
throw [expr] throw [expr]

label label : stmt label : stmt

CS 246 92

2.5.1 Block

• Block is a series of statements bracketed by braces,{. . .}, which can be
nested.

• Block serves two purposes: bracket several statements intoa single
statement and introduce local declarations.

•When a statement is required, good practice is to always use ablock to
allow easy insertion and removal of statements to or from block.
• Putting local declarations precisely where they are neededcan help reduce

declaration clutter at the beginning of an outer block.

• However, it can also make locating them more difficult.

2.5.2 Conditional

• C/C++ uses aconditional expressionin control structures to cause
conditional transfer (Java uses a boolean expression).

• A conditional expression is evaluated and implicitly tested for not equal to
zero, i.e.,cond-expr ≡ expr != 0.

• Boolean expressions are converted to 0 forfalse and 1 fortrue before
comparison to zero, e.g.:

CS 246 93

if (x > y). . . implicitly rewritten as if ((x > y) != 0). . .

• Hence, other expressions are allowed in a conditional (C/C++ idiom):

if (x) . . . implicitly rewritten as if ((x) != 0). . .
while (x). . . while ((x) != 0). . .

•Watch for the common mistake in a conditional:

if (x = y). . . implicitly rewritten as if ((x = y) != 0). . .

which assignsy to x and testsx != 0 (possible in Java for one type).

2.5.3 Selection

• C/C++ selection statements areif andswitch (same as Java, except for
boolean versus conditional expression).

• An if statement selectively executes one of two alternatives based on the
result of a comparison, e.g.:

if (x > y) max = x;
else max = y;

• Java/C/C++ have thedangling elseproblem of associating anelse clause
with its matchingif in nestedif statements.

CS 246 94

• E.g., reward WIDGET salesperson who sold more than $10,000 worth of
WIDGETS and dock pay of those who sold less than $5,000.

Dangling Else Fix Using Null Else Fix Using Blocks

if (sales < 10000)
if (sales < 5000)

income -= penalty;
else // incorrect match!!!

income += bonus;

if (sales < 10000)
if (sales < 5000)

income -= penalty;
else ; // null statement

else
income += bonus;

if (sales < 10000) {
if (sales < 5000) {

income -= penalty;
}

} else {
income += bonus;

}

• A switch statement selectively executes one ofN alternatives based on
matching an integral value with a series of case clauses, e.g.:

CS 246 95

switch (day) { // integral expression
case MON: case TUE: case WED: case THU: // case value list

cout << "PROGRAM" << endl;
break ; // exit switch

case FRI:
wallet += pay;
// FALL THROUGH

case SAT:
cout << "PARTY" << endl;
wallet -= party;
break ; // exit switch

case SUN:
cout << "REST" << endl;
break ; // exit switch

default :
cerr << "ERROR" << endl;
exit(-1); // terminate program

}

•Once a case clause is matched, its statements are executed, and control
continues to thenextstatement.

• break statement is used at end of a case clause to exitswitch statement.

CS 246 96

• It is a common error to forget the break .
• If no case clause is matched and there is adefault clause, its statements are

executed, and control continues to thenext statement.

•Otherwise, theswitch statement does nothing.

•Only one label for eachcase clause but a list ofcase clauses is allowed.

2.5.4 Conditional Expression Evaluation

• Conditional expression evaluationperforms partial evaluation
(short-circuit) of expressions.

&& only evaluates the right operand if the left operand is true
| | only evaluates the right operand if the left operand is false
?: only evaluates one of two alternative parts of an expression

• && and| | are similar to logical& and| for bitwise (boolean) operands, i.e.,
both produce a logical conjunctive or disjunctive result.

• However, short-circuit operators evaluate operands lazily until a result is
determined, short circuiting the evaluation of other operands.

i < size && key != array[i] // may only evaluate left operand of &&

CS 246 97

• Hence, short-circuit operators are control structures in the middle of an
expression becausee1 && e2 6≡ &&(e1, e2) (unless lazy evaluation).

• Logical & and| evaluate operands eagerly, evaluating both operands.

• Conditional?: evaluates one of two expressions, and returns the result of
the evaluated expression.

• Acts like anif statement in an expression:

abs2 = (a < 0 ? -a : a) + 2 if (a < 0) {
abs2 = -a;

} else {
abs2 = a;

}
abs2 += 2;

2.5.5 Looping

• C/C++ looping statements arewhile , do andfor (same as Java, except for
boolean versus conditional expression).

• while statement executes its statement zero or more times.

CS 246 98

• Beware of accidental infinite loops.
x = 0;
while (x < 5); // extra semicolon!

x = x + 1;

x = 0;
while (x < 5) // missing block

y = y + x;
x = x + 1;

• do statement executes its statement one or more times.

do {
. . . // executed at least once

} while (x < 5);

• for statement is a specializedwhile statement for iterating with an index.

init-expr ;
while (cond-expr) {

stmt ;
incr-expr ;

}

for (init-expr ; cond-expr ; incr-expr) {
stmt ;

}

•Many ways to use thefor statement to construct iteration:

for (i = 1; i <= 10; i += 1) { // count up
// loop 10 times

} // i has the value 11 on exit

CS 246 99

for (i = 10; 1 <= i; i -= 1) { // count down
// loop 10 times

} // i has the value 0 on exit
for (p = l; p != NULL; p = p->link) { // pointer index

// loop through list structure
} // p has the value NULL on exit
for (i = 1, p = l; i <= 10 & p != NULL; i += 1, p = p->link) { // 2 indices

// loop until 10th node or end of list encountered
}

• Comma expression is used to initialize and increment 2 indices in a context
where normally only a single expression is allowed.

• Default true value inserted if no conditional is specified infor statement.

for (; ;) // rewritten as: for (; true ;)

• continue /break statements available in all iteration constructs to advance
to the next loop iteration or terminate loop.

CS 246 100

for (i = 0; ; i += 1) { // infinite loop, conditional is “true”
. . .

if (x > y) break ; // exit loop
. . .

if (x == y) continue ; // start next iteration
. . .

}

• C/C++goto label allows arbitrary transfer of controlwithin a routine from
thegoto to statement marked with label variable.
• Label variable is declared by prefixing an identifier and “:” to a statement,

where the label has routine scope.

L1: i += 1; // associated with expression
L2: if (. . .) . . .; // associated with if statement
L2: ; // associated with empty statement

• Transfer control backwards/forwards with respect to code in routine body.

L1: ;
. . .
goto L1; // transfer backwards, up
goto L2; // transfer forward, down
. . .
L2: ;

CS 246 101

• Can transfer into and out of control structures.

goto L1; // highly discouraged
. . .
for (i = -5; i < 0; i += 1) {

. . .
L1: ; // loop index uninitialized
. . .
goto L2;
. . .

}
. . .
L2: ;

2.6 Structured Programming
• Structured programming is about managing (restricting) control flow

using a fixed set of well-defined control-structures.

• A small set of control structures used with a particular programming style
make programs easier to write and understand, as well as maintain.

•Most programmers adopt this approach so there is a universal(common)
approach to managing control flow (e.g., like traffic rules).

CS 246 102

• Developed during the 1970’s to overcome the indiscriminantuse of the
GOTO statement.

•GOTO leads to convoluted logic in programs (i.e., does NOT support a
methodical thought process).

• I.e., arbitrary transfer of control results in programs that are difficult to
understand and maintain.

• Restricted transfer reduces the points where flow of controlchanges, and
therefore, is easy to understand.

CS 246 103

CS 246 104

• There are 3 levels of structured programming:

classical
◦ sequence: series of statements
◦ if-then-else: conditional structure for making decisions
◦ while: structure for loops with test at top
Can write any program (actually only needwhile or onewhile andifs).

extended
◦ classical control structures
◦ case/switch: conditional structure for making decisions
◦ repeat-until/do-while: structure for loops with test at bottom

modified
◦ extended control structures
◦ one or more exits from arbitrary points in a loop
◦ exits from multiple nested control structures
◦ exits from multiple nested routine calls
Eliminates the need forflag variables.

CS 246 105

2.6.1 Multi-Exit Loop

• A multi-exit loop (or mid-test loop) is a loop with one or more exit
locations occurringwithin the body of the loop.

•While-loop has 1 exit located at the top:

while i < 10 do loop -- infinite loop
exit when i >= 10; -- loop exit

. ↑ reverse condition
end while end loop

• Repeat-loop has 1 exit located at the bottom:

do loop -- infinite loop
.

exit when i >= 10; -- loop exit
while (i < 10) end loop ↑ reverse condition

• Exit condition can appear in other locations in the loop body:

loop
. . .

exit when i >= 10;
. . .

end loop

CS 246 106

•Or allow multiple exit conditions:

loop
. . .

exit when i >= 10;
. . .

exit when j >= 10;
. . .

end loop

• Eliminates priming (copied) code necessary withwhile :

read(input, d); loop
while ! eof(input) do read(input, d);

. . . exit when eof(input);
read(input, d); . . .

end while end loop

• C/C++ idioms for this situation are:
C C++

while ((d = getc(stdin)) != EOF) while (cin >> d)

• Results in expression side-effects and precludes analysisof d without code
duplication.

CS 246 107

• E.g., print the status of streamcin after every read for debugging:

while (cin >> d) { loop
cout << cin.good() << endl; cin >> d;

cout << cin.good() << endl;
. . . exit when cin.fail();

} . . .
cout << cin.good() << endl; end loop

• The loop exit is always outdented or clearly commented (or both) so it can
be found without having to search the entire loop body.

• This is the same indentation rule as for theelse of the if-then-else:

if . . . then if . . . then
.
else else
.

end if end if

• A multi-exit loop can be written in C/C++ in the following ways:

CS 246 108

for (;;) { while (true) { do {
.

if (i >= 10) break ; if (i >= 10) break ; if (i >= 10) break ;
.

if (j >= 10) break ; if (j >= 10) break ; if (j >= 10) break ;
.

} } } while (true);

• The for version is more general as it can be easily modified to have a loop
index or a while condition.

for (int i = 0; i < 10; i += 1) { // loop index
for (; x < y;) { // while condition

• In general, the programming language and code-typing styleshould allow
insertion of new code without having to change existing code.

• E.g., write linear search such that:

◦ no invalid subscript for unsuccessful search
◦ index points at the location of the key for successful search.

• Use onlyif andwhile :

CS 246 109

i = -1; found = 0;
while (i < size - 1 & ! found) { // rewrite: &(i<size-1, !found)

i += 1;
found = key == list[i];

}
if (found) { . . . // found
} else { . . . // not found
}

• Allow short-circuit operators.

for (i = 0; i < size && key != list[i]; i += 1){};
// rewrite: if (i < size) if (key != list[i])

if (i < size) { . . . // found
} else { . . . // not found
}

• Logical & is incorrect because it evaluates both operands.

• Alternatively, use multi-exit loop.

CS 246 110

for (i = 0; ; i += 1) { // or for (i = 0; i < size; i += 1)
if (i >= size) break ;
if (key == list[i]) break ;

}
if (i < size) { . . . // found
} else { . . . // not found
}

• The extra test after the loop can be eliminated by introducing it into the
loop body.

for (i = 0; ; i += 1) {
if (i >= size) { . . . // not found

break ;
} // exit

if (key == list[i]) { . . . // found
break ;

} // exit
} // for

• E.g., an element is looked up in a list of items, if it is not in the list, it is
added to the end of the list, if it exists in the list its associated list counter is
incremented.

CS 246 111

for (i = 0; ; i += 1) {
if (i >= size) {

list[size].count = 1;
list[size].data = key;
size += 1;

break ;
} // exit

if (key == list[i].data) {
list[i].count += 1;

break ;
} // exit

} // for

2.6.2 Static Multi-Level Exit

• Static multi-level exit exits multiple control structures where exit points
areknown at compile time.

• Labelled exit (break /continue) often provides this capability:

CS 246 112

Java C / C++

L1: {
. . . declarations . . .
L2: switch (. . .) {

L3: for (. . .) {
. . . break L1; . . . // exit block
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit loop

}
. . .

}
. . .

}

{
. . . declarations . . .
switch (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . .

} L1: ;
. . .

} L2: ;
. . .

} L3: ;

• Labelledbreak /continue transfer control out of the control structure with
the corresponding label, terminating any block that it passes through.

• Commonly used with nested loops:

CS 246 113

Java C / C++
L1: for (;;) { // while (flag1 && . . .)

L2: for (;;) { // while (flag2 && . . .)
L3: for (;;) { // while (flag3 && . . .)

. . .
if (. . .) break L1; // exit 3 levels

. . .
if (. . .) break L2; // exit 2 levels

. . .
if (. . .) break L3; // or break, exit 1 level

. . .
}

}
}

for (;;) {
for (;;) {

for (;;) {
. . .

if (. . .) goto L1;
. . .

if (. . .) goto L2;
. . .

if (. . .) goto L3;
. . .

} L3: ;
} L2: ;

} L1: ;

• Eliminates flag variables, which are the variable equivalent to a goto.

• Normal and labelledbreak are agoto with restrictions:

◦ Cannot be used to create a loop (i.e., cause a backward branchin the
program); hence, all situations that result in repeated execution of
statements in a program are clearly delineated.
◦ Cannot be used to branchinto a control structure.

• The simple case (exit 1 level) of multi-level exit is a multi-exit loop.

CS 246 114

•Why is it good practice to label all exits?

•Only usegoto to simulate labelledbreak and continue .
• return statements can generate multi-exit loop and multi-level exit.

• Static multi-level exits appear infrequently, but are extremely concise and
execution-time efficient.

2.7 Preprocessor
• Preprocessor manipulates the text of the programbeforecompilation.

• Program you see is not what the compiler sees!
• The three most commonly used preprocessor facilities are substitution, file

inclusion, and conditional inclusion.

2.7.1 Substitution
• #define statement declares a preprocessor variable, and its value is all the

text after the name up to the end of line.

CS 246 115

#define Integer int
#define begin {
#define end }
#define PI 3.14159
#define gets =
#define set
#define with =
Integer main() begin // same as: int main() {

Integer x gets 3, y; // same as: int x = 3, y;
x gets PI; // same as: x = 3.14159;
set y with x; // same as: y = x;

end // same as: }

• Preprocessor can transform the syntax of C/C++ program (discouraged).
• Variables can be defined and optionally initialized on the compilation

command with option -D.

% g++ -DDEBUG=2 -DASSN . . . source-files

Same as putting the following#define s in a program without changing the
program:

#define DEBUG 2
#define ASSN

CS 246 116

• Predefined preprocessor-variables exist identifying hardware and software
environment, e.g.,mcpu is kind of CPU.

• Replace#define with enum (see Section 2.3.7.1, p. 65) for integral types;
otherwise useconst declarations (see Section 2.3.4, p. 55) (final in Java).

enum { arraySize = 100 };
enum { PageSize = 4 * 1024 };
int array[arraySize], pageSize = PageSize;
const double PI = 3.14159;

• enum uses no storage whileconst declarations do.

• #define can declare macros with parameters, which expand during
compilation, textually substituting arguments for parameters, e.g.:

#define MAX(a, b) ((a > b) ? a : b)
z = MAX(x, y); // implicitly rewritten as: z = ((x > y) ? x : y)

• Useinline routines in C/C++ rather that#define macros.

2.7.2 File Inclusion

• File inclusion copies text from a file into a C/C++ program.

• An included file may contain anything.

CS 246 117

• An include file normally imports preprocessor and C/C++
templates/declarations for use in a program.

• All included text goes through every compilation step, i.e., preprocessor,
compiler, etc.

• Java implicitly inclusions by matching class names with filenames in
CLASSPATH directories, then extracting and including declarations.

• The#include statement specifies the file to be included.

• C convention uses suffix “.h” for include files containing C declarations.

• C++ convention drops suffix “.h” for its standard libraries and has special
file names for equivalent C files, e.g.,cstdio versusstdio.h.

#include <stdio.h> // C style
#include <cstdio> // C++ style
#include "user.h"

• A file name can be enclosed in<> or "".

• <> means preprocessor only looks in the system include directories.

• "" means preprocessor starts looking for the file in the same directory as
the file being compiled, then in the system include directories.

CS 246 118

• System fileslimits.h andunistd.h contains many useful#define s, like the
null pointer constantNULL (e.g., see/usr/include/limits.h).

2.7.3 Conditional Inclusion

• Preprocessor has anif statement, which may be nested, to conditionally
add/remove code from a program.
• Conditional ofif uses the same relational and logical operators as C/C++,

but operands can only be integer or character values.

#define DEBUG 0 // declare and initialize preprocessor variable
. . .
#if DEBUG == 1 // level 1 debugging
include "debug1.h"
. . .
#elif DEBUG == 2 // level 2 debugging
include "debug2.h"
. . .
#else // non-debugging code
. . .
#endif

• By changing value of preprocessor variableDEBUG, different parts of the
program are included for compilation.

CS 246 119

• To exclude code (comment-out), use0 conditional as0 implies false.

#if 0
. . . // code commented out
#endif

Independent of language structure, can overlap definitionsand routines.

• It is also possible to check if a preprocessor variable is defined or not
defined by using#ifdef or #ifndef :

#ifndef __MYDEFS_H__ // if not defined
#define __MYDEFS_H__ 1 // make it so
. . .
#endif

• Used in an#include file to ensure its contents are only expanded once.

• Note difference between checking if a preprocessor variable is defined and
checking the value of the variable.

• The former capability does not exist in most programming languages, i.e.,
checking if a variable is declared before trying to use it.

CS 246 120

2.8 Input/Output
• Input/Output (I/O) is divided into two kinds:

1.Formatted I/O transfers data with implicit conversion of internal values
to/from human-readable form.
◦ Conversion is based on the type of variables and format codes.

2.Unformatted I/O transfers data without conversion, e.g., internal integer
and real-floating values.

CS 246 121

2.8.1 Formatted I/O

Java C C++
File, Scanner, PrintStream FILE ifstream, ofstream
Scanner in = new in = fopen("f", "r"); ifstream in("f");

Scanner(new File("f"))
PrintStream out = new out = fopen("g", "w") ofstream out("g")

PrintStream("g")
in.close() close(in) scope ends,in.close()
out.close() close(out) scope ends,out.close()
nextInt() fscanf(in, "%d", &i) in >> T
nextFloat() fscanf(in, "%f", &f)
nextByte() fscanf(in, "%c", &c)
next() fscanf(in, "%s", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()

in.clear()
skip("regexp") fscanf(in, "%*[regexp]") in.ignore(n, c)
out.print(String) fprintf(out, "%d", i) out << T

fprintf(out, "%f", f)
fprintf(out, "%c", c)
fprintf(out, "%s", s)

CS 246 122

• Formatted I/O occurs to/from astream file.

• C++ has three implicit stream files:cin, cout andcerr, which are
automatically declared and opened (Java hasin, out anderr).

• C hasstdin, stdout andstderr, which are automatically declared and opened.

• Includeiostream has all necessary declarations forcin, cout andcerr.

• cin reads input from the keyboard (unless redirected by shell).

• cout writes to the terminal screen (unless redirected by shell).

• cerr writes to the terminal screen even whencout output is redirected.

• Error and debugging messages should always be written tocerr :

◦ normally not redirected by the shell,
◦ unbuffered so output appears immediately.

• Stream files other than 3 implicit ones require declaring each file object:

#include <fstream> // required for stream-file declarations
ifstream infile("myinfile"); // input file
ofstream outfile("myoutfile"); // output file

• Type of the file,ifstream or ofstream, indicates whether the file can be read
or written.

