University of

Waterloo

%

School of Computer Science
Course Notes

CS 246

Object-Oriented Software Development

http: //www.student.cs.uwaterloo.ca/ ~cs246

Fall 2009

December 22, 2009

Outline

Introduction to object-oriented programming in C+ andbaBNIX software development-
tools to facilitate designing, coding, debugging, testiagd documenting of medium-sized
programs. Students will learn to read a specification an@jdewftware to implement it. Im-
portant skills are selecting appropriate data structunelscantrol structures, writing reusable
code, reusing existing code, understanding basic perfuwen&sues, developing debugging
skills, and learning to test a program.

“Permission is granted to make copies for personal or edunzdtiise.

http://www.student.cs.uwaterloo.ca/~cs246

Contents

1 Shell
11
1.2
1.3
1.4
15
1.6
1.7
1.8

2.1

2.2
2.3

1

File System. e 2
Pattern Matching. 4
QUOLING 5
ShellCommands. 6
SystemCommands 8
File Permission. 11
Input/Output Redirection 12
Programming. e e 13
1.8.1 \Variables. 14
1.8.2 Routine. e 15
1.8.3 Arithmetic e 17
1.8.4 Control Structures. 17

1.8.4.1 Test. e 17

1.8.4.2 Selection 18

1.8.4.3 Looping. 19

23

Program Structure. e e 23
211 Comment. e e 23
2.1.2 Statement e e 24
First Program. e e e 25
Declaration. e 25
2.3.1 ldentifier e 26
2.3.2 BaSiCTYPES o e 26
2.3.3 Variable Declaration. o 26
2.3.4 TypeQualifier 27
235 String. 28
2.3.6 Constants e e 30
2.3.7 TypeConstructor e 31

2.3.7.1 Enumeration 31

2.3.7.2 Pointer/Reference 0. 32

2.3.7.3 Aggregation (Structure/Array). L. 35
2.3.8 TypeEquivalence. 38
2.3.9 Type-ConstructorConstant. 39

CONTENTS

2.4 EXPression e e 40
241 CONVErSION. o i o e e e 41
2.4.2 MathOperations. e 42

2.5 Control Structures e 43
251 Block. 43
2.5.2 Conditional. 44
253 Selection. 44
2.5.4 Conditional Expression Evaluation 45
255 Looping. e 46

2.6 Structured Programming 48
2.6.1 Multi-ExitLoop 49
2.6.2 Static Multi-Level Exit. 52

2.7 Preprocessor. e e e e 53
2.7.1 Substitution 54
2.7.2 FilelInclusion. 55
2.7.3 Conditional Inclusion 55

2.8 Input/Output 56
28.1 Formatted /O e 57

2811 Formats. 58
2812 Input. e 59
2.8.1.3 Output. e 61
2.8.2 Unformatted1/O. 61

2.9 Dynamic Storage Managemento 62

2.10 Command-line Arguments 66

2.11 RoUtine e 68
2.11.1 Argument/ParameterPassing. 69
2.11.2 Array Parameter. 71
2.11.3 Overloading e 72
2.11.4 Routine Pointer 73

2.12 Object. e 75
2.12.1 OperatorMember. e 76
2.12.2 Constructor e 77

21221 Constant 78
2.12.2.2 CONVErSION v v o 79
2.12.3 Random Numbers. 80
2.12.4 Copy Constructor/Assignment. 81
2.12.5 Initialize const/Object Member. oL 83
2.12.6 Destructor 84

2.13 Type Nesting. 85

2.14 DeclarationBeforeUse. L 86

2.15 Abstraction/Encapsulationo 88

2.16 Separate Compilation. 91

2.17 Inheritance 96
2.17.1 Implementation Inheritance 96

2.17.2 Typelnheritance. 98

CONTENTS %

2.17.3 Constructor/Destructar. 100
2.17.4 Overloading e 100
2175 AbstractClass. 101
2.17.6 Multiple Inheritance. o 102
2.17.7 Virtual Routine. 103
2.17.8 DownCast. e 105
2.17.9 Abstraction. 106
218 Template e 106
2.18.1 Standard Library. 107
2.18.1.1 Vector. e 108

218.1.2 Map e 110

2.18.1.3 Single/DoubleLinked 111

2.18.1.4 Foreach. e 112

2.19 Namespace. e e 113
3 Tools 115
3.1 Compilation. e 115
3.1.1 PreproCessor e e e e e e 115
3.1.2 Compiler(cclplus) 116
3.1.3 Assembler. 116
3.1.4 Linker. 117
3.2 Debugging e 117
3.2.1 DebugPrintStatements Lo 117
3.22 ASSErtionS 118
3.2.3 EITOIS. e e 119
3.3 Debugger. e 120
331 GDB . . . 121
3.4 CompilingComplexPrograms 127
3.41 Dependences e 127
342 MaKe e 128
3.5 Source Code Management. 131
3.5. 1 CVS. . 131
3.5.2 Repository. 132
3.5.3 CheckingOut e 132
354 Adding 132
355 CheckinglIn e 133
3.5.6 Editting/Removal 134
3.5.7 Update. e 134
3.5.8 Versions 135
3.5.9 Tagging. e 135

4 Software Engineering 137
4.1 Software CriSiS. v o e 137
4.2 Software Development 138

4.2.1 Programming Methodology. L. 138

Vi

4.3
4.4
4.5
4.6

4.7

Index

CONTENTS

4.2.2 SystemDesign 139
4.2.3 Top-DownDesign. 140
424 Factoring. o o e e 140
System Modelling 141
431 UML . .. 142
Programming Language Selection. 147

DevelopmentProcesses 148
DesignPatterns 149
46.1 PatternCatalog 150
Testing e 153
471 HumanTesting e 154
4.7.2 MachineTesting. 154
4.7.3 TestingMechanics 155

A4.7.4 Tester. e e 156

1 Shell

e After signing onto a computer (login), a mechanism musttewiglisplay information and
perform operations.

e The two main approaches are graphical and command line.
e Graphical interface (desktop):

o use icons to represent programs (actions),
o clicking on an icon launches (starts) a program,
o program may pop up a dialog box for arguments to specify iseaton.

e Command-line interface (shell):

o use text strings (names) to represent programs (commands),
o command is typed after a prompt in an interactive area toistar
o arguments follow the command to specify its execution.

e Graphical interface is convenient, but seldom is prograbiena

e Command-line interface requires more typing, but allowsgpamming.

e A shellis a program that reads commands and interprets them.

e It provides a simple programming-language wstiting variables and a few statements.

e Unix shells falls into two basic campsh andcsh, each with slightly different syntax and
semantics.

e shvariants: ksh, bash

e csh variants: tcsh

e Focus on bash with some tcsh.

e Area (window) where shell runs is calledeaminal or xterm.

e Shell line begins with @arompt denoted by (sh) or% (csh) (often customized).

e A command is typed after the prompt buit executed untiEnter/Return key is pressed:

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009

$ whoamiEnter # print userid
Cs246

$ echo Hi There!Enter # print any string
Hi There!

(© Peter A. Buhr

1.1

CHAPTER 1. SHELL

Comment begins with a hash)(and continues to the end of the line.

Multiple commands can be typed on the command line sepabgtéte semi-colon.

$ date ; whoami ; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009

cs246

Hi There!

Commands can be editted on the command line:

o

@)

o

o

position with<t andr> arrow keys,

remove characters witlackspace/delete key,

add new characters,

pressingenter at any point along the command line.

Most commands have options, specified with a minus followedr® or more characters,
which specify how the command operates.

$ uname -p # processor type

sparc

$ uname -s # operating system

SunOS

$ uname -a # all system information

SunOS servicesl6.student.cs 5.8 Generic_117350-56 sun4u sparc SUNW,UIltra-60

Options are normally processed left to right; one option weycel another.

No standardization for option syntax and names.

Shells can be nested within each otheri{shel).

$ tcsh # start tcsh in bash

% bash # start bash in tcsh

$ exit # exit bash

% exit # exit tcsh

$ exit # exit original bash and terminal

o when the login shell of terminal/xterm terminates, the teatixterm terminates.

o when the login terminal/xterm terminates, you sign off tbenputer (logout).

Use commandhsh to set which shell you want to use (bash, tcsh, etc.).

File System
Shell commands interact extensively with the file system.

Files are containers for data stored on secondary storagal(y disk).

File names are organized in an N-ary tree: directories ateces, files are leaves.

1.1. FILE SYSTEM 3

¢ Information is stored at specific locations in the hierarchy

/ root of the local file system

bin basic UNIX commands

lib system libraries

usr
bin more UNIX commands
lib more system libraries
include system include files, .h files

tmp system temporary files

ul user files

u2 user files

j.f.d.oe home directory

.cshrc, .emacs, .login, ... hidden files
cs246 course files
al assignment 1 files

g1x.C, g2y.h, g2y.cc

u9 user files
u or home magic directory combining what is under ul-u9

e Directory named/” is the root of the file system.

e bin, lib, usr, include : UNIX commands, system library and include files.

e tmp : location of temporary files created by commands.

e ul,...,u9: user files are distributed across these directories.

e u or home : magic directory combining all users from user directories.

e Directory for a particular user is called théiome directory.

e Each file has a unique path-name in the file system, referemitbén absolute pathname.

e An absolute pathnameis a list of all the directories from the root to the file sepadaby
the character/”.

/u2/ifdoe/cs246/al/qlx.C # => file q1x.C
/uljfdoel/cs246/al/lqlx.C # => file q1x.C

e A relative pathnameis a short name for a file provided by the shell using an imigiarting
location.

e At sign on, the shell createscarrent directory variable set to the user’s home directory.

e Any file name not starting with/” is automatically prefixed with the current directory to
create the necessary absolute pathname.

E.g., if useijfdoe signs on, home and current directory are setfitdoe:

cs246/al/qlx.C # => [uljffdoe/cs246/al/qlx.C

4 CHAPTER 1. SHELL

e Shell special character” (tilde) expands to user’s home directory.

~/cs246/al/qlix.C # => Juljffdoe/cs246/al/qlx.C

e Every directory contains 2 special directories:

o “.” points to current directory.

Jcs246/al/qix.C # => /uljffdoe/cs246/al/qlx.C
o “..” points to parent directory above the current directory.
..I. lusrf/include/stdio.h # => /usr/include/stdio.h

1.2 Pattern Matching

e Shells provide pattern matching of file namgkpbing) to reduce typing lists of file names.

Different shells and commands support slightly differemtris and syntax for patterns.

Pattern matching is provided through special characters, {}, [1, denoting differentvild-
cards.

Patterns are composable: multiple wildcards joined intoglex pattern.

E.g., if the current directory i&/jfdoe/cs246/al with leaf filesqlx.C, g2y.h, g2y.cc
o » matches 0 or more characters
gx # => q1x.C, g2y.h, g2y.cc
o ? matches 1 character
g*.?? # => gly.cc
o {...} matches any alternative in the set
={cc,cpp,C} # => q1x.C, g2y.cc
o [...] matches 1 character in the set
q[12]= # => q1x.C, g2y.h, g2y.cc

o [I...] (* csh) matches 1 characteot in the set

q['1]* # => g2y.h, g2y.cc
o Create ranges using hyphen (dash)
[0-3] # =>0,1,2,3
[a-zA-Z] # => lower or upper case letter
[la-zA-Z] # => any character not a letter

o Hyphen is escaped by putting it at start or end of set

[-?«]* # => matches any file names starting with -, ?, or =

1.3. QUOTING 5

1.3

Hidden files contain administrative information and start with (dot).

These files are ignored by globbing patterns, e.dges not match all file names in a direc-
tory.

Patterns matches all hidden files, e.gcshre, .login, etc.,and“.”, “ ..”
Pattern['.]» does not match.” and “..” directories.

On the command line, pressing tteb key after typing several characters of a file name
requests the shell to automatically complete the file name.

$ echo cotab # cause completion of file name to counter.cc

If the completion is ambiguity, the shell “beeps”, and yousmtype more characters to
uniquely identifier the file name.

Quoting
Quoting controls how the shell interprets strings of characters.
Backslash(\) : escapeany character, including special characters:

$ echo W \g W \2 \[\]\$ WAL\ X
wag«?[]$\ X

Normally multiple spaces are compressed.
Backquote () : execute the text as a command, and replace it with the commatput:

$ echo ‘whoami'
cs246

Single quote(”) : do not interpret the string, even backslash:

$ echo Aw\g\x \2\[\]\$\\ L\ X
WG W 2\ S WAV X

A single quote cannot appear inside single quotes.
A file name containing special characters is enclosed inesimgptes.

$ rm ‘Book Report 2.txt” # file name with spaces

Double quote(") : interpret escapes, backquotes, and variables in string:

$eho " +?2[]\\ \"‘whoanmi\""
*»?[]\ "cs246"

6 CHAPTER 1. SHELL

e Put newline into string for multi-line text.

$ echo "abc

> cdf # pronpt > neans current lineis inconplete
abc

cdf

1.4 Shell Commands
e Some commands are executed directly by the shell rathethleadS because they read/write
the shell’s state.

e cd : change the current directory.

cd [directory]

o argument must be a directory and not a file

o cd : move to home directory, same @ ~

o cd -: move to previous current directory

o cd ~/bin : move to thebin directory contained in the home directory
o cd /usr/include : move tolusr/include directory

o cd ..: move up one directory level

o If path does not existd fails and current directory is unchanged.

e pwd : print the current directory.

$ pwd
/ulcs246/teaching/notes

e time : execute a command and print a time summary.

o Printsuser time (program CPU)system time(OS CPU) real time (wall clock)

o Different shells print these values differently:

$ time a.out % time a.out

real 1.2 | 0.94u 0.22s 0:01.16
user 0.9

Sys 0.2

o user + systeme real-time (uniprocessor, no OS delay)

e history and “” : print a numbered history of most recent commands entenellazcess
them.

1.4. SHELL COMMANDS

e alias

$ history $ 12
1 date whoami
2 whoami | cs246
3 cd .. s
4 Is xxx whoami
5 cat xxx | cs246
6 history | $lls
Is xxx
XXX

IN rerun commana

I rerun last command

Ixyz rerun last command starting with the string2”

Use arrow keys\ / v to move forwards / backwards through history commands.

. define string substitutions for command names.
alias [command-name [=] string]

sh requires the=" and does not allow spaces before/after it.

string is substituted for commangbmmand -name.

without arguments, print all currently defined alias nanme$ strings.
provide nickname for frequently used or variations of a canth

$ alias d="date"

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="cl ear; | ogout"”

$ off # clear screen before logging off

Why are quotes necessary for alaff®
Good style to always use quotes to prevent problems.
aliases are composable:

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

useful for setting command options for particular commands

$ alias cp="cp -i "
$ alias mv="mv -i "
$ alias rm="rm-i"

which always uses théeption (see pag8) on commandsp, mv andrm.
alias can be overridden by quoting the command name:

$"rmt -r xyz
which does not add théeption.

8 CHAPTER 1. SHELL

o alias entered on a command line is only in effect for a sheliea.
o two options for making aliases persist across sessions:

1. insert thealias commands in yousshellrc file,
2. place a list ohlias commands in a file called@liases in your home directory and
execute that file from youshellrc file.

e echo : write arguments, separated by a space and terminated wétvine.

$ echo | like ice cream
| like ice cream
$echo" | like ice cream"”

| like ice cream

e eval : process each argument and execute.

$ echo "‘dateY “whoam
‘date' ‘whoami'

$ eval echo "‘date“ “whoam
Sat Dec 19 09:12:20 EST 2009 cs246

o removes quotes, expands variables (see Sett®4, p. 14), etc., then executes com-
mand

e exit : terminates shell, with optional integer exit status (netcode)N.
exit [N]

o exit status defaults to zero if unspecified (see Secti82 p.15and 1.8.4.2 p. 18for
status usage).

1.5 System Commands
e Commands executed by UNIX.
e man : print information about command.

$ man bash # print information about “bash” command
$ man man # print information about “man” command

e which : print pathname of a command.

$ which make
{usr/ccs/bin/make

$ which gmake
/software/.admin/bins/bin/gmake

e Is: lists the directories and files in the specified directory.

Is [-al][file or directory-name-list]

1.5. SYSTEM COMMANDS 9

o -alistsall files, including those that begin with a dot
o -l generates bong listing (details) for each file
o no file/directory name implies current directory

mkdir : creates a new directory at specified location in file hidrarc

mkdir directory-name-list

cp : copies files, and with the eption, copies directories.

cp [-i] source-file target-file
cp [-i] source-file-list target-directory
cp [-i] -r source-directory-list target-directory
o -i prompt for verification if a target file is being replaced.

o -r recursively copy the contents of a source directory to thgetadirectory.

e mv : moves files and/or directories to another location in treeHierarchy.

mv [-i] source-file target-file
mv [-i] source-file/directory-list target-directory

o if the target-file does not exist, the source-file is renanmderwise the target-file is
replaced.

o -i prompt for verification if a target file is being replaced.

rm : removes (deletes) files, and with theption, removes directories.

rm [-if] file-list
rm [-ifr] file/directory-list

o -i prompt for verification for each file/directory being remdve

o -f do not prompt for verification for each file/directory beiregrroved.

o -r recursively delete the contents of a directory.

o UNIX does not give a second chance to recover deleted files;dreful when using
rm, especially with globbing, e.grm « (check.snapshot).

e more/less/cat : print a file.

o more/less paginate the contents one screen at a time.
o cat shows the contents in one continuous stream.
e Ipr/lpg/lprm : add, query and remove files from the printer queues.
Ipr [-P printer-name] file-list

Ipg [-P printer-name]
Iprm [-P printer-name] job-number

CHAPTER 1. SHELL

o if no printer is specified, the queue is a default printer.
o each job on a printer’s queue has a unique number.
o use this number to remove a job from a print queue.

$ lpr -P ljp_3016 uml.ps # print file to printer ljp_3016

$ Ipq # check status, default printer ljp_3016
Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes
2nd cs246 403 uml.ps 41262 bytes

$ Iprm 403 # cancel printing
services203.math: cfA403servicesl6.student.cs dequeued

$ Ipq # check if cancelled

Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

e cmp/diff : compare 2 files and print minimal differences.

cmp filel file2
diff filel file2

o cmp generates the first difference between the files.
file x | filey
a a

$cmp xy
x y differ: char 7, line 4

ooQ o O T
«Q — OO O T

o diff generates output describing the changes need to changesttigefinto the second
file (used bypatch).

$ diff x y
4,5¢c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<g

> e

6a6,7 # add lines 6 and 7 of 2nd file
> # after line 6 of 1st file

>9

e grep : (global regular epression pnt) search and print lines matching pattern in files
(google). -

grep -i -r "pattern-string" file-list

1.6. FILE PERMISSION 11

1.6

o -iignore case in both pattern and input files
o -r recursively examine files in directories.
o grep pattern is different from globbing pattern (sesn grep).

$ grep -i fred names.txt # list all lines containing fred in any case
$ grep M \\ (begin\|end\){.*}" xtex

~ match start of line, match*, match “begin” or “end”, match ‘{", match 0 or more
characters (notice™), match }".

File Permission
UNIX file structure supports 3 levels of security on each fileélioectory:

o user : owner of the file,
o group : arbitrary name associated with a number of userids,
o other : any other user.

A file or directory can have the following permissions: readte, and execute/search.
Readable and writable allow any of the specified users toaeadte/change afile/directory.

Executable for files means the file can be executed as a commandfile contains a pro-
gram or shell script.

Executable for directories means the directory can be Bedrgoy certain system operations
but not read in general.

Is -I prints file-permission information for the current diregto

drwx------ 7 €S246 cs246 4096 CQct 20 13:07 ./
drwxr-x--- 5 cs246 cs246 4096 Cct 15 08:07 ../
drwx------ 2 €S246 cs246 4096 Cct 19 18:19 C++/
drwx------ 2 €S246 cs246 4096 Cct 21 08:51 Tool s/
STW--- - - 1 ¢s246 cs246 22714 COct 21 08:50 notes. aux
STW------ 1 ¢s246 cs246 63332 Oct 21 08:50 notes. dvi

Columns are permissions, #-files-in-directory, owneryugrdile size, change date, file name.

Permission information is complex:

d = directory —— user permission
- =file group permissions
. other permissions

drwx| [r-x| |--X

E.g.,drwxr-x---, indicates

12

1.7

CHAPTER 1. SHELL

o directory in which the user has read, write and execute ssions,
o group has only read and execute permissions,

o others have no permissions at all.
In general, never allow “other” users to read or write your k.

Default permissions on a file ar@-r----- (usually), which means owner has read/write per-
mission, and group has only read permission.

Default permissions on a directory avex------ , Wwhich means owner has read/write/execute.
chgrp : change group-name associated with file:
chgrp [-R] group-name file-list
o -R recursively modify the group of a directory.
Creating/deleting group-names is done by system admiitr. (/etc/group)
chmod : add or remove from any of the 3 security levels.
chmod [-R] mode-list file-list
o -R recursively modify the security of a directory.
mode-list has the fornmsecurity-level operator permission.
Security levels are denoted hyfor you userg for group,o for other,a for all (ugo).
Operator+ adds permission, - removes permission.
Permissions are denoted bfor readablew for writable andx for executable.
The elements of themode-list are separated by commas.

E.g., to remove read and write permissions from securitgltegroup and other for fileyz.

chmod g-r,0-r,g-w,0-w Xyz # long form

chmod go-rw xyz # short form

chmod -R a+r assn2 # make directory and its subfiles
readable to everyone

Input/Output Redirection

Every command has three special files: standard input @)dard output (1) and standard
error (2).

By default, these are connected to the keyboard (input) ereegs (output).

1.8. PROGRAMMING 13

1.8

Shell provides operators for redirecting input ancé for redirecting output to/from other
sources.

$Is -l > xxx # output to file xxx
$ more < xxx # input from file xxx; output to standard output
$ more < xxx > yyy # input from file xxx; output to file yyy

Command is (usually) unaware of redirection.
Normally, standard error (e.g., error messages) is noteetdid because of its importance.

To selectively redirect output:

$ a.out > xxx # redirect standard output

$ a.out 1> xxx # redirect standard output

$ a.out 2> errors # redirect standard error

$ a.out 1> data 2> errors # redirect standard output/error different files
$ a.out > xxx 2>&1 # redirect standard output/error same file

To ignore output, redirect to pseudo-fiteev/null.

$ a.out 2> /dev/null # ignore error messages

Shell pipe operatof makes standard output for a command the standard inputdanehkt
command, without creating an intermediate file.

$ cat xxx | nl # print xxx with line numbers
$ man Is | more # paginate manual information for Is

Standard error is not piped unless redirected to standapdibu

$ a.out 2>&1 | nl # both standard output and error go through pipe

A pipeline can be arbitrarily long.

Programming

A shell program or script is a file containing shell commands that can be executed.

#l/binftcsh [-x]
shell and OS commands

First line should begin with magic commentt!® with shell pathname for executing script.
This line forces a specific shell to be used rather than theking shell.
If the “#!” line is missing, the script is run using the invoking shell.

Optional x is for debugging and prints trace of the script during execut

14 CHAPTER 1. SHELL

e A script can be invoked directly using a specific shell, or asmmand if it has executable

permissions:
$ sh scriptfile # direct invocation
$ chmod u+x scriptfile ~ # make script file executable
$.Iscriptfile # command execution, shell specified in script

e Interactive shell session is just a script reading from stéard input.

1.8.1 Variables
e syntax :(letter | ") (letter | “_7 | digit)«
e case-sensitive

VeryLongVariableName Pagel Income_Tax _75

e Some identifiers are reserved (eify.while), and hencekeywords.

e Variables ONLY hold string values (arbitrary length).

I%é

e Variable is declaredynamicallyby assigning a value with operatot™
path=/u/cs246/ # declare and assign
No spaces before or after=".
e A variable’s value is returned using operat@f.”

$ echo $path ${path}
lulcs246/ /ulcs246/

braces, {...}", allow unambiguous specification of name.

e Referencing an undefined variables returns the empty string

$ echo $pathAl
blank line

e Always use braces to allow concatenation with other text:

$ echo $pathAl ${path}A1 # $pathAl undefined
/u/cs246/A1

e Each shell has a list of local and environment (global) \#es.
e New variables are added to the local list.
e Local variables are only visible within a shell’'s executmmntext.

e Shell begins by copying containing shell’'s environmentatales (works across different
shells).

1.8. PROGRAMMING 15

e Login shell starts with a number of useful environment Jalga, e.g.:
DISPLAY=servicesl16.student.cs:10.0
EDITOR=emacsclient

HOST=services16.student.cs
PATH=. ..

e Local variable can be moved to shell's environment list.

export path

e A variable can be removed from the local/environment list.

unset path

e When a shell ends, changes to its environment variables taffext its containing shell
(environment variables only affect subshe)ls

e Beware commands composed in variables.
$ cmd="l s | more’ # command as value
$ ${cmd} # execute command
Is: cannot access |: No such file or directory

Is: cannot access more: No such file or directory
$ eval ${cmd} # evaluate and execute command

e “${cmd}” evaluates as’l s” /| ” “nor e’, so| andmore are file names.

e “eval ${cmd}’ evaluates asls | more, SO| is pipe andnore is a command.

1.8.2 Routine

e A routine is defined as follows:

routine_name() { # number of parameters depends on call
commands
}

e Routines may be defined in any order.

e E.g.: create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -e input-file [output-file]"
exit 1 # terminate script with non-zero exit code

}

e Invoked like command.

routine_name [args ...]

CHAPTER 1. SHELL

o All variables are global to every routine in a script.

rinl() {
var=3 # create local var
rtn2 # call rtn2

}

rin2() {

echo ${var} # use local var
unset var # destroy local var

}
e Special shell variables to access arguments/result:

o ${#} number of command arguments, not including command name.
o ${0} refers to script’'s name.

$ echo ${0} # which shell are you using (except csh)
bash

o ${n} refers to the command argument by position, i.e., 1st, 2rdj,.3

o ${x} command arguments as a single string, €.8{,1} ${2} . ..
command name

, hot including

o ${@} command arguments as separate strings,"&g1}" "${2}" ..., notincluding
command name

o ${?} exit status of the last command executed; O ofteexited normally.
o ${$} process id of executing shell-command.
e Routine may return an integer exit status, which is examusaalg${?}.

$ cat scriptfile

#!/bin/bash

rin() {
echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # arguments
echo ${x} # arguments as a single string
echo ${@} # arguments as separate strings
echo ${$} # process id of executing shell
return 17 # exit status

}

rtn al a2 a3 a4 a5 # invoke routine

echo ${?} # print return value

$./scriptfile

5

scriptfile al a2 a3 a4

al a2 a3 a4 a5 # 1 string
al a2 a3 a4 a5 # 5 strings
27028

17

1.8. PROGRAMMING 17

e shift [N]: destructively shift parameters to the |8fpositions, i.e.${1}=${2}, ${2}=%{(3},
etc., andb{#} is reduced b.

o IfnoN, 1is assumed.

1.8.3 Arithmetic

e Shell variables have type string, which has no arithméti€: + "17".

$ =3 # 1 has string value “3” not integer 3

e To perform arithmetic a string is converted to an integep@sésible), an integer operation
performed, and the integer result converted back to a string

e UNIX commandexpr performs these steps.

e Basic integer operations, -, %, /, % (modulus), with usual precedence.

$ echo ‘expr 3 + 4 -1
6

$ echo ‘expr 3 + ${i} « 2" # escape
9

$ echo ‘expr 3 + ${k}'
expr: non-numeric argument

e bash supports arithmetic as a shell command:
$ echo $(3 + 4 - 1))
; echo $((3 + ${i} » 2)) # no escape
g echo $((3 + ${k})
bash: 3 + : syntax error: operand expected (error token is " ")
1.8.4 Control Structures

e Shell supports several control constructs; syntax foresfilis presented (csh is different).

1.8.4.1 Test

e Strings, integers and files can be tested to affect contwl flo

e expn istest expression, not arithmetic expression.

18

test |

operation

CHAPTER 1. SHELL

\(expn \)
I expn not
expnl -a expn2
expnl -0 expn2

evaluation orderrQiust be escapgd

logical and fiot short-circuitf)
logical or (hot short-circuit)

stringl = string2 equal (ot ==
stringl != string2 not equal
integerl -eq integer2 | equal

integerl -ne integer2 | not equal
integerl -ge integer2 | greater or equal
integerl -gt integer2 | greater

integerl -le integer2 | less or equal
integerl -It integer2 | less

-d file exists and directory

-e file exists

-f file exists and regular file

-r file exists with read permission

-w file exists with write permission

-x file exists with executable or searchable

1.8.4.2 Selection

e An if statement provides conditional control-flow.

e E.q.

if [test] ; then
commands
elif [test] ; then
commands
else
commands
fi

if ["‘whoami ™ = "cs246"] ; then
echo "valid userid"

else
echo "invalid userid"

fi

grep "${user}" /etc/passwd > /dev/null
check exit status
if [${?} -eq 0] ; then

echo "${user} has an account”
else

string compare

ignore output

integer compare

echo "${user} does not have an account”

fi

1.8. PROGRAMMING 19

if [-x /usr/bin/cat] ; then # file check
echo "cat command avail abl e"

else
echo "no cat command"

fi

e Beware unset variables or values with blanks.

if [${var} = ‘yes’]; then ... # var unset => if [= 'yes’ |;

bash: [: =: unary operator expected

if [${var} = ’yes’]; then ... #var="abc =>if[abc="yes]
bash: [: too many arguments

if ["${var}" =’yes’]; then ... # var unset => if [" = "yes’];

Always quote variables!

e A case statement selectively executes oneNofalternatives based on matching a string
expression with a series of patterns (globbing), e.g.:

case expression in

pattern | pattern | ...) commands ;;
x) commands ;; # optional match anything
esac

e When a pattern is matched, its commands are executed ypatad control exits thease
statement.

¢ If no pattern is matched, thmase statement does nothing.

e E.Q.
usage() {
echo "Usage: ${0} -h -v -f input-file"
exit 1 # terminate script with non-zero exit code
case "${1}" in # process command-line arguments

’-h” | ’--hel p”) usage ;;
‘-v’ | "--verbose’) verbose=yes ;;
7 --file”)

shift 1 # access argument
file="${ 1}"
*)”usage " # default
esac

1.8.4.3 Looping
e while statement executes its commands zero or more times.

while [test] ; do
commands
done

20

CHAPTER 1. SHELL

e E.q.

print command-line arguments

while ["${1}" '=""], do # string compare
echo ${1}
shift # destructive

done

i=1

while [${i} -It 5] ; do # integer compare
echo ${i}
i="expr ${i} + 1°

done

while [-f "${file}"]; do # file check
update file variable
done

for statement is a specializedhile statement for iterating with an index over list of strings.

for index [in list] ; do
commands
done

Cannot have integer index.

If no list, iterate over arguments.

E.Q.
for args in ${@} ; do # process arguments, non-destructive
echo ${args}
done
$ for count in "one" "two" "three & four" ; do echo ${count} ; done
one
two

three & four
$ for file in «.C ; do cp "${file}" "${file}".old ; done

A while /for loop may contairtontinue andbreak to advance to the next loop iteration or
terminate loop.

for count in "one" "two" "three & four" ; do
if ["whoam ™ = "cs246"] ; then continue ; fi # next iteration
if '['${?} -ne 0] ; then break ; fi # exit loop

done

1.8. PROGRAMMING

#!/bin/bash

#

List and remove unnecessary files in directories

#

Usage: cleanup [[-r | R] [-i] directory-name]+

#

Examples:

cleanup -R .

cleanup -r xxx -i yyy -r -i zzz

#

Limitations

only removes files named: core, a.out, .0, *.d

does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | R] [-i] directory-nane] +"
exit 1

defaults() { # defaults for each directory
prompt="-i " # prompt for removal
depth="-nmaxdept h 1" # not recursive

}
remove() {
for file in ‘find "${1}" ${depth} -type f \(-name ‘core’ -o \
-name “a. out’ -o -name “+. 0" -0 -name "x.d” \)*

do
echo "${file}" # print removed file
rm "${pronpt}" "${file}"

done

if [${#} -eq 0] ; then usage ; fi # no arguments ?

defaults # set defaults
while ["${1}" 1=""]; do # process command-line arguments
case "${1}" in
"-h") usage ;; # help ?
“or"] "-R") depth="" ; # recursive ?
it ") prompt="${1}" ;; # prompt for deletion ?
*) # directory name ?
remove "${1}" # remove files in this directory
defaults # reset defaults
esac
shift # remove argument

done

21

22

CHAPTER 1. SHELL

2 CH+

2.1 Program Structure

e A CH program is composed of comments strictly for peoplé, statements for both people
and the preprocessor/compiler.

e A source file contains a mixture of comments and statements.

e The C/C+ preprocessor/compiler only reads the statenagtggnores the comments.

2.1.1 Comment

e Comments document what a program does and how it does it.

A comment may be placed anywhere a whitespace (space, talnekis allowed.

There are two kinds of comments in C/C+ (same as Java):

| Java/C/CH |

1| /...«
2 | /I remainder of line

First comment begins with the start symbe],and ends with the terminator symbgl,and
hence, can extend over multiple lines.

Cannot be nested one within another

/* /* */ */
T

end comment treated as statements

Be extremely careful in using this comment to elide/comnaaritcode:

[+ attempt to comment-out a humber of statements
while (...) {
I+ ... nested comment causes errors »/

it (...) 1]

/+ ... nested comment causes errors x/

}
+l

e Second comment begins with the start symbiplnd continues to the end of the line, i.e.,
only one line long.

(© Peter A. Buhr

23

24 CHAPTER 2. C++

e Can be nested one within another:
/I ... Il ... nested comment

so it can be used to comment-out code;:

/I while (...){

Il I« ... nested comment does not cause errors /
Il if (...){

1 /l ... nested comment does not cause errors

oy
Iy

(Section2.7.3 p. 55 presents another way to comment-out code.)

2.1.2 Statement
e C+ is actually composed of 4 languages:
1. The preprocessor language (cpp) modifies (text-ediesptbgranbeforecompilation
(see SectiorR.7, p.53).

2. The template (generic) language adds new types and esdtiming compilation (see
Section2.18 p. 106).

3. The C programming language specifying basic declarstéom control flow to be ex-
ecutedafter compilation.

4. The CH programming language specifying advanced daadas and control flow to
be executedfter compilation.

A programmer uses the four programming languages as fallows

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

C is composed of languages 1 & 3.

A preprocessor statement ig aharacter, followed by a series of tokens separated by g¢hite
pace, which is usually a single line and not terminated bycfuation.

The syntax for a C/C+ statement (both template and regislarseries of tokens separated
by whitespace and terminated by a semicolon.

1 The exception is a block, denoted with}, which forms a complete statement so it is not terminateth wit
semicolon (see Sectidh5.1, p.43).

2.2. FIRST PROGRAM 25

2.2 First Program

Java | C+
import java.lang.x; /I implicit #include <iostream> /I insert contents of file iostream
class hello { using namespace std; // direct naming of 1/O facilities
public static void main(String[] args) {
System.out.printin(“Hel | o Wor | d!'"); int main() { /I program starts here
System.exit(0); cout << "Hello Worl d!'" << endl;
} return O; /I return O to shell, optional
} }

e #include <iostream> copies basic I/O descriptions (no equivalent in Java).

e using namespace std allows imported I/0O names to be accessed directlyyiighout qual-
ification.

e int main() is the routine where execution starts.
e curly braces{ ... }, denote a block of code, i.e., routine bodyhadin.

e cout << "Hello World!'" << endl prints"Hel | o Worl d!'" to standard output, callesbut
(System.out in Java).

e endl start newline aftetHel | o Wor | d!" (println in Java).

e Optionalreturn 0 returns zero to the shell indicating successful compleaticthe program;
non-zero usually indicates an error.

e main magic! If no value is returned, 0 is implicitly returned.

e Routineexit (JavaSystem.exit) stops a program at any location and returns a code to the
shell, e.g.exit(0).

e Compile withg++ command:

% g++ firstprogram.cc # compile program
% a.out # execute program; execution permission

C program-files use suffix; C+ program-files use suffixeS / .cpp / .cc.

2.3 Declaration

e Adeclaration introduces names or redeclares names froropsedeclarations in a program.

26 CHAPTER 2. C++

2.3.1 Identifier
e name used to refer to a variable or type.

e syntax :(letter | ") (letter | “_7 | digit)«
e case-sensitive

VeryLongVariableName Pagel Income_Tax _75
e Some identifiers are reserved (eify.while), and hencekeywords.

2.3.2 Basic Types

Java C/C+
boolean || bool (C <stdbool.h>)
char char /wchar_t
byte char / wchar_t integral types
int int
float float real-floating types
double double

label type, implicit

e C/CH+ treatchar andwchar_t (unicode characters) as an integral type.

e Javatypeshort andlong are created using type qualifiers (see Seci@¥).

2.3.3 Variable Declaration
e Declaration in C/CH same as Java: type followed by list ehtifiers.

| Java/C/CH |

char a, b, c, d;
int i, j, k;
double x,vy, z;
id:

e Declarations may be intermixed among executable statenmeatblock.

e Declarations may have an initializing assignment (exceptiélds instruct /class , see Sec-
tion 2.3.7.3 p. 35):

int i = 3;
e C/C+ do not check for uninitialized variablés.

int i;
cout << | << endl; /I i has undefined value

2Using the wall and -O compilation flags checks for uninitialized variablesjirnt, which are not optimized away.

2.3. DECLARATION

27

e Variable names can be reused in different blocks, inclutbagines and classes, i.e., possibly

hiding (overriding) prior variables.
int i, ... Il first i

{int kK=1,1i; ...
{inti=1i ...

/I second i (override first), both i’s used in block!
/I third i (override second)

e Labels can only be declared in a routine and cannot be odemid.e., each label is unique

within a routine body.

2.3.4 Type Qualifier

e C/CH+ provide two basic integral typesar andint.

e Other integral types are generated using type qualifiers.

e C/CH+ provide signed (positive/negative) and unsignegifme only) integral types.

integral types

range

signed char / char

unsigned char

signed short int / short

unsigned short int / unsigned short
signed int /int

unsigned int

signed long int /long

unsigned long int /unsigned long
signed long long int /long long

unsigned long long int /unsigned long long

at least 127 to 127 (SCHAR_MIN / SCHAR_MAX)

at leasto to 255 (UCHAR_MAX)

at least 32767 to 32767 (SHRT_MIN / SHRT_MAX)
at leasto to 65535 (USHRT_MAX)

at least 32767 t0 32767 (INT_MIN / INT_MAX)

at leasto to 65535 (UINT_MAX)

at least 2147483647 t0 2147483647

(LONG_MIN / LONG_MAX)

at least to 4294967295 (ULONG_MAX)

at least 9223372036854775807

t0 9223372036854775807 (LLONG_MIN / LLONG_MAX)
at leasi0 to 18446744073709551615 (ULLONG_MAX)

32/64-bit computers.

Range of values foint is machine specific: 2 bytes for 16-bit computers and 4 bydes f

long is 4 bytes for 16-bit computers and 8 bytes for 32/64-bit cotars.

#include <limits.h> provides sizes for integer types (eliNT_MAX, etc.).

#include <stdint.h> provides type$u]intN_t for signed /unsigned N = 8, 16, 32, 64 bits.

28 CHAPTER 2. C++

integral typeg range |

int8_t -127 t0 127 (INT8_MIN / INT8_MAX)

uints_t 0 to 255 (UINT8_MAX)

int16_t -32767 t0 32767 (INT16_MIN / INT16_MAX)

uint16_t 0 t0 65535 (UINT16_MAX)

int32_t -2147483647 t0 2147483647 (INT32_MIN / INT32_MAX)

uint32_t 0 t0 4294967295 (UINT32_MAX)

int64_t -9223372036854775807 t0 9223372036854775807
(INT64_MIN / INT64_MAX)

uint64._t 0 to 18446744073709551615 (UINT64_MAX)

e C/CH+ provide two basic real-floating typfisat anddouble .

¢ One additional real-floating type is generated using a tyadifier.

real-float typeg range, precision, architecture

float ~ 1038 t0 10°8, ~ 7 digits, IEEE
double ~ 10 3% +t0 10°98 ~ 16 digits, IEEE
long double ~ 10-49%2t0 10"32 ~ 34 digits, IEEE

e C/CH support write-once/read-only constant variableh tyipe qualifieconst (Javafinal),
in any variable declaration context.

| Java | C/CH |
final short x = 3, vy; || const shortint x =3,y =x + 7;
y =X+ 7, disallowed
final char ¢ = X’ const char ¢ = X’

e C/C+-const identifiermustbe assigned a value at declaration (or by a constructoria-dec
ration); the value can be the result of an expression:

e A constant variable can appear in read-only contexts dfteinitialized.

2.3.5 String
e Strings are supported in C by language and library facdlitie

Language facility ensures string constant is terminatel aicharactef\ 0.

E.g., string constaritabc" is actually an array of the 4 charactera!, ’b’, ‘c’, and"\ 0’,
which occupies 4 bytes of storage.

Zero value is asentinelused by C string routines to locate the string end.

Drawbacks:

2.3. DECLARATION 29

1. A string cannot contain a character with the valus.

2. String operations needing the length of a string musalilyesearch for\ 0’, which is
expensive for long strings.

3. Management of variable-sized strings is the progranmsmesponsibility, with complex
storage management problems.

C+ solves these drawbacks by providingtréng type using a length member and managing
all of the storage for the variable-sized strings.

Unlike Java, instances of the Cstring type are not constant.

Values can change so a companion type 8kingBuffer in Java is unnecessary.

It is seldom necessary to iterate through the characters afteng variable!

| Javastring methods|| C char []routines| C+ string members |

strcpy, strncpy =
+, concat strcat, strncat
compareTo strcmp, strncmp == I=, <, <=, > >=
length strlen length
charAt [1 [1
substring substr
replace replace
indexOf, lastindexOf || strstr find, rfind
strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last _not_of
c_str

e All of the C+ stringfind members returstring::npos if a search is unsuccessful.

string a, b, c; /I declare string variables

cin >> c; /I read white-space delimited sequence of characters
cout << ¢ << endl; // print string

a = "abc"; Il set value, a is “abc”

b = a; /I copy value, b is “abc”

c=a+b; /I concatenate strings, c is “abcabc”

if (a==0Db) /I compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; Il subscript, ch is 'b’, zero origin

c[4] = X”; /I subscript, ¢ is “abcaxc”, must be character constant

”

string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length 3, d is “cax
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is 3

p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5

c.find_first_of("aei ou"); // search for first vowel, p is 0

c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is 1
c.find_last_of("aei ou"); // search for last vowel, p is 5

c.find_last_not_of("aei ou"); // search for last consonant (not vowel), p is 7

T T T O

30

CHAPTER 2. C++

Memberc_str returns a pointer tohar « value in a string (\ 0" delimited).

Routinegetline(stream, string, char) allows different delimiting characters on input:

s

getline(cin, ¢, ” 7); // read characters until © ” => cin >> ¢
getline(cin, ¢, ‘@); // read characters until ‘@’
getline(cin, ¢, \'n”); // read characters until newline (default)

2.3.6 Constants

Java and C/C+ share almost all the same constants for tleetyyaess (except for unsigned).

A designated constanindicates its type with suffixeg:/I for long, LL/Il for long long,U/u
for unsigned, an@/f for float.

Unlike Java, there is nb/d suffix for double constants.

The type of an integralndesignated constan(octal/decimal/hexadecimal) is the smallest
int type that holds the value, and the type of an undesignatéfloating constant islouble .

boolean| false, true
decimal| 123, -456L, 789u, 21UL
octal, prefix0 | 0144, -045I, 0223U, 067ULL
hexadecimal, prefiRX or 0x | Oxfe, -0X1fL, Ox11leU, OxffUL
real-floating| .1, 1., -1., -7.3E3, -6.6e-2F, E/e exponent
character, single charactera’, "\
string, multi-character "abc", "\ "\ ""

Use the right constant with types character or string:

char ch = "a"; Il use ‘a’
char str = a’; /I use “a”
string str = “a’; /I use “a”

An escape sequence allows special characters to appeahanacter or string constant and
starts with a backslash,

W\ ATVt \n V012 \ xf 3"

The most common escape sequences are (see a C+ textbotkeli®) o

\\/ backslash

A7 "\ MM | single and double quote

\'t/,\n” | tab, newline

N0’ zero, string termination character

"\ 000’ octal valuepoo up to 3 octal digits

\ xhh’ hexadecimal valuéith up to 2 hexadecimal digits (not in Javg)

e Sequence of octal/hex digits is terminated by first charawiean octal/hex digit.

2.3. DECLARATION 31

2.3.7 Type Constructor

A type constructor is a declaration that builds a more complex type from theddsggpies.

constructor| Java | CIC+ |
enumeration enum Colour { R, G, B } enum Colour { R, G, B }
pointer any-type «p;
reference| class-type r; any-type &r; (C+ only)
structure| class struct oOr class
array | int v[] = new int [10]; int v[10];
int m[][] = new int [10][10]; || int m[10][10];

2.3.7.1 Enumeration

An enumerationis a type defining a set of named constants with only assighroempar-
ison and implicit cast to integer operations:

enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit humbering

Day day = Sat; /I variable declaration, initialization

enum {Yes, No} vote = Yes; /I anonymous type and variable declaration

enum Colour {R=0x1, G=0x2, B=0x4} colour; // typelvariable declaration, explicit numbering
colour = B; /I assignment

day = colour; /I fails C++, works C

Names in an enumeration are calkstumerators.
Enumerators can be numbered explicitly.
Enumeration in C+ denotes a new type; enumeration in Cas &brint .

C/C+ enumeration only has underlying tyjp¢; Java enumeration can give names (and
operations) to any value.

Java enumerator names must always be qualified.
C/C+ enumerator names are unqualifiedunique in a lexical scope.

Trick to count enums:
enum Colour { Red, Green, Yellow, Blue, Black, No_Of Colours };

No_Of Colours is 5, which is the number of enumerator colours.

In C, enum must always be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

32 CHAPTER 2. C++

2.3.7.2 Pointer/Reference
e pointer/referenceis an indirect mechanism to access a type instance.

All variables have an address in memory, éx.x = 5,y = 7:

type int int
variable/value x 5 y 7
address 100 200

Value of a pointer/reference is the address of a variable.

Accessing this address is different for a pointer or refegen

Two basic pointer/reference operations:

1. referencing: obtain address of a variable; unary operatan C+:

&x — 100
&y — 200

2. dereferencing retrieve value at an address; unary operatorC+:

«(&X) — #(100) — 5
«(&y) — #(200) — 7

Compiler automatically does first dereferencex soreally «(&x).

Note, unary and binary use of operat&rsfor reference/deference and conjunction/multiplication

By convention, no variable is placed at thell address (pointer),null in Java, 0 in C/C+.

Pointer/reference variable contains the memory addreasather variableidirection) or
null pointer (or an undefined address if uninitialized).

int * int
L &pl — 50
p 100 7 5 X &p2 — 60
50 . 100 &p3 — 70
*(&pl) — 100 pl = &x;
P2| 200 7 Y #(&p2) — 200 p2 = &y; p2 = pl;
60 200 L((&pl) — 5 spl
null/undefined (+(&p2)) — 7 *p2
P3| 0/ 0x34fe7 address (pointer}

*(x(&p3)) — ? #p3
70

e Because of implicit 1st dereferengs, is 100 and«p1 is 5.
e Multiple pointers/references may point to the same memddyess (dashed line).

e Dereferencing null/undefined pointer is undefined as noabéiat the addres®ift not
necessarily an erroy.

2.3. DECLARATION 33

e Explicit dereference is an operation usually associatél avpointer:

*p2 = *pl;
*pl = «p2 » 3;

y = x; [/l value assignment
X =Yy *3

e Address assignment does not require dereferencing:

p2 = pil; /| address assignment

e p2is assigned the same memory addresslase., p2 points atx; values ofx andy do not
change.

e Having to perform explicit dereferencing can be tedious@mdr prone.
pl = p2 = 3; /I implicit deference
unreasonable gsl is assigned addresspa times 3.
e Reasonable if value pointed to by is assigned value pointed to pbg times 3.
e A pointer that provides implicit dereferencing isederence
e However, implicit dereferencing generates an ambiguduatson for:
p2 = pl;

e Should this expression perform address or value assignm@eetow are both cases speci-
fied?

e C provides only a pointer; C+ provides a pointer and a restli reference; Java provides
only a general reference.

e C/CH pointer:

1. created using thetype-constructor,

2. may point to any type (i.e., basic or object type) in anyaie location (i.e., global,
stack or heap storage),

3. and no implicit referencing or dereferencing.

o Type qualifiers (see Sectigh3.4 p.27) can be used to modify pointer types:

const short int w = 25; p3 300 T 25 1w
const short int +p3 = &w; S
int » const p4 = &x; p4 :rffig)(;iijl—— 5 X
(int &p4 = x;) T :

. r-——=-=-=-= ~ r—-——-=-=-=-= A
const long int z = 37; pSi 308 = 37 Lz

const long int const p5 = &z;

o p3 may point at anyonst short int variable.

34 CHAPTER 2. C++

o Pointer can change to point at different variables, but #ieevof the variables cannot
be changed through the pointer.

o p4 may only point at variable.

o Pointer cannot change to point at a different variable, leitvalue of the variable can
be changed through the pointer.

o p5 may only point at variable.

o Pointer cannot change to point at a different variable, &edvalue of the variable
cannot be changed through the pointer.

e C+ reference

1. created using th& type-constructor,

2. may point to any type (i.e., basic or object type) in anyaie location (i.e., global,
stack or heap storage),

3. restricted to a constant pointer to user created (nopaeany/non-constant) storage,
4. and always has implicit dereferencing.

o Constant-pointer restriction of a C+ reference is eqentlo a Javéinal reference or
» const pointer with implicit dereferencing.

o Java reference can vary what it points to, but it can onlytdoinbjects in heap storage
(see Sectior.9, p.62).
o CH constant-pointer restriction has two implications:
1. A C+ reference must be initialized at the point of dedlara
« initializing expression has implicit referencing becaaseaddress islways
required;
int &l = &x; /I error, unnecessary & before x

2. No need for address assignment after a C+ referenceraeoiabecause the ad-
dress cannot change.

x Java interprets reference assignment r1 as address assignment and has no
mechanism to perform value assignment between referepes.ty

e Pointer/reference type-constructor is not distributed acoss the identifier list:

int = pl, p2; only plis a pointer, p2 is an integer, should beint «p1, «p2;
int & rx =i, ry = i; onlyrxis areference, ry is an integer, should bet &rx =i, &ry = i;

e C+ idiom for declaring pointers/references is misleagdimgy works for single versus list
of variables.

int« i, k;
double & x = d, y = d;

Gives false impression of distribution across the idemtifg.

2.3. DECLARATION 35

2.3.7.3 Aggregation (Structure/Array)

e Like Java, C+ has “objects”, but it does not subscribe tanibt@n that everything is either
a basic type or an object.

e Instead, aggregation is performed by structures and graagiscomputation is performed by
routines.

e An object type is the composition of a structure and rout{ses Sectio2.12, p.75).

e In C+, a routine can exist without being embedded istract /class (see Sectior2.1],
p. 69).

Structure is a mechanism to group together heterogeneous valuesdingl(nested) structures:

| Java | C/CH |
class Foo { struct Foo {
public int i = 3; int i; // no initialization
... Il more fields ... I/ more members
} }; Il semi-colon terminated

e Components of a structure are callegmbers subdivided into data and routine/function
memberdin C+.

e All members of a structure are accessible (public) by défaxicluding Javaackage Visi-
bility).

e A structure member cannot be directly initialized (unliked) (see SectioR.3.9 p.39and
2.12.2 p.77), and a structure is terminated with a semicolon.

e As for enumerations, a structure can be defined and instalecésred in a single statement.

struct S {int i; } s; /I definition and declaration

e In C, struct must always be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

e Recursive types (lists, trees) are defined using a pointer in a structure:

struct Node {
/I data members
Node xlink; /I pointer to another Node

|5

3Java subdivides members into fields (data) and methodsr{esiit

36 CHAPTER 2. C++

e A bit field allows direct access to individual bits of memory:

struct S {
int i: 3; /I 3 bits
int j:7; /I 7 bits
int k:6; /6 bits

h

i=2 /10
j=5 /101
k =9; // 1001

A bit field must be an integral type.

Unfortunately, bit-fields are not portable.

On little-endian architectures (e.g., like Intel/AMD x8@&)e compiler reverses the bit order.

However, the compiler does not implicitly reverse the bder

Hence, the bit-fields in variabkabove must be reversed for little-endian architectures.

While it is unfortunate C/C+ bit-fields lack portabilityyey are the highest-level mechanism
to manipulate bit-specific information.

Union is a heterogeneous aggregation mechanism, where all memNeEntay the same storage:

union U {
char c;
int i
double d;

Py

e Used to access internal representation or save storageisingeat for different purposes at
different times.

union U {
float f;
struct {
unsigned int sign : 1;
unsigned int exp : 8;
unsigned int val : 23;

S;
int i
Py
u.f = 3.5; cout << hex << u.f << "\t" << u.i << endl;
u.i = 3; cout << u.i << "\t" << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << "\t" << us.exp << "\t" << u.s.val << endl;
u.f = -3.5e-3; cout << u.s.sign << "\t" << us.exp << "\t" << u.s.val << endl;

produces:

2.3. DECLARATION 37

Array

3.5 40600000
3 4.2039e-45
0 8a 5ac000
1 76 656042

Reusing storage is dangerous and can usually be accomplistia other techniques.

is a mechanism to group together homogeneous values.

Unlike Java, a C/C+ array is a contiguous sequence of abjetta reference to the object
sequence.

Java | CIC+
int X[] = new int [6] int x[6]
X 6/1]7|5/0|8]|-1 x|1|7|5|/0|8|-1

Hence, array variables can have dimensions specified onlaagen and all the array ele-
ments are implicitly allocated.

Be careful not to write (see Secti@, p. 40):

int b[10, 20]; /I not int b[10][20]

C+ only supports a compile-time dimension valges allows a runtime expression (see
vector, pagel08).

int r, c;

cin >> r >> c; /I input dimensions

int array|r]; /I dynamic dimension, g++ only
int matrix[r][c]; /I dynamic dimension, g++ only

Subscripting, [], selects an array element, and can be used on the left artcbfighsign-
ment.

X[3]; /I 3rd element
X[il; /I ith element
X[+ 1] =x[t/3]-y; Il left/right of assignment

An array name without a subscript meas i.e., the starting address of the first element.
Like Java, an array is subscripted from at 0 to dimension - 1.

However, a C/CH array is simple because dimension infaonas not stored with an array
object.

Hence, no equivalent to Javd&ngth member for arraysno subscript checkingand no
array assignment.

Declaration of a pointer to an array is complex in C/CH (dee paget4).

38 CHAPTER 2. C++

Because no array-size information, the dimension valuariaarray pointer is unspecified:

int arr[10];
int «parr = arr; /I think parr[], pointer to array of N ints

However, no dimension information results in the followengbiguity:

int xpvar = &i; /I think pvar[] and i[1]
int «parr = arr, /I think parr[]

Variablespvar andparr have the same type but one is pointing at a variable and theeoth
an array!

To read a complex declaration, parenthesize type qualifi@sed on priority, read inside
parenthesis outwards, start with variable name and endtyphname on the left.

const long int const a[5] = {0,0,0,0,0}; (7} (’T’T’T”i””}
const long int « const (&X)[5] = &; XL LJVJ,#,L#,_#,_VLJ a
const long int (= const ((&x)[5])) = a&; rooro oo e

0! 10/ 10! [0} [0

L L L L

x : reference to an array of 5 constant pointers to constagtittegers

2.3.8 Type Equivalence
¢ In Java/C/C+, two types are equivalent if they have the saamee, callechame equiva-

lence
struct T1 { struct T2 { // identical structure
int i, j, k; int i, j, k;
double x, vy, z; double x, vy, z;
} }
T1 t1, t11 = t1; /I allowed, t1, t11 have compatible types
T2 t2 = t1; /l fails, t2, t1 have incompatible types

TypesT1 andT2 arestructurally equivalence, but have different names so they are incom-
patible, i.e., initialization of variable fails.

An aliasis a different name for same type, so alias types are equivale

C/C+ providegypedef to create a synonym for an existing type:

typedef short int shrintl; /I shrintl => short int
typedef shrintl shrint2; /I shrint2 => short int
typedef short int shrint3; /I shrint3 => short int
shrintl s1; /I implicitly rewritten as: short int sl
shrint2 s2; /I implicitly rewritten as: short int s2
shrint3 s3; /I implicitly rewritten as: short int s3

All combinations of assignments are allowed amamngs2 ands3, because they have the
same type nameshort int ” (see “name equivalence” in Secti@i3.7, p. 31).

Java provides no mechanism to alias types.

2.3. DECLARATION 39

2.3.9 Type-Constructor Constant

enumeration enumerators

pointer 0 or NULL indicates a null pointer
structure struct { double r, i;} ¢c={3.0, 21 };
array int v[31={1, 2, 3}

e C/CH usel to initialize pointers versusull in Java.

e System include-files define the preprocessor varislbleL aso (see SectioR.7, p. 53).

e Structure and array initialization can only occur as pad declaration.

struct { int i; struct { double r,i;}s;}d={1, {3.0, 211} } [/ nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

e Values in initialization list are placed into a variablersiteg at the beginning of the structure
or array.

e Not all the members/elements must be initialized.

e A nested structure or multidimensional array is createdgibraces.

e String constants can be used as a shorthand array initiahhge:
char s[6] = "abcde"; rewritten as char s[6] = { ‘a’, b/, ’¢’, ‘d’, ’&’, \0" };
e It is possible to leave out the first dimension, and its vatumierred from the number of
constants in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 67?)
int v[] ={0,1, 2, 3, 4}/ 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; /| 1st dimension inferred as 2

40

2.4

CHAPTER 2. C++

Expression
| Java | C/C+ | priority
unaryl., (), [], call . =>, 0, [], call, dynamic_cast |high
cast+, -, I, ~ cast+, -, |, ~, &, *
new new, delete, sizeof
binary|«, /, % x 1, %
+, - +, -
bit shift|<<, >>, >>> <<, >>
relational<, <=, >, >=, instanceof <, <=, >, >=
equality ==, I= ==, I=
bitwise/& and &
A exclusive-or N
| or |
logical|&& short-circuit &&
1 [
conditional?: ?:
assignment, +=, -=, «=, /=, %= =, +=, -3, x5, [=, Y%=
<<=, >>=, >>>=, &=, M=, =<, >>=, &=, M= |:
comma , low

Like algebra, operators are prioritize and performed frag tho low.

Operators with same priority are done left to right, exceptudnary,?, and assignment
operators, which associate right to left.

int «xa, xb, c, d, *w[10];
#a=+b>Cc?(+xa@a=xb, d-1): W3] *x7 + 3;
(+(+a)) = ((«(+b)) > ¢) ? ((((x) = (b)), (d - 1))) : (((GW)[3]) = 7) + 3));

Order of evaluation of subexpressions and argument evatuit unspecified (Java left to
right).

(i+j)y~(k+j) /I either + done first

(i=j)y+(j=i) /I either = done first

gli)+f(k)+h(j) /I g, f, or h called in any order

f(pt++, p++, p++); /I arguments evaluated in any order

Referencing (address-o8, and dereference, operators (see Secti@3.7.2 p. 32) do not
exist in Java because access to storage is restricted.

Find address of any variable in any storage context, &g&s.d, &v[5].
Arrow operator, >, is unique to C/C+ and is an anomaly among programming lagpest

Exists because the priority of selection operatdns incorrectly higher than dereference
operator %", so «p.f executes ag(p.f) instead of(xp).f.