CS 246 123

• Declarationopens a file making it accessible through the variable name,
e.g.,infile andoutfile are used for file access.

• Check for successful opening of a file using the stream memberfail, e.g.,
infile.fail(), which returnstrue if the open failed andfalse otherwise.

• Connection between the file name in the program and operating-system file
is done at the declaration:

◦ infile reads from filemyinfile
◦ outfile writes to filemyoutfile

where both files are located in the directory where the program is run.

• C++ I/O library overloads the bit-shift operators<< and>> to perform I/O.

• C I/O library usesfscanf(outfile,. . .) andfprintf(infile,. . .), which have short
formsscanf(. . .) andprintf(. . .) for stdin andstdout.

• Parameters in C are always passed by value, so arguments tofscanf must be
preceded with& (except arrays) so they can be changed.

• Both I/O libraries can cascade multiple I/O operations, i.e., input or output
multiple values in a single expression.

CS 246 124

2.8.1.1 Formats

• Format of input/output values is controlled viamanipulators defined in
#include iomanip:

oct values in octal
dec values in decimal
hex values in hexadecimal
left / right (default) values with padding after / before values
boolalpha / noboolalpha (default) bool values as false/true instead of 0/1
showbase / noshowbase (default) values with / without prefix 0 for octal & 0x for hex
fixed (default) /scientific float-point values without / with exponent
setprecision(N) fraction of float-point values in maximum of N columns
setw(N) NEXT VALUE ONLY in minimum of N columns
setfill(′ch′) padding character before/after value (default blank)
endl flush output buffer and start new line (output only)
skipws (default) /noskipws skip whitespace characters (input only)

•manipulators applies to all constants/variables after it,even to the next I/O
expression for a specific stream file.
• Except manipulator setw , which only applies to the next value in the

I/O expression.
• endl is not the same as′\n′ ; only endl flushes for interactive output.

CS 246 125

2.8.1.2 Input

• Java formatted input uses anexplicit Scanner attached to an input file to
convert characters to basic types.

• C/C++ formatted input hasimplicit character conversion for all basic types
and is extensible to user-defined types.

Java C C++

import java.io.*;
import java.util.Scanner;
Scanner in =

new Scanner(new File("f"));
PrintStream out =

new PrintStream("g");
int i, j;
while (in.hasNext()) {

i = in.nextInt(); j = in.nextInt();
out.println("i:"+i+" j:"+j);

}
in.close();
out.close();

#include <stdio.h>
FILE *in = fopen("f", "r");

FILE *out = fopen("g", "w");

int i, j;
for (;;) {

fscanf(in, "%d%d", &i, &j);
if (feof(in)) break ;

fprintf(out,"i:%d j:%d\n",i,j);
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out("g");

int i, j;
for (;;) {

in >> i >> j;
if (in.fail()) break ;

out << "i:" << i
<<"j:"<<j<<endl;

}
// in/out closed implicitly

• Input values for a stream file are C/C++ undesignated constants: 3, 3.5e-1,

CS 246 126

etc., separated by whitespace.

• Except for characters and character strings,which are not in quotes, so
cannot read strings containing white spaces.

• Type of operand indicates the kind of constant expected in the stream, e.g.,
an integer operand means an integer constant is expected.

• Input starts reading where the last read left off, and scans lines to obtain
necessary number of constants.

• Hence, the placement of input values on lines of a file is oftenarbitrary.

• Unlike Java, C/C++ must attempt to readbeforeend-of-file is set and can be
tested for.

• End of file is the detection of the physical end of a file;there is no
end-of-file character.
• From a keyboard,<ctrl>-d (press the<ctrl> andd keys simultaneously)

causes the shell to close the current input file marking its physical end.

• In C++, end of file can be detected in two ways:

◦ stream membereof returnstrue if the end of file is reached andfalse
otherwise.

CS 246 127

◦ stream memberfail returnstrue for invalid constant OR no constant if
end of file is reached, andfalse otherwise.

• Safer to checkfail and then checkeof.

for (;;) {
cin >> i;

if (cin.eof()) break ; // should use “fail()”
cout << i << endl;

}

• If "abc" is entered (invalid integer constant),fail becomestrue but eof is
false .

•Generates infinite loop as invalid data is not skipped for subsequent reads.

•When bad data is read,stream must be reset and bad data cleared:

CS 246 128

#include <iostream>
using namespace std;
int main() {

int n;
cout << showbase; // prefix hex with 0x
cin >> hex; // hex constants
for (;;) {

cout << "Enter hexadecimal number: ";
cin >> n;
if (cin.fail()) { // problem ?

if (cin.eof()) break ; // eof ?
cout << "Invalid hexadecimal number" << endl;
cin.clear(); // reset stream failure
cin.ignore(numeric_limits<int >::max(), ′\n′); // skip until newline

} else {
cout << hex << "hex:" << n << dec << " dec:" << n << endl;

}
}
cout << endl;

}

• After an unsuccessful read,clear() resets the stream.

• ignore skipsn characters, e.g.,cin.ignore(5) or until a specified character.

CS 246 129

• Alternatively, streams have a conversion tovoid *: if fail(), a null pointer;
otherwise nonnull pointer.

cout << cin; // print fail() status of stream cin
while (cin >> i) . . . // read and check pointer to != 0

• In C, routinefeof returnstrue when eof is reached andfscanf returnsEOF.

• Read in file-names, which may contain spaces, and process each file:

#include <fstream>
using namespace std;

int main() {
ifstream fileNames("fileNames"); // requires char * argument
string fileName;

for (;;) { // process each file
getline(fileNames, fileName); // may contain spaces

if (fileNames.fail()) break ; // handle no terminating newline
ifstream file(fileName.c_str()); // access char *
// read file

}
}

CS 246 130

2.8.1.3 Output

• Java output style converts values to strings, concatenatesstrings, and prints
final long string:

System.out.println(i + " " + j); // build a string and print it

• C/C++ output style supplies a list of formats and values, andoutput
operation generates the strings:

cout << i << " " << j << endl; // print each string when formed

• There is no implicit conversion from the basic types to string in C++ (but
one can be constructed).

•While it is possible to use the Java string-concatenation style in C++, it
is incorrect style.
• Use manipulators is generate specific output formats:

CS 246 131

#include <iostream> // cin, cout, cerr
#include <iomanip> // manipulators
using namespace std;
int i = 7; double r = 2.5; char c = ′z′ ; char *s = "abc";
cout << "i:" << setw(2) << i

<< " r:" << fixed << setw(7) << setprecision(2) << r
<< " c:" << c << " s:" << s << endl;

#include <stdio.h>
fprintf(stdout, "i:%2d r:%7.2f c:%c s:%s\n", i, r, c, s);

i: 7 r: 2.50 c:z s:abc

2.8.2 Unformatted I/O

• Unformatted I/O transfers data without conversion, e.g., internal integer
and real-floating values.

• Uses same mechanisms as formatted I/O to connect program to file
(open/close).

• read andwrite routines transfer bytes without conversion from/to a file.

CS 246 132

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile("xxx"); // open output file “xxx”
if (outfile.fail()) { // successful open ?

cerr << "Error!" << endl;
exit(-1);

}
double d = 3.0;
outfile.write((char *)&d, sizeof (d)); // coercion
outfile.close(); // close file before attempting read

ifstream infile("xxx"); // open input file “xxx”
if (infile.fail()) { // successful open ?

cerr << "Error!" << endl;
exit(-1);

}
double e;
infile.read((char *)&e, sizeof (d)); // coercion
cout << e << endl;
infile.close();

}

CS 246 133

• read andwrite take achar * pointer and length.

read(char *buffer, streamsize num);
write(char *buffer, streamsize num);

• To pass any kind of pointer for unformatted I/O requires acoercion, which
is a castwithout a conversion.

• Coercion breaks the type system; use it very sparingly(and would be
unnecessary if buffer type wasvoid *).

2.9 Dynamic Storage Management
• Java is amanaged language; C/C++ are unmanaged.

• C/C++ do not havegarbage collectionof dynamically allocated storage
after a variable is no longer accessible.

• Instead, an additional dynamic storage-management operation is used to
free storage.

• C++ provides dynamic storage-management operationsnew /delete and C
providesmalloc/free.

• Do not mix the two forms in a C++ program.

CS 246 134

Java C C++

class Foo {
char a, b, c;

}
Foo p = new Foo();
p.c = ′R′ ;
// p garbage collected

struct Foo {
char a, b, c;

};
Foo *p = (Foo *)malloc(sizeof (Foo));
p->c = ′R′ ;
free(p); // explicit free

struct Foo {
char a, b, c;

};
Foo *p = new Foo();
p->c = ′R′ ;
delete p; // explicit free

• Allocation has 3 steps:

1. determine size/alignment of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

• Each step is explicit in C; C++ operatornew performs all 3 steps implicitly.

• Parenthesis after the type name in thenew operation are optional.

• Storage for dynamic allocation comes from an area called theheap.
• Before storage can be used, it must be allocated.

Foo *p; // forget to allocate or initialize pointer
p->c = ′R′ ; // places 3 at some random location in memory

Uninitialized variables.

CS 246 135

• After storage is no longer needed itmustbe explicitly deleted.

Foo *p = new Foo;
p = new Foo; // forgot to free previous storage

Called amemory leak.
• After storage is deleted, itmustnot be used:

delete p;
p->c = ′R′ ; // result of dereference is undefined

Called adangling pointer.
• Unlike Java, C/C++ allowall types to be dynamically allocated not just

object types, e.g.,new int .

• As well, C/C++ allowall types to be allocated on the stack, i.e., local
variables of a block:

CS 246 136

Java C++

{ // basic & reference
int i;
double d;
ObjType obj =

new ObjType();
. . .

} // garbage collected
obj

i

d

...

heapstack { // all types
int i;
double d;
ObjType obj;
. . .

} // implicit delete
...

obj

d

i

heapstack

• Stack allocation eliminates explicit storage-management(simpler) and
is more efficient than heap allocation — use it whenever possible.
• Dynamic allocation in C++ should be used only when:

◦ a variable’s storage must outlive the block in which it is allocated:

ObjType *rtn(. . .) {
ObjType *obj = new ObjType();
. . . // use obj
return obj; // storage outlives block

} // obj deleted later

◦ when each element of an array of objects needs initialization:

CS 246 137

ObjType *v[10]; // array of object pointers
for (int i = 0; i < 10; i += 1) {

v[i] = new ObjType(i); // each element has different initialization
}

• Declaration of a pointer to an array is complex in C/C++ .

• Because no array-size information, the dimension value foran array pointer
is often unspecified:

int *parr = new int [10]; // think arr[], pointer to array of 10 ints

• Java notation:

int parr[] = new int [10];

cannot be used becauseint parr[] is actually rewritten asint parr[N], where
N is the size of the initializer value.

• As well, no dimension information results in the following ambiguity:

int *pvar = new int ;

int *parr = new int [10]; // parr[] 8 8 0 4 640

no size
pvar

parr size in
bytes

9

7

5 7 3 5

CS 246 138

• Variablespvar andparr have the same type but one is an array, which poses
a problem when deleting a dynamically allocated array.

• To solve the problem, special syntax is used to distinguish these cases:

delete pvar; // single element
delete [] parr; // multiple elements

• [] indicates multiple elements (but unknown number and size of
dimensions) and array-size is stored with the array.

• Never do this:

delete [] parr, pvar; // => (delete [] parr), pvar;

which is an incorrect use of a comma expression;var is not deleted.

• Declaration of a pointer to a matrix is complex in C/C++, e.g., int *x[5]
could mean:

CS 246 139

...

3

2

1

8

9

. . .

. . .

. . .

. . .

. . .

x 6 4 09 2x

• Left: array of 5 pointers to an array of unknown number of integers.

• Right: pointer to matrix of unknown number of rows with 5 columns of
integers.

• For * and[] which applied first?

• Dimension is higher priority (as subscript, see Section 2.4, p. 83), so
declaration is interpreted asint (*(x[5])) (left).

•Only the left example (above) of declaring a matrix can be generalized to
allow a dynamically-sized matrix.

CS 246 140

int main() {
int *m[5]; // 5 rows
for (int r = 0; r < 5; r += 1) {

m[r] = new int [4]; // 4 columns per row
for (int c = 0; c < 4; c += 1) { // initialize matrix

m[r][c] = r + c;
}

}
for (int r = 0; r < 5; r += 1) { // print matrix

for (int c = 0; c < 4; c += 1) {
cout << m[r][c] << ", ";

}
cout << endl;

}
for (int r = 0; r < 5; r += 1) {

delete [] m[r]; // delete each row
}

} // implicitly delete array “m”

2.10 Command-line Arguments
• Starting routinemain has exactly two overloaded interfaces.

CS 246 141

int main(); // “void” parameter type for C
int main(int argc, char *argv[]); // parameter names may be different

• The second form is used by the shell to pass command-line arguments,
where the command line string-tokens are transformed into C/C++
arguments.

• argc is the number of string-tokens on the command line, including the
command name.

•With command name, number of tokens is one greater than in Java.

• argv is an array of pointers to the character strings that make up token
arguments.

% ./a.out -option infile.cc outfile.cc
0 1 2 3

argc = 4 // number of command-line tokens
argv[0] = "./a.out\0" // not included in Java
argv[1] = "-option\0"
argv[2] = "infile.cc\0"
argv[3] = "outfile.cc\0"
argv[4] = 0 // mark end of variable length list

• Because shell only has string variables, a shell argument of"32" does not

CS 246 142

mean integer 32, and may have to converted.

• Routinemain usually begins by checkingargc for command-line
arguments.

Java C/C++

class Prog {
public static void main(String[] args) {

switch (args.length) {
case 0: . . . // no args

break ;
case 1: . . . args[0] . . . // 1 arg

break ;
case . . . // others args

break ;
default : . . . // usage message

System.exit(-1);
}
. . .

int main(int argc, char *argv[]) {
switch (argc) {

case 1: . . . // no args
break ;

case 2: . . . args[1] . . . // 1 arg
break ;

case . . . // others args
break ;

default : . . . // usage message
exit(-1);

}
. . .

• Arguments are processed in the rangeargv[1] throughargv[argc - 1], i.e.,
starting one greater than Java.

• Process following arguments from shell command line:

CS 246 143

cmd [infile-file = cin [outfile-file = cout [size = 20 [code = 5]]]]

• Note, dynamic allocation,strtol (atoi has no mechanism to check for errors),
andgoto ; no duplicate code.

#include <iostream>
#include <fstream>
#include <cstdlib> // strtol, exit
#include <cerrno> // errno, ERANGE
using namespace std;

bool convert(int &val, char *buffer) { // convert C string to integer
char *endptr; // buffer pointer
val = strtol(buffer, &endptr, 10); // convert string to integer
return errno != ERANGE && endptr != buffer && *endptr == ′\0′ ; // valid

} // convert

int main(int argc, char *argv[]) {
const unsigned int sizeDeflt = 20, codeDeflt = 5;
istream *infile = &cin; // default value
ostream *outfile = &cout; // default value
int size = sizeDeflt, code = codeDeflt; // default value

CS 246 144

switch (argc) {
case 5:

if (! convert(code, argv[4])) goto usage; // invalid integer ?
// FALL THROUGH

case 4:
if (! convert(size, argv[3])) goto usage; // invalid integer ?
// FALL THROUGH

case 3:
outfile = new ofstream(argv[2]);
if (outfile->fail()) goto usage; // open failed ?
// FALL THROUGH

case 2:
infile = new ifstream(argv[1]);
if (infile->fail()) goto usage; // open failed ?
// FALL THROUGH

default : // all defaults
break ;

usage:
cerr << argv[0] << " [infile-file [outfile-file [size = "

<< sizeDeflt << " [code = " << codeDeflt << "]]]]" <<
exit(-1); // TERMINATE

}
// do something
if (infile != &cin) delete infile; // close file, do not delete cin!
if (outfile != &cout) delete outfile; // close file, do not delete cout!

}

CS 246 145

2.11 Routine

C C++

void p(OR T f(// parameters
T1 a // pass by value

)
{ // routine body

// intermixed decls/stmts
}

void p(OR T f(// parameters
T1 a, // pass by value
T2 &b, // pass by reference
T3 c = 3 // optional, default value
)

{ // routine body
// intermixed decls/stmts

}

• C++ routines are not part of aggregation (not combined in an object), e.g.,
routinemain is not defined in a type.

• A routine is either aprocedureor afunction based on the return type.

• A procedure does NOT return a value that can be use in an expression,
indicated with return type ofvoid :

void proc(. . .) { . . . }

• A procedure can return values through the argument/parameter mechanism.

CS 246 146

• A procedure terminates when control runs off the end of routine body or a
return statement is executed:

void proc() {
. . . return ; . . .
. . . // run off end

}

• A function returns a value that can be use in an expression, and hence,must
execute areturn statement specifying a value:

int func() {
. . . return 3; . . .
return a + b;

}

• A return statement can appear anywhere in a routine body, and multiple
return statements are possible.

• A routine with no parameters has parametervoid in C and empty parameter
list in C++:

. . . rtn(void) { . . . } // C: no parameters

. . . rtn() { . . . } // C++: no parameters

CS 246 147

• In C, empty parameters mean no information about the number or types of
the parameters is supplied.
• Routines cannot be nested in other routines.
• All routines are embedded in the global (external) level in asource file.
•Global scopecontains types, variables and routines:

// global scope
enum Colour { R, G, B }; // type
Colour colour = B; // variable
int main() { // routine

colour = R;
Colour colour = G; // local scope, hides previous variables

}

•Global variables are allocated in declaration order and deallocated in
reverse order at program exitper file but no order among files.
•Gobal area is a separate memory from the stack and heap.

2.11.1 Argument/Parameter Passing

• Arguments are passed to parameters by:
◦ value: parameter is initialized by the argument (usually bit-wise copy).

CS 246 148

◦ reference: parameter is a reference to the argument and is initializedto
the argument’s address.

pass by value

parameter

argument
pass by reference

copy address-of (&)

• Java/C, parameter passing is by value, i.e., basic types andobject references
are copied.

• C++, parameter passing is by value or reference depending onthe type of
the parameter.

• Argument expressions are evaluatedin any order.

• For value parameters, each argument-expression result is pushed on the
stack to become the corresponding parameter,which may involve an
implicit conversion.
• For reference parameters, each argument-expression result is referenced

(address of) and this address is pushed on the stack to becomethe
corresponding reference parameter.

CS 246 149

struct Complex { double r, i; };
void r(int i, int &ri, Complex c, Complex &rc) {

ri = i = 3;
rc = c = (Complex){ 3.0, 3.0 };

}
int main() {

int i1 = 1, i2 = 2;
Complex c1 = { 1.0, 1.0 }, c2 = { 2.0, 2.0 };
r(i1, i2, c1, c2);

}

•Which arguments change?

•What if routine call is changed to:

r(i1, 3, c1, c2); // fails!
r(i1, i1 + i2, c1, c2); // fails!

Cannot change a constant or temporary variables!

• Value passing is most efficient for basic and small structures because the
values are accessed directly in the routine.

• Reference passing is most efficient for large structures andarrays because
the values are not duplicated in the routine.