2.4. EXPRESSION 41

e -> operator performs a dereference and member selection icotinect order, i.e.p->f is
implicitly rewritten as(xp).f.

e Unlike Java, the C/CH remainder operagor,only accepts integral operands.

e Assignment is an operator; useful foascade assignmenb initialize multiple variables of
the same type:

a=b=c=0; / cascade assignment
X=y=2z+4

e Other uses of assignment in an expression are discouragedle., assignment only on left
side.

e C/CH allows any expression to appear as a statement:
3 j+i (i+])«(k+]j) sinx)
e Complex assignment operators, eligs, += rhs, are implicitly rewritten:

temp = &(lhs); «temp = stemp + rhs;

e Hence, the left-hand sidths, is evaluated only once:

vl rand() % 5] += 1; /I only calls random once
vfrand() % 5] =v[rand() % 5] + 1; // calls random twice

e Comma expression is a series of expressions separated lgasom
a, f+g, k3)/2 mli]j] <« valuereturned
e Expressions evaluated left to right with the value of rigbstnexpression returned as result.

e Comma expression allows multiple expressions to be ewaduat a context where only a
single expression is allowed (see pagé

e Dimension problemnm[10, 20] actually means[20] becausd0, 20 is a comma expression
not a dimension list (see page).

e Subscripting problemm[3, 4] meansn[4], 4th row of matrix.

e Operators-+/ -- are discouraged because subsumed by gererak.

2.4.1 Conversion

e Conversion implicitly/explicitly transforms a value frobme type to another (see Sectii?2.2.2
p.79).

e Two kinds of conversions:

o widening/promotion conversion, no information is lost:

42 CHAPTER 2. C++

double
7.000000000000000

char — shortint — longint —
X7’ 7 7

o narrowing conversion, information can be lost:

char
A xdl’

— short int —
12241

double —
T7777.77777777777

long int
77777

C/C+ support both implicit widening and narrowing convens (Java only implicit widen-
ing).

Implicit narrowing conversions can cause problems:

int i; double r;
i=r=3.5; /I r->35
r=i=3.5; /I r -> 3.0 2?7

Better to perform narrowing conversions explicitly usiragtoperator.

int i; double X, vy;

i = (int) x; /I explicit narrowing conversion

i = (int) x / (int) y; // explicit narrowing conversions for integer division
i = (int)(x /y); /I alternative technique

C/C+ supports casting among the basic types and user défjmesi(see Sectidh 12 p.75).

g++ has a cast extension (see Sec2d® 9 p. 39allowing construction of structure and array
constants in executable statements not just declarations:

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;

rin((int [2][3]1{ {93, 67, 72}, {77, 81, 86} });
c = (Complex){ 2.1, 3.4 };

/I g++ only
/I g++ only

¢ In both cases, a cast indicates the meaning and structune cbhstant.

2.4.2 Math Operations
e #include <cmath> provides real-float mathematical routines.

¢ All arguments and the return value are tyjaeble .

operation| routine operation| routine
arccox | acos(x) xmody | fmod(x, y)
arcsirnx asin(x) logx log10(x)
arctarx | atan(x) InXx log(x)

[X] ceil(x) xY pow(X, y)
COSX cos(X) sinx sin(x)
coshx cosh(x) sinhx sinh(x)

el exp(x) VX sqrt(x)

|X] fabs(x) tanx tan(x)

| X] floor(x) tanhx tanh(x)

2.5. CONTROL STRUCTURES

e Standard math constants are also available.

M_E 2.7182818284590452354 /e
M_LOG2E 1.4426950408889634074 /l log_2 e
M_LOG10E 0.43429448190325182765 // log_10 e
M_LN2 0.69314718055994530942 // log_e 2
M_LN10 2.30258509299404568402 // log_e 10
M_PI 3.14159265358979323846 /I pi
M_PI_2 1.57079632679489661923 // pi/2
M_PI_4 0.78539816339744830962 // pil4
M_1_PI 0.31830988618379067154 // 1/pi
M_2_PI 0.63661977236758134308 // 2/pi
M_2_SQRTPI 1.12837916709551257390 /I 2/sqrt(pi)
M_SQRT2 1.41421356237309504880 // sqrt(2)
M_SQRT1 2 0.70710678118654752440 /I 1/sqrt(2)

e These constants are inadequate for computation usiggdouble .

e Some systems provideng double versions, e.gM_PII.

2.5 Control Structures

43

| Java | CIC+
block | { intermixed decls/stmts } { intermixed decls/stmts }
selection| it (pool-exprl) stmtl if (cond-exprl) stmtl
else if (bool-expr2) stmt2 else if (cond-expr2) stmt2
é'lée stmtN é'lée stmtN
switch (integral-expr) { switch (integral-expr) {
case cl: stmtsl; break; case cl: stmtsl; break;
;:.a.se cN: stmtsN; break; é:'a'se cN: stmtsN; break;
default ; stmtsO; default : stmtsO;
} }
looping | while (bool-expr) stmt while (cond-expr) stmt
do stmt while (bool-expr) ; do stmt while (cond-expr) ;
for (init-expr;bool-expr;incr-expr) stmt || for (init-expr;cond-expr;incr-expr) stmt
transfer| break [label] break
continue [label] continue
goto label
return [expr] return [expr]
throw [expr] throw [expr]
label | label : stmt label : stmt
2.5.1 Block

e Block is a series of statements bracketed by brgce$, which can be nested.

44 CHAPTER 2. C++

e Block serves two purposes: bracket several statementa isitqyle statement and introduce
local declarations.

e When a statement is required, good practice is to always use l@lock to allow easy
insertion and removal of statements to or from block.

e Putting local declarations precisely where they are neededhelp reduce declaration clutter
at the beginning of an outer block.

e However, it can also make locating them more difficult.

2.5.2 Conditional

e C/CH uses aonditional expressionin control structures to cause conditional transfer (Java
uses a boolean expression).

A conditional expression is evaluated and implicitly teldta not equal to zero, i.ecpnd-expr
=expr = 0.

Boolean expressions are converted to Ofétse and 1 fortrue before comparison to zero,
e.g.:

if (x>y)... implicitly rewritten as if (x>y)!=0)...

Hence, other expressions are allowed in a conditional ¢Qiem):

if (x)... implicitly rewritten as if ((x)!=0)...
while (X)... while ((x) = 0)...

Watch for the common mistake in a conditional:

if (x=y)... implicitly rewritten as if (x=y)!=0)...

which assigny to x and testx != 0 (possible in Java for one type).

2.5.3 Selection

e C/CH+ selection statements af@ndswitch (same as Java, except for boolean versus condi-
tional expression (see Secti@rb.2).

e An if statement selectively executes one of two alternativesdoas the result of a compar-
ison, e.g.:

if (x>y) max = x;
else max = vy;

e Java/C/C+ have théangling elseproblem of associating aglse clause with its matching
if in nestedf statements.

e E.g., reward WIDGET salesperson who sold more than $10,0@¢thvef WIDGETS and
dock pay of those who sold less than $5,000.

2.5. CONTROL STRUCTURES

45

| Dangling Else

| Fix Using Null Else

| Fix Using Blocks |

if (sales < 10000)
if (sales < 5000)
income -= penalty;
else // incorrect match!!!
income += bonus;

if (sales < 10000)
if (sales < 5000)
income -= penalty;
else ; // null statement
else
income += bonus;

if (sales < 10000) {
if (sales < 5000) {
income -= penalty;

} else {
income += bonus;
}

e A switch statement selectively executes onéddlternatives based on matching an integral
value with a series of case clauses, e.g.:

switch (day) {

case MON: case TUE: case WED: case THU:

/I integral expression

cout << "PROGRAM' << end!;

break ;
case FRI:
wallet += pay;

/I FALL THROUGH

case SAT:

/I exit switch

cout << "PARTY" << end!;

wallet -= party;
break ;
case SUN:

/I exit switch

cout << "REST" << endl;

break ;
default :

/I exit switch

cerr << "ERROR' << end!;

exit(-1);
}

statement.

/I terminate program

It is a common error to forget the break.

control continues to theext statement.

Otherwise, thewitch statement does nothing.

2.5.4 Conditional Expression Evaluation

/I case value list

Once a case clause is matched, its statements are exeademrdrol continues to theext

break statement is used at end of a case clause teeiith statement.

If no case clause is matched and there iefault clause, its statements are executed, and

Only one label for eachase clause but a list ofase clauses is allowed.

e Conditional expression evaluationperforms partial evaluatiorsiort-circuit) of expres-

sions.

46

CHAPTER 2. C++

&& | only evaluates the right operand if the left operand is trye
|| | only evaluates the right operand if the left operand is false
?: | only evaluates one of two alternative parts of an expression

&& and|| are similar to logicak and| for bitwise (boolean) operands, i.e., both produce a
logical conjunctive or disjunctive result.

However, short-circuit operators evaluate operandsylamitil a result is determined, short
circuiting the evaluation of other operands.

i < size && key = array]i] /I may only evaluate left operand of &&

Hence, short-circuit operators are control structurefénmiddle of an expression because
el && e2 # &&(el, e2) (unless lazy evaluation).

Logical & and| evaluate operands eagerly, evaluating both operands.

Conditional?: evaluates one of two expressions, and returns the resuiecdvaluated ex-
pression.

Acts like anif statement in an expression:

abs2 = (a<0?-a:a)+2]|if (a<0){
abs2 = -a;
} else {
abs2 = a;
}
abs2 += 2;

2.5.5 Looping

e C/C+ looping statements avehile, do andfor (same as Java, except for boolean versus

conditional expression (see Sectid®.2 p.44)).

e while statement executes its statement zero or more times.

e Beware of accidental infinite loops.

X = 0; X = 0;
while (x < 5); /I extra semicolon! while (x < 5) /I missing block
X=x+1; y=y+X
X=x+1

e do statement executes its statement one or more times.

do {
... [/l executed at least once
} while (x <5);

2.5. CONTROL STRUCTURES a7

o for statement is a specializedhile statement for iterating with an index.

init-expr;

while (cond-expr) { for (init-expr; cond-expr; incr-expr) {
stmt; stmt;
incr-expr;

} }

e Many ways to use thfar statement to construct iteration:

for (i=1;,i<=10;i+=1) { /I count up
/l loop 10 times
} /I'i has the value 11 on exit

for (i=10; 1 <=i;i-=1){ /I count down
/I loop 10 times
} /I'i has the value 0 on exit

for (p =1 p!= NULL; p = p->link) { /I pointer index
Il loop through list structure
} /I p has the value NULL on exit

for (i=1, p=1i<=10 & p!= NULL; i +=1, p = p->link) { // 2 indices
/l loop until 10th node or end of list encountered
}

e Comma expression (see pag® is used to initialize and increment 2 indices in a context
where normally only a single expression is allowed.

e Defaulttrue value inserted if no conditional is specifiedfem statement.

for () /I rewritten as: for (; true ;)

e continue /break statements available in all iteration constructs to adedondhe next loop
iteration or terminate loop.

for (i=0;;i+=1){ /I infinite loop, conditional is “true”
if (x >y) break: I exit loop
if (x ==y) continue ; /I start next iteration

\

e C/CHgoto label allows arbitrary transfer of contralithin a routine from theyoto to state-
ment marked with label variable.

e Label variable is declared by prefixing an identifier aritht¢ a statement, where the label
has routine scope (see SectdB.3 p. 26).

L1: i += 1; /I associated with expression
L2:if (...) ... /| associated with if statement
L2: ; /I associated with empty statement

48

2.6

CHAPTER 2. C++

Transfer control backwards/forwards with respect to cod®utine body.

L1: ;
Q.o'to L1; /I transfer backwards, up
goto L2; /I transfer forward, down
L2: ;

Can transfer into and out of control structures.

goto L1; /I highly discouraged

for (i=-5i<0;i+=1){
L1: /I loop index uninitialized
é;'o'to L2;

_

L2: ;

Structured Programming

Structured programming is about managing (restricting) control flow using a fixedafet
well-defined control-structures.

A small set of control structures used with a particular paogming style make programs
easier to write and understand, as well as maintain.

Most programmers adopt this approach so there is a univ@sa@mon) approach to man-
aging control flow (e.qg., like traffic rules).

Developed during the 1970’s to overcome the indiscriminaetof the GOTO statement.

GOTO leads to convoluted logic in programs (i.e., does NQdpsut a methodical thought
process).

l.e., arbitrary transfer of control results in programd @ire difficult to understand and main-
tain.

Restricted transfer reduces the points where flow of cootiahges, and therefore, is easy
to understand.

There are 3 levels of structured programming:

classical

o seqguence: series of statements
o if-then-else: conditional structure for making decisions

2.6. STRUCTURED PROGRAMMING

o while: structure for loops with test at top

Can write any program (actually only needile or onewhile andifs).

extended

o classical control structures

o case/switch: conditional structure for making decisions

o repeat-until/do-while: structure for loops with test attbm
modified

o extended control structures

o one or more exits from arbitrary points in a loop

o exits from multiple nested control structures

o exits from multiple nested routine calls

Eliminates the need foflag variables.

2.6.1 Multi-Exit Loop

49

e A multi-exit loop (or mid-test loop) is a loop with one or more exit locationgucing

within the body of the loop.

While-loop has 1 exit located at the top:

while i < 10 do loop -- infinite loop
exit when i >= 10; -- loop exit

T reverse condition

end while end loop

Repeat-loop has 1 exit located at the bottom:

do loop -- infinite loop
exit when i >= 10; -- loop exit
while (i< 10) end loop 1 reverse condition

Exit condition can appear in other locations in the loop body

loop
exit when i >= 10;

end 'I(');)p

Or allow multiple exit conditions:

loop
exit when i >= 10;
exit when j >= 10;

end .I(.);)p

50

CHAPTER 2. C++

Eliminates priming (copied) code necessary witfile :

read(input, d); loop

while ! eof(input) do read(input, d);

exit when eof(input);
read(input, d);

end while end loop

C/C+ idioms for this situation are:

| c | CH |
while ((d = getc(stdin)) != EOF) | while (cin >> d)

Results in expression side-effects and precludes analgisithout code duplication.

E.g., print the status of streaein after every read for debugging:
while (cin >> d) { loop
cout << cin.good() << endl; cin >> d;

cout << cin.good() << endl;
exit when cin.fail();

}

cout << cin.good() << endl; end .I(.);)p

The loop exit is always outdented or clearly commented (¢)so it can be found without
having to search the entire loop body.

This is the same indentation rule as for gt of the if-then-else:

if ... then if ... then
éllée elsé”
end |f end |f

A multi-exit loop can be written in C/C+ in the following way

for () { while (true) { do {
if (i>=10) break: if (i>= 10) break; if (i >= 10) break:
if (j>=10) break: if (j >= 10) break; if (] >= 10) break:
y y } while (true):

Thefor version is more general as it can be easily modified to havemilalex or a while
condition.

for (int i=0;i<10;i+=1){/ loop index
for (; x <vy;) { /I while condition

2.6. STRUCTURED PROGRAMMING 51

¢ In general, the programming language and code-typing sthydelld allow insertion of new
code without having to change existing code.

e E.g., write linear search such that:

o no invalid subscript for unsuccessful search

o index points at the location of the key for successful search

e Use onlyif andwhile :

i = -1; found = 0;

while (i < size -1 & ! found) { // rewrite: &(i<size-1, !found)
i += 1;
found = key == list[i];

}

if (found) { ... /I found

}else { ... /I not found

}

¢ Allow short-circuit operators (see Secti@rb.4 p. 45).

for (i =0;i < size && key != list[i]; i += 1){};
I/l rewrite: if (i < size) if (key != list[i])

if (i<size){... /I found
} else { ... /I not found
}

e Logical& is incorrect because it evaluates both operands.

e Alternatively, use multi-exit loop.

for (i=0;;i+=21){//or for (i=0;i<size;i+=1)
if (i>= size) break;
if (key == list[i]) break;

if (1<size) {... /I found
} else { ... /I not found
}

e The extra test after the loop can be eliminated by introdyitimto the loop body.

for (i=0;;i+=1){

if (i>=size) {... /I not found
break;
} 1 exit
if (key ==list[i]) { ... /I found
break ;
} 1l exit

} /I for

52 CHAPTER 2. C++

e E.g., an element is looked up in a list of items, if it is nothe tist, it is added to the end of

the list, if it exists in the list its associated list couniemcremented.

for (i=0;;i+=1){
if (i>=size) {
list[size].count = 1;
list[size].data = key;
size += 1,
break;
} 1 exit
if (key == list[i].data) {
list[i].count += 1;
break ;

} 1 exit
} /I for

2.6.2 Static Multi-Level Exit

e Static multi-level exit exits multiple co
pile time.

ntrol structures where exit points kmewn at com-

o Labelled exit break/continue) often provides this capability (see pagj8:

Java C/C+
L1: { {
... declarations declarations ...
L2: switch (...) { switch (...) {
L3: for (...){ for (...){
... break L1; ... /I exit block ... goto L1, ...
... break L2; ... /] exit switch ... goto L2; ...
... break L3; ... // exit loop ... goto L3; ...
} }LL
} } L2:' .;.
} } L3:. .;.

e Labelledbreak/continue transfer control out of the control structure with the cepending
label, terminating any block that it passes through.

e Commonly used with nested loops:

2.7. PREPROCESSOR 53

Java C/CH
L1: for (5) { /I while (flagl && ...) for (3){
L2: for (;;) { Il while (flag2 && ...) for () {
L3: for (5) { /I while (flag3 && ...) for (3){
if (...) break L1: // exit 3 levels if (...) goto L1:
if () break L2; /I exit 2 levels if (....ygoto L2;
if () break L3; // or break, exit 1 level if () goto L3;
} \ = .;.
} } L2
} }LL:

e Eliminates flag variables, which are the variable equiviaiea goto.
e Normal and labelletireak are agoto with restrictions:

o Cannot be used to create a loop (i.e., cause a backward bratiehprogram); hence,
all situations that result in repeated execution of statémim a program are clearly
delineated.

o Cannot be used to branafto a control structure.
e The simple case (exit 1 level) of multi-level exit is a mudtiit loop.
e Why is it good practice to label all exits?
e Only usegoto to simulate labelledbreak and continue .
e return statements can generate multi-exit loop and multi-leviel ex

e Static multi-level exits appear infrequently, but are exiely concise and execution-time
efficient.

2.7 Preprocessor

e Preprocessor manipulates the text of the progkeefore compilation (see Sectio8.1.2
p. 24).

e Program you see is not what the compiler sees!

e The three most commonly used preprocessor facilities dvstisution, file inclusion, and
conditional inclusion.

54 CHAPTER 2. C++

2.7.1 Substitution

e #define statement declares a preprocessor variable, and its wdllighe text after the name
up to the end of line.

#define Integer int
#define begin {
#define end }
#define PI 3.14159
#define gets =

#define set

#define with =

Integer main() begin /Il same as: int main() {
Integer x gets 3, v; /l same as: int x = 3, v;
X gets PI; /| same as: x = 3.14159;
set y with x; /| same as: y = Xx;

end /I same as: }

e Preprocessor can transform the syntax of C/C+ prograse@uraged.

e Variables can be defined and optionally initialized on thepidation command with option
-D.

% g++ -DDEBUG=2 -DASSN ... source-files
Same as putting the followingdefine s in a program without changing the program:

#define DEBUG 2
#define ASSN

e Predefined preprocessor-variables exist identifyingward and software environment, e.g.,
mcpu is kind of CPU.

e Replace#define with enum (see Sectior2.3.7.1 p. 31) for integral types; otherwise use
const declarations (see Secti@i3.4 p.27) (final in Java).

enum { arraySize = 100 }
enum { PageSize = 4 « 1024 };

int array[arraySize], pageSize = PageSize;
const double Pl = 3.14159;

e enum uses no storage whitmnst declarations do.

e #define can declare macros with parameters, which expand duringitation, textually
substituting arguments for parameters, e.g.:

#define MAX(a, b) ((a > b) ? a: b)
z = MAX(X, Y); /I implicitly rewritten as: z = (X > y) ? X : Yy)

e Useinline routines in C/CH+ rather thatlefine macros.

2.7. PREPROCESSOR 55

2.7.2 File Inclusion
e File inclusion copies text from a file into a C/C+ program.

e An included file may contain anything.

¢ Aninclude file normally imports preprocessor and C/C+ tltgs/declarations for use in a
program.

¢ Allincluded text goes through every compilation step, peeprocessor, compiler, etc.

e Java implicitly inclusions by matching class names withriiggnes inCLASSPATH directo-
ries, then extracting and including declarations.

e Thet#include statement specifies the file to be included.
e C convention uses suffixi” for include files containing C declarations.

e C+ convention drops suffix.” for its standard libraries and has special file names for
equivalent C files, e.gcstdio versusstdio.h.

#include <stdio.h> /I C style
#include <cstdio> /[C++ style
#include "user.h"

¢ Afile name can be enclosedd» or"".
e <>means preprocessor only looks in the system include diiesto

° means preprocessor starts looking for the file in the sanmextdiry as the file being
compiled, then in the system include directories.

e System filedimits.h andunistd.h contains many usefédefine s, like the null pointer constant
NULL (e.g., sedusr/include/limits.h).

2.7.3 Conditional Inclusion

e Preprocessor has dinstatement, which may be nested, to conditionally add/rencmde
from a program.

e Conditional ofif uses the same relational and logical operators as C/CHgpaurainds can
only be integer or character values.

#define DEBUG 0 /I declare and initialize preprocessor variable

#lf DEBUG == I/l level 1 debugging
include "debugl. h"

#elif DEBUG == /I level 2 debugging
include "debug2.h"

#.élse /I non-debugging code

#endif

56

2.8

CHAPTER 2. C++

By changing value of preprocessor variaDIEBUG, different parts of the program are in-
cluded for compilation.

To exclude code (comment-out), useonditional a® implies false.

#if O
/I code commented out
#endif

Independent of language structure, can overlap definiaodsoutines.

It is also possible to check if a preprocessor variable isiddfor not defined by usingifdef
or #ifndef :

#ifndef _ MYDEFS_H__ /I if not defined

#define _ MYDEFS H_ 1 // make it so
#endif

Used in antinclude file to ensure its contents are only expanded once (see 8étiig
p.91).

Note difference between checking if a preprocessor vaiabdefined and checking the
value of the variable.

The former capability does not exist in most programmingylaages, i.e., checking if a
variable is declared before trying to use it.

Input/Output
Input/Output (I/O) is divided into two kinds:

1. Formatted I/O transfers data with implicit conversion of internal valt@$rom human-
readable form.

o Conversion is based on the type of variables and format codes

2. Unformatted /O transfers data without conversion, e.g., internal inteyet real-
floating values.

2.8. INPUT/OUTPUT 57

2.8.1 Formatted I/O

| Java | C | C+ |
| File, Scanner, PrintStream | FILE | ifstream, ofstream |
Scanner in = new in = fopen("f", "r"); ifstream in("f");
Scanner(new File("f"))
PrintStream out = new out = fopen("g", "W') ofstream out("g")
PrintStream("g")
in.close() close(in) scope endsn.close()
out.close() close(out) scope endsyut.close()
nextint() fscanf(in, " %", &i) in>>T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, "%", &c)
next() fscanf(in, "%", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()
in.clear()

skip("regexp) fscanf(in, " %[regexd") | in.ignore(n, ¢)
out.print(String) fprintf(out, " %", i) out << T

forintf(out, "% ", f)

fprintf(out, "%", ¢)

fprintf(out, "9%", s)

e Formatted I/O occurs to/fromstream file.

e C+ has three implicit stream filesin, cout andcerr, which are automatically declared and
opened (Java has, out anderr).

e C hasstdin, stdout andstderr, which are automatically declared and opened.
¢ Includeiostream has all necessary declarations ¢or, cout andcerr.

e cin reads input from the keyboard (unless redirected by shell).

e cout writes to the terminal screen (unless redirected by shell).

e cerr writes to the terminal screen even wheit output is redirected.

e Error and debugging messages should always be writtendo :

o normally not redirected by the shell,
o unbuffered so output appears immediately.
e Stream files other than 3 implicit ones require declarindndie object:
#include <fstream> // required for stream-file declarations

ifstream infile(“nyinfile"); /I input file
ofstream outfile("myoutfile"); /I output file

58 CHAPTER 2. C++

e Type of the filejfstream or ofstream, indicates whether the file can be read or written.

e Declaratioropers a file making it accessible through the variable name, iefitp ,andoutfile
are used for file access.

e Check for successful opening of a file using the stream meralee.g.,infile.fail(), which
returnstrue if the open failed anéhlse otherwise.

e Connection between the file name in the program and operayisigm file is done at the
declaration:

o infile reads from filenyi nfil e
o outfile writes to filenyoutfil e

where both files are located in the directory where the pragsarun.

e C+ |I/O library overloads (see Secti@ghl1.3 p. 72) the bit-shift operators< and>> to
perform 1/0.

e C /O library usedscanf(outfile,...) andfprintf(infile,. . .), which have short formscanf(...)
andprintf(...) for stdin andstdout.

e Parameters in C are always passed by value (see Sextidnl, p. 69), so arguments to
fscanf must be preceded with (except arrays) so they can be changed.

e Both I/O libraries can cascade multiple 1/0O operations, irgout or output multiple values
in a single expression.

2.8.1.1 Formats

e Format of input/output values is controlled vieganipulators defined in#include iomanip:

oct values in octal

dec values in decimal

hex values in hexadecimal

left / right (default) values with padding after / before values

boolalpha / noboolalpha (default) | bool values as false/true instead of 0/1
showbase / noshowbase (default) | values with / without prefix O for octal & Ox for hex

fixed (default) /scientific float-point values without / with exponent
setprecision(N) fraction of float-point values in maximum of N columns
setw(N) NEXT VALUE ONLY in minimum of N columns
setfill("ch) padding character before/after value (default blank)
end| flush output buffer and start new lineutput only)

skipws (default) /noskipws skip whitespace charactetisgut only)

e manipulators applies to all constants/variables aftenvign to the next I/O expression for a
specific stream file.

2.8. INPUT/OUTPUT

59

e Except manipulator setw, which only applies to the next value in the I/O expression.

e endl is not the same &§n’; only endl flushes for interactive output.

2.8.1.2 Input

e Java formatted input uses amplicit Scanner attached to an input file to convert characters

to basic types.

e C/C+ formatted input hasnplicit character conversion for all basic types and is extensible

to user-defined types.

| Java

C

C+

import java.io.x;
import java.util.Scanner;
Scanner in =

PrintStream out =
new PrintStream("g");

new Scanner(new File("f")):

int i, j;
while (in.hasNext()) {
i = in.nextInt(); j = in.nextInt();
out.printin("i:"+i+" j: "+);
in.close();
out.close();

#include <stdio.h>
FILE xin = fopen("f", "r");

FILE xout = fopen("g", "W');
int i, j;

for (5;) {
fscanf(in, " %%l", &i, &);

if (feof(in)) break;
fprintf(out,”" i : % | : %\ n" i,j);

}

close(in);

close(out);

#include <fstream>
ifstream in("f");

ofstream out(g);

int i, j;
for () {
in >> i >>j;
if (in.fail()) break;
out << "i:" <<
<<"] " <<j<<endl;
}

/I infout closed implicitly

¢ Input values for a stream file are C/C+ undesignated cotsstarB.5e-1, etc., separated by

whitespace.

e Except for characters and character stringsich are not in quotesso cannot read strings
containing white spaces (see Sectib8.5 p. 28 for reading entire lines).

e Type of operand indicates the kind of constant expected enstheam, e.g., an integer
operand means an integer constant is expected.

e Input starts reading where the last read left off, and sdaes to obtain necessary number

of constants.

e Hence, the placement of input values on lines of a file is codidbitrary.

e Unlike Java, C/CH must attempt to reaeforeend-of-file is set and can be tested for.

e End of file is the detection of the physical end of a fileere is no end-of-file character

e From a keyboardsctri>-d (press the<ctrl> andd keys simultaneously) causes the shell to
close the current input file marking its physical end.

e In C+, end of file can be detected in two ways:

60

CHAPTER 2. C++

o stream membezof returnstrue if the end of file is reached arfdise otherwise.

o stream membetail returnstrue for invalid constant OR no constant if end of file is
reached, anéhlse otherwise.

Safer to checkail and then checkof.

for (;;) {
cin >> i;
if (cin.eof()) break; /I should use “fail()”
cout << i << endl;
}

If "abc” is entered (invalid integer constarfgij becomesrue buteof is false .

Generates infinite loop as invalid data is not skipped fossghent reads.

When bad data is readiream must be reset and bad data cleared

#include <iostream>
using namespace std;

int main() {
int n;
cout << showbase; /I prefix hex with 0x
cin >> hex; /I hex constants
for (5;){
cout << "Enter hexadeci mal number: ";
cin >> n;
if (cin.fail()) { /I problem ?
if (cin.eof()) break; /I eof ?
cout << "Invalid hexadeci mal nunber" << endl;
cin.clear(); /I reset stream failure
cin.ignore(numeric_limits<int>::max(), \ n”); // skip until newline
} else {

<< n << dec << " dec:

cout << hex << "hex:' << n << endl;

}
}
cout << endl;

}

After an unsuccessful readear() resets the stream.
ignore skipsn characters, e.gcin.ignore(5) or until a specified character.

Alternatively, streams have a conversiornvti «: if fail(), a null pointer; otherwise nonnull
pointer.

cout << cin; /I print fail() status of stream cin
while (cin >> i) ... /I read and check pointer to != 0

In C, routinefeof returnstrue when eof is reached anstanf returnseOF.

2.8. INPUT/OUTPUT 61

e Read in file-names, which may contain spaces, and procesgikac

#include <fstream>
using namespace std;

int main() {
ifstream fileNames("fil eNanes"); // requires char » argument
string fileName;

for () { /I process each file
getlineg(fileNames, fileName); /I may contain spaces
if (fileNames.fail()) break; /l handle no terminating newline
ifstream file(fileName.c_str()); // access char «
/I read file
}

}

2.8.1.3 Output

e Java output style converts values to strings, concatestitegs, and prints final long string:

System.out.printin(i + +); /I build a string and print it

C/C+ output style supplies a list of formats and values, @ugut operation generates the
strings:

cout << i << << j << endl; /[print each string when formed

There is no implicit conversion from the basic types to sgfrim C+ (but one can be con-
structed).

While it is possible to use the Java string-concatenation gke in C+, it is incorrect style.

Use manipulators is generate specific output formats:

#include <iostream> /I cin, cout, cerr

#include <iomanip> /I manipulators

using namespace std;

int i = 7; double r = 2.5; char ¢ = “z”: char s = "abc":

cout << "i:" << setw(2) << i
<< " r:" << fixed << setw(7) << setprecision(2) << r
<<" " <<c<<" 5" << s << end

#include <stdio.h>

fprintf(stdout, "i:%2d r: %.2f c:% s:%\n", i, r, c, s);

i 71 250 c:z s:abc

2.8.2 Unformatted I/O

e Unformatted I/O transfers data without conversion, e.g., internal integet real-floating
values.