• Use type qualifiers to create read-only reference parameters so the

CS 246 150

corresponding argument is guaranteed not to change:

void r(const int &i, const Complex &c, const int v[5]) {
i = 3; // assignments disallowed, read only!
c.r = 3.0;
v[0] = 3;

}
r(i + j, (Complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 });

• Provides efficiency of pass by reference for large variables, security of pass
by value because argument cannot change, and allows constants and
temporary variables as arguments.

• C++ parameter can have adefault value, which is passed as the argument
value if no argument is specified at the call site.

void r(int i, double g, char c = ′
*
′ , double h = 3.5) { . . . }

r(1, 2.0, ′b′ , 9.3); // maximum arguments
r(1, 2.0, ′b′); // h defaults to 3.5
r(1, 2.0); // c defaults to ′

*
′ , h defaults to 3.5

• In a parameter list, once a parameter has a default value, allparameters to
the right must have default values.

CS 246 151

• In a call, once an argument is omitted for a parameter with a default value,
no more arguments can be specified to the right of it.

2.11.2 Array Parameter

• Array copy is unsupported so arrays cannot be passed by valueonly by
reference.

• Therefore, all array parameters are implicitly reference parameters, and
hence, do not have a reference symbol.

• A formal parameter array declaration can specify the first dimension with a
dimension value,[10] (which is ignored), an empty dimension list,[], or a
pointer,*:

double sum(double v[5]);
double sum(double *m[5]);

double sum(double v[]);
double sum(double *m[]);

double sum(double *v);
double sum(double **m);

•Good programming practice uses the middle form because it clearly
indicates the variable is going to be subscripted.

• An actual declaration cannot use[]; it must use*:

CS 246 152

double sum(double v[]) { // formal declaration
double *cv; // actual declaration, think cv[]
cv = v; // address assignment

• Routine to add up the elements of an arbitrary-sized array ormatrix:

double sum(int cols, double v[]) {
double total = 0.0;
for (int c = 0; c < cols; c += 1)

total += v[c];
return total;

}

double sum(int rows, int cols, double *m[])
double total = 0.0;
for (int r = 0; r < rows; r += 1)

for (int c = 0; c < cols; c += 1)
total += m[r][c];

return total;
}

2.11.3 Overloading

•Overloading occurs when a name has multiple meanings in the same
context.

•Most languages have some overloading.

• E.g., most built-in operators are overloaded on both integral and
real-floating operands, i.e., the+ operator is different for1 + 2 than for
1.0 + 2.0.

CS 246 153

•Overloading requires the compiler to disambiguate among identical names
based on some criteria.

• The normal criterion is type information.

• In general, overloading is done on operations not variables:

int i; // variable overloading disallowed
double i;
void r(int) {} // routine overloading allowed
void r(double) {}

• Power of overloading occurs when type of a variable changes:operations
on the variable are implicitly reselected to the variable’snew type.

• E.g., after changing a variable’s type fromint to double , all operations
implicitly change from integral to real-floating.

• Number and types of the parametersbut not the return typeare used to
select among a name’s different meanings:

CS 246 154

int r(int i, int j) { . . . } // overload name r three different ways
int r(double x, double y) { . . . }
int r(int k) { . . . }
r(1, 2); // invoke 1st r based on integer arguments
r(1.0, 2.0); // invoke 2nd r based on double arguments
r(3); // invoke 3rd r based on number of arguments

• Implicit conversions between arguments and parameters cancause
problems:

r(1, 2.0); // ambiguous, convert either argument to integer or double

• Use explicit cast to disambiguate:

r(1, (int)2.0) // 1st r
r((double)1, 2.0) // 2nd r

•Overlap between overloading and default arguments for parameters with
same type:

Overloading Default Argument

int r(int i, int j) { . . . }
int r(int i) { int j = 2; . . . }
r(3); // 2nd r

int r(int i, int j = 2) { . . . }

r(3); // default argument of 2

CS 246 155

• If the overloaded routine bodies are essentially the same, use a default
argument, otherwise use overloaded routines.

2.11.4 Routine Pointer

• The flexibility and expressiveness of a routine comes from the
argument/parameter mechanism, which generalizes a routine across any
argument variables of matching type.

• However, the code within the routine is the same for all data in these
variables.

• To generalize a routine further, it is necessary to pass codeas an argument,
which is executed within the routine body.

•Most programming languages allow a routine pointer (Java does not) for
further generalization and reuse.

• As for data parameters, routine pointers are specified with atype (return
type, and number and types of parameters), and any routine matching this
type can be passed as an argument, e.g.:

CS 246 156

int f(int v, int (*p)(int)) { return p(v * 2) + 2; }
int g(int i) { return i - 1; }
int h(int i) { return i / 2; }
cout << f(4, g) << endl; // pass routines g and h as arguments
cout << f(4, h) << endl;

• Routinef is generalized to accept any routine argument of the form: returns
an int and takes anint parameter.
•Within the body off, the parameterp is called with an appropriateint

argument, and the result of callingp is further modified before it is returned.
• A routine pointer is passed as a constant reference in virtually all

programming languages; in general, it makes no sense to change or copy
routine code, like copying a data value.
• C/C++ require the programmer to explicitly specify the reference via a

pointer, while other languages implicitly create a reference.
• Two common uses of routine parameters are fix-up and call-back routines.
• A fix-up routine is passed to another routine and called if an unusual

situation is encountered during a computation.
• E.g., when inverting a matrix, the matrix may not be invertible if its

determinant is 0 (singular).

CS 246 157

• Rather than halt the program for a singular matrix, invert routine calls a
user supplied fix-up routine to possible recover and continue with a
correction (e.g., modify the matrix):

int singularDefault(/* info about error */) { return 0; }
int invert(int *matrix[], int rows, int cols,

int (*singular)(/* info about error */) = singularDefault) {
. . .
if (determinant(matrix, rows, cols) == 0) {

// compute correction to continue the computation
correction = singular(/* info about error */);

}
. . .

}

• A fix-up parameter generalizes a routine as the corrective action is specified
for each call, and the action can be tailored to a particular usage.

•Giving fix-up parameter a default value, eliminates having to provide a
fix-up argument.

• A call-back routine is used in event programming.

•When an event occurs, one or more call-back routines are called (triggered)
and each one performs an action specific for that event.

CS 246 158

• E.g., a graphical user interface has an assortment of interactive “widgets”,
such as buttons, sliders and scrollbars.

•When a user manipulates the widget, events are generated representing the
new state of the widget, e.g., button down or up.

• A program registers interest in transitions for different widgets by
supplying a call-back routine, and each widget calls its supplied call-back
routine(s) when the widget changes state.

• Normally, a widget passes the new state of the widget to each call-back
routine so it can perform an appropriate action, e.g.:

int callback(/* info about event */) {
// examine event information and perform appropriate action
// return status of callback action

}
. . .
registerCB(closeButton, callback);

• Call-back programming become difficult if it depending on the number of
times it is called or previous argument values.

CS 246 159

2.12 Object
•Object-oriented programming was developed in the mid-1960s by Dahl and

Nygaard and first implemented in SIMULA67.

•Object programming is based on structures, used for organizing logically
related data:

unorganized organized

int people_age[30];
bool people_sex[30];
char people_name[30][50];

struct Person {
int age;
bool sex;
char name[50];

} people[30];

• Both approaches create an identical amount of information.

• Difference is solely in the information organization (and memory layout).

• Computer does not care as the information and its manipulation is largely
the same.

• Structuring is an administrative tool for programmer understanding and
convenience.

CS 246 160

•Objects extend organizational capabilities of the structure by allowing
routine members.
structure form object form

struct Complex {
double re, im;

};
double abs(const Complex &This) {

return sqrt(This.re * This.re +
This.im * This.im);

}
Complex x; // structure
abs(x); // call abs

struct Complex {
double re, im;
double abs() const {

return sqrt(re * re +
im * im);

}
};
Complex x; // object
x.abs(); // call abs

• Each object provides both data and the operations necessaryto
manipulate that data in one self-contained package.
• Routine member is constant, and cannot be assigned (e.g.,const member).
•What is the scope of a routine member?
• Structure creates a scope, and therefore, a routine member can access the

structure members, e.g.,abs member can refer to membersre andim.
• Structure scope is implemented via aT * const this parameter, implicitly

passed to each routine member (like left example).

CS 246 161

double abs() { return sqrt(this ->re * this ->re + this ->im * this ->im); }

(this should be a reference rather than a pointer.)

• Except for the syntactic differences, the two forms are identical.

• Like Java, the use of implicit parameterthis , e.g.,this ->f, is seldom
necessary in C++.

•Member routines are accessed like other members, using member selection,
x.abs, and called with the same form,x.abs().

• No parameter needed because of implicit structure scoping via this
parameter.

• Add arithmetic operations:

struct Complex {
. . .
Complex add(Complex c) {

Complex sum = { re + c.re, im + c.im };
return sum;

}
};

• To sumx andy, write x.add(y).

CS 246 162

• Because addition is a binary operation,add needs a parameter as well as the
implicit context in which it executes.

• Like Java, C++ allows overloading members in a type.

2.12.1 Operator Member

• It is possible to use operator symbols for routine names:

struct Complex {
. . .
Complex operator +(Complex c) {

return (Complex){ re + c.re, im + c.im }; // remove sum
}

};

• Addition routine is called+, andx andy can be added byx.operator +(y) or
y.operator +(x), which is only slightly better.

• For convenience, C++ implicit rewritesx + y asx.operator +(y).

CS 246 163

Complex x = { 3.0, 5.2 }, y = { -9.1, 7.4 };
cout << "x:" << x.re << "+" << x.im << "i" << endl;
cout << "y:" << y.re << "+" << y.im << "i" << endl;
Complex sum = x + y;
cout << "sum:" << sum.re << "+" << sum.im << "i" << endl;

2.12.2 Constructor

• A constructor is a special member used toimplicitly perform initialization
after object allocation to ensure the object is valid beforeuse.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
. . . // other members

};

• Constructor name is overloaded with the type name of the structure.

• Constructor without parameters is thedefault constructor, for initializing
a new object to a default value.

CS 246 164

Complex x;
Complex *y = new Complex;

implicitly
rewritten as

Complex x; x.Complex();
Complex *y = new Complex;

y->Complex();

• Unlike Java, C++ does not initialize all object members to default values.

• Constructor is responsible for initializing membersnot initialized via other
constructors.

• Because a constructor is a routine, arbitrary execution canbe performed
(e.g., loops, routine calls, etc.) to perform initialization.

• A constructor may have parameters but no return type (not even void).

• Never put parenthesis to invoke default constructor for local declarations.

Complex x(); // routine with no parameters and returning a complex

•Once a constructor is specified, structure initialization is disallowed:

Complex x = { 3.2 }; // disallowed
Complex y = { 3.2, 4.5 }; // disallowed

• Replaced using overloaded constructors with parameters:

CS 246 165

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; }
Complex(double r) { re = r; im = 0.; }
Complex(double r, double i) { re = r; im = i; }
. . .

};

• Unlike Java, constructor argument(s) can be specifiedafter a variable for
local declarations:

Complex x, y(1.0), z(6.1, 7.2); implicitly
rewritten as

Complex x; x.Complex();
Complex y; y.Complex(1.0);
Complex z; z.Complex(6.1, 7.2);

• Dynamic allocation is same as Java:

Complex *x = new Complex(); // parenthesis optional
Complex *y = new Complex(1.0);
Complex *z = new Complex(6.1, 7.2);

• If only non-default constructors are specified, an object cannot be
declared without an initialization value:

CS 246 166

struct Foo {
Foo(int i) { . . . }

};
Foo x; // disallowed!!!
Foo x(1); // allowed

Must create a default constructor to allow first declaration.

• Unlike Java, constructor cannot be called explicitly at start of another
constructor, so constructor reuse done through a separate member:

Java C++

class Foo {
int i, j;

Foo() { this (2); } // explicit call
Foo(int p) { i = p; j = 1; }

}

struct Foo {
int i, j;
void common(int p) { i = p; j = 1; }
Foo() { common(2); }
Foo(int p) { common(p); }

};

2.12.2.1 Constant

• Constructors can be used to create object constants (likeg++
type-constructor constants):

CS 246 167

Complex x, y, z;
x = Complex(3.2); // complex constant with value 3.2+0.0i
y = x + Complex(1.3, 7.2); // complex constant with value 1.3+7.2i
z = Complex(2); // 2 widened to 2.0, complex constant with value 2.0+0.0i

• Previous operator+ for Complex is changed because type-constructor
constants are disallowed for a type with constructors:

Complex operator +(Complex c) {
return Complex(re + c.re, im + c.im); // create new complex value

}

2.12.2.2 Conversion

• Constructors are implicitly used for conversions:

int i;
double d;
Complex x, y;

x = 3.2;
y = x + 1.3;
y = x + i;
y = x + d;

implicitly
rewritten as

x = Complex(3.2);
y = x.operator +(Complex(1.3));
y = x.operator +(Complex((double)i);
y = x.operator +(Complex(d));

CS 246 168

• Allows built-in constants and types to interact with user-defined types.

• Note, two implicit conversions are performed on variablei in x + i: int to
double and thendouble to Complex.

• Implicit constructor conversion is turned off with qualifier explicit :

struct Complex {
. . .
explicit Complex(double r) { re = r; im = 0.; } // turn off
. . . // implict conversion

};

• However, this capability fails for commutative binary operators.

• 1.3 + x, fails because it is rewritten as(1.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typedouble .

• Solution, move operator+ out of the
object type and made into a routine, which can also be called in infixed form:

CS 246 169

struct Complex { . . . }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters

return Complex(a.re + b.re, a.im + b.im);
}

x + y;
1.3 + x;
x + 1.3;

implicitly
rewritten as

operator +(x, y)
operator +(Complex(1.3), x)
operator +(x, Complex(1.3))

• Compiler first checks for an appropriate operator in object type, and if
found, applies conversions only on the second operand.
• If no appropriate operator in object type, the compiler checks for an

appropriate routine (it is ambiguous to have both), and if found, applies
applicable conversions toboth operands.
• In general, commutative binary operators should be writtenas routines to

allow implicit conversion on both operands.
• I/O operators<< and>> often overloaded for user types:

ostream &operator <<(ostream &os, Complex c) {
return os << c.re << "+" << c.im << "i";

}
cout << "x:" << x; // rewritten as: <<(cout.operator<<(“x:”), x)

CS 246 170

• Standard C++ convention for I/O operators to take and returna stream
reference to allow cascading stream operations.

• << operator in objectcout is used to first print string value, then overloaded
routine<< to print the complex variablex.

•Why write as a routine versus a member?

2.12.3 Random Numbers

• Random numbers are values generated independently, i.e., new values do
not depend on previous values (independent trials).

• E.g., lottery numbers, suit/value of shuffled cards, value of rolled dice, coin
flipping.

•While programmers spend most of their time ensuring computed values are
not random, random values are useful:

◦ online gambling, computer simulation, cryptography, computer graphics,
etc.

• A random-number generator is an algorithm that computes independent
values.

CS 246 171

• If the algorithm uses deterministic computation, it generatespseudo
random-numbersversus “true” random numbers, as output is predictable.

• All pseudo random-number generators (PRNG) involve some technique
for scrambles the bits of a value, e.g., multiplicative recurrence:

seed_ = 36969 * (seed_ & 65535) + (seed_ >> 16); // scramble bits

•Multiplication of large values adds new least-significant bits and drops
most-significant bits.

bits 63-32 bits 31-0
0 3e8e36
5f 718c25e1

ad3e 7b5f1dbe
bc3b ac69ff19
1070f 2d258dc6

• By dropping bits 63-32, bits 31-0 become scrambled after each multiply.

• E.g., generate afixed sequence of LARGE random values that repeats after
232 values (but might repeat earlier):

CS 246 172

class PRNG {
uint32_t seed_; // results on 32/64-bit architectures

public :
PRNG(uint32_t s = 362436069) {

seed_ = s; // set seed
}
void seed(uint32_t s) { // reset seed

seed_ = s; // set seed
}
uint32_t operator ()() { // [0,UINT_MAX]

seed_ = 36969 * (seed_ & 65535) + (seed_ >> 16); // scramble
return seed_;

}
uint32_t operator ()(uint32_t u) { // [0,u]

return operator ()() % (u + 1);
}
uint32_t operator ()(uint32_t l, uint32_t u) { // [l,u]

return operator ()(u - l) + l;
}

};

• Creating a member with the function-call operator name,(), (functor)
allows these objects to behave like a routine.

CS 246 173

PRNG prng;
prng(); // [0,UINT_MAX]
prng(5); // [0,5]
prng(5, 10); // [5,10]

• Large values are scaled using modulus; e.g., generate 10 random number
between 5-21:

PRNG prng;
for (int i = 0; i < 10; i += 1) {

cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endl;
cout << prng(5, 21) << endl;

}

• By initializing PRNG with a different “seed” each time the program is run,
the generated sequence is different:

PRNG prng(getpid()); // process id of program
prng.seed(getpid());

2.12.4 Copy Constructor / Assignment

• There are multiple contexts where an object is copied.

CS 246 174

1. declaration initialization (ObjType obj2 = obj1)
2. routine call (argument⇒ parameter)
3. assignment (obj2 = obj1)

• Cases 1 & 2 involve a newly allocated object with undefined values (unless
a member has a constructor).

• Case 3 involves an existing object that may contain previously computed
values.

• C++ differentiates between these situations: initialization and assignment.

• Constructor with aconst reference parameter is used for initialization
(declarations and parameters), called thecopy constructor:

Complex(const Complex &c) { . . . }

• Declaration initialization:

Complex y = x implicitly rewritten as Complex y; y.Complex(x);

◦ “=” is misleading as copy constructor is called not assignmentoperator.
◦ value on the right-hand side of “=” is argument to copy constructor.

• Parameter initialization:

CS 246 175

Complex rtn(Complex a, Complex b);
Complex x, y;
rtn(x, y)

◦ call results in the following implicit action inrtn:

Complex rtn(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with arguments

• If a copy constructor is not defined, an implicit one is generated that does a
shallow copy(bit-wise copy), i.e., copies the object including pointers.

• Assignment routine is used for assignment:

Complex &operator =(const Complex &c) { . . . }

◦ value on the right-hand side of “=” is argument to assignment operator.
◦ usually most efficient to use reference for parameter and return type.

• If an assignment operator is not defined, an implicit one is generated that
does a shallow copy.

•When an object type contains pointers, it is often necessaryto do adeep
copy, i.e, copy the contents of the pointed-to storage rather than the
pointers.

CS 246 176

3

ObjType obj2 = obj1

3 7

rhs=lhs

3 7deep copy

initialize assignment

shallow copy shallow copy

deep copy

2.12.5 Initialize const /Object Member

• C/C++const members and local objects of a structure must be initializedat
declaration:

CS 246 177

Ideal (Java-like) Structure

struct Bar {
Bar(int i) {. . .}
// no default constructor

} bar(3);
struct Foo {

const int i = 3;
Bar * const p = &bar ;
Bar &rp = bar ;
Bar b(7);

} x;

struct Bar {
Bar(int i) {. . .}
// no default constructor

} bar(3);
struct Foo {

const int i;
Bar * const p;
Bar &rp;
Bar b;

} x = { 3, &bar, bar, 7 };

• Left: not allowed because fields cannot be directly initialized.

• Right: not allowed because cannot supply argument tob using this syntax.