62 CHAPTER 2. C++

e Uses same mechanisms as formatted 1/0O to connect prograi@ toden/close).

e read andwrite routines transfer bytes without conversion from/to a file.

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile(" xxx"); /I open output file “xxx”
if (outfile.fail()) { /I successful open ?
cerr << "Error!" << endl;
exit(-1);
}

double d = 3.0;
outfile.write((char «)&d, sizeof(d)); // coercion

outfile.close(); /I close file before attempting read
ifstream infile(" xxx"); /I open input file “xxx”
if (infile.fail()) { /I successful open ?
cerr << "Error!" << endl;
exit(-1);
}
double e;

infile.read((char x)&e, sizeof (d)); // coercion
cout << e << endl;
infile.close();

}

e read andwrite take achar « pointer and length.

read(char xbuffer, streamsize num);
write(char xbuffer, streamsize num);

e To pass any kind of pointer for unformatted 1/0O requiresarcion, which is a castvithout
a conversion (see Secti@¥.1, p.41).

e Coercion breaks the type system; use it very sparin@yd would be unnecessary if buffer
type wasvoid).

2.9 Dynamic Storage Management
e Java is ananaged languageC/C+ are unmanaged.

e C/C+ do not havegarbage collectionof dynamically allocated storage after a variable is no
longer accessible.

Instead, an additional dynamic storage-management opeiatused to free storage.

C+ provides dynamic storage-management operatiensielete and C providesalloc/free.

Do not mix the two forms in a C+ program.

2.9.

DYNAMIC STORAGE MANAGEMENT 63
| Java | C | CH |
class Foo { struct Foo { struct Foo {
char a, b, c; char a, b, c; char a, b, c;
} h h
Foo p = new Foo(); Foo «p = (Foo x)malloc(sizeof (Fo0)); || Foo «p = new Foo();
p.c ="'R; p->c = 'R’ p->c = 'R}
/I p garbage collected || free(p); /I explicit free delete p; // explicit free

Allocation has 3 steps:

1. determine size/alignment of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

Each step is explicitin C; CH operateew performs all 3 steps implicitly.
Parenthesis after the type name in tleev operation are optional.
Storage for dynamic allocation comes from an area calletidiag.

Before storage can be used, it must be allocated.

Foo «p; /I forget to allocate or initialize pointer
p->c = 'R; /I places 3 at some random location in memory

Uninitialized variables.

After storage is no longer neededmtstbe explicitly deleted.

Foo «p = new Foo;
p = new Foo; /I forgot to free previous storage

Called amemory leak.

After storage is deleted, ihustnot be used:

delete p;
p->c = R; /I result of dereference is undefined

Called adangling pointer.

Unlike Java, C/C+ allovall types to be dynamically allocated not just object types., e.g
new int .

As well, C/C+ allowall types to be allocated on the stack, i.e., local variablestddek:

64 CHAPTER 2. C++

| Java | CH |
{ /| basic & reference stack heap || { // all types stack heap
int i _ int i .
double d: ! double d:; !
ObjType obj = d ObjType obj; d

new ObjType();

b 1 |y implicit delete ||
} /I garbage collected : :

e Stack allocation eliminates explicit storage-managemergsimpler) and is more efficient
than heap allocation — use it whenever possible.

e Dynamic allocation in C+ should be used only when:

o avariable’s storage must outlive the block in which it iDedted:

ObjType »rtn(...) {

ObjType x0bj = new ObjType();

... Il use obj

return obj; // storage outlives block
} I/ obj deleted later

o when each element of an array of objects needs initialiagtiee Sectio@.12.2 p.77):

ObjType xv[10]; // array of object pointers
for (inti=0;i<10;i+=1){

v[i] = new ObjType(i); /I each element has different initialization
}

e Declaration of a pointer to an array is complex in C/C+ (dee page37).

e Because no array-size information, the dimension valuariarray pointer is often unspec-
ified:
int «parr = new int [10]; /I think arr[], pointer to array of 10 ints
e Java notation:
int parr[] = new int [10];

cannot be used becadige parr[] is actually rewritten ast parr[N], whereN is the size of
the initializer value (see Sectigh3.9 p. 39).

e As well, no dimension information results in the followinghiguity:
int xpvar = new int; pvar | —o size

==

int xparr = new int[10]; // parr[] parr /WS 7/3(5/9/8/8|0]4|6

¢ Variablespvar andparr have the same type but one is an array, which poses a problem wh
deleting a dynamically allocated array.

2.9.

DYNAMIC STORAGE MANAGEMENT 65

To solve the problem, special syntax is used to distingunske cases:

delete pvar; /I single element
delete [] parr; /I multiple elements

[1 indicates multiple elements (but unknown number and sizkroénsions) and array-size
is stored with the array.

Never do this:
delete [] parr, pvar; /| => (delete [] parr), pvar;

which is an incorrect use of a comma expressiainjs not deleted.

Declaration of a pointer to a matrix is complex in C/C+, grg. «x[5] could mean:

[(w [N [k o o]

Left: array of 5 pointers to an array of unknown number of gjetes.

Right: pointer to matrix of unknown number of rows with 5 calos of integers.

For« and[] which applied first?

Dimension is higher priority (as subscript, see Secgof) p. 40), so declaration is inter-
preted asnt (x(x[5])) (left).

Only the left example (above) of declaring a matrix can beegalized to allow a dynamically-
sized matrix.

66

int main() {

int «m[5];
for (int r=0;r<5;r+=
m[r] = new int [4];
for (int ¢ =0; ¢c <4
m[r][c] = r + ¢;

}
for (int r=0;r<5;r +=
for (int ¢ =0;c <4
cout << mJr][c] <<
}

cout << endl;

}

for (int r=0;r<5;r+=
delete [] m]r];

}

2.10 Command-line Arguments

e Starting routinemain has exactly two overloaded interfaces.

CHAPTER 2. C++

/I 5 rows

1)1
/I 4 columns per row
c += 1) { // initialize matrix

1){ /I print matrix
c+=1){

n no
1 1

1){
/I delete each row

/I implicitly delete array “m”

int main(); // “void” parameter type for C
int main(int argc, char xargv[]); // parameter names may be different

The second form is used by the shell to pass command-lineremngis, where the command
line string-tokens are transformed into C/C+ arguments.

argc is the number of string-tokens on the command line, inclgdive command name.

With command name, number of tokens is one greater than in dav

argv is an array of pointers to the character strings that makekgntarguments.

% ./a.out -option infile.cc outfile.cc

argc
argv
argv
argv
argv
argv

0 1 2 3
4 I

[0] ="./a.out\0" I
[1] = "-option\0"

[2] ="infile.cc\0"

[3] ="outfile.cc\0"

[4] =0 Il

number of command-line tokens
not included in Java

mark end of variable length list

e Because shell only has string variables, a shell argumeri23f does not mean integer 32,
and may have to converted.

e Routinemain usually begins by checkingrgc for command-line arguments.

2.10. COMMAND-LINE ARGUMENTS

67

| Java

C/C+ ‘

class Prog {

switch (args.length) {

System.exit(-1);

public static void main(String[] args) {

case O: ... /I no args
break ;

case 1. ... args[0] ... // 1 arg
break;

case ... /I others args
break ;

default: ... /I usage message

int main(int argc, char sargv[]) {
switch (argc) {

case 1: ... /I no args
break ;

case 2. ... args[l] ... // 1 arg
break;

case ... /I others args
break ;

default : ... /I usage message
exit(-1);

e Arguments are processed in the raagg/[1] throughargvlargc - 1], i.e., starting one greater

than Java.

e Process following arguments from shell command line:

cmd [infile-file = cin [outfile-file = cout [size = 20 [code = 5]]]]

e Note, dynamic allocatiorstrtol (atoi has no mechanism to check for errors), gotb ; no

duplicate code.

<iostream>
<fstream>
#include <cstdlib>
#include <cerrno>
using namespace std;

#include
#include

bool convert(int &val, char =buffer) {

char xendptr;
val = strtol(buffer, &endptr, 10);

/I strtol, exit
/I errno, ERANGE

/I convert C string to integer
/I buffer pointer
/I convert string to integer

return errno !'= ERANGE && endptr != buffer && +endptr == "\ 0”; // valid integer ?

} /I convert

int main(int argc, char =argv[]) {
const unsigned int
istream «infile = &cin;
ostream *outfile = &cout;

int size = sizeDeflt, code = codeDeflt;

sizeDeflt = 20, codeDeflt = 5;

/I default value
/I default value
/I default value

68 CHAPTER 2. C++
switch (argc) {
case 5:
if (! convert(code, argv[4])) goto usage; // invalid integer ?
/I FALL THROUGH
case 4:
if (! convert(size, argv[3])) goto usage; // invalid integer ?
/I FALL THROUGH
case 3:
outfile = new ofstream(argv|[2]);
if (outfile->fail()) goto usage; /I open failed ?
/I FALL THROUGH
case 2:
infile = new ifstream(argv[1]);
if (infile->fail()) goto usage; /I open failed ?
/I FALL THROUGH
default : /I all defaults
break;
usage:
cerr << argv[0] << " [infile-file[outfile-file[size="
<< sizeDeflt << " [code =" << codeDeflt << "]]]]" << end|;
exit(-1); /I TERMINATE
}
/I do something
if (infile = &cin) delete infile; /I close file, do not delete cin!
if (outfile '= &cout) delete oultfile; /I close file, do not delete cout!
}
2.11 Routine
| C | C+
void p(OR T f(// parameters | void p(OR T f(// parameters
Tl a [/l pass by value T1 a, /I pass by value
T2 &b, /I pass by reference
T3 ¢ =3 |/l optional, default value
))
{ /I routine body { /I routine body
/I intermixed decls/stmts /I intermixed decls/stmts
} }

C+ routines are not part of aggregation (see Sec@i7.3 p. 35 (not combined in an

object), e.g., routinenain is not defined in a type.

A routine is either arocedure or afunction based on the return type.

A procedure does NOT return a value that can be use in an ekpnegdicated with return

type ofvoid :

void proc(...) { ...}

A procedure can return values through the argument/paesmetchanism (see Sectiaril.).

2.11.

ROUTINE 69

A procedure terminates when control runs off the end of neutiody or aeturn statement
is executed:

void proc() {
. return; ...
... 1l run off end

}

A function returns a value that can be use in an expressiahancemustexecute aeturn
statement specifying a value:

int func() {
. return 3; ...
return a + b;

}

A return statement can appear anywhere in a routine body, and neuigplrn statements
are possible.

A routine with no parameters has parametgd in C and empty parameter list in C+-:

.rtn(void) { ...} Il C: no parameters
.rtn() { ... } /[C++: no parameters

In C, empty parameters mean no information about the nunrigpes of the parameters is
supplied.

Routines cannot be nested in other routines.
All routines are embedded in the global (external) level goarce file.

Global scopecontains types, variables and routines:

/I global scope
enum Colour { R, G, B }; Il type

Colour colour = B; /I variable
int main() { /I routine

colour = R;

Colour colour = G; /I local scope, hides previous variables
}

Global variables are allocated in declaration order andlatzded in reverse order at pro-
gram exitper file but no order among files

Gobal area is a separate memory from the stack and heap.

2.11.1 Argument/Parameter Passing

Arguments are passed to parameters by:

o value: parameter is initialized by the argument (usually bitew®py).

70 CHAPTER 2. C++

o reference parameter is a reference to the argument and is initiatzéte argument’s
address.

pass by value pass by reference

argument
copy address-of (&)
parameter E

e Java/C, parameter passing is by value, i.e., basic typeslgadt references are copied.
e C+, parameter passing is by value or reference dependitigedype of the parameter.
e Argument expressions are evaluate@dny order(see Sectio.4, p. 40).

e For value parameters, each argument-expression resuisieed on the stack to become the
corresponding parametevhich may involve an implicit conversion

e Forreference parameters, each argument-expressiohisasifiérenced (address of) and this
address is pushed on the stack to become the corresponténgnee parameter.

struct Complex { double r, i; };

void r(int i, int &ri, Complex ¢, Complex &rc) {
n=i=3;
rc = ¢ = (Complex){ 3.0, 3.0 };

}

int main() {
intil=1,i2=2;
Complex ¢1 = { 1.0, 1.0}, c2 = { 2.0, 20 };
r(i1, i2, c1, c2);

}

e Which arguments change?

e What if routine call is changed to:

r(i1, 3, c1, c2); /I fails!
r(i1, il + i2, c1, c2); /I fails!

Cannot change a constant or temporary variables!

e Value passing is most efficient for basic and small strustbexause the values are accessed
directly in the routine.

e Reference passing is most efficient for large structuresaarays because the values are not
duplicated in the routine.

e Use type qualifiers to create read-only reference paramstethe corresponding argument
is guaranteed not to change:

2.11.

ROUTINE 71

void r(const int &i, const Complex &c, const int Vv[5]) {
i =3; /I assignments disallowed, read only!
c.r = 3.0;
v[0] = 3;

}
r(i +j, (Complex){ 1.0, 7.0 }, (int [5]{ 3, 2, 7,9, 0});

Provides efficiency of pass by reference for large varialskesurity of pass by value because
argument cannot change, and allows constants and temp@ndaples as arguments.

C+ parameter can havedafault value, which is passed as the argument value if no argu-
ment is specified at the call site.

void r(int i, double g, char ¢ = ’+’, double h =35){...}

r(1, 2.0, 'b’, 9.3); // maximum arguments
r(1, 2.0, 'b"); /I h defaults to 3.5
r(1, 2.0); /I ¢ defaults to "+”, h defaults to 3.5

In a parameter list, once a parameter has a default valupaedimeters to the right must
have default values.

In a call, once an argument is omitted for a parameter withfaultevalue, no more argu-
ments can be specified to the right of it.

2.11.2 Array Parameter

Array copy is unsupported (see Secti®13.7, p. 31) so arrays cannot be passed by value
only by reference.

Therefore, all array parameters are implicitly referenaeameters, and hence, do not have
a reference symbol.

A formal parameter array declaration can specify the firstaision with a dimension value,
[10] (which is ignored), an empty dimension ligL, or a pointers:

double sum(double v[5]); double sum(double v[]); double sum(double v);
double sum(double «m[5]); double sum(double «m[]); double sum(double x«m);

Good programming practice uses the middle form becausedtlglindicates the variable is

going to be subscripted.

An actual declaration cannot uggit must use::

double sum(double v[]) { // formal declaration
double =xcv; /I actual declaration, think cv[]
cV = v, /I address assignment

Routine to add up the elements of an arbitrary-sized arrayadrix:

72

CHAPTER 2. C++

double sum(int cols, double Vv[]) { double sum(int rows, int cols, double «m[]) {

double total = 0.0; double total = 0.0;
for (int c=0;c<cols;c+=1) for (int r=0;r<rows;r+=1)
total += v[c]; for (int c=0;c<cols;c+=1)
return total; total += m{r][c];
} return total;
}

2.11.3 Overloading

Overloading occurs when a name has multiple meanings in the same context.
Most languages have some overloading.

E.g., most built-in operators are overloaded on both iatiegnd real-floating operands, i.e.,
the+ operator is different fot + 2 than for1.0 + 2.0.

Overloading requires the compiler to disambiguate amoegtidal names based on some
criteria.

The normal criterion is type information.

In general, overloading is done on operations not variables

int i; /I variable overloading disallowed
double i;
void r(int) {} /I routine overloading allowed

void r(double) {}

Power of overloading occurs when type of a variable changeperations on the variable
are implicitly reselected to the variable’s new type.

E.g., after changing a variable’s type fram to double , all operations implicitly change
from integral to real-floating.

Number and types of the parameténs not the return typeare used to select among a
name’s different meanings:

int r(int i, int j) {...} /I overload name r three different ways
int r(double x, double y) { ...}
int r(int k) { ...}

r(1, 2); /I invoke 1st r based on integer arguments
r(1.0, 2.0); /I invoke 2nd r based on double arguments
r¢ 3); /I invoke 3rd r based on number of arguments

Implicit conversions between arguments and parametersaase problems:

r(1, 2.0); // ambiguous, convert either argument to integer or double

2.11.

ROUTINE 73

Use explicit cast to disambiguate:

r(1, (int)2.0) /l 1st r
r((double)1, 2.0) // 2ndr

Overlap between overloading and default arguments fompeters with same type:

| Overloading | Default Argument |
int r(int i,int j){...} int r(inti,intj=2){...}
int r((inti){intj=2;...}

r(3);//2ndr r(3); /I default argument of 2

If the overloaded routine bodies are essentially the samge & default argument, other-
wise use overloaded routines.

2.11.4 Routine Pointer

The flexibility and expressiveness of a routine comes froenaityument/parameter mecha-
nism, which generalizes a routine across any argumentotasi@f matching type.

However, the code within the routine is the same for all dathése variables.

To generalize a routine further, itis necessary to pass asda argument, which is executed
within the routine body.

Most programming languages allow a routine pointer (Jaes chmt) for further generaliza-
tion and reuse.

As for data parameters, routine pointers are specified wiyipa (return type, and number
and types of parameters), and any routine matching thisdgipéde passed as an argument,

e.g.:

int f(int v, ‘int (*p)(int)‘) {return p(v=«*2)+ 2}

int g(int i) {retun i-1;}

int h(int i) {retun i/ 2;}

cout << f(4, g) << endl; /I pass routines g and h as arguments
cout << f(4, h) << end|;

Routinef is generalized to accept any routine argument of the fortarme anint and takes
anint parameter.

Within the body off, the parametep is called with an appropriatiat argument, and the
result of callingp is further modified before it is returned.

A routine pointer is passed as a constant reference in \hyrtath programming languages;
in general, it makes no sense to change or copy routine dedesdpying a data value.

C/C+ require the programmer to explicitly specify the refece via a pointer, while other
languages implicitly create a reference.

74

CHAPTER 2. C++

Two common uses of routine parameters are fix-up and cakmdines.

A fix-up routine is passed to another routine and called if an unusual situetiencountered
during a computation.

E.g., when inverting a matrix, the matrix may not be inveetibits determinant is 0 (singu-
lar).

Rather than halt the program for a singular matrix, inveutiree calls a user supplied fix-up
routine to possible recover and continue with a correctég.(modify the matrix):

int singularDefault(/= info about error »/) { return 0; }
int invert(int =matrix[], int rows, int cols,
int (xsingular)(/= info about error +/) = singularDefault) {

if (determinant(matrix, rows, cols) == 0) {
/I compute correction to continue the computation
correction = singular(/« info about error «/);

}

A fix-up parameter generalizes a routine as the correctitierats specified for each call,
and the action can be tailored to a particular usage.

Giving fix-up parameter a default value, eliminates havimgrovide a fix-up argument.
A call-back routine is used in event programming.

When an event occurs, one or more call-back routines aredcéiggered) and each one
performs an action specific for that event.

E.g., a graphical user interface has an assortment of otiesd'widgets”, such as buttons,
sliders and scrollbars.

When a user manipulates the widget, events are generatextesting the new state of the
widget, e.g., button down or up.

A program registers interest in transitions for differentdgets by supplying a call-back
routine, and each widget calls its supplied call-back re(8) when the widget changes
state.

Normally, a widget passes the new state of the widget to ealtfback routine so it can
perform an appropriate action, e.g.:

int callback(/x info about event /) {
/I examine event information and perform appropriate action
/I return status of callback action

}

registerCB(closeButton, callback);

2.12. OBJECT 75

e Call-back programming become difficult if it depending oe tlumber of times it is called
or previous argument values.

2.12 Object

e Object-oriented programming was developed in the mid-$380Dahl and Nygaard and
first implemented in SIMULAG?.

e Object programming is based on structures, used for orggniagically related data (see
Section2.3.7.3 p. 35):

| unorganized | organized |
struct Person {

int people_age[30]; int age;

bool people_sex|[30]; bool sex;

char people_name[30][50]; char name[50];

} people[30];

e Both approaches create an identical amount of information.

¢ Difference is solely in the information organization (andmory layout).

e Computer does not care as the information and its manipul&ilargely the same.

e Structuring is an administrative tool for programmer ustiending and convenience.

e Objects extend organizational capabilities of the stngchy allowing routine members.

| structure form | object form |

struct Complex { struct Complex {
double re, im; double re, im;

h double abs() const {

double abs(const Complex &This) { return sqrt(re = re +
return sqrt(This.re = This.re + im « im);

This.im * This.im); }

} 5

Complex x; /I structure Complex x; /I object

abs(x); /I call abs x.abs(); /I call abs

e Each object provides both data and the operations necessamnanipulate that data in
one self-contained package.

e Routine member is constant, and cannot be assigneddengt, member).
e What is the scope of a routine member?

e Structure creates a scope, and therefore, a routine memabarccess the structure members,
e.g.,abs member can refer to membeatsandim.

76 CHAPTER 2. C++

e Structure scope is implemented via a const this parameter, implicitly passed to each

routine member (like left example).
double abs() { return sqgrt(this->re « this->re + this->im * this->im); }

(this should be a reference rather than a pointer.)
e Except for the syntactic differences, the two forms are tidah
e Like Java, the use of implicit parametehis, e.g.,this ->f, is seldom necessary in C+.

e Member routines are accessed like other members, using eremllectionx.abs, and called
with the same formx.abs().

e No parameter needed because of implicit structure scopaipis parameter.
e Add arithmetic operations:
struct Complex {
éémplex add(Complex ¢) {

Complex sum = { re + c.re, im + c.im };
return sum;

h

e To sumx andy, write x.add(y).

e Because addition is a binary operatiadd needs a parameter as well as the implicit context

in which it executes.

e Like Java, C+ allows overloading members in a type.

2.12.1 Operator Member

e Itis possible to use operator symbols for routine names:
struct Complex {

Complex operator +(Complex ¢) {
return (Complex){ re + c.re, im + c.im }; // remove sum
}

5

e Addition routine is called-, andx andy can be added by.operator +(y) or y.operator +(x),
which is only slightly better.

e For convenience, C+ implicit rewrites+ y asx.operator +(y).

2.12. OBJECT 1

Complex x = {3.0,52} y={-91, 74}

cout << "X:" << x.re << "4" << x.im << "i" << endl;

cout << "y:" << yre << "+" << yim << "i" << endl
Complex sum = x + v;

cout << "sum" << sum.re << "+" << sum.im << "i" << endl;

2.12.2 Constructor

e A constructor is a special member useditoplicitly perform initialization after object allo-
cation to ensure the object is valid before use.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
... Il other members

2
e Constructor name is overloaded with the type name of thetsire.,

e Constructor without parameters is thefault constructor, for initializing a new object to a
default value.

Complex x; x.Complex();
Complex »y = new Complex;
y->Complex();

Complex X; implicitly
Complex xy = new Complex; rewritten as

e Unlike Java, C+ does not initialize all object members tfadk values.
e Constructor is responsible for initializing memberd initialized via other constructors

e Because a constructor is a routine, arbitrary executiorbegrerformed (e.g., loops, routine
calls, etc.) to perform initialization.

e A constructor may have parameters but no return type (noteie).

e Never put parenthesis to invoke default constructor for kd@eclarations.

Complex x(); /I routine with no parameters and returning a complex

e Once a constructor is specified, structure initializatios disallowed:

Complex x = { 3.2 }; /I disallowed
Complex y = { 3.2, 45 }; /I disallowed

e Replaced using overloaded constructors with parameters:

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; }
Complex(double r) {re =r;im =0, }
Complex(double r, double i) {re=r, im=1i}

78 CHAPTER 2. C++

e Unlike Java, constructor argument(s) can be specdits a variable for local declarations:

imolicitl Complex x; x.Complex();
Complex x, y(1.0), z(6.1, 7.2); implicitly Complex y; y.Complex(1.0);
rewritten as Complex z; z.Complex(6.1, 7.2);

(see declaring stream files in Sectid, p.56)

e Dynamic allocation is same as Java:

Complex »x = new Complex(); // parenthesis optional

Complex »y = new Complex(1.0);

Complex »z = new Complex(6.1, 7.2);

¢ If only non-default constructors are specified, an objectrozot be declared without an
initialization value:

struct Foo {
Foo(int i) {...}

%
Foo x; /I disallowed!!!
Foo x(1); /I allowed

Must create a default constructor to allow first declaration

e Unlike Java, constructor cannot be called explicitly attsth another constructor, so con-
structor reuse done through a separate member:

| Java | CH |
class Foo { struct Foo {
int i, j; int i, j;
void common(int p){i=p;j=1;}
Foo() { this(2); } /I explicit call Foo() { common(2); }
Foo(int p){i=p;j=1;1} Foo(int p) { common(p); }
} 2

2.12.2.1 Constant

e Constructors can be used to create object constantsgiikeype-constructor constants in
Section2.4.1, p.41):

Complex x, vy, z;

X = Complex(3.2); /I complex constant with value 3.2+0.0i

y = x + Complex(1.3, 7.2); /I complex constant with value 1.3+7.2i

z = Complex(2); // 2 widened to 2.0, complex constant with value 2.0+0.0i

e Previous operator for Complex (see pag&6) is changed because type-constructor constants
are disallowed for a type with constructors:

Complex operator +(Complex ¢) {
return Complex(re + c.re, im + c.im); // create new complex value
}

2.12. OBJECT 79

2.12.2.2 Conversion

e Constructors are implicitly used for conversions (seeiSe@.4.1, p.41):

int i

double d;

Complex x, v;

X = 3.2; X = Complex(3.2);

y =x + 1.3; implicitly y = X.operator +(Complex(1.3));

y = X + i rewritten as y = x.operator +(Complex((double)i);
y = X + d; y = X.operator +(Complex(d));

e Allows built-in constants and types to interact with usefided types.

¢ Note, two implicit conversions are performed on varialilex + i: int to double and then
double to Complex.

e Implicit constructor conversion is turned off with qualifexplicit :
struct Complex {

élx.plicit Complex(double r) {re =r; im = 0.; } // turn off
. /I implict conversion

¥
e However, this capability fails for commutative binary ogiers.

e 1.3 + x, fails because itis rewritten &k.3).operator +(x), but membedouble operator +(Complex)
does not exist in built-in typdouble .

e Solution, move operator out of the object type and made into a routine, which can aéso b
called in infixed form (see Sectich11.3 p.72):
struct Complex { ... }; // same as before, except operator + removed

Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}

Xty . - operator +(X, y)

1.3 + Xx; 'mp“_c'tly operator +(Complex(1.3), x)
X + 1.3; rewritten as operator +(x, Complex(1.3))

e Compiler first checks for an appropriate operator in objgoet and if found, applies con-
versions only on the second operand.

e If no appropriate operator in object type, the compiler &sdor an appropriate routine (it
is ambiguous to have both), and if found, applies applicabierersions ttoth operands.

¢ In general, commutative binary operators should be wriggmoutines to allow implicit
conversion on both operands.

80 CHAPTER 2. C++

e |/O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &o0s, Complex ¢) {

}

return os << c.re << "+" << cim << "i";
cout << "x:'

<< x; [l rewritten as: <<(cout.operator<<(“x:"), X)

e Standard C+ convention for I/O operators to take and redustream reference to allow
cascading stream operations.

e << operator in objectout is used to first print string value, then overloaded routineo
print the complex variablg.

e Why write as a routine versus a member?

2.12.3 Random Numbers

e Random numbers are values generated independently, i.e., new values tddepend on
previous values (independent trials).

e E.g., lottery numbers, suit/value of shuffled cards, valueked dice, coin flipping.

e While programmers spend most of their time ensuring contpusdues are not random,
random values are useful:

o online gambling, computer simulation, cryptography, catep graphics, etc.
e A random-number generatoris an algorithm that computes independent values.

¢ If the algorithm uses deterministic computation, it getespseudo random-numbersver-
sus “true” random numbers, as output is predictable.

e All pseudo random-number generatos (PRNG) involve some technique for scrambles the
bits of a value, e.g., multiplicative recurrence:

seed_ = 36969 x (seed & 65535) + (seed_ >> 16); // scramble bits

e Multiplication of large values adds new least-significaits nd drops most-significant bits.

bits 63-32| bits 31-0
0 3e8e36

5f | 718c25el

ad3e | 7b5f 1dbe
bc3b | ac69ff 19
1070f | 2d258dc6

e By dropping bits 63-32, bits 31-0 become scrambled afteln eadtiply.

2.12. OBJECT 81

e E.g., generate fixed sequence of LARGE random values that repeats affev@lues (but
might repeat earlier}:

class PRNG {
uint32_t seed_; /I results on 32/64-bit architectures
public :

PRNG(uint32_t s = 362436069) {
seed =s; /| set seed

void seed(uint32_t s) { Il reset seed
seed = s; /I set seed

}

uint32_t operator ()() { /I [O,UINT_MAX]

seed_ = 36969 « (seed_ & 65535) + (seed_ >> 16); // scramble bits
return seed_;

}

uint32_t operator ()(uint32_t u) { /I [0,u]
return operator ()() % (u + 1);

}

uint32_t operator ()(uint32_t I, uint32_t u) { 1l Tl,u]
return operator ()(u - 1) + [;

}

|

e Creating a member with the function-call operator nagnéfunctor) allows these objects to
behave like a routine.

PRNG prng;
prng(); /I [O,UINT_MAX]
prng(5); /1'[0,9]

prng(5, 10); // [5,10]

e Large values are scaled using modulus; e.g., generate d®rmmanumber between 5-21.:

PRNG prng;

for (inti=0;i<10;i+=1){
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endl;
cout << prng(5, 21) << endl;

}

e By initializing PRNG with a different “seed” each time the program is run, the getesl
sequence is different:

PRNG prng(getpid()); /I process id of program
prng.seed(getpid());

2.12.4 Copy Constructor / Assignment

e There are multiple contexts where an object is copied.

“http: // ww. bobwheel er. com stat i stics/ Passwor d/ Marsagl i aPost . t xt

http://www.bobwheeler.com/statistics/Password/MarsagliaPost.txt

CHAPTER 2. C++

1. declaration initialization@bjType obj2 = obj1)
2. routine call (argument- parameter)
3. assignmentopj2 = objl)

Cases 1 & 2 involve a newly allocated object with undefinediesl(unless a member has a
constructor).

Case 3 involves an existing object that may contain prelWamnputed values.
C+ differentiates between these situations: initialmaand assignment.

Constructor with aconst reference parameter is used for initialization (declaretiand
parameters), called trepy constructor.