• Try using a constructor:

CS 246 178

Constructor/assignment Constructor/initialize

struct Foo {
const int i;
Bar * const p;
Bar &rp;
Bar b;
Foo() {

i = 3; // after declaration
p = &bar ;
rp = bar ;
b(7); // not a statement

}
};

struct Foo {
const int i;
Bar * const p;
Bar &rp;
Bar b;
Foo() : // declaration order

i(3),
p(&bar),
rp(bar),
b(7) {

}
};

• Left: not allowed becauseconst has to be initialized at point of declaration.

• Right: special syntax to indicate initialized at point of declaration.

• Ensuresconst /object members are initialized before used in constructor
body.

•Must be initialized in declaration order to prevent use before
initialization.
• Syntax may also be used to initialize any local members:

CS 246 179

struct Foo {
. . .
int k;
Foo() : . . ., k(14) { // initialize k

k = 14 // or assign k
}

};

2.12.6 Destructor

• A destructor (finalize in Java) is a special member used to perform
uninitialization at object deallocation:

Java C++

class Foo {
. . .
finalize() { . . . }

}

struct Foo {
. . .
~Foo() { . . . } // destructor

};

• An object type has one destructor; its name is the character “~” followed by
the type name (like a constructor).

• A destructor has no parameters nor return type (not evenvoid):

CS 246 180

• A destructor is only necessary if an object depends/changesits
environment, e.g., opening/closing files, allocating/freeing dynamically
allocated storage, etc.

• An independent object, like aComplex object, requires no destructor.

• A destructor is invokedbefore an object is deallocated, either implicitly at
the end of a block or explicitly by adelete :

{
Foo x, y(x);
Foo *z = new Foo;
. . .
delete z;
. . .

}

implicitly
rewritten as

{ // allocate local storage
Foo x, y; x.Foo(); y.Foo(x);
Foo *z = new Foo; z->Foo();
. . .
z->~Foo(); delete z;
. . .
y.~Foo(); x.~Foo();

} // deallocate local storage

• For local variables in a block,destructors must be called in reverse order
to constructors because of dependences, e.g.,y depends onx.

• A destructor is more common in C++ than a finalize in Java due tothe lack
of garbage collection in C++.

CS 246 181

• If an object type performs dynamic storage allocation, it isdependent and
needs a destructor to free the storage:

struct Foo {
int *i; // think int i[]
Foo(int size) { i = new int [size]; } // dynamic allocation
~Foo() { delete [] i; } // must deallocate storage
. . .

};

• C++ destructor is invoked at a deterministic time (block termination or
delete), ensuring prompt cleanup of the execution environment.

• Javafinalize is invoked at a non-deterministic time during garbage
collection ornot at all, so cleanup of the execution environment is
unknown.

2.13 Type Nesting
• Type nesting is useful for controlling visibility for type names:

CS 246 182

struct Foo {
enum Colour { R, G, B }; // nested type
int g;
int r() { . . . }
struct Bar { // nested type

Colour c; // Ok, static reference
int s() { g = 3; r(); } // fails, dynamic reference

};
};
Foo::Colour colour = Foo::R; // must qualify
Foo f; f.g; f.r();
Foo::Bar b; b.c; b.s(); // must qualify

• References inside the nested type do not require qualification.

• However, nesting aggregate types only imply static scopingnot dynamic.
• Hence, references ins to membersg andr in Foo fail because no dynamic

scope relationship between typesBar andFoo.

• References outside the object must be qualified with type operator “::”.

• C++ selection operator “.”, e.g.,Foo.Colour, cannot be used because it
requires an object not a type.

CS 246 183

2.14 Declaration Before Use
• C/C++ haveDeclaration Before Use(DBU), e.g., a variable declaration

must appear before its usage in a block:

{
cout << i << endl;
int i = 4; // declaration after usage

}
// prints 4

• A compiler can handle some DBU situations, but there are ambiguous
cases:

int i = 3;
{

cout << i << endl; // which i?
int i = 4;
cout << i << endl;

}
// prints 3 4

• C always requires DBU.

• C++ requires DBU in a block and among types but not within a type.

CS 246 184

• Java only requires DBU in a block, but not for declarations inor among
classes.

• DBU has a fundamental problem specifyingmutually recursive references:

void f() { // f calls g
g(); // g is not defined and being used

}
void g() { // g calls f

f(); // f is defined and can be used
}

• Caution: these calls cause infinite recursion as there is no base case.

• Cannot type-check the call tog in f to ensure matching number and type of
arguments and the return value is used correctly.

• Interchanging the two routines does not solve the problem.

• A forward declaration introduces a routine’s type before its actual
declaration:

CS 246 185

int f(int i, double); // routine prototype: parameter names optional
. . . // and no routine body
int f(int i, double d) { // type repeated and checked with prototype

. . .
}

• Prototype parameter names are optional (good documentation).

• Actual routine declaration repeats routine type, which must match
prototype.

• Routine prototypes also useful for organizing routines in asource file.

void g(int i); // forward declarations
void f(int i);
int main();
int main() { // actual declarations, any order

f(5);
g(4);

}
void g(int i) { . . . }
void f(int i) { . . . }

• E.g., allowingmain routine to appear first, and for separate compilation.

• Like Java, C++ does not (usually) require DBU within a type:

CS 246 186

Java C++

// any g must be nested in a class
class T {

void f() { c = Colour.R; g(); }
void g() { c = Colour.G; f(); }
Colour c;
enum Colour { R, G, B };

};

void g() {} // not selected
struct T {

void f() { c = R; g(); } // c, R, g not DBU
void g() { c = G; f(); } // c, G not DBU
enum Colour { R, G, B }; // type must be DBU
Colour c;

};

• Unlike Java, C++ requires a forward declaration for mutually-recursive
declarationsamongtypes:

Java C++

class T1 {
T2 t2;
T1() { t2 = new T2(); }

};
class T2 {

T1 t1;
T2() { t1 = new T1(); }

};
T1 t1 = new T1();

struct T1 {
T2 t2; // DBU failure, size?

};
struct T2 {

T1 t1;

};
T1 t1;

CS 246 187

• Caution: these types cause infinite expansion as there is no base case.

• Java version compiles becauset1/t2 are references not objects, and Java can
look ahead atT2; C++ version fails because DBU onT2.

• An object declaration and usage requires the object’s size and members so
storage can be allocated, initialized, and usages type-checked.

• Solve using Java approach: break definition cycle using a forward
declaration and pointer.

Java C++

class T1 {
T2 t2;
T1() { t2 = new T2(); }

};
class T2 {

T1 t1;
T2() { t1 = new T1(); }

};

struct T2; // forward
struct T1 {

T2 *t2; // pointer, break cycle
T1() { t2 = new T2; } // DBU failure, size?

};
struct T2 {

T1 t1;
};

• Forward declaration ofT2 allows the declaration of variableT1::t2.

CS 246 188

• Note, a forward declaration only introduces the name of a type.

•Given just a type name, only pointer/reference declarations to the type are
possible, which allocate storage for an address versus an object.

• C++’s solution still does not work as the constructor cannotuse typeT2.

• Use forward declaration and syntactic trick to move member definition
after both types are defined:

struct T2; // forward
struct T1 {

T2 *t2; // pointer, break cycle
T1(); // forward declaration

};
struct T2 {

T1 t1;
};
T1::T1() { t2 = new T2; } // can now see type T2

• Use of qualified nameT1::T1 allows a member to be logically declared in
T1 but physically located later.

CS 246 189

2.15 Abstraction/Encapsulation
• Abstraction is the separation of interface and implementation allowingan

object’s implementation to change without affecting usage, which is
essential for reuse and maintenance.

• E.g., a user of typeComplex should not have or need direct access its
implementation to perform operations:

struct Complex {
double re, im; // implementation data
. . . // interface routine members

};

• Possible to change from Cartesian to polar coordinates and user interface
remains constant.

• Developing good interfaces for objects is important.

• Encapsulation is hiding the implementation for security or financial
reasons (access control).
• Abstract data-type (ADT) is a user-defined type that practices abstraction

and encapsulation.

CS 246 190

• Abstraction and encapsulation are neither essential nor required to
develop software.
• E.g., users could follow a convention of not directly accessing the

implementation.
• However, relying on users to follow conventions is dangerous.
• Encapsulation is provided by a combination of C and C++ features.
• C features work largely among source files, and are indirectly tied into

separate compilation.
• C++ features work both within and among source files.
• Like Java, C++ provides 3 levels of visibility control for object types:

Java C++

class Foo {
private . . .
. . .
protected . . .
. . .
public . . .
. . .

};

struct Foo {
private : // within and friends

// private members
protected : // within, friends, inherited

// protected members
public : // within, friends, inherited, users

// public members
};

CS 246 191

• Java requires encapsulation specification for each member.

• C++ groups members with the same encapsulation, i.e., all members after a
label,private , protected or public , have that visibility.

• Visibility labels can occur in any order and multiple times in an object type.

•Only the object type can access the private members,so implementation
members are normally private.

• Public members define an object type’sinterface, i.e., what a user can
access.

•While a user can see private and protectedmembers, they cannot be
accessed, preventing user code from violating abstraction.

• struct has an implicitpublic inserted at the beginning, i.e., all members are
public.

• class has an implicitprivate inserted at the beginning, i.e., all members are
private.

CS 246 192

struct S {
// public:

int z;
private :

int x;
protected :

int y;
};

class C {
// private:

int x;
protected :

int y;
public :

int z;
};

• Use abstraction to preclude object copying by hiding copy constructor and
assignment operator:

class Foo {
Foo(const Foo &); // undefined
Foo &operator =(Foo &); // undefined

public :
. . .

};
Foo x, y;
rtn(x); // fails for pass by value
x = y; // fails

• Useful to prevent object forgery (lock, boarding-pass, receipt) or copying
that does not make sense (file, database).

CS 246 193

• Encapsulation introduces a new problem for routines outside of an object
used to implement binary operations for an object.

• An outside routine may need to access an object’s implementation, but it
cannot access private members.

• C++ provides a mechanism to state that an outside routine is allowed access
to its implementation, calledfriendship (similar to package visibility in
Java).

class Complex {
friend Complex operator +(Complex a, Complex b);
. . .

};
Complex operator +(Complex a, Complex b) { . . . }

• The friend prototype indicates a routine with the specified name and type
may access this object’s implementation:

CS 246 194

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im;

public :
double abs() { return sqrt(re * re + im * im); }
Complex() { re = 0.; im = 0.; }
Complex(double r) { re = r; im = 0.; }
Complex(double r, double i) { re = r; im = i; }

};
Complex operator +(Complex a, Complex b) { . . . }
ostream &operator <<(ostream &os, Complex c) { . . . }

2.16 Separate Compilation
• Like Java, C/C++ usesource files to provide another mechanism for

encapsulation.

CS 246 195

file.java file.cc

enum Colour { R, G, B }; // export
class C { // export

private static int i; // private
private static void f() {} // private
public static int j; // export
public static void g() {} // export

}
class D { // export

private int i; // private
private void f() {} // private

public int j; // public
public void g() {} // public

}

enum Colour { R, G, B }; // local

static int i; // private
static void f() {} // private
int j; // export
void g() {} // export

class D { // local
int i; // private
void f(); // private

public :
int j; // public
void g(); // public

}

• Like Java, C/C++ implicitly exports variables and routinesfrom a source file.

• In C/C++, to encapsulate global variables and routines in a source file, the
declaration must be qualified withstatic .

• Unlike Java, C/C++ do NOT implicitly export types from a source file.

• Java implicitly looks in*.class files for exported content.

CS 246 196

• C/C++ require the use of the preprocessor and forward declarations to
access exported content.

• Programmer must explicitly divided program into interfaceand
implementation in two (or more) files.

• Interface is composed of the prototype declaration(s) (butpossibly some
implementation).

• Implementation is composed of actual declarations and code.

• Interface is entered into one or more include files (.h files), and the
implementation is entered into one or more source files (.cc files).

CS 246 197

file.java file.h—file.cc

enum Colour { R, G, B }; // export
class C { // export

private static int i; // private
private static void f() {} // private
public static int j; // export
public static void g() {} // export

}
class D { // export

private int i; // private
private void f() {} // private

public int j; // public
public void g() {} // public

}

enum Colour { R, G, B }; // public

extern int j; // public
extern void g(); // public

class D { // public
int i; // private
void f(); // private

public :
int j; // public
void g(); // public

}

static int i; // private
static void f() {} // private
int j; // public
void g() {} // public
void D::f() {} // private
void D::g() {} // public

CS 246 198

• extern qualifier means the actual variable or routine definition is located
elsewhere.

• extern on routine prototypes is optional, but good documentation.

• Static class-variables must be declared once (versus defined) in a .cc file.

.h .cc

class C {
static char c; // defn
. . .

char C::c = ′a′ ; // decl

• Encapsulation is provided by giving a user access to the include file(s) and
the compiled source file(s), but not the implementation in the source file(s).

•Most software supplied from software vendors comes this way.

• E.g.,Complex prototype information is placed into filecomplex.h, which
users include in their programs.

CS 246 199

#ifndef __COMPLEX_H__
#define __COMPLEX_H__ // protect against multiple inclusion
#include <iostream> // access: ostream
// inject no names, use qualification
extern void complexStats(); // interfaces
class Complex {

friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);
double re, im; // exposed implementation

public :
Complex();
Complex(double r);
Complex(double r, double i);
double abs();

};
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::ostream &os, Complex c);
#endif // __COMPLEX_H__

• Complex implementation information is placed in filecomplex.cc.

CS 246 200

#include "complex.h" // do not copy interface
#include <cmath> // access: sqrt
using namespace std; // inject names
// global, private declarations
static int cplxObjCnt = 0; // private, defaults to 0
// interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
Complex::Complex() { re = 0.; im = 0.; cplxObjCnt += 1; }
Complex::Complex(double r) { re = r; im = 0.; cplxObjCnt += 1; }
Complex::Complex(double r, double i) { re = r; im = i; cplxObjCnt += 1;
double Complex::abs() { return sqrt(re * re + im * im); }
complex operator +(complex a, complex b) {

return complex(a.re + b.re, a.im + b.im);
}
ostream &operator <<(ostream &os, complex c) {

return os << c.re << "+" << c.im << "i";
}

• .cc file includes the.h file so that there is only one copy of the constants,
declarations, and prototype information.

• cplxObjCnt is qualified withstatic to make it a private variable to this
source file.

CS 246 201

• No user can access it, but each constructor implementation can increment it
when aComplex object is created.

• Users callcomplexStats to print the number ofComplex objects created so
far in a program.

• Notice, all the member routines ofComplex are separated into a forward
declaration and an implementation after the object type, allowing the
implementation to be placed in the.cc file.

• Note, by reading the.h file, it may be possible to determine the
implementation technique used, so there is only partial encapsulation.

• To provide complete encapsulation requires abstract type and (more
expensive) references:

CS 246 202

#ifndef __COMPLEX_H__
#define __COMPLEX_H__ // protect against multiple inclusion
#include <iostream> // access: ostream
// inject no names, use qualification
extern void complexStats(); // interfaces
class Complex {

friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);
struct ComplexImpl; // hidden implementation, nested class
ComplexImpl &impl; // indirection to implementation

public :
Complex();
Complex(double r);
Complex(double r, double i);
~Complex();
Complex(const Complex &c); // copy constructor
Complex &operator=(const Complex &c); // assignment operator
double abs();

};
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::ostream &os, Complex c);
#endif // __COMPLEX_H__

CS 246 203

#include "complex.h" // do not copy interface
#include <cmath> // access: sqrt
using namespace std; // inject names
// global, private declarations
static int cplxObjCnt = 0; // private, defaults to 0
struct Complex::ComplexImpl { // actual implementation, nested class

double re, im;
};
// interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
Complex::Complex() : impl(*new ComplexImpl) {

impl.re = 0.; impl.im = 0.; cplxObjCnt += 1;
}
Complex::Complex(double r) : impl(*new ComplexImpl) {

impl.re = r; impl.im = 0.; cplxObjCnt += 1;
}
Complex::Complex(double r, double i) : impl(*new ComplexImpl) {

impl.re = r; impl.im = i; cplxObjCnt += 1;
}
Complex::~Complex() { delete &impl; }
Complex::Complex(const Complex &c) : impl(*new ComplexImpl) {

impl.re = c.impl.re; impl.im = c.impl.im; cplxObjCnt += 1;
}

CS 246 204

Complex &Complex::operator =(const Complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return *this ;

}
double Complex::abs() {

return sqrt(impl.re * impl.re + impl.im * impl.im);
}
Complex operator +(Complex a, Complex b) {

return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}
ostream &operator <<(ostream &os, Complex c) {

return os << c.impl.re << "+" << c.impl.im << "i";
}

• A copy constructor and assignment operator must be used because complex
objects now contain a reference pointer to the implementation.
• E.g., copying the reference pointer can result in two complex objects

pointing at the same complex value and both may eventually attempt to
delete it (dangling pointer).
• As well, overwriting a reference pointer may lose the only pointer to the

storage so it can never be freed (memory leak).
• An encapsulated object is compiled using the -c compilation flag and

subsequently linked with other compiled source files to forma program:

CS 246 205

g++ -c complex.cc

• Creates filecomplex.o containing a compiled version of the source code.

• To use an encapsulated object, a program specifies the necessary include
file(s) to access the object’s interface:

#include "complex.h"
#include <iostream>
using namespace std;
int main() {

Complex x, y, z;
x = Complex(3.2);
y = x + Complex(1.3, 7.2);
z = Complex(2);
cout << "x:" << x << " y:" << y << " z:" << z << endl;

}

• Then links with any necessary executables:

g++ usecomplex.cc complex.o # other .o files if necessary

• Notice,iostream is included twice, once in this program and once in
complex.h, which is why each include file needs to prevent multiple
inclusions.

CS 246 206

2.17 Inheritance
•Object-orientedlanguages provideinheritance for writing general,

reusable program components.

Java C++

class Base { . . . }
class Derived extends Base { . . . }

struct Base { . . . }
struct Derived : public Base { . . . };

• Inheritance has two orthogonal sharing concepts: implementation and type.

2.17.1 Implementation Inheritance

• Implementation inheritance reuses program components by composing a
new object’s implementation from an existing object, taking advantage of
previously written and tested code.

• Substantially reduces the time to compose and debug a new object type.

•One way to understand this technique is to model it via explicit inclusion:

CS 246 207

Inclusion Inheritance

struct Base {
int i;
int r(. . .) { . . . }
Base() { . . . }

};
struct Derived {

Base b; // explicit inclusion
int s(. . .) { b.i = 3; b.r(. . .); . . . }
Derived() { . . . }

} d;
d.b.i = 3; // inclusion reference
d.b.r(. . .); // inclusion reference
d.s(. . .); // direct reference

struct Base {
int i;
int r(. . .) { . . . }
Base() { . . . }

};
struct Derived : public Base { // implicit inclusion

int s(. . .) { i = 3; r(. . .); . . . }
Derived() { . . . }

} d;
d.i = 3; // direct reference
d.r(. . .); // direct reference
d.s(. . .); // direct reference

• Inclusion implies explicitly creating an object member,b, to aid in the
implementation.

•Object typeDerived inherits fromBase type via “public Base” clause.

• Inheritance implicitly:

◦ creates an anonymous object member

CS 246 208

◦ opensthe scope of anonymous member so its members are accessible
without qualification, both inside and outside the inheriting object type.

• Constructors and destructors must be invoked for all implicitly declared
objects in the inheritance hierarchy as done for an explicitmember in the
inclusion.

Derived d;
. . .

implicitly
rewritten as

Base b; b.Base(); // implicit, hidden declaration
Derived d; d.Derived();
. . .
d.~Derived(); b.~Base(); // reverse order of construction

• If base type has members with the same name as derived type, itworks like
nested blocks: inner-scope name hides (overrides) outer-scope name.

• Still possible to access outer-scope names using “::” qualification to specify
the particular nesting level.

CS 246 209

Java C++

class Base1 {
int i;

}
class Base2 extends Base1 {

int i;
}
class Derived extends Base2 {

int i;
void s() {

int i = 3;
this .i = 3;
((Base2)this).i = 3; // super.i
((Base1)this).i = 3;

}
}

struct Base1 {
int i;

};
struct Base2 : public Base1 {

int i; // hides Base1::i
};
struct Derived : public Base2 {

int i; // hides Base2::i
void r() {

int i = 3; // hides Derived::i
Derived::i = 3; // this.i
Base2::i = 3;
Base2::Base1::i = 3;

}
};

• E.g.,Derived declaration first create an invisibleBase object in theDerived
object, like inclusion, for the implicit references toBase::i andBase::r in
Derived::s.

• Friendship is not inherited.

CS 246 210

class C {
friend class Base;
. . .

};
class Base {

// access C′s private members
. . .

};
class Derived : public Base {

// not friend of C
};

• Unfortunately, having to inherit all of the members is not always desirable;
some members may be inappropriate for the new type (e.g, large array).

• As a result, both the inherited and inheriting object must bevery similar to
have so much common code.

• In general, routines provide smaller units for reuse than entire objects.

2.17.2 Type Inheritance

• Type inheritance extends name equivalence to allow routines to handle
multiple types, calledpolymorphism, e.g.:

CS 246 211

struct Foo { struct Bar {
int i; int i;
double d; double d;

. . .
} f; } b;
void r(Foo f) { . . . }
r(f); // valid call
r(b); // should also work

• Since typesFoo andBar are identical, instances of either type should work
as arguments to routiner.

• Even if typeBar has more members at the end, routiner only accesses the
common ones at the beginning as its parameter is typeFoo.

• However, name equivalence precludes the callr(b) even thoughb is
structurally identical tof.

• Type inheritance relaxes name equivalence by aliasing the derived name
with its base-type names.

CS 246 212

struct Foo { struct Bar : public Foo { // inheritance
int i; // remove Foo members
double d;

. . .
} f; } b;
void r(Foo f) { . . . }
r(f); // valid call, derived name matches
r(b); // valid call because of inheritance, base name matches

• E.g., create a new typeMycomplex that counts the number of timesabs is
called for eachMycomplex object.
• Use both implementation and type inheritance to simplify building type

Mycomplex:

struct Mycomplex : public Complex {
int cntCalls; // add
Mycomplex() : cntCalls(0) {} // add
double abs() { // override, reuse complex′s abs routine

cntCalls += 1;
return Complex::abs();

}
int calls() { return cntCalls; } // add

};

CS 246 213

• Derived typeMycomplex uses the implementation of the base type
Complex, adds new members, and overridesabs to count each call.

•Why is the qualificationComplex:: necessary inMycomplex::abs?

• Allows reuse ofComplex’s addition and output operation forMycomplex
values, because of the relaxed name equivalence provided bytype
inheritance between argument and parameter.

• Now variables of typeComplex are redeclared toMycomplex, and member
calls returns the current number of calls toabs for anyMycomplex object.

• Implementation inheritance provides reuseinsidean object type; type
inheritance provides reuseoutsidethe object type by allowing existing code
to access the base type.

• I.e, any routine that manipulates the base type also manipulates the derived
type.

• Two significant problems with type inheritance.

1. ◦ Complex routineoperator + is used to add theMycomplex values
because of the relaxed name equivalence provided by type inheritance:

CS 246 214

int main() {
Mycomplex x;
x = x + x;

}
◦ However, the result type fromoperator + is Complex, notMycomplex.
◦ Assignment of acomplex (base type) toMycomplex (derived type) fails

because theComplex value is missing thecntCalls member!
◦ Hence, aMycomplex can mimic aComplex but not vice versa.
◦ This fundamental problem of type inheritance is called

contra-variance.
◦ C++ provides various solutions, all of which have problems and are

beyond this course.
2. void r(Complex &c) { c.abs(); }

int main() {
Mycomplex x;
x.abs(); // direct call of abs
r(x); // indirect call of abs
cout << "x:" << x.calls() << endl;

}

◦While there are two calls toabs on objectx, only one is counted!

CS 246 215

• public inheritance means both implementation and type inheritance.

• private inheritance means only implementation inheritance.

class bus : private car { . . .

Use implementation fromcar, butbus is not acar.

• No direct mechanism in C++ for type inheritance without implementation
inheritance.

2.17.3 Constructor/Destructor

• Constructors areimplicitly executed top-down, from base to most derived
type.

•Mandated by scope rules, which allow a derived-type constructor to use a
base type’s variables so the base type must be initialized first.

• Destructors areimplicitly executed bottom-up, from most derived to base
type.

•Order is mandated by the scope rules, which allow a derived-type destructor
to use a base type’s variables so the base type must be uninitialized last.

• Javafinalize must beexplicitly called from derived to base type.

CS 246 216

• Unlike Java, C++ disallows calls to other constructors at the start of a
constructor.

• To pass arguments to other constructors, use the same syntaxas for
initializing const members.

Java C++

class Base {
Base(int i) { . . . }

};
class Derived extends Base {

Derived() { super (3); . . . }
Derived(int i) { super (i); . . . }

};

struct Base {
Base(int i) { . . . }

};
struct Derived : public Base {

Derived() : Base(3) { . . . }
Derived(int i) : Base(i) {. . .}

};

2.17.4 Overloading

•Overloading a member routine in a derived class hides all overloaded
routines in the base class with the same name.

CS 246 217

class Base {
public :

void mem(int i) {}
void mem(char c) {}

};
class Derived : public Base {

public :
void mem() {} // hides both versions of mem in base class

};

• Hidden base-class members can still be accessed:

◦ Selectively provide explicit s for each hidden one.

class Derived : public Base {
public :

void mem() {}
void mem(int i) { Base::mem(i); }
void mem(char c) { Base::mem(c); }

};

◦ Collectively provide implicit members for all of them.

CS 246 218

class Derived : public Base {
public :

void mem() {}
using Base::mem; // bring all base mem routines into this interface

};

◦ Use explicit qualification to call members (violates abstraction).

Derived d;
d.Base::mem(3);
d.Base::mem(′a′);
d.mem();

2.17.5 Abstract Class

• Abstract classcombines type and implementation inheritance for
structuring new types.

CS 246 219

Java C++

abstract class Shape {
private int colour;

public abstract void move(int x, int y);
}
abstract class Polygon extends Shape {

private int edges;

public abstract int sides();
}
class Rectangle extends Polygon {

private int x1, y1, x2, y2;

public void move(int x, int y) {. . .}
public int sides() { return 4; }

}
class Square extends Rectangle {

public void move(int x, int y) {. . .}
}

class Shape {
int colour;

public :
virtual void move(int x, int y) = 0;

};
class Polygon : public Shape {

int edges;
public :

virtual int sides() = 0;
};
class Rectangle : public Polygon {

int x1, y1, x2, y2;
public :

void move(int x, int y) {. . .}
int sides() { return 4; }

};
class Square : public Rectangle {

public :
void move(int x, int y) {. . .}

};

• Strange initialization to 0 means this membermust be defined by any
derived type.

CS 246 220

• Cannot instantiate objects from an abstract class, but can declare
pointer/reference to it.

2.17.6 Multiple Inheritance

•Multiple inheritance allows a new type to apply type and implementation
inheritance multiple times.

class X : public Y, public Z, private P, private Q { . . . }

• X type is aliased to typesY andZ with implementation, and also uses
implementation fromP andQ.

• Interface class(pure abstract-class) provides only types and constants,
providing type inheritance.

• Java only allows multiple inheritance for interface class.

CS 246 221

Java C++

interface Polygon {

public int sides();
public void move(int x, int y);

}
interface Rectilinear {

final public int angle = 90;
}
class Rectangle implements Rectilinear,

Polygon {
private int x1, y1, x2, y2;

public void move(int x, int y) {}
public int sides() { return 4; }

}
class Square extends Rectangle {

public void move(int x, int y) {}
}

class Polygon {
public :

virtual int sides() = 0;
virtual void move(int x, int y) = 0;

};
class Rectilinear {

public :
enum { angle = 90 };

};
class Rectangle : public Polygon,

public Rectilinear {
int x1, y1, x2, y2;

public :
void move(int x, int y) {}
int sides() { return 4; }

};
class Square : public Rectangle {

public :
void move(int x, int y) {}

};

• Restrict multiple inheritance to onepublic type and one or twoprivate
types.

CS 246 222

2.17.7 Virtual Routine

•When a member is called, it is usually obvious which one is invoked even
with overriding:

struct Base {
void r() { . . . }

};
struct Derived : public Base {

void r() { . . . } // override Base::r
};
Base b;
b.r(); // call Base::r
Derived d;
d.r(); // call Derived::r

• However, it is not obvious for arguments/parameters and
pointers/references:

void s(Base &b) { b.r(); }
s(d); // inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); // Base::r or Derived::r ?

• Inheritance masks the actual object type, but both calls should invoke

CS 246 223

Derived::r because argumentb and referencebp point at an object of type
Derived.

• If variabled is replaced withb, the calls should invokeBase::r.

• To invoke the routine defined in the referenced object, qualify the member
routine withvirtual.

• To invoke the routine defined by the type of the pointer/reference, do not
qualify the member routine withvirtual.

• C++ uses non-virtual as the default because it is more efficient.

• Javaalwaysuses virtual for all calls to objects.

•Once a base type qualifies a member as virtual,it is virtual in all derived
types regardless of the derived type’s qualification for that member.

• Programmer may want to access members inBase even if the actual object
is of typeDerived, which is possible becauseDerived contains a Base.

• C++ provides mechanism to override the default at the call site.

CS 246 224

Java C++

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual

}
class Derived extends Base {

public void g() {} // virtual
public void h() {} // virtual

}
final Base bp = new Derived();
bp.f(); // Base.f
((Base)bp).g(); // Derived.g
bp.g(); // Derived.g
((Base)bp).h(); // Derived.h
bp.h(); // Derived.h

struct Base {
void f() {} // non-virtual
void g() {} // non-virtual
virtual void h() {} // virtual

};
struct Derived : public Base {

void g() {}; // non-virtual
void h() {}; // virtual

};
Base &bp = *new Derived(); // polymorphic assignment
bp.f(); // Base::f, pointer type
bp.g(); // Base::g, pointer type
((Derived &)bp).g(); // Derived::g, pointer type
bp.Base::h(); // Base::h, explicit selection
bp.h(); // Derived::h, object type

• Java casting does not provide access to base-type’s member routines.
• Virtual members are only necessary to access derived members through a

base-type reference or pointer.
• If a type is not involved in inheritance (final class in Java), virtual members

CS 246 225

are unnecessary so use more efficient call to its members.

• C++ virtual members are qualified in the base type as opposed to the derived
type.

• Hence, C++ requires the base-type definer to presuppose how derived
definers might want the call default to work.

•Good programming practice for inheritable object types is to make all
routine members virtual.

• Any type with virtual members and a destructor needs to make the
destructor virtual so the most derived destructor is calledthrough a
base-type pointer/reference.

• Virtual routines are normally implemented by routine pointers.

class Base {
int x, y; // data members
virtual void m1(. . .); // routine members
virtual void m2(. . .);

};

•May be implemented in a number of ways:

CS 246 226

m2

m1

y

x

copy

y

x

direct routine pointer

y

x

VRT

m1

m2

m1

m2

indirect routine pointer

2.17.8 Down Cast

• Type inheritance can mask the actual type of an object through a
pointer/reference.

• Like Java, C++ provides a mechanism to dynamically determine the actual
type of an object pointed to by a polymorphic pointer/reference.

• The Java operatorinstanceof and the C++ operatordynamic_cast perform a
dynamic check of the object addressed by a pointer/reference (not
coercion):

CS 246 227

Java C++

Base bp = new Derived();

if (bp instanceof Derived)
((Derived)bp).rtn();

Base *bp = new Derived;
Derived *dp;
dp = dynamic_cast <Derived *>(bp);
if (dp != 0) { // 0 => not Derived

dp->rtn(); // only in Derived

• To usedynamic_cast on a type, the type must have at least one virtual
member.

2.17.9 Abstraction

• Inherited object types can access and modify public and protected members
allowing access to some of an object’s implementation.

CS 246 228

class Base {
private :

int x;
protected :

int y;
public :

int z;
};
class Derived : public Base {

public :
Derived() { x; y; z; }; // y and z allowed

};
int main() {

Derived d;
d.x; d.y; d.z; // z allowed

}

2.18 Template
• Inheritance provides reuse for types organized into a hierarchy that extends

name equivalence.

• Alternate kind of reuse with no type hierarchy and types are not equivalent.

CS 246 229

• E.g., overloading, where there is identical code but different types:

int abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }

• Template routine eliminates duplicate code by using types as compile-time
parameters:

template <typename T> T abs(T val) { return val >= 0 ? val : -val; }

• template introduces type parameterT used to declare return and parameter
types.

• At a call, compiler infers typeT from argument(s), and constructs a
specialized routine with inferred type(s):

cout << abs(1) << " " << abs(-1) << endl; // T -> int
cout << abs(1.1) << " " << abs(-1.1) << endl; // T -> double

• Template type prevents duplicating code that manipulates different types.

• E.g., collection data-structures (e.g., stack), have common code to
manipulate data structure, but type stored in collection varies:

CS 246 230

template <typename T, int N = 10> struct Stack {
T elems[N]; // maximum N elements
int size;
Stack() { size = 0; }
void push(T e) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems[size]; }

};

• Type parameter,T, declares the element type of arrayelems, and return and
parameter types of the member routines.

• Integer parameter,N, denotes the maximum stack size.

• For template types, the compiler cannot infer the type parameter, so it must
be explicitly specified:

CS 246 231

Stack<int , 20> si; // stack of int
Stack<double > sd; // stack of double
Stack< Stack<int > > ssi; // stack of stack of int
si.push(3);
sd.push(3.0);
ssi.push(si);
int i = si.pop();
double d = sd.pop();
si = ssi.pop();

• There must be a space between the two ending chevrons or>> is parsed as
operator>> .

• Compiler requires a template definition for each usage so both the
interface and implementation of a template must be in a.h file,
precluding some forms of encapsulation.

2.18.1 Standard Library

• C++ Standard Library provides different kinds of containers: vector, map,
list, stack, queue, deque.

• In general, nodes are either copied into the container or pointed to from the
container.

CS 246 232

• Copying implies node type must have default and/or copy constructor so
instances can be created without having to know constructorarguments.

• Standard library containers use copying and requires node type to have a
default constructor.

•Most containers use aniterator to traverse its nodes so knowledge about
container implemented is hidden.

• Iterator capabilities depend on container, e.g., a singly-linked list has
unidirectional traversal, doubly-linked list has bidirectional traversal, etc.

• Containers provides iterator(s) as a nested object type, e.g., list<Node> has
list<Node>::iterator.

• Iterator operator “++” moves forward to the next node, untilpassedthe end
of the container.

• For bidirectional iterators, operator “--” moves in the reverse direction to
“++”.

2.18.1.1 Vector

• Like Java array,vector has random access, length, subscript checking (at),
and assignment;vector also has dynamic sizing.

CS 246 233

std::vector<T>
vector() create empty vector
vector(int n) create vector with n empty elements
int size() vector size
bool empty() size() == 0
T operator [](int i) access ith element, NO subscript checking
T at(int i) access ith element, subscript checking
vector &operator =(const vector &) vector assignment
void push_back(const T &x) add x after last element
void pop_back() remove last element
void resize(int n) add or erase elements at end so size() == n
void clear() erase all elements

• vector is alternative to C/C++ arrays.

CS 246 234

#include <vector>
int i, elem;
vector<int > v; // think: int v[0]
for (;;) {

cin >> elem;
if (cin.fail()) break ;

v.push_back(elem); // add elem to vector
}
vector<int > c; // think: int c[0]
c = v; // array assignment
for (i = c.size() - 1; 0 <= i; i -= 1) {

cout << c.at(i) << " "; // subscript checking
}
cout << endl;
v.clear(); // remove ALL elements

• Dynamic sizing impliesvector’s elements are allocated on the heap.

• Vector declarationmayspecify an initial size, e.g.,vector<int > v(size), like
a dimension.

• To reduce dynamic allocation, it is more efficient to dimension, when the
size is known.

CS 246 235

int size;
cin >> size; // read dimension
vector<int > v(size); // think int v[size]

•Matrix declaration is a vector of vectors:

vector< vector<int > > m;

• Again, it is more efficient to dimension, when size is known.

#include <vector>
vector< vector<int > > m(5); // 5 rows
for (int r = 0; r < m.size(); r += 1) {

m[r].resize(4); // 4 columns per row
for (int c = 0; c < m[r].size(); c += 1) {

m[r][c] = r+c; // or m.at(r).at(c)
}

}
for (int r = 0; r < m.size(); r += 1) {

for (int c = 0; c < m[r].size(); c += 1) {
cout << m[r][c] << ", ";

}
cout << endl;

}

CS 246 236

• Cannot specify number of columns at declaration, so each rowis zero sized.

• Before values can be assigned into a row, a row can be dimensioned to a
specific size,m[r].resize(4).

• All loop bounds are controlled using dynamic size of the row or column.

• Iterator is necessary for management operations (versus iterating using
subscripting).

std::vector<T>::iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) insert x before posn
iterator erase(iterator posn) erase element at posn

CS 246 237

43210

end()

φ

rbegin()rend()

φ

begin()

• erase and insert should take subscript so iterator is unnecessary!

• Iterator returns a pointer to an element.

CS 246 238

vector<int > v;
for (int i = 0 ; i < 5; i += 1) // create

v.push_back(2 * i); // values: 0, 2, 4, 6, 8

v.erase(v.begin() + 3); // remove v[3] : 6

// find position of value 4 using iterator (versus subscript)
vector<int >::iterator f;
for (f = v.begin(); f != v.end() && *f != 4; f ++);
v.insert(f, 33); // insert before position with value 4

// print reverse order using iterator (versus subscript)
vector<int >::reverse_iterator r;
for (r = v.rbegin(); r != v.rend(); r ++)

cout << *r << endl;

• Cannot insert or erase during iteration using an iterator.

2.18.1.2 Map

•map (dictionary) has random access, sorted, unique-key container of pairs
(Key, Val).

CS 246 239

std::map<Key,Val> / std::pair<Key,Val>
map() create empty map
int size() map size
bool empty() size() == 0
T operator [](int i) access ith element
int count(Key key) 0⇒ no key, 1⇒ key
map &operator =(const map &) map assignment
insert(pair<Key,Val>(k, v)) insert pair
erase(Key k) erase key k
void clear() erase all elements

• First subscript for key creates an entry and initializes it to default or
specified value.