Complex(const Complex &c) { ... }

Declaration initialization:
Complex y = x implicitly rewritten as Complex y; y.Complex(x);
o “="1is misleading as copy constructor is called not assignropatator.
o value on the right-hand side of™is argument to copy constructor.

Parameter initialization:

Complex rtn(Complex a, Complex b);
Complex x, v;

rm(x, y)

o call results in the following implicit action intn:

Complex rtn(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with arguments

If a copy constructor is not defined, an implicit one is getestahat does ahallow copy
(bit-wise copy), i.e., copies the object including pointers.

Assignment routine is used for assignment:

Complex &operator =(const Complex &c) { ... }
o value on the right-hand side of™is argument to assignment operator.
o usually most efficient to use reference for parameter andrréype.

If an assignment operator is not defined, an implicit one isegated that does a shallow
copy.

When an object type contains pointers, it is often necedsap adeep copy i.e, copy the
contents of the pointed-to storage rather than the poi(gessalso Sectiod.16 p.91).

2.12. OBJECT

ObjType obj2 = obj1

~| shallow copy

/ A

3 deepcopy | 3

initialize

2.12.5 Initialize const /Object Member

e C/CHconst members and local objects of a structure must be initialeteclaration:

Ideal (Java-like)

Ihs = rhs
~_shallow copy
/ /
X7 | deepcopy| 7

assignment

Structure

struct Bar {
Bar(int i) {..}
/I no default constructor
} bar(3);
struct Foo {
const int i =3;
Bar « const p = &bar;
Bar &rp = bar;
Bar b(7);
P X

struct Bar {

Bar(int i) {...}
/I no default constructor

} bar(3);
struct Foo {

const int i
Bar x const p;
Bar &rp;

Bar b;

} x = {3, &bar, bar, 7 };

e Left: not allowed because fields cannot be directly initied.

¢ Right: not allowed because cannot supply argumehtusing this syntax.

e Try using a constructor:

Constructor/assignment

Constructor/initialize

struct Foo {

const int i

Bar « const p;

Bar &rp;

Bar b;

Foo() {
i=3; /| after declaration
p = &bar;
rp = bar;

b(7); /l not a statement

J»

struct Foo {

h

const int i
Bar « const p;
Bar &rp;
Bar b;
Foo() : // declaration order
i(3),
p(&bar),
rp(bar),
b(7) |

e Left: not allowed becausepnst has to be initialized at point of declaration.

¢ Right: special syntax to indicate initialized at point ottiration.

e Ensuresonst /object members are initialized before used in construmboly.

83

84 CHAPTER 2. C++

e Must be initialized in declaration order to prevent use bedanitialization.

e Syntax may also be used to initialize any local members:

struct Foo {

int k

Foo() : ..., k(14) { /I initialize k
k =14 /I or assign k

}

2.12.6 Destructor

e A destructor (finalize in Java) is a special member used to perform uninitializegitobject

deallocation:
| Java | C+ |
class Foo { struct Foo {
finalize() { ... } ~Foo() { ... } /I destructor
} %

e An object type has one destructor; its name is the charactdoliowed by the type name
(like a constructor).

e A destructor has no parameters nor return type (not ewvier):

e A destructor is only necessary if an object depends/change&nvironment e.g., open-
ing/closing files, allocating/freeing dynamically alloed storage, etc.

e An independent object like a Complex object, requires no destructor (see Sectohg
p. 91for a version ofComplex requiring a destructor).

e A destructor is invoketbefore an object is deallocated, either implicitly at the end ofachl
or explicitly by adelete :

{ { /I allocate local storage
Foo x, y(x); Foo x, y; X.Foo(); y.Foo(x);
Foo xz = new Foo; Foo xz = new Foo; z->Foo();
= implicitly e

&/I.;Foo(); x.~Foo();
} } /I deallocate local storage

e For local variables in a blocldestructors must be called in reverse order to constructors

because of dependencgesg.,y depends on.

2.13. TYPE NESTING 85

e A destructor is more common in C+ than a finalize in Java dubadack of garbage col-
lection in C+.

e If an object type performs dynamic storage allocation, itdependent and needs a destruc-
tor to free the storage:

struct Foo {
int «i; // think int i[]

Foo(int size) { i = new int[size]; } // dynamic allocation
~Foo() { delete []i; } /I must deallocate storage

e C+ destructor is invoked at a deterministic time (blockrteration ordelete), ensuring
prompt cleanup of the execution environment.

e Javdfinalize is invoked at a non-deterministic time during garbage ctib& ornot at all, so
cleanup of the execution environment is unknown.

2.13 Type Nesting

e Type nesting is useful for controlling visibility for typeames (see Sectich15 p. 89):

struct Foo {

enum Colour { R, G, B }; /I nested type
int g;
int r) { ...}
struct Bar { /I nested type
Colour c; /I Ok, static reference
int sO) {g=3;r0);} /I fails, dynamic reference
h
%
Foo::Colour colour = Foo::R; /I must qualify
Foo f; fg; fr();
Foo::Bar b; b.c; b.s(); /I must qualify

e References inside the nested type do not require qualditati
e However, nesting aggregate types only imply static scopingdynamic

e Hence, references sito memberg andr in Foo fail because no dynamic scope relationship
between typeBar andFoo.

e References outside the object must be qualified with typeabme":”.

e CH+ selection operator™ e.g.,Foo.Colour, cannot be used because it requires an object not
a type.

86 CHAPTER 2. C++

2.14 Declaration Before Use

e C/CH haveDeclaration Before Usg(DBU), e.g., a variable declaration must appear before
its usage in a block:

{

cout << i << endl,

int i = 4; /I declaration after usage
}
/[prints 4

e A compiler can handle some DBU situations, but there are gunais cases:
int i =3;
{

cout << i << endl; /I which i?
int i = 4;
cout << i << endl;

}
/I prints 3 4

e C always requires DBU.
e C+ requires DBU in a block and among types but not within a&typ
e Java only requires DBU in a block, but not for declarationsrimmong classes.

e DBU has a fundamental problem specifyimgitually recursive references:

void f() { // fcalls g
a(); /I g is not defined and being used

}
void g) { // g calls f
f0); /I fis defined and can be used
}
e Caution: these calls cause infinite recursion as there is nade case.

e Cannot type-check the call tpin f to ensure matching number and type of arguments and
the return value is used correctly.

¢ Interchanging the two routines does not solve the problem.

e A forward declaration introduces a routine’s type before its actual declaration:

int f(int i, double); // routine prototype: parameter names optional
/[and no routine body
int f(int i, double d) { // type repeated and checked with prototype

}

e Prototype parameter names are optional (good documemgatio

2.14. DECLARATION BEFORE USE 87

e Actual routine declaration repeats routine type, whichtmuastch prototype.

e Routine prototypes also useful for organizing routines soarce file.

void g(int i); /I forward declarations

void f(int i);

int main();

int main() { /I actual declarations, any order
f(5)
a(4);

}
void g(int i) {...}
void f(int i) {...}

e E.g., allowingmain routine to appear first, and for separate compilation (sei@e2.16
p.91).

e Like Java, CH does not (usually) require DBU within a type:

| Java | CH
/I any g must be nested in a class || void g() {} // not selected
class T { struct T {
void f() { ¢ = Colour.R; g(); } void f) {c =R; g(); } //l c, R, g not DBU
void g() { c = Colour.G; f(); } void g) {c=G;f();} // c, Gnot DBU
Colour c; enum Colour { R, G, B }; // type must be DBU
enum Colour { R, G, B }; Colour c;
h h
e Unlike Java, C+ requires a forward declaration for muguadicursive declarationsmong
types:
| Java | CH |
class T1 { struct T1 {
T2 t2; T2 t2; /| DBU failure, size?
T1() { t2 = new T2(); }
h h
class T2 { struct T2 {
T1 t1; T1 t1;
T2() { t1 = new T1(); }
h h
T1 t1 = new T1(); T1 t1;

e Caution: these types cause infinite expansion as there is asdcase.

e Java version compiles becaudé? are references not objects, and Java can look ahead at
T2; C+ version fails because DBU ar.

e An object declaration and usage requires the object’s sideneembers so storage can be
allocated, initialized, and usages type-checked.

88 CHAPTER 2. C++

e Solve using Java approach: break definition cycle usingvadiat declaration and pointer.

| Java | CH |
struct T2; /I forward
class T1 { struct T1 {
T2 t2; T2 «t2; [/ pointer, break cycle
T1() { t2 = new T2(); } T1() { t2 = new T2; } // DBU failure, size?
J# 3
class T2 { struct T2 {
T1 t1; T1 t1;
T2() {t1 = new T1(); } || &
h

e Forward declaration of2 allows the declaration of variabied::t2.
e Note, a forward declaration only introduces the name of a.typ

e Given just a type name, only pointer/reference declarattorthe type are possible, which
allocate storage for an address versus an object.

e CH+’s solution still does not work as the constructor canrsa typer2.

e Use forward declaration and syntactic trick to move memleéindion after both types are
defined

struct T2; // forward

struct T1 {
T2 «t2; [/ pointer, break cycle
T1(); /I forward declaration

3

struct T2 {
T1 t1;

¥

T1.:T1() { t2 = new T2; } // can now see type T2

e Use of qualified nam&1::T1 allows a member to be logically declaredTin but physically
located later (see Secti@lg p.91).

2.15 Abstraction/Encapsulation

e Abstraction is the separation of interface and implementation allov@ngobject’s imple-
mentation to change without affecting usage, which is dgddar reuse and maintenance.

e E.g., a user of typ€omplex should not have or need direct access its implementation to
perform operations:

struct Complex {
double re, im; // implementation data
... Il interface routine members

2.15. ABSTRACTION/ENCAPSULATION 89

e Possible to change from Cartesian to polar coordinates sedinterface remains constant.
e Developing good interfaces for objects is important.

e Encapsulationis hiding the implementation for security or financial reas@ccess con-
trol).

e Abstract data-type (ADT) is a user-defined type that practices abstraction aodgsula-
tion.

e Abstraction and encapsulation are neither essential nogrered to develop software.
e E.g., users could follow a convention of not directly acaggshe implementation.

e However, relying on users to follow conventions is dangsrou

e Encapsulation is provided by a combination of C and C+ festu

e C features work largely among source files, and are indyr¢iettl into separate compilation
(see Sectior.16 p.91).

e CH+ features work both within and among source files.

e Like Java, C+ provides 3 levels of visibility control for jelbt types:

| Java | CH

class Foo { struct Foo {
private ... private : /[within and friends
/I private members
protected ... protected : /I within, friends, inherited
/I protected members
public ... public : /I within, friends, inherited, users
/I public members

h h

e Java requires encapsulation specification for each member.

e C+ groups members with the same encapsulation, i.e., atibves after a labeprivate ,
protected or public , have that visibility.

¢ Visibility labels can occur in any order and multiple timesain object type.

e Only the object type can access the private memisersnplementation members are nor-
mally private

e Public members define an object typeiterface, i.e., what a user can access.

e While a user can see private and protected (see Sextldn9 p. 106) members, they cannot
be accessed, preventing user code from violating absiracti

e struct has an implicipublic inserted at the beginning, i.e., all members are public.

90 CHAPTER 2. C++

e class has an impliciprivate inserted at the beginning, i.e., all members are private.

struct S { class C {
/I public: /I private:
int z; int x;
private : protected :
int x; int y;
protected : public :
int y; int z;
J§ h

e Use abstraction to preclude object copying by hiding copystmictor and assignment oper-

ator:

class Foo {
Foo(const Foo &); /I undefined
Foo &operator =(Foo &); /I undefined

public :

%

Foo X, v;

rin(x); /I fails for pass by value

X =, /I fails

e Useful to prevent object forgery (lock, boarding-passene} or copying that does not make
sense (file, database).

e Encapsulation introduces a new problem for routines oetsidn object used to implement
binary operations for an object.

e An outside routine may need to access an object’s implerientebut it cannot access
private members.

e C+ provides a mechanism to state that an outside routifisead access to its implemen-
tation, calledriendship (similar to package visibility in Java).

class Complex {
friend Complex operator +(Complex a, Complex b);

5

Complex operator +(Complex a, Complex b) { ... }

e Thefriend prototype indicates a routine with the specified name and typy access this
object’s implementation:

2.16. SEPARATE COMPILATION 91

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex ¢);
double re, im;

public :

double abs() { return sqrt(re » re + im = im); }
Complex() { re = 0.; im = 0.; }
Complex(double r) { re =r; im = 0.; }
Complex(double r, double i) {re =r;, im =i }

%

Complex operator +(Complex a, Complex b) { ... }

ostream &operator <<(ostream &os, Complex ¢) { ... }

2.16 Separate Compilation
e Like Java, C/CH useource files to provide another mechanism for encapsulation.

file.java file.cc
enum Colour { R, G, B }; /I export | enum Colour { R, G, B }; // local
class C { Il export
private static int i; /I private | static int i; /I private
private static void f() {} // private | static void f() {} /I private
public static int | /[export | int j; Il export
public static void g() {} // export | void g() {} Il export
}
class D { /I export | class D { /I local
private int i /I private int i /I private
private void f() {} /I private void f(); /I private
public :
public int j; /I public int j; /I public
public void g() {} /I public void g(); /I public
} }

e Like Java, C/C+ implicitly exports variables and routirfiesn a source file.

e In C/C+, to encapsulate global variables and routines iouace file, the declaration must
be qualified withstatic .

e Unlike Java, C/C+ do NOT implicitly export types from a sogifile.
e Java implicitly looks in-.class files for exported content.

e C/CH require the use of the preprocessor (see Se2tigmp. 53) and forward declarations
(see Sectior.14 p. 86) to access exported content.

e Programmer must explicitly divided program into interfacel implementation in two (or
more) files.

e Interface is composed of the prototype declaration(s)gbssibly some implementation).

¢ Implementation is composed of actual declarations and.code

92

CHAPTER 2. C++

e Interface is entered into one or more include filedi{es), and the implementation is entered

into one or more source filex€ files).

file.java file.h—file.cc
enum Colour { R, G, B }; /I export | enum Colour { R, G, B }; // public
class C { /I export
private static int i /I private
private static void f() {} // private
public static int j; /I export | extern int j; /I public
public static void g() {} // export | extern void g(); /I public
}
class D { /I export | class D { /I public
private int i; /I private int i; /I private
private void f() {} /I private void f(); /I private
public :
public int |; /I public int j; /I public
public void g() {} /I public void g(); /I public
} }
static int i /I private
static void f() {} /I private
int j; /I public
void g() {} /I public
void D:f() {} /I private
void D:g() {} /I public

extern qualifier means the actual variable or routine definitiomcated elsewhere.
extern on routine prototypes is optional, but good documentation.

Static class-variables must be declared once (versus ddjiiea .cc file.

.h | .cC

class C {
static char c; // defn | char C::c = “a”; // decl

Encapsulation is provided by giving a user access to theidgecfile(s) and the compiled
source file(s), but not the implementation in the sourcesfjle(

Most software supplied from software vendors comes this way

E.g., Complex prototype information is placed into fileomplex.h, which users include in
their programs.

2.16. SEPARATE COMPILATION 93

#ifndef _ COMPLEX_H__

#define _ COMPLEX _H_ /I protect against multiple inclusion
#include <iostream> /I access: ostream

/I inject no names, use qualification

extern void complexStats(); /I interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);
double re, im; /I exposed implementation
public :
Complex();
Complex(double r);
Complex(double r, double i);
double abs();
3
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::.ostream &os, Complex c);
#endif // __ COMPLEX_H__

e Complex implementation information is placed in fil@mplex.cc.

#include "conpl ex. h" /I do not copy interface
#include <cmath> /I access: sqrt

using nhamespace std; /I inject names

/I global, private declarations

static int cplxObjCnt = 0; /I private, defaults to 0

/I interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
Complex::Complex() { re = 0.; im = 0.; cpIxObjCnt += 1; }
Complex::Complex(double r) {re = r; im = 0.; cplxObjCnt += 1; }
Complex::Complex(double r, double i) { re = r; im = i; cplxObjCnt += 1; }
double Complex::abs() { return sqgrt(re = re + im % im); }
complex operator +(complex a, complex b) {

return complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &os, complex ¢) {

}

return os << c.re << "+" << cim << "i

.cc file includes the.h file so that there is only one copy of the constants, declasas, and
prototype information.

cplxObjCnt is qualified withstatic to make it a private variable to this source file.

No user can access it, but each constructor implementaiomcrement it when @omplex
object is created.

Users calkomplexStats to print the number o€omplex objects created so far in a program.

Notice, all the member routines Gbmplex are separated into a forward declaration and an
implementation after the object type, allowing the implead¢ion to be placed in thec file
(see Sectiorz.14 p. 86).

CHAPTER 2. C++

e Note, by reading then file, it may be possible to determine the implementation regle
used, so there is only partial encapsulation.

e To provide complete encapsulation requires abstract tyd€more expensive) references:

#ifndef __ COMPLEX_H_

#define = COMPLEX H_ /I protect against multiple inclusion
#include <iostream> /| access: ostream

/[inject no names, use qualification

extern void complexStats(); /I interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);

struct Compleximpl; /I hidden implementation, nested class
Compleximpl &impl; /I indirection to implementation

public :
Complex();

Complex(double r);
Complex(double r, double i);
~Complex();
Complex(const Complex &c); /I copy constructor
Complex &operator=(const Complex &c); /I assignment operator
double abs();
¥
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::ostream &os, Complex c);
#endif // __ COMPLEX_H_

#include "conpl ex. h" /I do not copy interface
#include <cmath> /I access: sqrt

using namespace std; /I inject names

/I global, private declarations

static int cplxObjCnt = 0; /I private, defaults to 0

struct Complex::Compleximpl { // actual implementation, nested class
double re, im;
¥

/I interface declarations

void complexStats() { cout << cplxObjCnt << endl; }

Complex::Complex() : impl(xnew Compleximpl) {
impl.re = 0.; impl.im = 0.; cplxObjCnt += 1;

}

Complex::Complex(double r) : impl(xnew Compleximpl) {
impl.re = r; impl.im = 0.; cplxObjCnt += 1;
}

Complex::Complex(double r, double i) : impl(xnew Compleximpl) {
impl.re = r; impl.im = i; cplxObjCnt += 1;
}

Complex::~Complex() { delete &impl; }

Complex::Complex(const Complex &c) : impl(xnew Compleximpl) {
impl.re = c.impl.re; impl.im = c.impl.im; cplxObjCnt += 1,

}

2.16. SEPARATE COMPILATION 95

Complex &Complex::operator =(const Complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return =xthis;
}

double Complex::abs() {
return sqrt(impl.re = impl.re + impl.im = impl.im);
}

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.implLim);
}

ostream &operator <<(ostream &os, Complex c) {

}

return os << c.impl.re << "+" << c.implim << "i";

A copy constructor and assignment operator must be usedigfec@mplex objects now
contain a reference pointer to the implementation.

e E.g., copying the reference pointer can result in two complgects pointing at the same
complex value and both may eventually attempt to deleteanngting pointer).

e As well, overwriting a reference pointer may lose the onlynger to the storage so it can
never be freed (memory leak).

e An encapsulated object is compiled using the&eempilation flag and subsequently linked
with other compiled source files to form a program:

g++ -c complex.cc

¢ Creates fileomplex.o containing a compiled version of the source code.

e To use an encapsulated object, a program specifies the agcexssude file(s) to access the
object’s interface:

#include "conpl ex. h"
#include <iostream>
using namespace std;
int main() {
Complex x, vy, z;
x = Complex(3.2);
y = X + Complex(1.3, 7.2);
z = Complex(2);

cout << "X:" << x << " yi" <<y <<" 71" << z << end;

}

e Then links with any necessary executables:

g++ usecomplex.cc complex.o # other .o files if necessary

e Notice, iostream is included twice, once in this program and oncecamplex.h, which is
why each include file needs to prevent multiple inclusions.

96 CHAPTER 2. C++

2.17 Inheritance

¢ Objectorientedlanguages providmheritance for writing general, reusable program com-
ponents.

| Java | CH |

class Base { ...} struct Base { ...}
class Derived extends Base { ... } || struct Derived : public Base { ... };

¢ Inheritance has two orthogonal sharing concepts: impléatien and type.

2.17.1 Implementation Inheritance

e Implementation inheritance reuses program component®imposing a new object’s im-
plementation from an existing object, taking advantagee¥ipusly written and tested code.

e Substantially reduces the time to compose and debug a nestdppe.

e One way to understand this technique is to model it via eipiiclusion:

| Inclusion | Inheritance
struct Base { struct Base {
int i; int i
int r(..){...} int r(...){...}
Base() { ... } Base() { ...}
h %
struct Derived { struct Derived : public Base { // implicit inclusion

Base b; // explicit inclusion
int s(...){bi=3;br.); ...} int s(...){i=3;r..); ...}
-}

Derived() { ... } Derived() { ..
}d; }d;
d.b.i = 3; /I inclusion reference d.i = 3; /I direct reference
d.b.r(...); /] inclusion reference d.r(...); // direct reference
d.s(...); // direct reference d.s(...); // direct reference

¢ Inclusion implies explicitly creating an object membegrio aid in the implementation.
e Object typeDerived inherits fromBase type via ‘public Base” clause.

e Inheritance implicitly:

o creates an anonymous object member

o opensthe scope of anonymous member so its members are accesghmetvgualifi-
cation, both inside and outside the inheriting object type.

2.17. INHERITANCE 97

e Constructors and destructors must be invoked for all intplideclared objects in the inher-
itance hierarchy as done for an explicit member in the inctus
Base b; b.Base(); / implicit, hidden declaration
Derived d; implicitly Derived d; d.Derived();

rewritten as _ _
d.~Derived(); b.~Base(); // reverse order of construction

¢ If base type has members with the same name as derived typerks like nested blocks:
inner-scope name hides (overrides) outer-scope name ¢stiers2.3.3 p. 26).

e Still possible to access outer-scope names usihigualification (see SectioR.12 p.75) to
specify the particular nesting level.

| Java | C+ |
class Basel { struct Basel {
int i int i
} h
class Base2 extends Basel { struct Base2 : public Basel {
int i; int i /I hides Basel::i
} %
class Derived extends Base2 { struct Derived : public Base2 {
int i int i /I hides Base2:i
void s() { void r() {
int i = 3; int i = 3; /I hides Derived::i
this.i = 3; Derived::i = 3; // this.i
((Base2)this).i = 3; /I super.i Base2::i = 3;
((Basel)this).i = 3; Base2::Basel::i = 3;
} }
} h

e E.g., Derived declaration first create an invisibEase object in theDerived object, like
inclusion, for the implicit references ®ase::i andBase::r in Derived::s.

e Friendship is not inherited.

class C {
friend class Base;

%
class Base {
/I access C’s private members

%

class Derived : public Base {
/I not friend of C

%

e Unfortunately, having to inherit all of the members is navays desirable; some members
may be inappropriate for the new type (e.g, large array).

98

CHAPTER 2. C++

As a result, both the inherited and inheriting object musvée similar to have so much
common code.

In general, routines provide smaller units for reuse thdimeeabjects.

2.17.2 Type Inheritance

Type inheritance extends name equivalence (see Se2in p. 31) to allow routines to
handle multiple types, callegblymorphism, e.g.:

struct Foo { struct Bar {
int i int i
double d; double d;
}H; bb

void r(Foo f) { ...}
r(f); // valid call
r(b); /I should also work

Since typegoo andBar are identical, instances of either type should work as asgusto
routiner.

Even if typeBar has more members at the end, routirmaly accesses the common ones at
the beginning as its parameter is tyfm.

However, name equivalence precludes the atl) even thougtb is structurally identical
tof.

Type inheritance relaxes name equivalence by aliasing tleeided name with its base-type
names.

struct Foo { struct Bar : public Foo { // inheritance
int i /I remove Foo members
double d;

3 }b;

void r(Foo f) { ...}
r(f); // valid call, derived name matches
r(b); // valid call because of inheritance, base name matches

E.g., create a new typdycomplex that counts the number of timess is called for each
Mycomplex object.

Use both implementation and type inheritance to simplifydaag type Mycomplex:

2.17. INHERITANCE 99

struct Mycomplex : public Complex {
int cntCalls; /I add
Mycomplex() : cntCalls(0) {} /I add

double abs() { // override, reuse complex’s abs routine
cntCalls += 1;
return Complex::abs();

int calls() { return cntCalls; } /I add

e Derived typeMycomplex uses the implementation of the base t@enplex, adds new mem-
bers, and overridesbs to count each call.

e Why is the qualificatiorComplex:: necessary itMycomplex::abs?

e Allows reuse ofComplex’s addition and output operation ftdycomplex values, because of
the relaxed name equivalence provided by type inheritaatveden argument and parameter.

e Now variables of type&Complex are redeclared tblycomplex, and membecalls returns the
current number of calls tabs for any Mycomplex object.

e Implementation inheritance provides reusgeide an object type; type inheritance provides
reuseoutsidethe object type by allowing existing code to access the base t

e |l.e, any routine that manipulates the base type also matgsithe derived type.
e Two significant problems with type inheritance.

1. o Complex routineoperator + is used to add th#&ycomplex values because of the
relaxed name equivalence provided by type inheritance:

int main() {
Mycomplex X;
X = X + X;

}

o However, the result type fromperator + is Complex, not Mycomplex.

o Assignment of acomplex (base type) taMycomplex (derived type) fails because
the Complex value is missing thentCalls member!

o Hence, aMycomplex can mimic aComplex but not vice versa.

o This fundamental problem of type inheritance is caltedtra-variance.

o CH provides various solutions, all of which have problemd are beyond this
course.

2. void r(Complex &c) { c.abs(); }
int main() {
Mycomplex X;
x.abs(); /I direct call of abs
r(X); /I indirect call of abs
cout << "Xx:" << x.calls() << endl;

100 CHAPTER 2. C++

o While there are two calls tabs on objectx, only one is counted! (see Sec-
tion 2.17.7 p.103

e public inheritance means both implementation and type inhemanc

e private inheritance means only implementation inheritance.
class bus : private car { ...

Use implementation fromar, butbus is not acar.

e No direct mechanism in C+ for type inheritance without iexpentation inheritance.

2.17.3 Constructor/Destructor

e Constructors aremplicitly executed top-down, from base to most derived type.

e Mandated by scope rules, which allow a derived-type congiruo use a base type’s vari-
ables so the base type must be initialized first.

e Destructors aremplicitly executed bottom-up, from most derived to base type.

e Order is mandated by the scope rules, which allow a deriypd-tlestructor to use a base
type’s variables so the base type must be uninitialized last

e Javafinalize must beexplicitly called from derived to base type.

e Unlike Java, C+ disallows calls to other constructors atdtart of a constructor (see Sec-
tion2.12.5 p.83).

e To pass arguments to other constructors, use the same sgtaxinitializingconst mem-

bers.
| Java | CH+ |

class Base { struct Base {
Base(inti){...} Base(int i) {...}

¥ 3

class Derived extends Base { struct Derived : public Base {
Derived() { super(3); ... } Derived() : Base(3) { ...}
Derived(int i) { super(i); ...} Derived(int i) : Base(i) {...}

} I

2.17.4 Overloading

¢ Overloading a member routine in a derived class hides alleaded routines in the base
class with the same name.

2.17. INHERITANCE 101

class Base {
public :
void mem(int i) {}
void mem(char ¢) {}

%
class Derived : public Base {
public :
void mem() {} // hides both versions of mem in base class
3

e Hidden base-class members can still be accessed:

o Selectively provide explicit s for each hidden one.

class Derived : public Base {
public :
void mem() {}
void mem(int i) { Base:mem(i); }
void mem(char ¢) { Base:mem(c); }

o Collectively provide implicit members for all of them.

class Derived : public Base {
public :
void mem() {}
using Base::mem; // bring all base mem routines into this interface

|

o Use explicit qualification to call members (violates abdicn).
Derived d;
d.Base::mem(3);

d.Base:mem(‘a”);
d.mem();

2.17.5 Abstract Class

e Abstract classcombines type and implementation inheritance for strumgunew types.

CHAPTER 2. C++

| Java

CH |

abstract class Shape {
private int colour;

public abstract void move(int x, inty);

}

abstract class Polygon extends Shape {
private int edges;

public abstract int sides();

}

class Rectangle extends Polygon {
private int x1, y1, x2, y2;

public void move(int x, int y) {...}
public int sides() { return 4; }

}

class Square extends Rectangle {

public void move(int x, int y) {...}

class Shape {

int colour;
public :
virtual void move(int x, inty) = 0;
2
class Polygon : public Shape {
int edges;
public :
virtual int sides() = O;
3

class Rectangle : public Polygon {
int x1, y1, x2, y2;
public :
void move(int x, int y) {...}
int sides() { return 4; }

c’Iass Square : public Rectangle {
public :
void move(int x, int y) {...}
¥

e Strange initialization to 0 means this memberst be defined by any derived type.

e Cannot instantiate objects from an abstract class, but caettiare pointer/reference to it.

2.17.6 Multiple Inheritance

e Multiple inheritance allows a new type to apply type and implementation inheciéamul-
tiple times.

class X : public Y, public Z, private P, private Q { ...}

e X type is aliased to typeg andz with implementation, and also uses implementation from
P andQ.

e Interface class(pure abstract-clas9 provides only types and constants, providing type
inheritance.

e Java only allows multiple inheritance for interface class.

2.17. INHERITANCE

103

| Java

H Cr |

interface Polygon {

public int sides();
public void move(int x, int y);

}

interface Rectilinear {
final public int angle = 90;

}

class Rectangle implements Rectilinear,

Polygon {

private int x1, y1, x2, y2;
public void move(int x, int y) {}
public int sides() { return 4; }

}

class Square extends Rectangle {

public void move(int x, int y) {}

class Polygon {
public :
virtual int sides() = O;
virtual void move(int x, int y) = 0;
h
class Rectilinear {
public :
enum { angle = 90 };
h
class Rectangle : public Polygon,
public Rectilinear {
int x1, y1, x2, y2;
public :
void move(int x, int y) {}
int sides() { return 4; }

c’Iass Square : public Rectangle {
public :
void move(int x, int y) {}
¥

e Restrict multiple inheritance to ongublic type and one or tw@rivate types.

2.17.7 Virtual Routine

e When a member is called, it is usually obvious which one isked even with overriding:

struct Base {

void r() { ...}

s’truct Derived : public Base {
void r() { ...}

%

Base b;

b.r(); /I call Base::r

Derived d;

d.r(); /I call Derived::r

/I override Base::r

e However, it is not obvious for arguments/parameters andtprs/references:

void s(Base &b) { b.r(); }
s(d);
Base &bp = d;
bp.r();

/I inheritance allows call: Base::r or Derived::r ?
/I assignment allowed because of inheritance
/I Base::r or Derived::r ?

¢ Inheritance masks the actual object type, but both callsildhiovoke Derived::r because
argumenb and referencép point at an object of typPerived.

o If variabled is replaced wittb, the calls should invokBase::r.

104

CHAPTER 2. C++

To invoke the routine defined in the referenced object, fudiie member routine with

virtual.

To invoke the routine defined by the type of the pointer/mfiee, do not qualify the member

routine withvirtual.

C+ uses non-virtual as the default because it is more dfficie

Javaalwaysuses virtual for all calls to objects.

Once a base type qualifies a member as virttiad, virtual in all derived types regardless
of the derived type’s qualification for that member

Programmer may want to access membeBage even if the actual object is of tyerived,
which is possible becaus®rived contains a Base.

C+ provides mechanism to override the default at the dall si

| Java

CH

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual
}
class Derived extends Base {
public void g() {} // virtual
public void h() {} // virtual

}

final Base bp = new Derived();
bp.f(); /I Base.f
((Base)bp).g(); /I Derived.g
bp.g(); /I Derived.g
((Base)bp).h(); /I Derived.h
bp.h(); /I Derived.h

struct Base {

void f() {} /I non-virtual
void g() {} /[non-virtual
virtual void h() {} // virtual

¥

struct Derived : public Base {
void g() {} /I non-virtual
void h() {}; /I virtual

h

Base &bp = xnew Derived(); // polymorphic assignment
bp.f(); /I Base::f, pointer type

bp.g(); /| Base:.g, pointer type

((Derived &)bp).g(); /I Derived::g, pointer type
bp.Base::h(); /I Base::h, explicit selection

bp.h(); /I Derived::h, object type

Java casting does not provide access to base-type’s memligres.

Virtual members are only necessary to access derived memthgough a base-type refer-

ence or pointer.

If a type is not involved in inheritancdifal class in Java), virtual members are unnecessary
so use more efficient call to its members.

C+ virtual members are qualified in the base type as oppaosibe tderived type.

Hence, C+ requires the base-type definer to presuppose éved definers might want

the call default to work.

2.17. INHERITANCE 105

Good programming practice for inheritable object types @ iihake all routine members
virtual.

Any type with virtual members and a destructor needs to mia&eléstructor virtual so the
most derived destructor is called through a base-type @dieterence.

Virtual routines are normally implemented by routine pemt(see SectioRd.11.4 p. 73).

class Base {
int x,vy; /I data members
virtual void m1(...); /I routine members
virtual void ma2(...);

J»

May be implemented in a number of ways:

X X X
y VRT
ml — 1= ml — 1 ml
m2 — T m2 — 1= m2
copy direct routine pointer indirect routine pointer

2.17.8 Down Cast
e Type inheritance can mask the actual type of an object thraygpinter/reference (see Sec-
tion2.17.2 p. 98).

e Like Java, C+ provides a mechanism to dynamically detegrttie actual type of an object
pointed to by a polymorphic pointer/reference.

e The Java operatamstanceof and the C+ operatatynamic_cast perform a dynamic check
of the object addressed by a pointer/reference (not ca®tcio

| Java | C+ |
Base bp = new Derived(); Base sbp = new Derived;
Derived «dp;
if (bp instanceof Derived) || dp = dynamic_cast <Derived »>(bp);
((Derived)bp).rtn(); if (dp!=0){// 0 =>not Derived
dp->rtn(); // only in Derived

e To usedynamic_cast on a type, the type must have at least one virtual member.

106

CHAPTER 2. C++

2.17.9 Abstraction

¢ Inherited object types can access and modify public anaépted members allowing access

to some of an object’s implementation.

class Base {
private :
int x;

protected :
int y;
public :
int z;

c’Iass Derived : public Base {
public :
Derived() { x; v; z; }; /'y and z allowed

int main() {

Derived d;

d.x; dy; d.z; /I z allowed
}

2.18 Template

e Inheritance provides reuse for types organized into a tdbyathat extends name equiva-

lence.
Alternate kind of reuse with no type hierarchy and types ateequivalent.

E.g., overloading (see Secti@rl 1.3 p. 72), where there is identical code but different types:

int abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }

Template routine eliminates duplicate code by using tygeapile-time parameters:

template <typename T> T abs(T val) { return val >= 0 ? val : -val; }

template introduces type paramet&msed to declare return and parameter types.

At a call, compiler infers typ& from argument(s), and constructs a specialized routinie wit
inferred type(s):

cout << abs(1) << << abs(-1)<<end; // T->int
cout << abs(1.1) << " " << abs(-1.1) << endl; // T -> double

Template type prevents duplicating code that manipulatéesent types.

E.g., collection data-structures (e.g., stack), have comoode to manipulate data structure,
but type stored in collection varies:

2.18. TEMPLATE 107

template <typename T, int N = 10> struct Stack {
T elems[N]; // maximum N elements
int size;
Stack() { size = 0; }
void push(T e) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems][size]; }

h

e Type parametefl, declares the element type of ardgms, and return and parameter types

of the member routines.
Integer parametel, denotes the maximum stack size.

For template types, the compiler cannot infer the type patamso it must be explicitly
specified:

Stack<int, 20> si; /I stack of int
Stack<double > sd; /I stack of double
Stack< Stack<int> > ssi; /I stack of stack of int
si.push(3);

sd.push(3.0);
ssi.push(si);

int i = si.pop();
double d = sd.pop();
si = ssi.pop();

There must be a space between the two ending chevrons-as parsed asperator>> .

Compiler requires a template definition for each usage solbtite interface and imple-
mentation of a template must be in & file, precluding some forms of encapsulation.

2.18.1 Standard Library

C+ Standard Library provides different kinds of contageector, map, list, stack, queue,
deque.

In general, nodes are either copied into the container atpoito from the container.

Copying implies node type must have default and/or copy tcoc®r so instances can be
created without having to know constructor arguments.

Standard library containers use copying and requires nodgé to have a default con-
structor.

Most containers use aterator to traverse its nodes so knowledge about container imple-
mented is hidden (see Sectiarl5 p. 89).

Iterator capabilities depend on container, e.g., a sifigked list has unidirectional traversal,
doubly-linked list has bidirectional traversal, etc.

108 CHAPTER 2. C++

e Containers provides iterator(s) as a nested object typeSsetior2.13 p.85), e.g. list<Node>
haslist<Node>::iterator.

e lterator operator++” moves forward to the next node, unpibissedhe end of the container.

e For bidirectional iterators, operator “--” moves in theeese direction to++".

2.18.1.1 Vector

e Like Java arrayyector has random access, length, subscript checkitjg&nd assignment;
vector also has dynamic sizing.

std::vector<T>
vector() create empty vector
vector(int n) create vector with n empty elements
int size() vector size
bool empty() size() ==
T operator [](int i) access ith element, NO subscript checking
T at(int i) access ith element, subscript checking
vector &operator =(const vector &) | vector assignment
void push_back(const T &x) add x after last element
void pop_back() remove last element
void resize(int n) add or erase elements at end so size() 3=n
void clear() erase all elements

e vector is alternative to C/C+ arrays (see SectihB.7.3 p. 37).

#include <vector>

int i, elem;
vector<int> v; /I think: int v[0]
for (;;) {
cin >> elem;
if (cin.fail()) break;
v.push_back(elem); /I add elem to vector
}
vector<int> c; /I think: int c[0]
cC =V /I array assignment
for (i=csize() -1, 0<=1i;i-=1){
cout << c.at(i) << " "; /I subscript checking
}
cout << endl;
v.clear(); /I remove ALL elements

e Dynamic sizing impliesector’s elements are allocated on the heap.
¢ \ector declaratioomay specify an initial size, e.gvector<int> v(size), like a dimension.

e To reduce dynamic allocation, it is more efficient to dimensiwhen the size is known.

2.18. TEMPLATE 109

int size;
cin >> size; /I read dimension
vector<int> v(size); /I think int v[size]

e Matrix declaration is a vector of vectors:

vector< vector<int> > m;

e Again, it is more efficient to dimension, when size is known.

#include <vector>
vector< vector<int> > m(5); // 5 rows
for (int r=0;r<msize(); r+=1){

m[r].resize(4); /I 4 columns per row
for (int ¢ =0; ¢c < mr].size(); c += 1) {
m[r][c] = r+c; /I or m.at(r).at(c)

}
for (int r=0;r<msize(); r +=1){
for (int ¢ =0; ¢c < mr].size(); c += 1) {

}

cout << mir][c] << °, *;
cout << endl;

Cannot specify number of columns at declaration, so eachgaero sized.

Before values can be assigned into a row, a row can be dinreetsito a specific size,
m[r].resize(4).

All loop bounds are controlled using dynamic size of the rowaumn.

Iterator is necessary for management operations (verstagiitg using subscripting).

std::vector<T>:.iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) | insert X before posn
iterator erase(iterator posn) erase element at posn

begin() end()

@ @

o1 2 3a4f
rend() rbegin()

110 CHAPTER 2. C++

e erase andinsert should take subscript so iterator is unnecessary!

e lterator returns a pointer to an element.

vector<int> v;
for (int i=0;i<5;i+=1)/ create
v.push_back(2 = i); /l values: 0O, 2, 4, 6, 8

v.erase(v.begin() + 3); /I remove V[3] : 6

/I find position of value 4 using iterator (versus subscript)
vector<int >::iterator f;

for (f = v.begin(); f I= viend() && «f 1= 4; f ++);

v.insert(f, 33); /I insert before position with value 4

/I print reverse order using iterator (versus subscript)
vector<int >::reverse_iterator r;
for (r = v.rbegin(); r !'= virend(); r ++)

cout << sr << endl;

e Cannot insert or erase during iteration using an iterator.

2.18.1.2 Map
e map (dictionary) has random access, sorted, unique-key auartaf pairs Key, Val).

std::map<Key,Val> / std::pair<Key,Val>
map() create empty map
int size() map size
bool empty() size() ==
T operator [](int i) access ith element
int count(Key key) 0 = no key, 1= key
map &operator =(const map &) | map assignment
insert(pair<key,val>(k, v)) insert pair
erase(Key k) erase key k
void clear() erase all elements

e First subscript for key creates an entry and initializes diéfault or specified value.

map<string, int> m, c; /l Key => string, Val => int
m['red"]; Il create, set to O for int
m['green"] = 1; /I create, set to 1

m[" bl ue"] = 2; Il create, set to 2
m['green"] = 5; Il overwrite 1 with 5

cout << m["'green"] << endl;

c=m; /I map assignment

m.insert(pair<string,int>("yel | ow', 3)); // m[“yellow”] = 3
if (m.count("bl ack")) Il check for key “black”
m.erase(" bl ue"); Il erase pair(“blue”, 2)
m.clear(); /I remove ALL elements

2.18. TEMPLATE 111

e Iterator to search and return values in key order.

std::map<T>::iterator / std::map<T>:reverse_iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator find(Key &k) find position of key k
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase element at posn

e lterator returns a pointer to an elemeatr, with fieldsfirst (key) andsecond (value).

#include <map>
map<string,int >::iterator f = m.find("green"); // find key position
if (f!=m.end()) /l found ?

cout << "found " << f->first << ”’ << f->second << endl;

for (f = m.begin(); f '= m.end(); f ++) /I increasing order
cout << f->first << 7/ << f->second << endl:

map<string,int>::reverse_iterator r;
for (r = m.rbegin(); r '= m.rend(); r ++) /I decreasing order

cout << r->first <<’/ << r->second << endl;

2.18.1.3 Single/Double Linked

e If random access is not required, use more efficient singéeKsjueue/deque) or double
(list) linked-list container.

e Examinelist, stack/queue/deque are simpler.

std::list<T>
list() create empty list
list(int n) create list with n empty elements
int size() list size
bool empty() size() ==
list &operator =(const list &) | list assignment
T front() first element
T back() last element

void push_front(const T &x) | add x before first element
void push_back(const T &x) | add x after last element

void pop_front() remove first element
void pop_back() remove last element
void clear() erase all elements

e Iterator returns a pointer to a node.

112 CHAPTER 2. C++

std::list<T>::iterator / std::list<T>::reverse_iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase element at posn

#include <list>
struct Node {
char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

3
list<Node> dl; /I doubly linked list
for (int i =0;i<10;i+=1) { /I create list nodes
Node n(“a’+i, i, i+0.5); /l node to be added
dl.push_back(n); /I copy node at end of list
}

list<Node>::iterator f;
for (f = dl.begin(); f != dl.end(); f ++) { // forward order

cout << "¢:" << (xf)c << " 11" << i << " A" << f->d << end;
while (0 < dl.size()) { /I destroy list nodes
dl.erase(dl.begin()); /I remove first node

}

2.18.1.4 Foreach
e Template routindor_each provides an alternate mechanism to iterate through a cwnrtai

e An action routine is called for each node in the containesipgsthe node to the routine for
processing (Lisapply).

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) {cout<<i<<"";} /I print node
int main() {
list< int > int_list;
vector< int > int_vec;
for (int i=0;1i<10;i+=1) { /I create lists
int_list.push_back(i);
int_vec.push_back(i);
}
for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

e Type of the action routine iid rtn(T), whereT is the type of the container node.

e E.g.,print has arint parameter matching the container node-type.

2.19. NAMESPACE 113

e More complex actions are possible by constructing a “fuurctibject”, called gunctor,
using the routine-call operator.

e E.g., an action to print on a specified stream must store tharstand have aoperator ()
allowing the object to behave like a function:

struct Print {

ostream &stream; /I stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i<<" ";}
3
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e EXxpressiorPrint(cout) creates a constamtint object, andor_each calls operator ()(Node)
in the object.

2.19 Namespace

e CH namespacds used to organize programs and libraries composed of preiliypes and
declarations.

E.g., namespacsd contains all the 1/0O declarations and container types.

Names in a namespace form a declaration region, like theesafdplock.

.h/.cc files).

Unlike Java packages, C+ allows multiple namespaces teheed in a file, as well as,
among files.

Types and declarations do not have to be added consecutively

| Java source files | C+ source file
package Foo; // file namespace Foo {
public class X ... // export one type /I types / declarations
/I local types / declarations }

namespace Foo {

package Foo; // file /I more types / declarations

public enum Y ... // export one type }
/I local types / declarations namespace Bar {

package Bar; // file /I types / declarations

public class Z ... /] export one type }
/I local types / declarations

Analogy in Java is a package, butmespace does NOT provide abstract/encapsulation (use

114 CHAPTER 2. C++

e Contents of a namespace can be accessed using full-quakfieds:

| Java | CH |

Foo.T t = new Foo0.T(); || Foo:: T «t = new Fo0:T();

e Or by importing individual items or conditionally imporgrall of the namespace content.

| Java | CH |

import Foo.T; || using Foo:T; /I import individual (conflicts)
import Foo.x; || using namespace Foo; // import all (non-conflicting)

e Global variables are in an unnamed namespace accessihlangualified *:".

namespace Foo { /I start namespace
enum Colour { R, G, B };
int i = 3;
}
namespace Foo { /l add more
class C {int i; };
int | = 4;
namespace Bar { /I start nested namespace
typedef short int shrint;
int j = 5;
}
}
int j =0; /I global
int main() {
int j = 3; /I local
cout << j << endl; I local
cout << :ij << endl; /I global
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; /I Foo::Colour
C x; /Il Foo::C
cout << i << endl; /I Foo::i
using Foo:j; /I import: conflict

cout << Foo:;j << << Bar:j << endl; // qualification
using namespace Bar; // conditional import: shrint (not j)
shrint s = 4; /I Bar::shrint

3 Tools

3.1 Compilation

header files C/C++ source files

cpp
-E, -D, -l
preprocessed source cod

cclplus
-W, -y, -g, -S, -01/2/3, -c

assembly code

¢

as

object code
other object-code ¢ } -0, -l, -L

<~ Id

files and libraries

Ja.out opject

Compilation is the process of translating a program from human to macksable form.

The translation is performed by a tool calledanpiler.

Compilation is subdivided into multiple steps, using a nemtf tools.

Often a number of options to control the behaviour of eacp.ste

Option are presented fgr-+, but other compilers have similar options.

General format:

g++ option-list x.cc .0 ...

3.1.1 Preprocessor
e Preprocessor (cpp) takes a C+ source file, removes commaedtexpandginclude , #define ,
and#if directives (see Sectiah7, p.53).
e Options:

o -E run only the preprocessor step and writes the preprocesgoutdo standard out.

% g++ -E *.cCc ...
... much output from the preprocessor

(© Peter A. Buhr

115

116 CHAPTER 3. TOOLS

o -D define and optionally initialize preprocessor variablesrfrthe compilation com-
mand:

% g++ -DDEBUG=2 -DASSN ... %.CC *.0 ...
same as putting the followinggefine s in a program without changing the program:

#define DEBUG 2
#define ASSN

e If both -D and#define for same nametdefine redeclares name.

¢ -| directory search directory for include files; can be referenced by nasirg<. . .>.

3.1.2 Compiler (cclplus)
e Compiler (cclplus) takes a preprocessed file and convest€th language into assembly
language for the target machine.

e Options:

o -Wkind generate warning message for this “kind” of situation.

« -Wall print ALL warning messages.
x -Werror make warnings into errors so program does not compile uréitifi

o -v show each compilation step and its details:

% g++ -V %.CC *.0 ...
... much output from each compilation step

E.g., system include-directories whexp looks for system includes.

#include <...> search starts here:
/usr/include/c++/3.3
lusr/include/c++/3.3/i486-linux
{usr/include/c++/3.3/backward
/usr/local/include
{ustr/lib/gce-lib/i486-linux/3.3.5/include
/usr/include

o -g add symbol-table information to object file for debugger
o -S compile source file, writing assemble code to $iteirce-file.s

o -01/2/3 optimize translation to different levels, where ebslel takes more compila-
tion time and possibly more space in executable

o -c compile/assemble source file but do not link, writing objeate to filesource-file.o

3.1.3 Assembler

e Assembler (as) takes an assembly language file and convedasbject code (machine
language).

3.2. DEBUGGING 117

3.1.4 Linker

e Linker (Id) takes the implicito file from translated source and expliait files from the
command line, and combines them into a new object or exeleufitd

e Linking options:

o -0 gives the file name where the combined object/ executablaceg.
« If no name is specified, default nara@ut is used.

o -l library search library when linking, e.gIm for math library

o -L directory search in directory for library

3.2 Debugging

e Debuggingis the process of determining why a program does not havetandad be-
haviour.

e Often debugging is associated with fixing a program afteilaréa
e However, debugging can be applied to fixing other kinds obfams, like poor performance.

e Before using debugger tools it is important to understandtwiou are looking for and if
you need them.

3.2.1 Debug Print Statements

e An excellent way to debug a program isdtart by inserting debug print statements (i.e., as
the program is written).

¢ |t takes more time, but the alternative is wasting hourstyyto figure out what the program
is doing.

e The two aspects of a program that you need to know are: wherprtigram is executing
and what values it is calculating.

e Debug print statements show the flow of control through agamgand print out intermediate
values.

e E.g., every routine should have a debug print statemenedielyinning and end, as in:

int p(...){
/I declarations

cerr << "Enter p " << parameter variables << endl;

cerr << "Exit p " << return value(s) << endl;
return r;

}

e Resultis a high-level audit trail of where the program isexeg and what values are being
passed around.

118 CHAPTER 3. TOOLS

e Finer resolution requires more debug print statements pomant control structures:

if (a>b)/{
cerr << "a > b" << endl ; /I debug print

for (...){

cerr << "x=" << x << "

, Y= <<y <<endl; / debug print

} else {
cerr << "a <= b" << end|; /I debug print

}

e By examining the control paths taken and intermediate wgenerated, it is possible to
determine if the program is executing correctly.

¢ Unfortunately, debug print statements can generate eng@mounts of output.

It is of the highest importance in the art of detection to be able to recognize out
of a number of facts which are incidental and which vital. (Sherlock Holmes, The
Reigate Squires)

e Gradually comment out#{f) debug statements as parts of the program begin to work to
remove clutter from the output, but do not delete them uhélgrogram works completely.

e When you go for help, either from your instructor or an adkigou should have debug print
statements in your program.

¢ In general, debug print statements never appear in thegrogou hand in for marking.

3.2.2 Assertions

e Assertions enforce pre-conditions, post-conditions, and invasiamthich document pro-
gram assumptions.

e Macroassert provides a mechanism to perform a check, and if the chec, tailprint the
check and abort the program.

int main() {
vector<int> a, b;
/I read values into a, b
assert(("must be the sane size", a.size() == b.size()));
for (int i=0;;i+=1){
assert((“must have an unequal elenent"”, i < a.size()));
if (a[i] '= b[i]) break;

}
}

e Note, use of comma expression (see pébje

3.2. DEBUGGING 119

When run with incorrect data produces:

% ./a.out
Assertion failed: (“must be the same si ze", a.size() == b.size()), file testl.cc, line 8
Abort (core dumped)

Assertions can significantly increase a program’s cost.

Compiling a program with preprocessor varialIBEBUG defined removes all asserts.

% g++ -DNDEBUG ... # all asserts removed

3.2.3 Errors

Debug print statements do not prevent errors, they simplyrgiinding errors.

What you do about an error depends on the kind of error.

Errors fall into two basic categories: syntax and semantic.

Syntax error is in the arrangement of the tokens in the programming laggua

These errors correspond to spelling or punctuation errbeswriting in a human language.

Fixing syntax errors is usually straight forward espeygidlthe compiler generates a mean-
ingful error message.

Always readthe error message carefully addeckthe statement in error.
You see (Watson), but do not observe. (Sherlock Holmes, A Scandal in Bohemia)
Difficult syntax errors are:

o Forgetting a closing or «/, as the remainder of the progransigallowed as part of the
character string or comment.

o Missing a{ or}, especially if the program is properly indented (editons balp here)
Semantic error is incorrect behaviour or logic in the program.
These errors correspond to incorrect meaning when writirghuman language.
Semantic errors are harder to find and fix than syntax errors.

A semantic or execution error message only tells why theraragtopped not what caused
the error.

In general, when a program stops with a semantic error, #teraent that caused the error
is not usually the one that must be fixed.

Must work backwards from the error to determine the causbeptoblem.

120 CHAPTER 3. TOOLS

In solving a problem of this sort, the grand thing is to able to reason backwards.
Thisis very useful accomplishment, and a very easy one, but people do not prac-
tise it much. In the everyday affairs of lifeit is more useful to reason forward, and
so the other comes to be neglected. (Sherlock Holmes, A Study in Scarlet)

e Reason from the particular (error symptoms) to the generebi(cause).

o locate pertinent data : categorize as correct or incorrect

@)

look for contradictions

o

list possible causes

@)

devise a hypothesis for the cause of the problem

o

use data to find contradictions to eliminate hypotheses

@)

refine any remaining hypotheses

o

prove hypothesis is consistent with both correct and immnresults, and account for
all errors

e E.g., aninfinite loop with nothing wrong with the loop; thetialization is wrong.

i = 10;
while (i!=5){

i += 2;

}

e Difficult semantic errors are:

o Forgetting to assign a value to a variable before using ihiexpression.
o Using an invalid subscript or pointer value.

e Finally, if a statement appears not to be working propeutyldoks correct, check the syntax.

if (a=b)/{
cerr << "a == b" << endl;
}

When you have eliminated the impossible whatever remains, however improbable
must be the truth. (Sherlock Holmes, Sgn of Four)

3.3 Debugger

e An interactive, symbolicebuggereffectively allows debug print statements to be added and
removed to/from a program dynamically.

e You should not rely solely on a debugger to debug a program.

e You may work on a system without a debugger or the debuggermatiwork for certain
kinds of problems.

3.3. DEBUGGER 121

e A good programmer uses a combination of debug print statesreerd a debugger when
debugging a complex program.

e A debugger does not debug your program for you, it merelysielphe debugging process.

e Therefore, you must have some idea about what is wrong witlogram before starting to
look or you will simply waste your time.

3.3.1 GDB

e The two most common UNIX debuggers are: dbx and gdb.

e File test.cc contains:

void r(int a[]) {

int i = 100000000;

afi] += 1; // really bad subscript error
}
int main() {

int a[10] = { 0, 1 };

r(a);

0 N o g b~ W NP

}

Compile program using they flag to include names of variables and routines for symbolic
debugging:

% g++ -g test.cc

Start gdb:

% gdb ./a.out
... gdb disclaimer
(gdb) «— gdb prompt

Like a shell, gdb uses a command line to accept debugging eorasn

run command begins execution of the program:

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error

o If there are no errors in a program, running in GDB is the saseianing in a shell.
o If there is an error, control returns to gdb to allow examorat

e backtrace command prints a stack trace of calleditine activations.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:7

122 CHAPTER 3. TOOLS

e print command prints variables accessible in the current routibgect, or external area.

(gdb) print i
$1 = 100000000

o $1is the name of a history variable (like history variables shall).
o Names$N can be used in subsequent commands to access previouseflues

e Can print any CH expression:

(gdb) print a

$2 = (int ») Oxffbefa20
(gdb) p *a

$3 =0

(gdb) p a[1]

$4 =1

(gdb) p a[1]+1

$5 =2

(gdb) p $3

$6 =0

e set valiable command changes the value of a variable in the current mutinject or exter-
nal area.

(gdb) set variable i = 7
(gdb) p i

$7 =7

(gdb) set var aJ0] = 3
(9db) p a[0]

$8 =3
(gdb) p $3
$9 =0

e Change the values of variables while debugging to:

o investigate how the program behaves with new values wittematmpile and restarting
the program,

o to make local corrections and then continue execution.

e frame [n] command moves theurrent stack frame to thenth routine activation on the

stack.
(gdb) f O
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 afi] += 1; /I really bad subscript error
(gdb) f 1
#1 0x00010764 in main () at test.cc:7
7 r(a);

o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.

3.3. DEBUGGER 123

o All subsequent commands apply to the current frame.
e To trace program executiohreakpoints are required.

e break command establishes a point in the program where executigpesds and control
returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 6.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

o Set breakpoint using routine name or source-file:line-remb
o If program is not compiled withgflag, only the location is given.

o Commandnfo breakpoints prints breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:6
2 breakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Breakpoints numbered consecutively framand can be disabled, enabled or deleted at any
time using commands:

(gdb) disable 1 temporarily disable breakpoint 1
(gdb) enable 1 re-enable disabled breakpoint 1
(gdb) delete 1 remove breakpoint completely 1

(Pretend none of these commands are entered.)

e Run program again to get to the breakpoint:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:6

6 int a[10] = {0, 1 };
(gdb) p a[7]
$10 =0

e Once a breakpoint is reached, execution of the program canrieued in several ways.

e step [n] command executes the nexlines of the program and stop.

124 CHAPTER 3.

(gdb) step

7 r¢a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error

(gdb)

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.

o <Return> without a command repeats the last command.

TOOLS

o If the next line is a routine call, control enters the routamel stops at the first line.

e next [n] command, likestep, but routine calls are treated as a single statement, sootont
stops at the statement after the routine call instead ofttestatement of the called routine.

(gdb) run

Breakpoint 1, main () at test.cc:6

6 int a[10] = {0, 1 };

(gdb) next

7 rc a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error

e continue command continues execution until the next breakpointashed.

3.3. DEBUGGER 125

(gdb) run

Breakpoint 1, main () at test.cc:6

6 int a[10] = {0, 1 };

(gdb) s

7 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 afi] += 1; /I really bad subscript error
(gdb) p i

$4 = 100000000

(gdb) set var i = 3
(gdb) c

Continuing.

Program exited normally.

e finish command finishes execution of the current routine and stojpe atatement after the
routine call.

(gdb) run

Breakpoint 1, main () at test.cc:6

6 int a[10] = {0, 1 };

(gdb) ¢

Continuing.

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error
(gdb) set var i = 3

(gdb) fin

Run till exit from #0 r (a=0xffbefa20) at test.cc:3
main () at test.cc:8

8 }

(gdb) ¢

Continuing.

Program exited normally.

o Print the value returned by the finished routine, if any.
e During debugging, it is useful to print variables each titme program stops at a breakpoint.
e Normally, requires typing arint commands each time the program stop.

e display command is like the print command, with the addition of pngteach time the
program stops.

126 CHAPTER 3. TOOLS

(gdb) run

Breakpoint 1, main () at test.cc:6
6 int a[10] = {0, 1 };
(gdb) display a[0]

1: a[0] = 67568

(gdb) s

7 rCa);

1. a0] =0

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

o Each displayed variable is numbered, in this cass,numbered 1.
o Use number to stop displaying a variable vralisplay n command.

o If a variable goes out of scope, the display stops printing.

e list command lists source code.

(gdb) list

2 int i = 100000000;
3 afi] += 1;

4 '}

5 int main() {

6 int a[10];

7 rca)

8 }

(gdb) list 3

1 wvoid r(int a[]) {

2 int i = 100000000;
3 afi] += 1;

4 '}

5 int main() {

6 int a[10];

7 r(a);

8 1}

o with no argument, list code around current execution locati

o with argument line number, list code around line number

e quit command terminate gdb.

(gdb) run

i3.r'eakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) quit

The program is running. Exit anyway? (y or n) y

3.4.

3.4

COMPILING COMPLEX PROGRAMS 127

Compiling Complex Programs

Separate compilation has an advantage and disadvantage.

Advantage: saves significant amounts of computer and péopdeby recompiling only the
portions of a program that are changed.

In theory, if an expression is changed, only that expressesds to be recompiled.

In practice, the unit of compilation is much coarseanslation unit (TU), which is a file in
C/CH+.

In theory, each line of code (expression) could be put in arsep file, but impractical (and
doesn’t work).

So a TU should not be too big and not be too small.

Disadvantage: TUs must depend on each other because amregeaes many forms of
information, especially types.

Not a problem when all the code is in a single TU (except for DBU
As a program grows, the number of TUs grow, so does the deperdeamong TUS.