CS 246 240

map<string, int > m, c; // Key => string, Val => int
m["red"]; // create, set to 0 for int
m["green"] = 1; // create, set to 1
m["blue"] = 2; // create, set to 2
m["green"] = 5; // overwrite 1 with 5
cout << m["green"] << endl;
c = m; // map assignment
m.insert(pair<string,int >("yellow", 3)); // m[“yellow”] = 3
if (m.count("black")) // check for key “black”
m.erase("blue"); // erase pair(“blue”, 2)
m.clear(); // remove ALL elements

• Iterator to search and return values in key order.

std::map<T>::iterator / std::map<T>::reverse_iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator find(Key &k) find position of key k
iterator insert(iterator posn, const T &x) insert x before posn
iterator erase(iterator posn) erase element at posn

CS 246 241

• Iterator returns a pointer to an elementpair, with fieldsfirst (key) and
second (value).

#include <map>
map<string,int >::iterator f = m.find("green"); // find key position
if (f != m.end()) // found ?

cout << "found " << f->first << ′ ′ << f->second << endl;

for (f = m.begin(); f != m.end(); f ++) // increasing order
cout << f->first << ′ ′ << f->second << endl;

map<string,int >::reverse_iterator r;
for (r = m.rbegin(); r != m.rend(); r ++) // decreasing order

cout << r->first << ′ ′ << r->second << endl;

2.18.1.3 Single/Double Linked

• If random access is not required, use more efficient single
(stack/queue/deque) or double (list) linked-list container.

• Examinelist, stack/queue/deque are simpler.

CS 246 242

std::list<T>
list() create empty list
list(int n) create list with n empty elements
int size() list size
bool empty() size() == 0
list &operator =(const list &) list assignment
T front() first element
T back() last element
void push_front(const T &x) add x before first element
void push_back(const T &x) add x after last element
void pop_front() remove first element
void pop_back() remove last element
void clear() erase all elements

• Iterator returns a pointer to a node.

CS 246 243

std::list<T>::iterator / std::list<T>::reverse_iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) insert x before posn
iterator erase(iterator posn) erase element at posn

CS 246 244

#include <list>
struct Node {

char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

};
list<Node> dl; // doubly linked list
for (int i = 0; i < 10; i += 1) { // create list nodes

Node n(′a′+i, i, i+0.5); // node to be added
dl.push_back(n); // copy node at end of list

}
list<Node>::iterator f;
for (f = dl.begin(); f != dl.end(); f ++) { // forward order

cout << "c:" << (*f).c << " i:" << f->i << " d:" << f->d << endl;
}
while (0 < dl.size()) { // destroy list nodes

dl.erase(dl.begin()); // remove first node
}

2.18.1.4 Foreach

• Template routinefor_each provides an alternate mechanism to iterate
through a container.
• An action routine is called for each node in the container passing the node

CS 246 245

to the routine for processing (Lispapply).

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) { cout << i << " "; } // print node
int main() {

list< int > int_list;
vector< int > int_vec;
for (int i = 0; i < 10; i += 1) { // create lists

int_list.push_back(i);
int_vec.push_back(i);

}
for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

• Type of the action routine isvoid rtn(T), whereT is the type of the
container node.
• E.g.,print has anint parameter matching the container node-type.
•More complex actions are possible by constructing a “function object”,

called afunctor , using the routine-call operator.

CS 246 246

• E.g., an action to print on a specified stream must store the stream and have
anoperator () allowing the object to behave like a function:

struct Print {
ostream &stream; // stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i << " "; }

};
int main() {

list< int > int_list;
vector< int > int_vec;
. . .
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));

}

• ExpressionPrint(cout) creates a constantPrint object, andfor_each calls
operator ()(Node) in the object.

2.19 Namespace
• C++ namespaceis used to organize programs and libraries composed of

multiple types and declarations.

CS 246 247

• E.g., namespacestd contains all the I/O declarations and container types.

• Names in a namespace form a declaration region, like the scope of block.

• Analogy in Java is a package, butnamespace does NOT provide
abstract/encapsulation (use.h/.cc files).

• Unlike Java packages, C++ allows multiple namespaces to be defined in a
file, as well as, among files.

• Types and declarations do not have to be added consecutively.

Java source files C++ source file

package Foo; // file
public class X . . . // export one type
// local types / declarations

package Foo; // file
public enum Y . . . // export one type
// local types / declarations

package Bar; // file
public class Z . . . // export one type
// local types / declarations

namespace Foo {
// types / declarations

}
namespace Foo {

// more types / declarations
}
namespace Bar {

// types / declarations
}

CS 246 248

• Contents of a namespace can be accessed using full-qualifiednames:

Java C++

Foo.T t = new Foo.T(); Foo::T *t = new Foo::T();

•Or by importing individual items or conditionally importing all of the
namespace content.

Java C++

import Foo.T;
import Foo.*;

using Foo::T; // import individual (conflicts)
using namespace Foo; // import all (non-conflicting)

•Global variables are in an unnamed namespace accessible with unqualified
“ ::”.

CS 246 249

namespace Foo { // start namespace
enum Colour { R, G, B };
int i = 3;

}
namespace Foo { // add more

class C { int i; };
int j = 4;
namespace Bar { // start nested namespace

typedef short int shrint;
int j = 5;

}
}
int j = 0; // global
int main() {

int j = 3; // local
cout << j << endl; // local
cout << ::j << endl; // global
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; // Foo::Colour
C x; // Foo::C
cout << i << endl; // Foo::i
using Foo::j; // import: conflict
cout << Foo::j << " " << Bar::j << endl; // qualification
using namespace Bar; // conditional import: shrint (not j)
shrint s = 4; // Bar::shrint

}

3 Tools

3.1 Compilation

cc1plus

assembly code

as

ld

object code

header files C/C++ source files

-o, -l, -L

-W, -v, -g, -S, -O1/2/3, -c

object./a.out

other object-code
files and libraries

-E, -D, -I
preprocessed source code

cpp

250

CS 246 251

• Compilation is the process of translating a program from human to
machine readable form.

• The translation is performed by a tool called acompiler.
• Compilation is subdivided into multiple steps, using a number of tools.

•Often a number of options to control the behaviour of each step.

•Option are presented forg++, but other compilers have similar options.

•General format:

g++ option-list *.cc *.o . . .

3.1.1 Preprocessor

• Preprocessor (cpp) takes a C++ source file, removes comments, and expands
#include , #define , and#if directives.

•Options:

◦ -E run only the preprocessor step and writes the preprocessor output to
standard out.

% g++ -E *.cc . . .
... much output from the preprocessor

CS 246 252

◦ -D define and optionally initialize preprocessor variables from the
compilation command:

% g++ -DDEBUG=2 -DASSN . . . *.cc *.o . . .
same as putting the following#define s in a program without changing
the program:

#define DEBUG 2
#define ASSN

• If both -D and#define for same name,#define redeclares name.

• -I directory search directory for include files; can be referenced by name
using<. . .>.

3.1.2 Compiler (cc1plus)

• Compiler (cc1plus) takes a preprocessed file and converts the C++ language
into assembly language for the target machine.

•Options:

◦ -Wkind generate warning message for this “kind” of situation.
∗ -Wall print ALL warning messages.

CS 246 253

∗ -Werror make warnings into errors so program does not compile until
fixed.

◦ -v show each compilation step and its details:

% g++ -v *.cc *.o . . .
... much output from each compilation step

E.g., system include-directories wherecpp looks for system includes.

#include <. . .> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

◦ -g add symbol-table information to object file for debugger
◦ -S compile source file, writing assemble code to filesource-file.s
◦ -O1/2/3 optimize translation to different levels, where eachlevel takes

more compilation time and possibly more space in executable
◦ -c compile/assemble source file but do not link, writing objectcode to file

source-file.o

CS 246 254

3.1.3 Assembler

• Assembler (as) takes an assembly language file and converts it to object
code (machine language).

3.1.4 Linker

• Linker (ld) takes the implicit.o file from translated source and explicit.o
files from the command line, and combines them into a new object or
executable file.

• Linking options:

◦ -o gives the file name where the combined object/ executable is placed.
∗ If no name is specified, default namea.out is used.
◦ -l library search library when linking, e.g., -lm for math library
◦ -L directory search in directory for library

3.2 Debugging
• Debuggingis the process of determining why a program does not have an

intended behaviour.

•Often debugging is associated with fixing a program after a failure.

CS 246 255

• However, debugging can be applied to fixing other kinds of problems, like
poor performance.

• Before using debugger tools it is important to understand what you are
looking for and if you need them.

3.2.1 Debug Print Statements

• An excellent way to debug a program is tostart by inserting debug print
statements (i.e., as the program is written).

• It takes more time, but the alternative is wasting hours trying to figure out
what the program is doing.

• The two aspects of a program that you need to know are: where the
program is executing and what values it is calculating.

• Debug print statements show the flow of control through a program and
print out intermediate values.

• E.g., every routine should have a debug print statement at the beginning and
end, as in:

CS 246 256

int p(. . .) {
// declarations
cerr << "Enter p " << parameter variables << endl;
. . .
cerr << "Exit p " << return value(s) << endl;
return r;

}

• Result is a high-level audit trail of where the program is executing and what
values are being passed around.

• Finer resolution requires more debug print statements in important control
structures:

if (a > b) {
cerr << "a > b" << endl ; // debug print
for (. . .) {

cerr << "x=" << x << ", y=" << y << endl; // debug print
. . .

}
} else {

cerr << "a <= b" << endl; // debug print
. . .

}

CS 246 257

• By examining the control paths taken and intermediate values generated, it
is possible to determine if the program is executing correctly.

• Unfortunately, debug print statements can generate enormous amounts of
output.

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which
vital. (Sherlock Holmes, The Reigate Squires)

•Gradually comment out (#if) debug statements as parts of the program
begin to work to remove clutter from the output, but do not delete them
until the program works completely.

•When you go for help, either from your instructor or an advisor, you should
have debug print statements in your program.

• In general, debug print statements never appear in the program you hand in
for marking.

3.2.2 Assertions

• Assertions enforce pre-conditions, post-conditions, and invariants, which
document program assumptions.

CS 246 258

•Macroassert provides a mechanism to perform a check, and if the check
fails, to print the check and abort the program.

int main() {
vector<int > a, b;
// read values into a, b
assert(("must be the same size", a.size() == b.size()));
for (int i = 0; ; i += 1) {

assert(("must have an unequal element", i < a.size()));
if (a[i] != b[i]) break ;

. . .
}

}

• Note, use of comma expression.
•When run with incorrect data produces:

% ./a.out
Assertion failed: ("must be the same size", a.size() == b.size()), file test1.cc,
Abort (core dumped)

• Assertions can significantly increase a program’s cost.
• Compiling a program with preprocessor variableNDEBUG defined removes

all asserts.

CS 246 259

% g++ -DNDEBUG . . . # all asserts removed

3.2.3 Errors

• Debug print statements do not prevent errors, they simply aid in finding
errors.

•What you do about an error depends on the kind of error.

• Errors fall into two basic categories: syntax and semantic.

• Syntax error is in the arrangement of the tokens in the programming
language.

• These errors correspond to spelling or punctuation errors when writing in a
human language.

• Fixing syntax errors is usually straight forward especially if the compiler
generates a meaningful error message.

• Always read the error message carefully andcheckthe statement in error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal in
Bohemia)

• Difficult syntax errors are:

CS 246 260

◦ Forgetting a closing" or */, as the remainder of the program isswallowed
as part of the character string or comment.
◦Missing a{ or }, especially if the program is properly indented (editors

can help here)

• Semantic error is incorrect behaviour or logic in the program.

• These errors correspond to incorrect meaning when writing in a human
language.

• Semantic errors are harder to find and fix than syntax errors.

• A semantic or execution error message only tells why the program stopped
not what caused the error.

• In general, when a program stops with a semantic error, the statement that
caused the error is not usually the one that must be fixed.

•Must work backwards from the error to determine the cause of the problem.

In solving a problem of this sort, the grand thing is to able to reason
backwards. This is very useful accomplishment, and a very easy one,
but people do not practise it much. In the everyday affairs of life it is
more useful to reason forward, and so the other comes to be neglected.
(Sherlock Holmes, A Study in Scarlet)

CS 246 261

• Reason from the particular (error symptoms) to the general (error cause).
◦ locate pertinent data : categorize as correct or incorrect
◦ look for contradictions
◦ list possible causes
◦ devise a hypothesis for the cause of the problem
◦ use data to find contradictions to eliminate hypotheses
◦ refine any remaining hypotheses
◦ prove hypothesis is consistent with both correct and incorrect results, and

account for all errors
• E.g., an infinite loop with nothing wrong with the loop; the initialization is

wrong.

i = 10;
while (i != 5) {

. . .
i += 2;

}

• Difficult semantic errors are:
◦ Forgetting to assign a value to a variable before using it in an expression.
◦ Using an invalid subscript or pointer value.

CS 246 262

• Finally, if a statement appears not to be working properly, but looks correct,
check the syntax.

if (a = b) {
cerr << "a == b" << endl;

}

When you have eliminated the impossible whatever remains, however
improbable must be the truth. (Sherlock Holmes, Sign of Four)

3.3 Debugger
• An interactive, symbolicdebuggereffectively allows debug print

statements to be added and removed to/from a program dynamically.

• You should not rely solely on a debugger to debug a program.

• You may work on a system without a debugger or the debugger maynot
work for certain kinds of problems.

• A good programmer uses a combination of debug print statements and a
debugger when debugging a complex program.

• A debugger does not debug your program for you, it merely helps in the
debugging process.

CS 246 263

• Therefore, you must have some idea about what is wrong with a program
before starting to look or you will simply waste your time.

3.3.1 GDB

• The two most common UNIX debuggers are: dbx and gdb.

• File test.cc contains:

1 void r(int a[]) {
2 int i = 100000000;
3 a[i] += 1; // really bad subscript error
4 }
5 int main() {
6 int a[10] = { 0, 1 };
7 r(a);
8 }

• Compile program using the -g flag to include names of variables and
routines for symbolic debugging:

% g++ -g test.cc

• Start gdb:

CS 246 264

% gdb ./a.out
. . . gdb disclaimer
(gdb) ← gdb prompt

• Like a shell, gdb uses a command line to accept debugging commands.
• run command begins execution of the program:

(gdb) run
Starting program: /u/userid/cs246/a.out
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error

◦ If there are no errors in a program, running in GDB is the same as
running in a shell.
◦ If there is an error, control returns to gdb to allow examination.
• backtrace command prints a stack trace of calledroutine activations.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:7

• print command prints variables accessible in the current routine, object, or
external area.

CS 246 265

(gdb) print i
$1 = 100000000

◦ $1 is the name of a history variable (like history variables in ashell).
◦ Name$N can be used in subsequent commands to access previous values

of i.

• Can print any C++ expression:

(gdb) print a
$2 = (int *) 0xffbefa20
(gdb) p *a
$3 = 0
(gdb) p a[1]
$4 = 1
(gdb) p a[1]+1
$5 = 2
(gdb) p $3
$6 = 0

• set variable command changes the value of a variable in the current routine,
object or external area.

CS 246 266

(gdb) set variable i = 7
(gdb) p i
$7 = 7
(gdb) set var a[0] = 3
(gdb) p a[0]
$8 = 3
(gdb) p $3
$9 = 0

• Change the values of variables while debugging to:
◦ investigate how the program behaves with new values withoutrecompile

and restarting the program,
◦ to make local corrections and then continue execution.
• frame [n] command moves thecurrent stack frame to thenth routine

activation on the stack.

(gdb) f 0
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) f 1
#1 0x00010764 in main () at test.cc:7
7 r(a);

CS 246 267

◦ If n is not present, prints the current frame
◦Once moved to a new frame, it becomes the current frame.
◦ All subsequent commands apply to the current frame.
• To trace program execution,breakpoints are required.
• break command establishes a point in the program where execution

suspends and control returns to the debugger.

(gdb) break main
Breakpoint 1 at 0x10710: file test.cc, line 6.
(gdb) break test.cc:3
Breakpoint 2 at 0x106d8: file test.cc, line 3.

◦ Set breakpoint using routine name or source-file:line-number.
◦ If program is not compiled with -g flag, only the location is given.
◦ Commandinfo breakpoints prints breakpoints currently set.

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010710 in main at test.cc:6
2 breakpoint keep y 0x000106d8 in r(int*) at test.cc:3

• Breakpoints numbered consecutively from1 and can be disabled, enabled
or deleted at any time using commands:

CS 246 268

(gdb) disable 1 temporarily disable breakpoint 1
(gdb) enable 1 re-enable disabled breakpoint 1
(gdb) delete 1 remove breakpoint completely 1

(Pretend none of these commands are entered.)

• Run program again to get to the breakpoint:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /u/userid/cs246/a.out
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) p a[7]
$10 = 0

•Once a breakpoint is reached, execution of the program can becontinued in
several ways.

• step [n] command executes the nextn lines of the program and stop.

CS 246 269

(gdb) step
7 r(a);
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;
(gdb) s
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb)
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) s
Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

◦ If n is not present, 1 is assumed.
◦ <Return> without a command repeats the last command.
◦ If the next line is a routine call, control enters the routineand stops at the

first line.

• next [n] command, likestep, but routine calls are treated as a single
statement, so control stops at the statement after the routine call instead of

CS 246 270

the first statement of the called routine.

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) next
7 r(a);
(gdb) n
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) n
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error

• continue command continues execution until the next breakpoint is reached.

CS 246 271

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) s
7 r(a);
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;
(gdb) s
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) p i
$4 = 100000000
(gdb) set var i = 3
(gdb) c
Continuing.
Program exited normally.

• finish command finishes execution of the current routine and stops at the
statement after the routine call.

CS 246 272

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) c
Continuing.
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) set var i = 3
(gdb) fin
Run till exit from #0 r (a=0xffbefa20) at test.cc:3
main () at test.cc:8
8 }
(gdb) c
Continuing.
Program exited normally.

◦ Print the value returned by the finished routine, if any.

• During debugging, it is useful to print variables each time the program
stops at a breakpoint.

• Normally, requires typing aprint commands each time the program stop.

• display command is like the print command, with the addition of printing

CS 246 273

each time the program stops.

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) display a[0]
1: a[0] = 67568
(gdb) s
7 r(a);
1: a[0] = 0
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;

◦ Each displayed variable is numbered, in this case,a is numbered 1.
◦ Use number to stop displaying a variable viaundisplay n command.
◦ If a variable goes out of scope, the display stops printing.

• list command lists source code.

CS 246 274

(gdb) list
2 int i = 100000000;
3 a[i] += 1;
4 }
5 int main() {
6 int a[10];
7 r(a);
8 }
(gdb) list 3
1 void r(int a[]) {
2 int i = 100000000;
3 a[i] += 1;
4 }
5 int main() {
6 int a[10];
7 r(a);
8 }

◦ with no argument, list code around current execution location
◦ with argument line number, list code around line number

• quit command terminate gdb.

CS 246 275

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) quit
The program is running. Exit anyway? (y or n) y

3.4 Compiling Complex Programs
• Separate compilation has an advantage and disadvantage.

• Advantage: saves significant amounts of computer and peopletime by
recompiling only the portions of a program that are changed.

• In theory, if an expression is changed, only that expressionneeds to be
recompiled.

• In practice, the unit of compilation is much coarser:translation unit (TU),
which is a file in C/C++.

• In theory, each line of code (expression) could be put in a separate file, but
impractical (and doesn’t work).

• So a TU should not be too big and not be too small.

CS 246 276

• Disadvantage: TUs must depend on each other because a program shares
many forms of information, especially types.

• Not a problem when all the code is in a single TU (except for DBU).

• As a program grows, the number of TUs grow, so does the dependencies
among TUs.

• Now, when one TU is changed, it may require other TUs to changethat
depend on some or all of the shared information.

• For a large numbers of TUs, the dependencies turn into a nightmare with
respect to recompiled.

3.4.1 Dependences

• Dependences in C/C++ normally occur as follows:

◦ executable depends on.o files
◦ .o files depend on.C files
◦ .C files depend on.h files

CS 246 277

source tree dependencies

x.h #include "y.h"
x.C #include "x.h"

y.h #include "z.h"
y.C #include "y.h"

z.h #include "y.h"
z.C #include "z.h"

y.C

z.C z.h

y.h

x.h

z.o

y.oa.out
1:01

2:00 3:00
x.o

1:00
4:00

4:01 x.C

• The hierarchicalsource treeis compiled as follows:

% g++ -c z.C # generates z.o
% g++ -c y.C # generates y.o
% g++ -c x.C # generates x.o
% g++ x.o y.o z.o # generates a.out

• If a change is made toy.h, which files need to be recompiled? (all!)

• Doesany change toy.h require these recompilations?

• There is no mechanism to know the kind of change made within a file, e.g.,
changing a comment, type, variable.

• So dependence is coarse grain, based onany change to a file.

CS 246 278

•One way to denote file changes is withtime stamps.

• UNIX stores in the directory the time a file is last changed, with second
precision.

• Establishing dependencies means establishing a temporal ordering in the
dependence graph so the root has the newest (or equal) time and the leafs
the oldest (or equal) time.

3.4.2 Make

•make is a UNIX command that takes a dependence graph and uses file
change-times to trigger rules that bring the dependence graph up to date.

• A make dependence graph expresses a relationship between a product and a
set of sources.

•Make does not express a relationship among sources, one thatexists at the
source-code level and is important.

• E.g., sourcex.C depends on sourcex.h but x.C is not a product ofx.h like
x.o is a product ofx.C andx.h.

• Two most common UNIX makes are: make and gmake (on Linux,make is
gmake).

CS 246 279

• Like shells, there is minimal syntax and semantics formake, which is
mostly portable across systems.

•Most common non-portable features are specifying dependencies and
implicit rules.

• A basic makefile consists of string variables with initialization and a list of
targets and rules.

• This file can have any name, butmake implicitly looks for a file called
makefile or Makefile if no file is specified.

• Each target has a list of dependencies, and possibly a set of commands
specifying how to re-establish the target.

variable = value
target : dependency1 dependency2 . . .

command1
command2
. . .

• Commands must be indented by one tab character.

•make is invoked with a target, which is a subnode or root of a dependence
hierarchy.

CS 246 280

•make builds the dependency graph and decorates the edges with time
stamps for the specified files.
• If any of the dependency files (leafs) are newer than the target file (root), or

if the target file does not exist, the commands are executed bythe shell to
update the target (generate a new product).
•Makefile for previous dependencies:

a.out : x.o y.o z.o
g++ x.o y.o z.o -o a.out

x.o : x.C x.h y.h z.h
g++ -g -Wall -c x.C

y.o : y.C y.h z.h
g++ -g -Wall -c y.C

z.o : z.C z.h y.h
g++ -g -Wall -c z.C

• Check dependency relationship by:

% gmake -n -f Makefile a.out
g++ -g -Wall -c x.C
g++ -g -Wall -c y.C
g++ -g -Wall -c z.C
g++ x.o y.o z.o -o a.out

CS 246 281

◦ -n only checks the dependencies and shows rules to be triggered(leave
off to trigger rules)
◦ -f Makefile is the dependency file (leave off if named[Mm]akefile)
◦ a.out target name to be updated (leave off if first target)

• Eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.o y.o z.o # object files forming executable
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h # targets/dependencies/commands
${CXX} ${CXXFLAGS} x.C

y.o : y.C y.h z.h
${CXX} ${CXXFLAGS} y.C

z.o : z.C z.h y.h
${CXX} ${CXXFLAGS} z.C

• Eliminate common rules:

CS 246 282

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.o y.o z.o # object files forming executable
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h # targets/dependencies
y.o : y.C y.h z.h
z.o : z.C z.h y.h

clean :
rm -rf ${OBJECTS} ${EXEC}

◦ gmakeknows how to construct simple rules when files have specific
suffixes and when special variable names are used.
◦ These rules use variables${CXX} and${CXXFLAGS}.
◦ Targetclean removes product files that can be rebuilt to save space.

gmake clean

• Eliminate dependencies:

CS 246 283

CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.o y.o z.o # object files forming executable
DEPENDS = ${OBJECTS:.o=.d} # substitute “.o” with “.d”
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

clean : # remove files that can be regenerated
rm -rf ${DEPENDS} ${OBJECTS} ${EXEC}

-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)

◦ g++ flag -MMD generates a dependency graph for only user source-files.
file contents
x.d x.o: x.C x.h y.h z.h
y.d y.o: y.C y.h z.h
z.d z.o: z.C z.h y.h

◦ g++ flag -MD generates a dependency graph for user/system source-files.
◦ -include reads the.d files containing dependencies.

CS 246 284

3.5 Source Code Management
• UNIX files only support thecurrent version of the program.

• As a program develops/matures, it changes in many ways.

• UNIX files do not support this temporal notion of a program, i.e., history of
program over time.

• Access to older versions of a program, supporting operations like backing
out of changes because of design problems.

• Another issue is sharing program files among multiple developers each
making independent changes.

• Current sharing allows damaging the contents of the files forsimultaneous
writes.

• Approaches:

◦Make copies of some or all of the project files before making changes.
Wastes storage for unchanged files and burden of managing copied files.
◦ Share files using group file permissions.

Simultaneous access is unsafe and developers cannot test changes in
isolation.

CS 246 285

◦Giving each developer a separate copy of the code base.
Merging in changes from different developers is tricky and time
consuming.

• To solve these problems, asource control systemis used to manage
cooperative work.

3.5.1 CVS

• Concurrent Versions System(CVS) is a source control system with the
following features:

◦Master copy of all project files is kept in arepository.
◦Multiple versions of files are automatically stored in the repository.
◦ Developers can check out a complete copy of the project.
◦ Helpful integration back into the repository using text merging.

Programmer has to deal with conflicts.

3.5.2 Repository

•Group members must add this line to their shell startup file:

CS 246 286

sh:
% CVSROOT=/u/userid/cs246/cvsroot
% export CVSROOT

csh:
% setenv CVSROOT /u/userid/cs246/cvsroot

• For remote access:

CVS_RSH=ssh
export CVS_RSH
CVSROOT=userid@student.cs.uwaterloo.ca:/u/userid/cs246/cvsroot
export CVSROOT

• Shared repository is created at accessible location in the file system:

% cd cs246
% cvs init # make repository directory cvsroot
% chgrp -R cs246_75 cvsroot # set group on directory and subfiles
% chmod -R g+rwx cvsroot # allow group members access to ALL files
% mkdir cvsroot/assn6 # specific project

• cvs int creates and initializes the repository.

•Other directories undercvsroot represent projects (can have any name).

CS 246 287

3.5.3 Checking Out

• checkout command creates a working copy of the project:

% cvs checkout assn6 # checkout initial project
cvs checkout: Updating assn6
% cd assn6 # move into project directory
% ls # administration directory CVS
CVS

• Creates project directory in current directory and undercvsroot.

• A checked out copy can be modify in any way without other developers
seeing these changes until committed.

•Only check out once and continue working.

3.5.4 Adding

• add command schedules new files (in current directory) for addition into
the repository:

CS 246 288

% . . . create files: Makefile x.C x.h y.C y.h z.h z.C
% ls
CVS Makefile x.C x.h y.C y.h z.C z.h
% cvs add * # add all files
cvs add: cannot add special file ‘CVS’; skipping
cvs add: scheduling file ‘Makefile’ for addition
cvs add: scheduling file ‘x.C’ for addition
cvs add: scheduling file ‘x.h’ for addition
cvs add: scheduling file ‘y.C’ for addition
cvs add: scheduling file ‘y.h’ for addition
cvs add: scheduling file ‘z.C’ for addition
cvs add: scheduling file ‘z.h’ for addition
cvs add: use ′cvs commit′ to add these files permanently

• Addition only occurs on cvs commit.

• Forgetting cvs add is a common mistake.

• Do not put all files into repository, e.g.,*.o, *.d, a.out .

3.5.5 Checking In

• commit updates the repository with the changes made in checkout directory.

CS 246 289

% cvs commit -m "initial files"
cvs commit: Examining .
RCS file: /u/userid/cs246/cvsroot/assn6/Makefile,v
done
Checking in Makefile;
/u/userid/cs246/cvsroot/assn6/Makefile,v <-- Makefile
initial revision: 1.1
done
RCS file: /u/userid/cs246/cvsroot/assn6/x.C,v
done
Checking in x.C;
/u/userid/cs246/cvsroot/assn6/x.C,v <-- x.C
initial revision: 1.1
done
RCS file: /u/userid/cs246/cvsroot/assn6/x.h,v
done
Checking in x.h;
/u/userid/cs246/cvsroot/assn6/x.h,v <-- x.h
initial revision: 1.1
done
. . .

• If -m flag not used, cvs prompts for a change description using an editor.

CS 246 290

• Always make sure that your code compiles and runs before committing.

• It is unfair to pollute the source base with bugs.

3.5.6 Editting/Removal

• Edited files (in current directory) do not require any CVS command:

% vi y.h y.C # edit files y.h y.C

• Implicitly schedules files for update, which occurs on cvs commit.

• remove command tell CVS to remove existing files from the repository:

% rm z.h z.C # remove files z.h z.C
% cvs remove z.h z.C # remove from repository
cvs remove: scheduling ‘z.h’ for removal
cvs remove: scheduling ‘z.C’ for removal
cvs remove: use ′cvs commit′ to remove these files permanently

• Schedules files for removal, which occurs on cvs commit.

• In fact, any removed file can always be retrieved from old versions.

• Commit edits and removals.

CS 246 291

% cvs commit -m "changes to y.* and remove z.*"
cvs commit: Examining .
Checking in y.C;
/u/userid/cs246/cvsroot/assn6/y.C,v <-- y.C
new revision: 1.2; previous revision: 1.1
done
Checking in y.h;
/u/userid/cs246/cvsroot/assn6/y.h,v <-- y.h
new revision: 1.2; previous revision: 1.1
done
Removing z.C;
/u/userid/cs246/cvsroot/assn6/z.C,v <-- z.C
new revision: delete; previous revision: 1.1
done
Removing z.h;
/u/userid/cs246/cvsroot/assn6/z.h,v <-- z.h
new revision: delete; previous revision: 1.1
done

3.5.7 Update

• Cannot commit changes if other developers have checked in changes during
a checkout.

CS 246 292

• Changes must now be merged and then committed.

• update command merges changes into repository.

• Causes merged file in current directory to be updated.

•Merge algorithm is generally very good if changes do not overlap.

•Overlapping changes result in a conflict, which must be resolved manually.

% cvs commit
cvs commit: Examining .
cvs commit: Up-to-date check failed for ‘Makefile’
cvs [commit aborted]: correct above errors first!
% cvs update
cvs update: Updating .
RCS file: /u/userid/cvsroot/assn6/Makefile,v
retrieving revision 1.2
retrieving revision 1.3
Merging differences between 1.2 and 1.3 into Makefile

• Conflict is marked inMakefile:

CS 246 293

CXX = g++ # variables and initialization
<<<<<<< Makefile
CXXFLAGS = -g -MMD
=======
CXXFLAGS = -g -Wall
>>>>>>> 1.3

• You have to resolve the conflict.

3.5.8 Versions

• Each time a file is committed, it receives a new version number.

• Version number is displayed during commit, and at other times.

• cvs status prints version information.

•Old versions are accessible using:

cvs update -p -r 1.2 Makefile # -p prints to standard output
which prints version 1.2 of Makefile to standard output.

• Differences between versions can be generated:

cvs diff -r 1.2 -r 1.1 Makefile
which shows the differences between version 1.2 and version1.1.

CS 246 294

3.5.9 Tagging

• Version numbers are nondescript and often too low level (i.e., little changes
here and there).

• It is possible to give a meaningful, symbolic name to a version, often at a
stable point or before big changes.

• tag command adds a symbolic name to the current version of every file
checked out:

cvs tag debug1 # name current version “debug1”

• Use symbolic name like version number:

cvs update -p -r debug1

• To compare named versions:

cvs diff -r debug1 -r debug2

4 Software Engineering
• Software Engineering(SE) is the social process of designing, writing, and

maintaining computer programs.

• SE attempts to find good ways to help people understand and develop
software.

• However, what is good for people is not necessarily good for the computer.

•Many SE approaches are counter productive in the development of
high-performance software.

• E.g.: The computer does not execute the documentation!

• Documentation is unnecessary to the computer, and significant amounts of
time are spent building it so it can be ignored (program comments).

• Remember, thetruth is always in the code.

• However, without documentation, developers have difficulty designing and
understanding software.

• E.g., designing by anthropomorphizing the computer is seldom a good
approach (desktops/graphical interfaces).

c© Peter A. Buhr

295

CS 246 296

• Software tools spend significant amounts of time undoing SE design and
coding approaches to generate efficient programs.

• It is important to know these differences to achieve a balance between
programs that are good for people and good for the computer.

4.1 Software Crisis
• Large software systems (> 100,000 lines of code) require many people and

months to develop.

• These projects normally emerge late, over budget, and do notwork well.

• Today, hardware costs are nil, and people costs are great.

•While commodity software is available, someone still has towrite it.

• Since people produce software⇒ software cost is great.

• Coupled with a shortage of software personnel⇒ problems.

• Unfortunately, software is complex and precise, which requires time and
patience.

CS 246 297

4.2 Software Development
• Techniques for program development for small, medium, and large systems.

•Objectives:

◦ plan and schedule software projects
◦ produce reliable, flexible, efficient programs
◦ produce programs that are easily maintained
◦ reduce the cost of software
◦ reduce program failure

• E.g., a typical software project:

◦ estimate 12 months of work
◦ hire 3 people for 4 months
◦make up milestones for the end of each month

• However, first milestone is reached after 2 months instead of1.

• To finish on time, hire 2 more people, but:

◦ new people require training
◦ work must be redivided

This takes at least 1 month.

CS 246 298

• Now 2 months behind with 9 months of work to be done in 1 month by5
people.

• To get the project done:

◦must reschedule
◦ trim project goals

•Often, adding manpower to a late software project makes it later.

• Illustrates the need for a methodology to aid in the development of software
projects.

4.2.1 Programming Methodology

• System Analysis (next year)

◦ Study the problem, the existing systems, the requirements,the feasibility.
◦ Analysis is a set of requirements describing the system inputs, outputs,

processing, and constraints.

• System Design

◦ Breakdown of requirements into modules, with their relationships and
data flows.

CS 246 299

◦ Results in a description of the various modules required, and the data
interrelating these.

• Implementation

◦ writing the program

• Testing & Debugging

◦ get it working

•Operation & Review

◦ was it what the customer wanted and worth the effort?

• Feedback

◦ If possible, go back to the above steps and augment the project as needed.

4.2.2 System Design

• In designing a system of any size it must be modularized.

•Modularization is the division of the system into smaller parts on some
systematic basis.

•Modularization is necessary to:

◦make it easier to design and implement

CS 246 300

◦make it easier to read
◦make it easier to maintain and modify
◦ abstract the data structures
◦ abstract the algorithms

• Two basic strategies exist to systematically modularize a system:

◦ top-down or functional decomposition
◦ bottom-up

• Both techniques have much in common and so examine only one.

4.2.3 Top-Down Design

• Start at highest level of abstraction and break down probleminto cohesive
units.

• Then refine each unit further generating more detail at each division.

• This recursive process is calledstepwise refinement.
• Each subunit is divided until a level is reached where the parts are

comprehensible, and can be coded directly.

• Unit are independent of a programming language, but ultimately must be
mapped into constructs like:

CS 246 301

◦ generics (templates)
◦modules
◦ classes
◦ routines

• Details look at data and control flow within and among units.

• Implementation programming language is often chosen only after the
system analysis/design process.

4.2.4 Factoring

• Factoring is the modularization of code in one module into multiple
modules.

• Stop factoring when:

◦ cannot find a well defined function to factor out
◦ interface to the module would be as complicated as the moduleitself

• Factoring is done to:

◦ reduce module size :≈ 30-60 lines of code, i.e., 1-2 screens with
documentation
◦make system easier to understand

CS 246 302

◦ eliminate duplicate code
◦ localize modifications

• Avoid having the same function performed in more than one module (create
useful general purpose modules)

• Separate work from management:

◦ Higher-level modules only make decisions (management) andcall other
routines to do the work.
◦ Lower-level modules become increasingly detailed and specific,

performing finer grain operations.

• In general:

◦ do not worry about little inefficiencies unless the code is executed a
LARGE number of times
◦ put thought into readability of program
◦ avoid high levels of nesting (3-5 levels is fine)

4.3 System Modelling
• System modellinginvolves modelling a complex system in an abstract way

to provide a specific description of how the system works.

CS 246 303

• Design grows from nothing to become a model of sufficient detail to be
transformed into a functioning system.

• Design provides high-level documentation of the system, for understanding
(education) and for making changes in a systematic manner.

• Top-down successive refinement is a foundational mechanismused in all
system design.

• System modelling has multiple viewpoints:

◦ class model: describes static kinds and structure of system
◦ object model : describes dynamic (temporal) behaviour of system

objects
◦ interaction model : describes the kinds of interactions among objects

•Multiple design tools (past and present) for supporting system design, most
are graphical and all are programming language independent:

◦ flowcharts (1920-1970)
◦ pseudo-code
◦Warnier-Orr Diagrams
◦ Hierarchy Input Process Output (HIPO)
◦ UML

CS 246 304

• Design tools can be used in various ways:

◦ sketchout high-level design or complex parts of a system,
◦ blueprint the entire system abstractly with high accuracy,
◦ generateinterfaces directly.

• Key advantage of design tool is the generic, abstract model of the system,
which can be transformed into any format.

• Key disadvantage is the design tool is seldom linked to the implementation
mechanism, so the two often differ
(implementation = truth) .

• As with design strategies, design tools have much in common and so only
one is studied.

4.3.1 UML

• Unified Modelling Language(UML) is a graphical notation for describing
and designing software systems, with emphasis on the object-oriented style.

• UML can handle class, object and interaction modelling. (focus on class
modelling)

• Note/comment

CS 246 305

comment text target

• Class diagramcollection of class templates and associated relationships.