Now, when one TU is changed, it may require other TUs to chamgiedepend on some or
all of the shared information.

For a large numbers of TUs, the dependencies turn into a nigkdre with respect to re-
compiled.

3.4.1 Dependences

e Dependences in C/C+ normally occur as follows:

o executable depends anfiles
o .o files depend orcC files

o .C files depend orh files

source tree dependencies
x.h #include yh 4:00
x.C #include " x.h B60. 2:00 3:00
4:01 X.0 ™ x.C— x.h
y.h #include "z.h" E6L 7y o—=yCc—>yh
y.C #include "y.n" a.out D)

zo—"zC—™zh

z.h #include "y.h"
z.C #include " z.h"

128 CHAPTER 3. TOOLS

e The hierarchicatource treeis compiled as follows:

% gt++ -c z.C # generates z.0
% g++ -c y.C # generates y.o
% g++ -c x.C # generates Xx.0

% g++ X.0 y.0 2.0 # generates a.out

¢ If a change is made tph, which files need to be recompiled? (all!)
e Doesanychange tg.h require these recompilations?

e There is no mechanism to know the kind of change made withifeadig., changing a
comment, type, variable.

e So dependence is coarse grain, basedrorchange to a file.
e One way to denote file changes is witlme stamps.

e UNIX stores in the directory the time a file is last changedhwiecond precision (see Sec-
tion 1.6 p.11).

e Establishing dependencies means establishing a tempdeimg in the dependence graph
so the root has the newest (or equal) time and the leafs tlestqlor equal) time.

3.4.2 Make

e make is a UNIX command that takes a dependence graph and uses digeiimes to
trigger rules that bring the dependence graph up to date.

A make dependence graph expresses a relationship betweeducpand a set of sources.

e Make does not express a relationship among sources, onexibt at the source-code level
and is important.

e E.g., source.C depends on sourceh butx.C is not a product ok.h like x.o is a product of
x.C andx.h.

e Two most common UNIX makes are: make and gmake (on Limake is gmake).

e Like shells, there is minimal syntax and semanticsviake, which is mostly portable across
systems.

e Most common non-portable features are specifying depemneeand implicit rules.
e A basic makefile consists of string variables with initialion and a list of targets and rules.

¢ This file can have any name, butke implicitly looks for a file calledmakefile or Makefile
if no file is specified.

3.4. COMPILING COMPLEX PROGRAMS 129

e Each target has a list of dependencies, and possibly a seiohands specifying how to
re-establish the target.

variable = value

target : dependencyl dependency? ...
commandl
command?2

e Commands must be indented by one tab character.
e make is invoked with a target, which is a subnode or root of a depand hierarchy.

e make builds the dependency graph and decorates the edges wistamps for the specified
files.

¢ If any of the dependency files (leafs) are newer than the téifgdroot), or if the target file
does not exist, the commands are executed by the shell tdaufiaatarget (generate a new
product).

e Makefile for previous dependencies:

a.out : X.0 y.0 z.0

g++ X.0 y.0 z.0 -0 a.out
X.0 : X.C x.h y.h z.h

g++ -g -Wall -¢c x.C
y.0 : y.C y.h z.h

g++ -g -Wall -c y.C
z.0:2z2C zhy.h

g++ -g -Wall -c z.C

e Check dependency relationship by:

% gmake -n -f Makefile a.out
g++ -g -Wall -c x.C

g++ -g -Wall -c y.C

g++ -g -Wall -c z.C

g++ X.0 y.0 z.0 -0 a.out

o -n only checks the dependencies and shows rules to be trigflesact off to trigger
rules)

o -f Makefile is the dependency file (leave off if nampdim]akefile)

o a.out target name to be updated (leave off if first target)

¢ Eliminate duplication using variables:

130 CHAPTER 3. TOOLS

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJIECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets/dependencies/commands

${CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

${CXX} ${CXXFLAGS} y.C
z.0:z2C zhy.h

${CXX} ${CXXFLAGS} z.C

e Eliminate common rules:

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step

${CXX} ${OBJIECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets/dependencies

y.0 : y.C y.h z.h
z.0:zCzhyh

clean :
rm -rf ${OBJECTS} ${EXEC}

o gmakeknows how to construct simple rules when files have specific sufixeswhen
special variable names are used.

o These rules use variabl8gC XX} and${CXXFLAGS}.

o Targetclean removes product files that can be rebuilt to save space.

gmake clean

e Eliminate dependencies:

CXX = g++ # compiler

CXXFLAGS = -g -Wall -MMD # compiler flags

OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.0=.d} # substitute “.0” with “.d"

EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step

${CXX} ${OBJECTS} -0 ${EXEC}

clean : # remove files that can be regenerated
rm -rf ${DEPENDS} ${OBJECTS} ${EXEC}

-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)

3.5. SOURCE CODE MANAGEMENT 131

o g++ flag MMD generates a dependency graph for only user source-files.

file | contents
x.d | x.0: x.C x.h y.h z.h
y.d | y.0: y.C y.h z.h
zd | z.o: z.C z.h y.h

o g++ flag MD generates a dependency graph for user/system source-files.
o -include reads thed files containing dependencies.

3.5 Source Code Management
e UNIX files only support theurrent version of the program.

e As a program develops/matures, it changes in many ways.

e UNIX files do not support this temporal notion of a prograrm,,ihistory of program over
time.

e Access to older versions of a program, supporting operstide backing out of changes
because of design problems.

e Another issue is sharing program files among multiple dgat®each making independent
changes.

e Current sharing allows damaging the contents of the filesifoultaneous writes.
e Approaches:

o Make copies of some or all of the project files before makirgngfes.
Wastes storage for unchanged files and burden of managimnedciilps.

o Share files using group file permissions.
Simultaneous access is unsafe and developers cannot &esfeshin isolation.

o Giving each developer a separate copy of the code base.
Merging in changes from different developers is tricky antetconsuming.

e To solve these problemssaurce control systemms used to manage cooperative work.

3,51 CVS
e Concurrent Versions System(CVS) is a source control system with the following features

o Master copy of all project files is kept inrapository.
o Multiple versions of files are automatically stored in thpasitory.
o Developers can check out a complete copy of the project.

o Helpful integration back into the repository using text gieg.
Programmer has to deal with conflicts.

132 CHAPTER 3. TOOLS

3.5.2 Repository
e Group members must add this line to their shell startup file:

sh:
% CVSROOT=/u/userid/cs246/cvsroot

% export CVSROOT
csh:
% setenv CVSROOT /u/userid/cs246/cvsroot

e For remote access:

CVS_RSH=ssh
export CVS_RSH
CVSROOT=userid@student.cs.uwaterloo.ca:/u/userid/cs246/cvsroot

export CVSROOT

e Shared repository is created at accessible location inlthsyfstem:

% cd cs246
% cvs init # make repository directory cvsroot

% chgrp -R ¢s246_75 cvsroot # set group on directory and subfiles
% chmod -R g+rwx cvsroot # allow group members access to ALL files
% mkdir cvsroot/assn6 # specific project

e cvs int creates and initializes the repository.

e Other directories undewsroot represent projects (can have any name).

3.5.3 Checking Out

e checkout command creates a working copy of the project:

% cvs checkout assn6 # checkout initial project

cvs checkout: Updating assn6

% cd assn6 # move into project directory
% Is # administration directory CVS
CVsS

e Creates project directory in current directory and urwsroot.

e A checked out copy can be modify in any way without other depels seeing these changes
until committed.

e Only check out once and continue working.

3.5.4 Adding
e add command schedules new files (in current directory) for amlainto the repository:

3.5. SOURCE CODE MANAGEMENT 133

% ... create files: Makefile x.C x.h y.C y.h zh z.C

% Is
CVS Makefile x.C xh y.C y.h zC zh
% cvs add = # add all files

cvs add: cannot add special file ‘CVS’; skipping
cvs add: scheduling file ‘Makefile’ for addition
cvs add: scheduling file ‘x.C’ for addition

cvs add: scheduling file ‘x.h’ for addition

cvs add: scheduling file ‘y.C’ for addition

cvs add: scheduling file ‘y.h’ for addition

cvs add: scheduling file ‘z.C’ for addition

cvs add: scheduling file ‘z.h’ for addition

cvs add: use ‘cvs conmit’ to add these files permanently

e Addition only occurs on cvs commit.
e Forgetting cvs add is a common mistake.

e Do not put all files into repository, e.g«0, «.d, a.out.

3.5.5 Checking In
e commit updates the repository with the changes made in checkadtdiy.

% cvs commit -m "initial files"

cvs commit: Examining .

RCS file: /u/userid/cs246/cvsroot/assn6/Makefile,v
done

Checking in Makefile;
/uluserid/cs246/cvsroot/assn6/Makefile,v <-- Makefile
initial revision: 1.1

done

RCS file: /u/userid/cs246/cvsroot/assn6/x.C,v
done

Checking in x.C;
/uluserid/cs246/cvsroot/assn6/x.C,v <-- x.C
initial revision: 1.1

done

RCS file: /u/userid/cs246/cvsroot/assn6/x.h,v
done

Checking in x.h;
/uluserid/cs246/cvsroot/assn6/x.h,v <-- x.h
initial revision: 1.1

done

e If -m flag not used, cvs prompts for a change description usingi&ored
e Always make sure that your code compiles and runs before catting.

e Itis unfair to pollute the source base with bugs.

134

3.5.6 Editting/Removal
e Edited files (in current directory) do not require any CVS coamd:

% vi y.h y.C # edit files y.h y.C

Implicitly schedules files for update, which occurs on cveadait.

CHAPTER 3.

remove command tell CVS to remove existing files from the repository

% rm z.h z.C # remove files z.h z.C
% cvs remove z.h z.C # remove from repository
cvs remove: scheduling ‘z.h’ for removal

cvs remove: scheduling ‘z.C’ for removal

cvs remove: use ‘cvs comit’ to remove these files permanently

Schedules files for removal, which occurs on cvs commit.
In fact, any removed file can always be retrieved from oldioeis

Commit edits and removals.

% cvs commit -m "changes to y.* and renove z. x"
cvs commit: Examining .

Checking in y.C;
/uluserid/cs246/cvsroot/assn6ly.C,v <-- y.C
new revision: 1.2; previous revision: 1.1
done

Checking in y.h;
/uluserid/cs246/cvsroot/assné/y.h,v <-- y.h
new revision: 1.2; previous revision: 1.1
done

Removing z.C;
/uluserid/cs246/cvsroot/assn6/z.C,v <-- z.C
new revision: delete; previous revision: 1.1
done

Removing z.h;
/uluserid/cs246/cvsroot/assn6/z.h,v <-- z.h
new revision: delete; previous revision: 1.1
done

3.5.7 Update
e Cannot commit changes if other developers have checkedaimgels during a checkout.

Changes must now be merged and then committed.
update command merges changes into repository.
Causes merged file in current directory to be updated.

Merge algorithm is generally very good if changes do not layer

TOOLS

3.5. SOURCE CODE MANAGEMENT 135

e Overlapping changes result in a conflict, which must be wegbimanually.

% cvs commit

cvs commit: Examining .

cvs commit: Up-to-date check failed for ‘Makefile’

cvs [commit aborted]: correct above errors first!

% cvs update

cvs update: Updating .

RCS file: /u/userid/cvsroot/assn6/Makefile,v

retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into Makefile

e Conflict is marked irvakefile:

CXX = g++ # variables and initialization
<<<<<<< Makefile
CXXFLAGS = -g -MMD

CXXFLAGS = -g -Wall
>>>>>>> 1.3

e You have to resolve the conflict.

3.5.8 Versions

e Each time a file is committed, it receives a new version number

e \ersion number is displayed during commit, and at other $ime

cvs status prints version information.

Old versions are accessible using:
cvs update -p -r 1.2 Makefile # -p prints to standard output

which prints version 1.2 of Makefile to standard output.

Differences between versions can be generated:
cvs diff -r 1.2 -r 1.1 Makefile

which shows the differences between version 1.2 and vefision
3.5.9 Tagging
e \ersion numbers are nondescript and often too low level (itde changes here and there).

e It is possible to give a meaningful, symbolic name to a versaften at a stable point or
before big changes.

e tag command adds a symbolic name to the current version of eVerghiecked out:

cvs tag debugl # name current version “debugl”

136 CHAPTER 3. TOOLS

e Use symbolic name like version number:

cvs update -p -r debugl

e To compare named versions:

cvs diff -r debugl -r debug2

4 Software Engineering

4.1

Software Engineering (SE) is the social process of designing, writing, and maairg
computer programs.

SE attempts to find good ways to help people understand armdioghesoftware.
However, what is good for people is not necessarily goodifercomputer.

Many SE approaches are counter productive in the developofiémngh-performance soft-
ware.

E.g.: The computer does not execute the documentation!

Documentation is unnecessary to the computer, and sigmifaxaounts of time are spent
building it so it can be ignored (program comments).

Remember, theuth is always in the code.

However, without documentation, developers have difficdi#signing and understanding
software.

E.g., designing by anthropomorphizing the computer is@ald good approach (desk-
tops/graphical interfaces).

Software tools spend significant amounts of time undoing &ttgeh and coding approaches
to generate efficient programs.

It is important to know these differences to achieve a badmetween programs that are
good for people and good for the computer.

Software Crisis

Large software systems-(100,000 lines of code) require many people and months to de-
velop.

These projects normally emerge late, over budget, and deorbtwell.
Today, hardware costs are nil, and people costs are great.

While commaodity software is available, someone still hawtibe it.
Since people produce software software cost is great.

Coupled with a shortage of software personseproblems.

Unfortunately, software is complex and precise, which nexputime and patience.

(© Peter A. Buhr

137

138 CHAPTER 4. SOFTWARE ENGINEERING

4.2 Software Development

e Techniques for program development for small, medium, argel systems.
e Objectives:

o plan and schedule software projects

o produce reliable, flexible, efficient programs
o produce programs that are easily maintained
o reduce the cost of software

o reduce program failure

e E.g., atypical software project:

o estimate 12 months of work
o hire 3 people for 4 months
o make up milestones for the end of each month

e However, first milestone is reached after 2 months instedd of
e To finish on time, hire 2 more people, but:

o new people require training
o work must be redivided

This takes at least 1 month.
e Now 2 months behind with 9 months of work to be done in 1 montb ipgople.
e To get the project done:

o must reschedule
o trim project goals

e Often, adding manpower to a late software project makessit.la

¢ lllustrates the need for a methodology to aid in the devekapiof software projects.

4.2.1 Programming Methodology
e System Analysis (next year)

o Study the problem, the existing systems, the requiremtrggeasibility.

o Analysis is a set of requirements describing the systentsputputs, processing, and
constraints.

e System Design

4.2. SOFTWARE DEVELOPMENT 139

o Breakdown of requirements into modules, with their relasioips and data flows.

o Results in a description of the various modules required, the data interrelating
these.

Implementation

o writing the program

Testing & Debugging

o get it working

Operation & Review
o was it what the customer wanted and worth the effort?

Feedback

o If possible, go back to the above steps and augment the pegeweded.

4.2.2 System Design

¢ In designing a system of any size it must be modularized.
e Modularization is the division of the system into smaller parts on some syatie basis.
e Modularization is necessary to:

o make it easier to design and implement
o make it easier to read

o make it easier to maintain and modify

o abstract the data structures

o abstract the algorithms
e Two basic strategies exist to systematically modularizgstesn:

o top-down or functional decomposition

o bottom-up

e Both techniques have much in common and so examine only one.

140 CHAPTER 4. SOFTWARE ENGINEERING

4.2.3 Top-Down Design
o Start at highest level of abstraction and break down prola¢oncohesive units.

Then refine each unit further generating more detail at eag$iah.

This recursive process is calletepwise refinement

Each subunit is divided until a level is reached where théspe comprehensible, and can
be coded directly.

Unit are independent of a programming language, but ulgigahust be mapped into con-
structs like:

o generics (templates)
o modules
o classes

o routines
e Details look at data and control flow within and among units.

e Implementation programming language is often chosen dtdy the system analysis/design
process.

4.2.4 Factoring

Factoring is the modularization of code in one module into multiple mies.

Stop factoring when:

o cannot find a well defined function to factor out
o interface to the module would be as complicated as the matelé

Factoring is done to:

o reduce module sizex: 30-60 lines of code, i.e., 1-2 screens with documentation
o make system easier to understand

o eliminate duplicate code

o localize modifications

Avoid having the same function performed in more than oneuteo(treate useful general
purpose modules)

Separate work from management:

o Higher-level modules only make decisions (managementtahdther routines to do
the work.

4.3. SYSTEM MODELLING 141

4.3

o Lower-level modules become increasingly detailed andipggerforming finer grain
operations.

In general:

o do not worry about little inefficiencies unless the code iseeted a LARGE number
of times

o put thought into readability of program
o avoid high levels of nesting (3-5 levels is fine)

System Modelling

System modellinginvolves modelling a complex system in an abstract way twvigea
specific description of how the system works.

Design grows from nothing to become a model of sufficientitigidbe transformed into a
functioning system.

Design provides high-level documentation of the systemufmlerstanding (education) and
for making changes in a systematic manner.

Top-down successive refinement is a foundational mechamssa in all system design.
System modelling has multiple viewpoints:

o class model describes static kinds and structure of system
o object model: describes dynamic (temporal) behaviour of system objects
o interaction model : describes the kinds of interactions among objects

Multiple design tools (past and present) for supportingesysdesign, most are graphical
and all are programming language independent:

o flowcharts (1920-1970)
pseudo-code

@)

@)

Warnier-Orr Diagrams

o

Hierarchy Input Process Output (HIPO)
o UML

Design tools can be used in various ways:

o sketchout high-level design or complex parts of a system,
o blueprint the entire system abstractly with high accuracy,
o generateinterfaces directly.

Key advantage of design tool is the generic, abstract moldd#ieosystem, which can be
transformed into any format.

142 CHAPTER 4. SOFTWARE ENGINEERING

¢ Key disadvantage is the design tool is seldom linked to th@@mentation mechanism, so
the two often differ
(implementation = truth).

e As with design strategies, design tools have much in commdrsa only one is studied.

431 UML

e Unified Modelling Language (UML) is a graphical notation for describing and designing
software systems, with emphasis on the object-orientde. sty

e UML can handle class, object and interaction modellingcyfoon class modelling)

comment textk ***** target

e Class diagramcollection of class templates and associated relatiogship

e Note/comment

e Class specifies a template for objects : name, attributesatpns.

class/struct name routine operation

. attribute-list
optional

operation-list

e attribute : value description (field)

[visibility] name [“:” [type] [“[" multiplicity “]"]
[“="default] [“ {" property-list “}"]]

o

visibility : access of attribute information by other class
+ = public, — = private, #=- protected~ = package

o

name : required identifier for attribute (like field name irusture)

@)

type : restriction on kind of objects associated with attréh
Boolean, Integer, Float, String, class-name

multiplicity : restriction on number of objects associateith attribute
0..(N|x), from 0 toN or unlimited,N short forN..N, short for 0.x

default : value of newly created object

@)

o

o property : additional aspects of attribute, e{greadonly}

e operation : action changing or returning object state (method)

[visibility] name [“(" [parameter-list])"] [“” return-type]
[“[”’ multiplicity “I"][{” property-list “}"]

4.3. SYSTEM MODELLING

visibility : access of attribute information by other class
+ = public, — = private, #= protected~ =- package

name : required identifier for operation (like method namstincture)

parameter-list : input/output values for operation
[direction | parameter-name “:” type [“[” multiplicity “]]
[“=" default] [“ {" property-list “}"]]

direction : direction of parameter data flow

“in” (default)

“out” | “inout”

return-type : output from operation

property-list : additional aspects of operation, e{geadonly}

VendingMachine

attributes

- printer : Printer

- nameServer : NameServer

- 1d : Integer

- sodaCost : Integer

- maxStockPerFlavour : Integer
- stock : Integer[1..4]

operations

+ buy(in flavour : Flavours, inout card : WATCard) : Boole
+inventory : Integer [1..4]

+ restocked

+ cost : Integer

+ getld : Integer

Include attributes defining model structure (no countersdoraries, etc.)

Leave out constructor operations as they do not contriloutieet model.

Object diagram : instance of a class.

object name : class nam

optional { attributes : values

D

Association: a named conceptual/physical connection among objects.

143

144 CHAPTER 4. SOFTWARE ENGINEERING

. Person ownership Car
class diagram —— > . .
name : String 1 15 kind : String
owned owns
: . Fred:Person Honda:Car
object diagram
name="Fredrick’ kind="Civic”
Mary:Person Honda:Car
name="Mary” kind="CRV”
Peg:Person Honda:Car
name="Margaret’ kind="CRV”

e association is “ownership”

o personowns 0 or more cars (*)
personowns 1 to 5 cars

o car isowned by O or more people (*)
car isowned by 1 person

e Association is inherently bidirectional even if name ineglia specific direction: employger
worksFor| employee

e Association can be represented as an attribute or a line.

Person Car
name : String kind : String
owner : Car owned : Person
Person ownership Car
name : String| 1 1] kind : String

Use attribute if many lines to a single class.
e Association may be implemented in a number of ways:

o pointer from one object to another

o related elements in arrays

e Association Class association that is also a class

4.3. SYSTEM MODELLING

Person Car
name kind
Owns
bill of sale
licence
Mary:Person Honda:Car
name="Mary” kind="Civic”
Owns
Ted’s Honda
L345YH454

o people without cars do not need “owns” fields
cars without owners do not need “owns” fields

o not real class because it cannot logically exist withoubeission

e Aggregationis an association between an aggregate (collection) anakeitsbers.

vector

1 *

elements

o an aggregate is not complete without its members

o but members exist outside of the aggregate (pointer to eltshe

145

e Compositionis stronger aggregation where components do not exit aitfidomposite.

o copy elements

vector

1 *
S e

elements

e Generalization: reuse through form of inheritance.

Super

1

Super

Super

Sub

Sub

o Inheritance establishes “is-a” relationship on type, aguke of attributes and opera-

tions.

Inheritance

1

Sub

multiple inheritance

146 CHAPTER 4. SOFTWARE ENGINEERING

o Association class can be implemented with forms of multipkeritance (mixin).

e Sequence diagranmt describes control-flow among objects with respect to paldr sce-
nario.

o show static frame of program animation (call sequence).

sd name)

class name
T

1
> ——m= New object

T

|
call ‘
- Self-call

return

» Other-calls

- _ _returns

T
|

delete E ! :

o show control flow

loop [for all things]
opt [condition]
alt [condition]

o complex and specific
o more concise to use pseudo-code (or actual code if it exists)
o use to show important/complex control flow sequences

e UML is significantly more general, supporting very complessdriptions of relationships
among entities.

e VERY large visual mechanisms, with several confusing giGghepresentations.

e Code = truth

4.4. PROGRAMMING LANGUAGE SELECTION 147

4.4

Programming Language Selection
imperative, functional, logic
o imperative : prescribes a sequence of actions directedégttte of variables, which
are allowed to have multiple values (i.e., vary)
o functional : like imperative, but variables are restrictednly one value (i.e., constant)
o logic : series of logical expressions that are proven cowemcorrect through unifi-
cation

scripting : specialized languages (often only string typeymamically typed) for specific
purpose (shell, GUI, awk, Perl)

interactive/interpreted : not compiled, can be typed arateted immediately (basic, shell)

managed language : hide aspects of implementation to $implbgramming, e.g., hide
memory management via garbage collection, execution viaalimachine

static/dynamic type-system : variable types are fixed atpilenime or allowed to vary at
runtime.

reification : manipulate program symbol-table and code atime, possibly with dynamic
compilation.

Useful language properties for SE:
o abstraction/encapsulation : separate implementatian frderface, and hide imple-

mentation

o module/package : high-level bundling of types/varialdedé with global initializa-
tion, e.g., container library

x requires transitive closure of modules over program fdrahkation (cycles?)
o class : aggregate data and code into single type
o coroutines : retain control flow knowledge across routirle ca

o concurrency : multiple simultaneous threads of executigmefently difficult and com-
plex)

o polymorphism : generalization data/code across multigbes with similar structure
and behaviour

o libraries : error-free, efficient, reusable abstractions:
* data structures, math, GUI, distributed/web
o compilation/runtime errors : specific, comprehensibleremessages
o efficiency : after it works, after its good code, then make=stis efficient

« efficiency should never be an afterthought; it comes frondgmogramming prac-
tice

148

4.5

CHAPTER 4. SOFTWARE ENGINEERING

x nevertheless, programs have execution hot-spots thateezjira attention
o security : subscript checking, type checking, virtual maehdynamic checking, etc.
Java : imperative, managed, static typing (inconsisteiitifb@ object types), reification,

abstraction/encapsulation, packages, class (strongigwbriented), concurrency, medium
polymorphism, large libraries, good error reporting, agerto poor efficiency

C+: imperative, not managed, static typing (consisteriltibu& object types), abstrac-
tion/encapsulation, weak packages, class, routines, nouceency, strong polymorphism,
average libraries, poor error reporting, average to ese#fficiency

Ada : imperative, many good features, but not used much arggmo
Cobol, Fortran, PL/I : legacy languages, updated but slaidgppearing
Python/Ruby : scripting

Haskell, Scheme, Erlang (Industrial) : functional

Development Processes
There are different conceptual approaches for developifigare, e.qg.:

waterfall : break down project based on activity and divide activiiesoss a timeline

o activities : (cycle of) requirements, analysis, desigrgieg, testing, debugging
(see Sectio’3.2 p.117)
o timeline : assign time to accomplish each activity up to @cogompletion time

iterative/spiral : break down project based on functionality and divide fior across a
timeline

o functions : (cycle of) acquire/verify data, process daemeagate data reports

o timeline : assign time to perform software cycle on each fiwmcup to project
completion time

staged delivery : combination of waterfall and iterative
o start with waterfall for analysis/design, and finish witkrétive for coding/testing
agilelextreme : short, intense iterations focused largely on code (veidsgamentation)

o often analysis and design are done dynamically
o often coding/testing done in pairs

Pure waterfall is problematic because all coding/testorges at engs- major problems can
appear near project deadline.

Pure agile can leave a project with “just” working code, atttelor no testing / documenta-
tion.

e Selecting a process depends on:

4.6. DESIGN PATTERNS 149

o kind/size of system

o quality of system (mission critical?)
o hardware/software technology used
o kind/size of programming team

o working style of teams

o nature of completion risk

o consequences of failure

o culture of company

e Meta-processes specifying the effectiveness of processes

o Capability Maturity Model Integration (CMMI)
o International Organization for Standardization (1ISO) @00

e Requirements

o procedures cover key aspects of processes

o

monitoring mechanisms

o

adequate records

o

checking for defects, with appropriate and correctiveaarcti

@)

regularly reviewing processes and its quality

@)

facilitating continual improvement

4.6 Design Patterns

e Design patternshave existed since people/trades developed formal appeeac

E.g., parent’s raising children, mason’s building pyraitedhedral.

Pattern is a common/repeated issue; it can be a problem or a solution.

Name and codify common patterns for educational and coneation purposes.

Software pattern are solutions to problems:

o name : descriptive name
o problem : kind of issues pattern can solve

o solution : general elements composing the design, andriglaironships, responsibil-
ities, and collaborations

o consequences : results and trade-offs of applying therpgtiternative/implementation
issues)

150 CHAPTER 4. SOFTWARE ENGINEERING

4.6.1 Pattern Catalog

creational structural behavioural
class|| factory method | adapter interpreter
template
object|| abstract factory| adapter responsibility chain
builder bridge command
prototype composite| iterator
singleton decorator | mediator
facade memento
flyweight | observer
proxy State
strategy
visitor

e Scope : applies to classes or objects
e Purpose : class/object creation issues, structural fanchpahavioural interaction
e Class

factory method/abstract : abstract class/template defining structure (and possibiye
implementation) for creating other classes

struct F { /I factory/abstract-class
virtual void m1() = O;
virtual void m2() = 0;
%
struct P1 : public F { // products
void ml();
void m2();
%
struct P2 : public F {
void ml();
void m2();
%
adapter/wrapper : convert interface into another
struct T1 { struct T2 {
virtual void x(...); virtual void x(...);
virtual void y(...); virtual void z(...);
¥ 3

struct T1T2 : public T1, private T2 { // adapter/wrapper
void x(...) { T2:x(...); }
void y(...){...z(..); ... }

3

void p(T21t1){...}

T1T2 t; // make use of T2 code with T1 routine
p(t);

4.6. DESIGN PATTERNS 151

template method : provide pre/post actions for subclass methods

class T™M {
virtual void doAction() = O;
protected :
virtual void action() {
pre-code doAction(); post-code
}
3

class AM : public TM {
void doAction() {...}
public :
void action() { TM::action(); }

3
e Object
adapter : convert interface into another

struct T1 { struct T2 {
virtual void x(...); virtual void x(...);
virtual void y(...); virtual void z(...);

J§ 5

struct T2toT1 : public T1 { // adapter/wrapper
T2 &t2;

T2toT1(T2 &t2) : t2(t2) {}
void x(...) {t2.x(...); }
void y(...) { ... t2.z(..); ... }

¥

void p(T1t1){...}

T2 12;

T2toT1 t(t2); /l any T2
p(t);

iterator : abstract mechanism to traverse container

list<Node>::iterator ni;
for (' ni = top.begin(); ni != top.end(); ++ni) { // traverse list

cout << "¢:" << ni->c << " i:" << ni->i << end|;
}
singleton : single instance of class
.h file .cc file
class Singleton { #include "Singl eton. h"
struct Impl { Singleton::Impl Singleton::impl(3, 4);
int x,y; Singleton:: Impl::Impl(int X, int y)
Impl(int X, int y); X)), yy) {3
h void Singleton:m() { ... }
static Impl impl;
public :
void m();
%

Singleton x, vy, z; /I all access same value

152

CHAPTER 4. SOFTWARE ENGINEERING

proxy : frontend for another object to control access

decorator

observer :

struct T {
void mi(...);
void m2(...);

¥

struct SProxyT : public T { /I static
void m1(...) { ... T:ml(...); ...}
void m2(...) { ... T:m2(...); ... }

2

struct DProxyT : public T { /I dynamic
T «t;
DProxyT() { t = NULL; }
~DProxyT() { if (t != NULL) delete t; }
void m1(...) {if (t==NULL)t =new T; t->ml(...); ... }
void m2(...) { ... don'tneedt ... }

. attach additional responsibilities to an object dynathica

struct Abstract { struct Concrete : public Abstract {
virtual void ml(...) = 0; void mi(...);
virtual void m2(...) = 0; void m2(...);
¥ ;
struct Decorator : public Abstract { /I generalize
Abstract «parent;
Decorator(Abstract &parent) : parent(&parent) {}
void mi(...) { parent->m1(...); } /I forward
void m2(...) { parent->m1(...); } /I forward
3

struct Decorateel : public Decorator { // specialize

Decorateel(Abstract &parent, ...) : Decorator(parent), ... {}
void ml(...) { decorate Decorator::ml1(...); decorate }
void m2(...) { decorate Decorator::m2(...); decorate }

3

struct Decoratee2 : public Decorator {...} // specialize
Concrete c;

Decorateel d1(¢); Decoratee2 d2(¢); // decorate ¢ two ways
di.mi(...); d2.ml(...);

1 to many dependency change updates dependencies

4.7. TESTING 153

struct Observee { /I generalize
Observer &oer;
Observee(Observer &oer) : oer(oer) {}
virtual void update() = O;

¥
struct Observer {
list<Observee x> oees; /I list of observees
static void perform(Observee xo0ee) { oee->update(); }
void attach(Observee &oee) { oees.push_back(&oee); }
void deattach(Observee &oee) { oees.remove(&oee); }
void notify() { for_each(oees.begin(), oees.end(), perform); }
%

struct Oee : private Observee { // specialize
Oee(Observer &oer) : Observee(oer) { oer.attach(this); }
~0ee() { oer.deattach(sthis); }
void update() { perform update action }

3

Observer oer;

Oee oeel(oer), oee2(oer); Il register
oer.notify(); /I trigger updates

visitor : perform operation on elements of heterogeneous container

struct Visitor {
void visit(N1 &n) { perform action on node }
void visit(N2 &n) { perform action on node }
3
struct Node {
virtual void action(Visitor &v) = 0;
%

struct N1 : public Node {
void action(Visitor &v) { v.visit(«this); } // overload
2

struct N2 : public Node {
void action(Visitor &v) { v.visit(«this); } // overload
%

Visitor v;
list<Node »> I;
for (int i =0;1<10;i+=1){
l.push_back(i % 2 == 0 ? (Node x)new N1 : (Node x)new N2);
}

for (list<Node +>:iterator it = l.begin(); it != Lend(); ++it) {
(xit)->action(v);
}

4.7 Testing

e A major phase in program development is testings0%).
e This phase often requires more time and effort than desigrcading phases combined.

e Testing is not debugging.

154 CHAPTER 4. SOFTWARE ENGINEERING

e Testingis the process of “executing” a program with the intent okedeiining differences
between the specification and actual results.

o Good test is one with a high probability of finding a differenc
o Successful test is one that finds a difference.

e Debugging is the process of determining why a program doeblane@ an intended testing
behaviour and correcting it.

4.7.1 Human Testing
e Human testing: systematic examination of program to discover problems.
e Studies show 30-70% of logic design and coding errors careteetéd in this manner.
e Code inspectionlooks for common problems:

o data errors: wrong types, mixed mode, overflow, zero divibdel, subscript, initializa-
tion problems, poor data-structure

o logic errors: comparison problems=/ !=, </ <=), loop initialization / termination,
off-by-one errors, boundary values, incorrect formulal effile, incorrect output

o interface errors: missing members or member parameterapsulation / abstraction
issues

e Desk checking: single person “plays computer”, executing program by hand
e Walkthrough : team of people examine program by hand, often “grillingg treveloper.

4.7.2 Machine Testing

e Machine Testing : systematic running of program using test data, which isgiesl to
discover problems.

Should be done after human testing.

Exhaustive testing is usually impractical (too many cases)

Test-case desiginvolves determining subset of all possible test casestiélnighest prob-
ability of detecting the greatest number of errors.

Two major approaches:

o Black-Box Testing: program’s design / implementation is unknown when tesesas
are drawn up.

o White-Box Testing : program’s design / implementation is used to develop tke te
cases.

Start with the black-box approach and supplement with wihite tests.

Black-Box Testing

4.7. TESTING 155

o equivalence partitioning
« partition all possible input cases into equivalence ckasse
x select only one representative from each class for testing
x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours

x Since there are many types of invalid data, invalid hoursataa be partitioned
into equivalence classes

o boundary value testing

x test cases which are below, on, and above boundary cases

39, 40, 41 (hours)
44, 45, 46 !
-1, 0, 1 !

o cause-effect graphing

x used to generate test cases representing combinationedifions

x construct boolean logic-graphs, which are converted testettables (describing
test inputs and expected outputs)

o error guessing

* surmise, through intuition and experience, what the lilkelprs are and then test
for them

e White-Box (logic coverage) Testing

o develop test cases to cover (exercise) important logicsgatiough program

o

try to test every decision alternative at least once

@)

test all combinations of decisions (often impossible dusize)

@)

test every routine and member for each type
cannot test all permutations and combinations of execution

o

4.7.3 Testing Mechanics
e Unit testing : test each routine/class/module separately before wmteginto, and tested
with, entire program.
o requires construction of drivers to call the unit and pagssit values
o requires construction of stub units to simulate the uniiedaluring testing
o allows a greater number of tests to be carried out in parallel

e Integration testing : test if units work together as intended.

156

O
O
o

e}

CHAPTER 4. SOFTWARE ENGINEERING

after each unit is tested, integrate it with tested system.

done top-down or bottom-up : higher-level code is drivergidr-level code is stubs
In practice, a combination of top-down and bottom-up tesignusually used.
detects interfacing problems earlier

e Once system is integrated:

o

o

Functional testing : test if performs function correctly.

Regression testing test if new changes produce different effects from presioer-
sion of the system (diff results of old / new versions).

System testing: test if program complies with its specifications.
Performance testing: test if program achieves speed and throughput requireament

Volume testing: test if program handles large volumes of test data, pgssi@r long
period of time.

Stress testing test if program handles extreme volumes of data over a gleoidd of
time, e.g., can air-traffic control-system handle 250 pdeatesame time?

Usability testing : test whether users have the skill necessary to operatg stens.

Security testing : test whether programs and data are secure, i.e., can wnaeth
people gain access to programs, files, etc.

e If a problem is discovered, make up additional test casesrmin on this particular issue.

4.7.4 Tester
e A program should not be tested by its writer, but in practigs often occurs.

Testing can be very hard on the ego because you have to sedrnpbup own faults.
Remember, the tester only tests what they thinks it should do
Any misunderstandings the writer had while coding the peiogare carried over into testing.

Any system written for an end user must be tested by the endtasgetermine if it is

acceptable.

Acceptance testing checking if the system satisfies what the user ordered.

Points to the need for a written specification to protect Iloghend user and the supplier.

Index

1, 6,40

1=, 29,40
", 55

", 5,30

#, 2

#, 24
#define , 54
#elif, 56
#else, 56
#endif , 56
#if, 56
#ifdef , 56
#ifndef , 56
#include , 55
$,1,14

%, 1

&, 32,40, 46,51
&&, 40, 46
&=, 40

’, 5,30

*, 32,40

+l, 23

*=, 40

+, 29,40
++,41, 108
+=,40, 41
. 40,41, 47
-, 40

--, 41,108
-=, 40, 41
->, 40

-L, 117
-MD, 131
-MMD, 131
-0, 116

-5, 116
-W, 116

157

-c, 116

-9, 116, 121
-, 117
-0,117

-v, 116

., 40

.C, 25

.c,25

.cc, 25, 92
.cpp, 25

.h, 55,92
/,3,40

\, 5,30

/%, 23

I, 23

/=, 40

47

:, 85,88, 97, 114
24

5,y 19

<, 12,2940
<<, 40, 58, 80
<<=, 40

<=, 2940
<> 55

=, 7,14, 29 40
==, 29,40

>, 6

> 12, 29, 40
>&,12

>=, 29,40
>> 40, 58, 80
>>=, 40
?:,40, 46

[1, 29, 65

%, 40

%=, 40

158

&, 32,40
{},43

A, 40

A=, 40

\5

|, 12, 40, 46
=, 40

~, 4,40

a.out, 66, 117
absolute pathnama,
abstract150
abstract clasg,01
abstract class
pure,102
abstract data-typ&9
abstraction88
acceptance testing56
access controB9
adapter]150, 151
ADT, 89
aggregation145
aggregation35s, 68
agile,148
alias, 7
alias,38, 98
allocation
array,37, 64
dynamic,62
array,64
heap 63, 64, 108
array,64
matrix, 65
stack,64
argc, 66
argumentg9
argv, 66, 67
array,37
array,28, 31, 37, 39, 42, 58, 6466, 71
2-D, 65
deallocationp5
dimension37-39, 41, 64, 71, 108
parameter70, 71
as, 116
assembler116

CHAPTER 4. SOFTWARE ENGINEERING

assertion118
assignmenigl
address33
array,37, 108
cascade41l
initializing, 26
operator90, 95
pointer,34
assignment38, 40, 41, 82
association143
association clasd444
atoi, 67
attribute, 142

backquoteb
backslash5
backspace key,
backtrace, 121
bash,1, 17
basic types26
bool , 26
char, 26
double , 26
float, 26
int, 26
wchar_t, 26
basic types31
bit field, 36
bit-wise copy,82
black-box testingl54
block,43
block, 39, 43
{143
block, 25
blueprint,141
bool, 26, 30
boolalpha, 58
boolean expressiod4
false, 44
true, 44
boundary value testind,55
break, 45, 47
break, 123
breakpoint
continue, 124

4.7. TESTING

delete, 123
disable, 123
enable123
finish, 125
next, 124
step, 123
breakpoint,123

c_str, 29
call-back routine74
cascade58
cascade assignmedt]
case, 19, 45
19
pattern,19
case-sensitivel, 4, 26
cast,40, 42,105
cast42 73
cause-effect graphind55
cclplus,116
cd, 6
cerr, 57
char, 26, 27, 30
chevron 40, 58, 80
chevron, 107
chgrp, 12
chmod, 12
chsh, 2
cin, 57
class, 35, 90
class diagraml42
class modell41
clear, 60
cmp, 10
code inspection 54
coercion,62
comma expressiod,1, 47, 65
command option
command-line argument§6
argc, 66
argv, 66, 67
main, 66
command-line interfacd,
comment?2, 23
comment23

159

#,2
«l, 23
/%, 23
I, 23
nesting23, 24
out, 23, 56
comment23
compilation,115
compilation
g++, 25
compiler,116
compiler
options
-D, 54, 116
-E, 115
-1, 116
-L, 117
-MD, 131
-MMD, 131
-0, 26,116
-S, 116
-W, 116
-Wall, 26
-c, 95,116
-g, 116 121
-1, 117
-0,117
-v, 116
separate compilatio®, 87
compiler,23, 115
composition145
concurrent versions systet31
conditional 44
conditional expressiord4
conditional expression evaluatioff
conditional expression evaluation
&&, 46
?:, 46
partial evaluation45
short-circuit,46
conditional inclusion55
const, 28, 34,54, 71, 75
constant28, 34, 39
bool, 30
char, 30

160

designated30

double , 30

escape sequence)

initialization, 39, 54

int, 30

parameter71

pointer,34

string, 28, 30

type constructor39

undesignated0, 59

variable,28
constant?28, 30, 75, 93
construction97
constructor97
constructor3l, 100

const member83

constant/8

copy,81, 90

implicit conversion,79

passing arguments to other construc-

tors,100
type,31
constructor,/7
continue , 47
continue, 124
contra-variance99
control structure43
block, 43
{143
conditional 44
conditional expression evaluatiofh
&&, 46
?:, 46
partial evaluation45
short-circuit,46
looping,43, 46
break, 20
continue , 20
do, 46
for, 20, 47
while , 19, 46
selection43, 44
break, 45
case, 19, 45
dangling else44

CHAPTER 4. SOFTWARE ENGINEERING

default , 45
else, 44
if, 18, 44
pattern,19
switch , 45, 67
test,17
short-circuit expression evaluatiotg
transfer43
conversion4l, 79
cast,40
explicit, 41, 42,59, 73, 105
implicit, 41, 44,59, 70, 72, 79
narrowing,42
promotion 41
widening,41
conversion of types}2, 105
copy constructorg2, 90, 95
cout, 57
cp, 9
cpp,115
csh,1, 17
current directory3, 4,6, 9, 11
current stack framel,22

dangling else44
dangling pointer63, 95
data membe35
dbx, 121
debug print statement$17
debugger120
Debugging117
debugging117, 154
dec, 58
declaration25
basic types26
const, 54
type constructoi3l
type qualifier27
variable,26
declaration25
Declaration Before Us&7
declaration before us86
decorator152
deep copy82
default

4.7. TESTING

parameter73
default , 45
default constructor77, 78
default valuey7
parameter7/1
default valuey1
delete, 62
(1,65
delete, 123
delete key2
deque, 107, 111
dereference32, 40
dereferencing32
design patterng,49
designated constarg0
desk checkingl54
desktop1
destruction97
explicit, 84
implicit, 84
order,84
destructor,100
destructorB4, 97
diff, 10
dimension37-39, 41, 64, 71, 108
disable, 123
do, 46
documentation23
double , 26, 30
double quoteb
down cast105
dynamic storage manageme®g, 85
dynamic_cast , 105

eager evaluatiorl6
echo, 8

else, 44

enable, 123
encapsulatior§9
end of file,59
end of line,25, 59
endl, 25, 58
Enter key,1
enum, 31, 54
enumeration31

161

enumeration3l, 35
enumerator3l
eof, 60
equivalence
name 38
structural 38
equivalence partitionind,55
error guessingl55
escapes
escape sequencg)
eval, 8
evaluation
eager46
lazy, 46
partial,45
short-circuit,46, 51
event programming/4
executell
execution errorl19
exit, 25
exit status8, 16
explicit conversion4l, 42, 73
explicit inclusion,96
expression40
extreme,148

factoring,140
factory method150
fail, 58, 60
false, 44
feof, 60
file
.h, 55
opening 58
file inclusion,55
file management
file permission11
input/output redirection].2
<12
>&, 12
> 12
[, 12
file permission
executell
group,11

162

other,11

read,11

search]l1

user,11

write, 11
file suffix

.C, 25

.c, 25

.cc, 25,92

.cpp, 25

.h, 92

.0, 95
files, 2
files

input/output redirection] 2
find, 29
find_first_not_of, 29
find_first_of, 29
find_last_not_of, 29
find_last_of, 29
finish, 125
fix-up routine,74
fixed, 58
flag variable49
float, 26, 28
for, 20, 47
for_each, 112
format

I/O, 58
formatted i/0,56
formatted 1/057
forward declaration86
forward declaration86
frame, 122
free, 62
free,62
friend , 90
friendship,97
friendship,90
fstream, 57
function,68
function member35
function-call operator81
functional testing156
functor,81, 113

CHAPTER 4. SOFTWARE ENGINEERING

g++, 25,37,42,78, 115
garbage collectiorg2
gdb
backtrace, 121
break, 123
breakpoint,123
continue, 124
delete, 123
disable, 123
enable, 123
finish, 125
next, 124
step, 123
continue, 124
delete, 123
disable, 123
enable, 123
finish, 125
frame, 122
info, 123
list, 126
next, 124
print, 122
run, 121
step, 123
undisplay, 126
gdb, 121
generalization145
generatel4l
global scope69
globbing,4, 11,19
gmake, 128
goto, 47, 67
label,47
graphical interfacel
grep, 10
group,11

heap
array,64
heap,63, 64, 108
hex, 58
hidden files5
history , 6
home directory3, 6, 8

4.7. TESTING

human testingl54

I/O
cerr, 57
cin, 57
clear, 60
cout, 57
fail, 58
formatted 57
fstream, 57
ifstream, 57
ignore, 60
iomanip, 58
jostream, 57
manipulators58
boolalpha, 58
dec, 58
endl, 58
fixed, 58
hex, 58
left, 58
noboolalpha, 58
noshowbase, 58
noskipws, 58
oct, 58
right, 58
scientific, 58
setfill, 58
setprecision, 58
setw, 58
showbase, 58
skipws, 58
ofstream, 57
identifier,26
identifier,47
if, 18, 44
?:, 46
dangling else44
else, 44
ifstream, 57
ignore, 60
implementation91
implementation inheritanc86
implementation inheritanc86
implicit conversion4l, 44, 70, 72, 79

inclusion
explicit, 96

independent objec84

indirection,32
info, 123
inheritance

implementation96

type, 96, 98
inheritance96

163

initialization, 39, 77, 78, 81, 83, 97, 100

array,39

forward declaration88

string,39
structure 39

initialization, 77, 82

inline , 54
input, 25, 56, 59
>> 80
end of file,59
eof, 60
fail, 60
feof, 60
formatted 57
manipulators
iomanip, 58
noskipws, 58
skipws, 58
standard input
cin, 57

input/output redirection].2

filter
[, 12
input
<, 12
output
> 12
>&, 12
int, 26, 27, 30
INT16_MAX, 28
INT16_MIN, 28
intl6_t, 28
INT32_MAX, 28
INT32_MIN, 28
int32_t, 28
INT64_MAX, 28

164

INT64_MIN, 28
inté4_t, 28
INT8_MAX, 28
INT8_MIN, 28
int8_t, 28
INT_MAX, 27
INT_MIN, 27
integral type 36
integration testingl55
interaction modell41
interface,89, 91
interface classl02
iomanip, 58
jostream, 25, 57
iteration statement

break, 47

continue , 47
iterative,148
iterator

++, 108

--,108

for_each, 112
iterator,107, 151

java,73

keyword,26
keywords,14
ksh,1

label,47

language
preprocesso4
programming 24
template24

lazy evaluation46

Id, 117

left, 58

linker, 117

list, 107,111, 126
back, 111
begin, 112
clear, 111
empty, 111
end, 112
erase, 112

CHAPTER 4. SOFTWARE ENGINEERING

front, 111
insert, 112
iterator,108
pop_back, 111
pop_front, 111
push_back, 111
push_front, 111
begin, 112
end, 112
size, 111
LLONG_MAX, 27
LLONG_MIN, 27
login, 1, 2
login shell,15
logout,2
long, 27
LONG_MAX, 27
LONG_MIN, 27
loop
mid-test,49
multi-exit, 49
looping statemeny6
break, 20
continue , 20
do, 46
for, 20, 47
while, 19, 46
Ipg, 9
lpr, 9
lprm, 9
Is, 8, 11

machine testingl54
macros b4
main, 25, 66, 87
make, 128
make,128
malloc, 62
man, 8
managed languag62
manipulators58
map, 107, 110
begin, 111
end, 111
erase, 111

4.7. TESTING

find, 111
insert, 111
begin, 111
end, 111
matrix, 109
matrix, 37
matrix, 41, 65, 71
member
anonymous96
const, 83
destructionB4, 97, 100
initialization, 77, 97, 100
operator,76
overloading,/76
pure virtual,102
virtual, 104, 105
member35
memory leak63, 95
mid-test loop49
mkdir, 9
modularization139
multi-exit
loop, 49
mid-test,49
multi-level
static,52
multiple inheritance102
mutually recursive87
mutually recursive86
mv, 9

name equivalenc&8

name equivalenc@&g, 98, 99, 106

namespaces
std, 25
namespace],13
narrowing,42
nesting
blocks,43
comments23, 24
initialization, 39
preprocessof5
routines,69
type,85
nesting,97

new, 62

next, 124
noboolalpha, 58
noshowbase, 58
noskipws, 58
npos, 29

NULL, 39, 55
null address32
null character28

object,75
anonymous membe®6
assignmentgl
const member83
constantsy8
constructor/7, 97, 100
copy constructoigl, 90
default constructor77
destructor84, 97, 100
initialization, 77, 100
pure virtual member.02
type
nesting,108
virtual member,104, 105
object codel16
object diagram143
object model141
object-oriented96
objects,75
observer]152
oct, 58
ofstream, 57
open
file, 58
open,58
operation142
operators
*, 32,40
<<, 58, 80
>> 58, 80
&, 32,40
arithmetic,40
assignmen#0
bit shift, 40
bit-wise,40

165

166

cast,40

comma expressiod,0
control structures40
logical, 40
overloadingh8, 76
pointer,32, 40
priority, 40
relational 40
selection85, 97, 114
string,29

struct , 40

selection88
other,11
output,25, 56, 61

<<, 80
endl, 25
formatted 57
manipulators
boolalpha, 58
dec, 58
endl, 58
fixed, 58
hex, 58
iomanip, 58
left, 58
noboolalpha, 58
noshowbase, 58
oct, 58
right, 58
scientific, 58
seffill, 58
setprecision, 58
setw, 58
showbase, 58
standard error
cerr, 57
standard output
cout, 25,57

overloading,72
overloading58, 76, 77, 80

constructory/7

overloading,72, 76
override,99, 103
override, 97, 104
overriding,27

CHAPTER 4. SOFTWARE ENGINEERING

paginate9
parameter
array, 71
constant/1
default valuey1
pass by referenc&0
pass by values9
prototype 86
parameter passing
array, 71
parameter$9
pass by referenc&0
pass by valuet9
pattern,149
pattern,19
pattern matching}
performance testing,56
pointer,31, 39
0,39
array,37, 64
matrix, 65
NULL, 39, 55
pointer,32
polymorphic,105
polymorphism98
preprocesson 15
preprocessog4, 53
#define , 54
#elif, 56
#else, 56
#endif , 56
#if, 56
#ifdef , 56
#ifndef , 56
#include , 55
comment-out24
file inclusion,55
macrosp4
variable,54, 116
preprocessoR3, 24, 91
print, 122
priority, 40
private , 89
proceduref8
program

4.7. TESTING

structure23
program structure23
block, 25
main, 25
promotion 41
prompt
$1
%, 1
>, 6
prompt,1
protected , 89
prototype 86
prototype 91
proxy, 152
pseudo random-number genera&g,
pseudo random-numbe&)
public , 35, 89
pure abstract-clas&02
pure virtual member1 02
pwd, 6

queue, 107, 111
guoting,5

rand, 41

random numbei80

random number
generator80
pseudo-randong80
seed8l

random-number generatarl

random-number generat@Q

read,11

real time,6

recursive type35

reference3l, 32,40
initialization, 34

reference32, 33, 70

referencing 32

regression testindg,56

relative pathname

replace, 29

repository, 131

return , 25, 69

return code8

Return key1
return type68
reuse99
rfind, 29
right, 58
rm, 9
routine,68
argument/parameter passiGg,
array parametei]1
function,68
member,75
parameter69
pass by referenc&0
pass by valuet9
proceduref8
prototype 86
return , 69
return type68
routine overloading72
routine prototype
forward declaration36
scope,’5
routine activation121
routine member35
routine pointery/3
routine prototype86
run, 121

scientific, 58
scope,’5, 88
scopell3
script,13
search]ll
security testing156
selection operatoB5
selection statement4
break, 45
case, 19, 45
default , 45
else, 44
if, 18, 44
pattern,19
switch , 45, 67
semantic errorl 19
semicolon24

168 CHAPTER 4. SOFTWARE ENGINEERING

sentinel 28 stack allocation64
separate compilatio®, 91 staged deliveryl48
-c, 95 standard library107
sequence diagram46 standard library107
setfill, 58 statement24
setprecision, 58 static , 91
setw, 58 static multi-level exit52
sh,1,17 std, 25
shallow copy82 stderr, 57
shell stdin, 57
bashl, 17 stdout, 57
csh,1, 17 step, 123
ksh,1 stepwise refinement40
prompt,1 strcat, 29
$,1 strcpy, 29
%, 1 strcspn, 29
> 6 stream
sh,1,17 cerr, 57
tcsh,1 cin, 57
shell,1 clear, 60
shell program13 cout, 57
shift , 17 fail, 58
short , 27 formatted 57
short-circuit,18, 45 fstream, 57
short-circuit expression evaluatioth ifstream, 57
showbase, 58 ignore, 60
SHRT_MAX, 27 input, 25
SHRT_MIN, 27 cin, 57
signed , 27 end of file,59
single quote5 eof, 60
singleton,151 fail, 60
sketch,141 manipulators
skipws, 58 boolalpha, 58
software development dec, 58
.cc, 92 endl, 58
.h, 92 fixed, 58
.0, 95 hex, 58
separate compilatio®1 iomanip, 58
software engineering,37 left, 58

source code managemeh81
source control system 31
source file 69, 87, 89, 91
source tree]l28

spiral,148

stack, 107, 111

noboolalpha, 58
noshowbase, 58

noskipws, 58
oct, 58

right, 58
scientific, 58

4.7.

TESTING

setfill, 58
setprecision, 58
setw, 58
showbase, 58
skipws, 58
ofstream, 57
output,25
cout, 25
endl, 25
stream file 57
stress testingL56
string, 28, 30
C+H
1=, 29
+, 29
<, 29

[1, 29

c_str, 29

find, 29
find_first_not_of, 29
find_first_of, 29
find_last_not_of, 29
find_last_of, 29
npos, 29

replace, 29

rfind, 29

substr, 29

[1, 29
strcat, 29
strcpy, 29
strcspn, 29
strlen, 29
strncat, 29
strncpy, 29
strspn, 29
strstr, 29
constant28
null termination 28
strlen, 29

strncat, 29
strncpy, 29
strspn, 29
strstr, 29
strtol, 67
struct , 35, 89
structurally equivalenc&8
structure 35
structure 31, 35, 39, 42, 75
member35, 75
data,35
function, 35
initialization, 35
routine,35
visibility
default,35
public , 35
struct , 40
structured programming8
subscripting 37
subshell2, 15
substr, 29
suffix
.C,25
.c, 25
.cc, 25
.cpp, 25
switch , 45, 67
break, 45
case, 45
default , 45
syntax error,119
system modellingl41
system testingl56
system time6

tab key,5

tcsh,1

template 106
routine,106
type, 106

template 24

template method 51

terminal,1, 2

test-case desigih4

169

170

testing,154
this, 76
time, 6
time stamp,128
token,24
translation unit127
true, 44
type aliasing38
type constructor
aggregation35
array,37
class,35
constant39
enumeration31, 35, 54
pointer,32
reference32
structure 35
type aliasing38
type constructor31
type conversiord2, 72, 79, 105
type equivalence98, 99
type inheritance96, 98
type nesting85
type qualifier27, 33
const , 28, 34
long , 27
short , 27
signed , 27
static , 91
unsigned , 27
type qualifier,27, 28
type-constructor constant
array,39
pointer,39
structure 39
typedef , 38

UINT16_MAX, 28
uintl6_t, 28
UINT32_MAX, 28
uint32_t, 28
UINT64_MAX, 28
uinté4_t, 28
UINT8_MAX, 28
uint8_t, 28

CHAPTER 4. SOFTWARE ENGINEERING

UINT_MAX, 27
ULLONG_MAX, 27
ULONG_MAX, 27
undesignated constad0, 59
undisplay, 126

unformatted i/056, 61
unified modelling languagé.42
uninitialization,84

union,36

unit testing,155

unsigned , 27

usability testing;156
user,11

user time6

USHRT_MAX, 27

value,69
variable declarations
type qualifier27, 28
variables
address32
constant?28
dereference32, 40
reference32, 40
vector, 107
[1, 108
at, 108
begin, 109
clear, 108
empty, 108
end, 109
erase, 109
insert, 109
pop_back, 108
push_back, 108
rbegin, 109
rend, 109
resize, 108 109
size, 108
virtual , 105
virtual, 104
virtual members102, 104, 105
visibility
default,35
private , 89

4.7. TESTING 171

protected , 89
public , 35, 89
visibility, 85
visitor, 153
void , 68
volume testing156

walkthrough,154
waterfall,148
wchar_t, 26

which, 8

while , 19, 46
white-box testing154
whitespace23, 24, 59
widening,41
wildcard,4
wrapper,150
wrapper membed,01
write, 11

xterm,1, 2

	Title
	Contents
	Shell
	File System
	Pattern Matching
	Quoting
	Shell Commands
	System Commands
	File Permission
	Input/Output Redirection
	Programming
	Variables
	Routine
	Arithmetic
	Control Structures
	Test
	Selection
	Looping

	C++
	Program Structure
	Comment
	Statement

	First Program
	Declaration
	Identifier
	Basic Types
	Variable Declaration
	Type Qualifier
	String
	Constants
	Type Constructor
	Enumeration
	Pointer/Reference
	Aggregation (Structure/Array)

	Type Equivalence
	Type-Constructor Constant

	Expression
	Conversion
	Math Operations

	Control Structures
	Block
	Conditional
	Selection
	Conditional Expression Evaluation
	Looping

	Structured Programming
	Multi-Exit Loop
	Static Multi-Level Exit

	Preprocessor
	Substitution
	File Inclusion
	Conditional Inclusion

	Input/Output
	Formatted I/O
	Formats
	Input
	Output

	Unformatted I/O

	Dynamic Storage Management
	Command-line Arguments
	Routine
	Argument/Parameter Passing
	Array Parameter
	Overloading
	Routine Pointer

	Object
	Operator Member
	Constructor
	Constant
	Conversion

	Random Numbers
	Copy Constructor / Assignment
	Initialize const/Object Member
	Destructor

	Type Nesting
	Declaration Before Use
	Abstraction/Encapsulation
	Separate Compilation
	Inheritance
	Implementation Inheritance
	Type Inheritance
	Constructor/Destructor
	Overloading
	Abstract Class
	Multiple Inheritance
	Virtual Routine
	Down Cast
	Abstraction

	Template
	Standard Library
	Vector
	Map
	Single/Double Linked
	For_each

	Namespace

	Tools
	Compilation
	Preprocessor
	Compiler (cc1plus)
	Assembler
	Linker

	Debugging
	Debug Print Statements
	Assertions
	Errors

	Debugger
	GDB

	Compiling Complex Programs
	Dependences
	Make

	Source Code Management
	CVS
	Repository
	Checking Out
	Adding
	Checking In
	Editting/Removal
	Update
	Versions
	Tagging

	Software Engineering
	Software Crisis
	Software Development
	Programming Methodology
	System Design
	Top-Down Design
	Factoring

	System Modelling
	UML

	Programming Language Selection
	Development Processes
	Design Patterns
	Pattern Catalog

	Testing
	Human Testing
	Machine Testing
	Testing Mechanics
	Tester

	Index