• Class specifies a template for objects : name, attributes, operations.

optional

routine operationclass/struct name

attribute-list

operation-list

• attribute : value description (field)
[visibility] name [“:” [type] [“[” multiplicity “]”]

[“=” default] [“ {” property-list “}”]]

◦ visibility : access of attribute information by other classes
+⇒ public,−⇒ private, #⇒ protected,∼⇒ package
◦ name : required identifier for attribute (like field name in structure)

CS 246 306

◦ type : restriction on kind of objects associated with attribute
Boolean, Integer, Float, String, class-name
◦multiplicity : restriction on number of objects associatedwith attribute

0..(N|∗), from 0 toN or unlimited,N short forN..N, ∗ short for 0..∗
◦ default : value of newly created object
◦ property : additional aspects of attribute, e.g.,{ readonly}
• operation : action changing or returning object state (method)

[visibility] name [“(” [parameter-list] “)”] [“:” return-type]
[“[” multiplicity “]”] [“ {” property-list “}”]

◦ visibility : access of attribute information by other classes
+⇒ public,−⇒ private, #⇒ protected,∼⇒ package
◦ name : required identifier for operation (like method name instructure)
◦ parameter-list : input/output values for operation

[direction] parameter-name “:” type [“[” multiplicity “]”]
[“=” default] [“ {” property-list “}”]]

◦ direction : direction of parameter data flow
“in” (default) | “out” | “inout”
◦ return-type : output from operation
◦ property-list : additional aspects of operation, e.g.,{ readonly}

CS 246 307

VendingMachine
- printer : Printer
- nameServer : NameServer

attributes - Id : Integer
- sodaCost : Integer
- maxStockPerFlavour : Integer
- stock : Integer [1..4]
+ buy(in flavour : Flavours, inout card : WATCard) : Boolean
+ inventory : Integer [1..4]

operations+ restocked
+ cost : Integer
+ getId : Integer

• Include attributes defining model structure (no counters, temporaries, etc.)

• Leave out constructor operations as they do not contribute to the model.

•Object diagram : instance of a class.

object name : class name

attributes : valuesoptional

CS 246 308

• Association: a named conceptual/physical connection among objects.

class diagram
kind : String

Car
**

Person

name : String
1 1..5

object diagram
name=”Fredrick”

Fred:Person

kind=”Civic”

Honda:Car

Mary:Person

name=”Mary”

Peg:Person

name=”Margaret”

owned owns

ownership

kind=”CRV”

Honda:Car

kind=”CRV”

Honda:Car

• association is “ownership”

CS 246 309

◦ personowns 0 or more cars (*)
personowns 1 to 5 cars
◦ car isowned by 0 or more people (*)

car isowned by 1 person

• Association is inherently bidirectional even if name implies a specific
direction: employer| worksFor| employee

• Association can be represented as an attribute or a line.

CarPerson

11

ownership

owned : Person
kind : String

owner : Car
name : String

name : String

Person Car

kind : String

Use attribute if many lines to a single class.

• Association may be implemented in a number of ways:

◦ pointer from one object to another
◦ related elements in arrays

CS 246 310

• Association Class: association that is also a class

kind

CarPerson

name

Owns

licence
bill of sale

Owns

L345YH454
Ted’s Honda

Mary:Person

name=”Mary”

Honda:Car

kind=”Civic”

◦ people without cars do not need “owns” fields
cars without owners do not need “owns” fields
◦ not real class because it cannot logically exist without association

CS 246 311

• Aggregation is an association between an aggregate (collection) and its
members.

vector elements*1

◦ an aggregate is not complete without its members
◦ but members exist outside of the aggregate (pointer to elements)

• Composition is stronger aggregation where components do not exit outside
of composite.

vector elements*1

◦ copy elements

•Generalization : reuse through form of inheritance.

CS 246 312

multiple inheritanceInheritance

Super

Sub

SuperSuper

SubSub

◦ Inheritance establishes “is-a” relationship on type, and reuse of attributes
and operations.
◦ Association class can be implemented with forms of multipleinheritance

(mixin).

• Sequence diagram: describes control-flow among objects with respect to
particular scenario.

◦ show static frame of program animation (call sequence).

CS 246 313

sd name

new object

self-callcall

return other-calls

returns

delete

class name

CS 246 314

◦ show control flow

[other condition]

[else]

[for all things]

[condition]alt

[condition]opt

loop

◦ complex and specific
◦more concise to use pseudo-code (or actual code if it exists)
◦ use to show important/complex control flow sequences
• UML is significantly more general, supporting very complex descriptions

of relationships among entities.

CS 246 315

• VERY large visual mechanisms, with several confusing graphical
representations.

• Code = truth

4.4 Programming Language Selection
• imperative, functional, logic

◦ imperative : prescribes a sequence of actions directed by the state of
variables, which are allowed to have multiple values (i.e.,vary)
◦ functional : like imperative, but variables are restrictedto only one value

(i.e., constant)
◦ logic : series of logical expressions that are proven correct or incorrect

through unification

• scripting : specialized languages (often only string type or dynamically
typed) for specific purpose (shell, GUI, awk, Perl)

• interactive/interpreted : not compiled, can be typed and executed
immediately (basic, shell)

•managed language : hide aspects of implementation to simplify
programming, e.g., hide memory management via garbage collection,

CS 246 316

execution via virtual machine
• static/dynamic type-system : variable types are fixed at compile time or

allowed to vary at runtime.
• reification : manipulate program symbol-table and code at runtime,

possibly with dynamic compilation.
• Useful language properties for SE:
◦ abstraction/encapsulation : separate implementation from interface, and

hide implementation
◦module/package : high-level bundling of types/variables/code with global

initialization, e.g., container library
∗ requires transitive closure of modules over program for initialization

(cycles?)
◦ class : aggregate data and code into single type
◦ coroutines : retain control flow knowledge across routine call
◦ concurrency : multiple simultaneous threads of execution (inherently

difficult and complex)
◦ polymorphism : generalization data/code across multiple types with

similar structure and behaviour
◦ libraries : error-free, efficient, reusable abstractions:

CS 246 317

∗ data structures, math, GUI, distributed/web
◦ compilation/runtime errors : specific, comprehensible error messages
◦ efficiency : after it works, after its good code, then make sure it is

efficient
∗ efficiency should never be an afterthought; it comes from good

programming practice
∗ nevertheless, programs have execution hot-spots that require extra

attention
◦ security : subscript checking, type checking, virtual machine, dynamic

checking, etc.

• Java : imperative, managed, static typing (inconsistent builtin & object
types), reification, abstraction/encapsulation, packages, class (strongly
object-oriented), concurrency, medium polymorphism, large libraries, good
error reporting, average to poor efficiency

• C++: imperative, not managed, static typing (consistent builtin & object
types), abstraction/encapsulation, weak packages, class, routines, no
concurrency, strong polymorphism, average libraries, poor error reporting,
average to excellent efficiency

• Ada : imperative, many good features, but not used much anymore

CS 246 318

• Cobol, Fortran, PL/I : legacy languages, updated but slowlydisappearing

• Python/Ruby : scripting

• Haskell, Scheme, Erlang (Industrial) : functional

4.5 Development Processes
• There are different conceptual approaches for developing software, e.g.:

waterfall : break down project based on activity and divide activitiesacross
a timeline
◦ activities : (cycle of) requirements, analysis, design, coding, testing,

debugging
◦ timeline : assign time to accomplish each activity up to project

completion time
iterative/spiral : break down project based on functionality and divide

functions across a timeline
◦ functions : (cycle of) acquire/verify data, process data, generate data

reports
◦ timeline : assign time to perform software cycle on each function up to

project completion time

CS 246 319

staged delivery: combination of waterfall and iterative
◦ start with waterfall for analysis/design, and finish with iterative for

coding/testing
agile/extreme: short, intense iterations focused largely on code (versus

documentation)
◦ often analysis and design are done dynamically
◦ often coding/testing done in pairs

• Pure waterfall is problematic because all coding/testing comes at end⇒
major problems can appear near project deadline.

• Pure agile can leave a project with “just” working code, and little or no
testing / documentation.

• Selecting a process depends on:

◦ kind/size of system
◦ quality of system (mission critical?)
◦ hardware/software technology used
◦ kind/size of programming team
◦ working style of teams
◦ nature of completion risk

CS 246 320

◦ consequences of failure
◦ culture of company

•Meta-processes specifying the effectiveness of processes:

◦ Capability Maturity Model Integration (CMMI)
◦ International Organization for Standardization (ISO) 9000

• Requirements

◦ procedures cover key aspects of processes
◦monitoring mechanisms
◦ adequate records
◦ checking for defects, with appropriate and corrective action
◦ regularly reviewing processes and its quality
◦ facilitating continual improvement

4.6 Design Patterns
• Design patternshave existed since people/trades developed formal

approaches.

• E.g., parent’s raising children, mason’s building pyramid/cathedral.

CS 246 321

• Pattern is a common/repeated issue; it can be a problem or a solution.

• Name and codify common patterns for educational and communication
purposes.

• Software pattern are solutions to problems:

◦ name : descriptive name
◦ problem : kind of issues pattern can solve
◦ solution : general elements composing the design, and theirrelationships,

responsibilities, and collaborations
◦ consequences : results and trade-offs of applying the pattern

(alternative/implementation issues)

CS 246 322

4.6.1 Pattern Catalog

creational structural behavioural
class factory method adapter interpreter

template
object abstract factory adapter responsibility chain

builder bridge command
prototype composite iterator
singleton decorator mediator

facade memento
flyweight observer
proxy state

strategy
visitor

• Scope : applies to classes or objects

• Purpose : class/object creation issues, structural form, and behavioural
interaction

CS 246 323

• Class

factory method/abstract : abstract class/template defining structure (and
possibly some implementation) for creating other classes

struct F { // factory/abstract-class
virtual void m1() = 0;
virtual void m2() = 0;

};
struct P1 : public F { // products

void m1();
void m2();

};
struct P2 : public F {

void m1();
void m2();

};

CS 246 324

adapter/wrapper : convert interface into another

struct T1 { struct T2 {
virtual void x(. . .); virtual void x(. . .);
virtual void y(. . .); virtual void z(. . .);

}; };
struct T1T2 : public T1, private T2 { // adapter/wrapper

void x(. . .) { T2::x(. . .); }
void y(. . .) { . . . z(. . .); . . . }

};
void p(T1 t1) { . . . }
T1T2 t; // make use of T2 code with T1 routine
p(t);

CS 246 325

template method: provide pre/post actions for subclass methods

class TM {
virtual void doAction() = 0;

protected :
virtual void action() {

pre-code doAction(); post-code
}

};
class AM : public TM {

void doAction() {. . .}
public :

void action() { TM::action(); }
};

CS 246 326

•Object

adapter : convert interface into another

struct T1 { struct T2 {
virtual void x(. . .); virtual void x(. . .);
virtual void y(. . .); virtual void z(. . .);

}; };
struct T2toT1 : public T1 { // adapter/wrapper

T2 &t2;
T2toT1(T2 &t2) : t2(t2) {}
void x(. . .) { t2.x(. . .); }
void y(. . .) { . . . t2.z(. . .); . . . }

};
void p(T1 t1) { . . . }
T2 t2;
T2toT1 t(t2); // any T2
p(t);

CS 246 327

iterator : abstract mechanism to traverse container

list<Node>::iterator ni;
for (ni = top.begin(); ni != top.end(); ++ni) { // traverse list

cout << "c:" << ni->c << " i:" << ni->i << endl;
}

singleton: single instance of class
.h file .cc file

class Singleton {
struct Impl {

int x, y;
Impl(int x, int y);

};
static Impl impl;

public :
void m();

};

#include "Singleton.h"
Singleton::Impl Singleton::impl(3, 4);
Singleton::Impl::Impl(int x, int y)

: x(x), y(y) {}
void Singleton::m() { . . . }

Singleton x, y, z; // all access same value

CS 246 328

proxy : frontend for another object to control access

struct T {
void m1(. . .);
void m2(. . .);

};
struct SProxyT : public T { // static

void m1(. . .) { . . . T::m1(. . .); . . . }
void m2(. . .) { . . . T::m2(. . .); . . . }

};
struct DProxyT : public T { // dynamic

T *t;
DProxyT() { t = NULL; }
~DProxyT() { if (t != NULL) delete t; }
void m1(. . .) { if (t == NULL) t = new T; t->m1(. . .); . . . }
void m2(. . .) { . . . don’t need t . . . }

};

CS 246 329

decorator : attach additional responsibilities to an object dynamically

struct Abstract { struct Concrete : public Abstract {
virtual void m1(. . .) = 0; void m1(. . .);
virtual void m2(. . .) = 0; void m2(. . .);

}; };
struct Decorator : public Abstract { // generalize

Abstract *parent;
Decorator(Abstract &parent) : parent(&parent) {}
void m1(. . .) { parent->m1(. . .); } // forward
void m2(. . .) { parent->m1(. . .); } // forward

};
struct Decoratee1 : public Decorator { // specialize

. . .
Decoratee1(Abstract &parent, . . .) : Decorator(parent), . . . {}
void m1(. . .) { decorate Decorator::m1(. . .); decorate }
void m2(. . .) { decorate Decorator::m2(. . .); decorate }

};
struct Decoratee2 : public Decorator {. . .} // specialize

Concrete c;
Decoratee1 d1(c); Decoratee2 d2(c); // decorate c two ways
d1.m1(. . .); d2.m1(. . .);

CS 246 330

observer: 1 to many dependency⇒ change updates dependencies

struct Observee { // generalize
Observer &oer;
Observee(Observer &oer) : oer(oer) {}
virtual void update() = 0;

};
struct Observer {

list<Observee *> oees; // list of observees
static void perform(Observee *oee) { oee->update(); }
void attach(Observee &oee) { oees.push_back(&oee); }
void deattach(Observee &oee) { oees.remove(&oee); }
void notify() { for_each(oees.begin(), oees.end(), perform); }

};
struct Oee : private Observee { // specialize

Oee(Observer &oer) : Observee(oer) { oer.attach(*this); }
~Oee() { oer.deattach(*this); }
void update() { perform update action }

};
Observer oer;
Oee oee1(oer), oee2(oer); // register
oer.notify(); // trigger updates

CS 246 331

visitor : perform operation on elements of heterogeneous container

struct Visitor {
void visit(N1 &n) { perform action on node }
void visit(N2 &n) { perform action on node }

};
struct Node {

virtual void action(Visitor &v) = 0;
};
struct N1 : public Node {

void action(Visitor &v) { v.visit(*this); } // overload
};
struct N2 : public Node {

void action(Visitor &v) { v.visit(*this); } // overload
};
Visitor v;
list<Node *> l;
for (int i = 0; i < 10; i += 1) {

l.push_back(i % 2 == 0 ? (Node *)new N1 : (Node *)new N2);
}
for (list<Node *>::iterator it = l.begin(); it != l.end(); ++it) {

(*it)->action(v);
}

CS 246 332

4.7 Testing
• A major phase in program development is testing (> 50%).

• This phase often requires more time and effort than design and coding
phases combined.

• Testing is not debugging.

• Testing is the process of “executing” a program with the intent of
determining differences between the specification and actual results.

◦Good test is one with a high probability of finding a difference.
◦ Successful test is one that finds a difference.

• Debugging is the process of determining why a program does not have an
intended testing behaviour and correcting it.

4.7.1 Human Testing

• Human testing : systematic examination of program to discover problems.

• Studies show 30–70% of logic design and coding errors can be detected in
this manner.

• Code inspectionlooks for common problems:

CS 246 333

◦ data errors: wrong types, mixed mode, overflow, zero divide,bad
subscript, initialization problems, poor data-structure
◦ logic errors: comparison problems (== / !=, < / <=), loop initialization /

termination, off-by-one errors, boundary values, incorrect formula, end
of file, incorrect output
◦ interface errors: missing members or member parameters, encapsulation

/ abstraction issues
• Desk checking: single person “plays computer”, executing program by

hand.
•Walkthrough : team of people examine program by hand, often “grilling”

the developer.

4.7.2 Machine Testing

•Machine Testing : systematic running of program using test data, which is
designed to discover problems.
• Should be done after human testing.
• Exhaustive testing is usually impractical (too many cases).
• Test-case designinvolves determining subset of all possible test cases with

the highest probability of detecting the greatest number oferrors.

CS 246 334

• Two major approaches:

◦ Black-Box Testing : program’s design / implementation is unknown
when test cases are drawn up.
◦White-Box Testing : program’s design / implementation is used to

develop the test cases.

• Start with the black-box approach and supplement with white-box tests.

• Black-Box Testing

◦ equivalence partitioning
∗ partition all possible input cases into equivalence classes
∗ select only one representative from each class for testing
∗ E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

∗ 3 equivalence classes, plus invalid hours
∗ Since there are many types of invalid data, invalid hours canalso be

partitioned into equivalence classes
◦ boundary value testing

CS 246 335

∗ test cases which are below, on, and above boundary cases

39, 40, 41 (hours)
44, 45, 46 "
-1, 0, 1 "

◦ cause-effect graphing
∗ used to generate test cases representing combinations of conditions
∗ construct boolean logic-graphs, which are converted to decision tables

(describing test inputs and expected outputs)
◦ error guessing
∗ surmise, through intuition and experience, what the likelyerrors are

and then test for them

•White-Box (logic coverage) Testing

◦ develop test cases to cover (exercise) important logic paths through
program
◦ try to test every decision alternative at least once
◦ test all combinations of decisions (often impossible due tosize)
◦ test every routine and member for each type
◦ cannot test all permutations and combinations of execution

CS 246 336

4.7.3 Testing Mechanics

• Unit testing : test each routine/class/module separately before integrated
into, and tested with, entire program.

◦ requires construction of drivers to call the unit and pass ittest values
◦ requires construction of stub units to simulate the units called during

testing
◦ allows a greater number of tests to be carried out in parallel

• Integration testing : test if units work together as intended.

◦ after each unit is tested, integrate it with tested system.
◦ done top-down or bottom-up : higher-level code is drivers, lower-level

code is stubs
◦ In practice, a combination of top-down and bottom-up testing is usually

used.
◦ detects interfacing problems earlier

•Once system is integrated:

◦ Functional testing : test if performs function correctly.
◦ Regression testing: test if new changes produce different effects from

previous version of the system (diff results of old / new versions).

CS 246 337

◦ System testing: test if program complies with its specifications.
◦ Performance testing: test if program achieves speed and throughput

requirements.
◦ Volume testing: test if program handles large volumes of test data,

possibly over long period of time.
◦ Stress testing: test if program handles extreme volumes of data over a

short period of time, e.g., can air-traffic control-system handle 250 planes
at same time?
◦ Usability testing : test whether users have the skill necessary to operate

the system.
◦ Security testing: test whether programs and data are secure, i.e., can

unauthorized people gain access to programs, files, etc.

• If a problem is discovered, make up additional test cases to zero in on this
particular issue.

4.7.4 Tester

• A program should not be tested by its writer, but in practice this often
occurs.

CS 246 338

• Testing can be very hard on the ego because you have to search out your
own faults.

• Remember, the tester only tests what they thinks it should do.

• Any misunderstandings the writer had while coding the program are carried
over into testing.

• Any system written for an end user must be tested by the end user to
determine if it is acceptable.

• Acceptance testing: checking if the system satisfies what the user ordered.

• Points to the need for a written specification to protect boththe end user
and the supplier.

5 Conclusion
• Final exam is (largely) based on sections 2.12 (Objects) to end.
• Last 2 final exams and answers are available (see course web-site, seating)
• Last version of course note is up.
◦ Send me any corrections you find during studying.
• assignment 6 extension : Sunday, Dec 6 @ 23:55
• Course topics:
◦ 2 programming language : sh and C++, dangerous in both ;-)
◦ Tools : compiler, debugger (maybe), make, CVS (maybe) : valgrind

(memory errors)
◦ SE : for the work place
• review (Erik), newsgroup, appointment
• Think like a computer to understand it and write good programs.
• Fran Allen’s talk today at 2:00 in DC1302

High Performance Computers and Compilers: A Personal Perspective
•Good luck on assignment 6 and the final exam.

I want you all to succeed!

339

