
School of Computer Science

Course Notes

CS 246

Software Abstraction and Specification

http: //www.student.cs.uwaterloo.ca / �cs246

Winter 2009

1 Administration

1.1 What CS 246 is about�C/C++�UNIX tools� software design

2

CS 246 3

1.2 Individual Course Work� All course assignments are done independently, except finalproject
(pairs).� Students may:
– study together
– help each other in diagnosing compiler/runtime errors
– help each other to use tools� Students may not:
– discuss assignment answers before due date
– show work (in progress or completed) to each other� Students must protect the confidentiality of source code that they
develop.

2 C++

2.1 Program Structure� A C++ program is composed of comments strictly for people, and
statements for both people and the preprocessor/compiler.� A source file contains a mixture of comments and statements.� The C/C++ preprocessor/compiler only reads the statementsand ignores
the comments.

2.1.1 Comment�Comments document what a program does and how it does it.� A comment may be placed anywhere a whitespace (space, tab, newline)
is allowed.� There are two kinds of comments in C/C++ (same as Java):

Java / C / C++
1 /* . . . */
2 // remainder of line

c
 Peter A. Buhr

4

CS 246 5� First comment begins with the start symbol,/*, and ends with the
terminator symbol,*/, and hence, can extend over multiple lines.�Cannot be nested one within another:

/* . . . /* . . . */ . . . */" "

end comment treated as statements� Be extremely careful in using this comment to elide/comment-out code:

/* attempt to comment-out a number of statements
while (. . .) {

/* . . . nested comment causes errors */
if (. . .) {

/* . . . nested comment causes errors */
}

}
*/� Second comment begins with the start symbol,//, and continues to the

end of the line, i.e., only one line long.�Can be nested one within another:

CS 246 6

// . . . // . . . nested comment

so it can be used to comment-out code:

// while (. . .) {
// /* . . . nested comment does not cause errors */
// if (. . .) {
// // . . . nested comment does not cause errors
// }
// }

2.1.2 Statement�C++ is actually composed of 4 languages:
1. The preprocessor language (cpp) modifies (text-edits) the program

beforecompilation .
2. The template (generic) language adds new types and routinesduring

compilation .
3. The C programming language specifying basic declarations and

control flow to be executedafter compilation.
4. The C++ programming language specifying advanced declarations and

control flow to be executedafter compilation.

CS 246 7� A programmer uses the four programming languages as follows:

user edits! preprocessor edits! templates expand! compilation
(! linking/loading! execution)�C is composed of languages 1 & 3.� A preprocessor statement is a# character, followed by a series of tokens

separated by whitespace, which is usually a single line and not
terminated by punctuation.� The syntax for a C/C++ statement (both template and regular)is a series
of tokens separated by whitespace and terminated by a semicolon. ({} is
an exception)

CS 246 8

2.2 First Program� Java

import java.lang.*; // implicit
class hello {

public static void main(String[] args) {
System.out.println("Hello World!");
System.exit(0);

}
}�C++

#include <iostream> // insert contents of file iostream
using namespace std; // direct naming of I/O facilities

int main() { // program starts here
cout << "Hello World!" << endl;
return 0; // return 0 to shell

}� #include <iostream> copies basic I/O descriptions (no equivalent in
Java).

CS 246 9� using namespace std allows imported I/O names to be accessed
directly, i.e.,without qualification.� int main() is the routine where execution starts.� curly braces,{ . . . }, denote a block of code, i.e., routine body ofmain.� cout << "Hello World!" << endl prints"Hello World!" to standard
output, calledcout (System.out in Java).� endl start newline after"Hello World!" (println in Java).�Optionalreturn 0 returns zero to the shell indicating successful
completion of the program; non-zero usually indicates an error.�main magic! If no value is returned, 0 is implicitly returned.�Routineexit (JavaSystem.exit) stops a program at any location and
returns a code to the shell, e.g.,exit(0).

2.3 Declaration�Declarations define new variables and types in a program.

CS 246 10

2.3.1 Identifier� name used to refer to a variable or type.� syntax :(letter | ’_’) (letter | ’_’ | digit)*� case-sensitive:

VeryLongVariableName Page1 Income_Tax _75� Some identifiers are reserved (e.g.,if , while), and hence,keywords.

2.3.2 Basic Types
Java C / C++

boolean bool (C <stdbool.h>)
char char / wchar_t
byte char / wchar_t integral types
int int
float float floating-point types
double double�C/C++ treatchar andwchar_t (unicode characters) as an integral type.� Java typesshort andlong are created using type qualifiers.

CS 246 11

2.3.3 Variable Declaration�Declaration in C/C++ same as Java: type followed by list of identifiers.
Java / C / C++
char a, b, c, d;
int i, j, k;
double x, y, z;�Declarations can be intermixed among executable statements in a block.� Variable names can be reused in nested blocks, i.e., hide (override)

names in a containing block.

{ int i; . . . // first i
{ int i; . . . // second i�C/C++ do not check for uninitialized variables. (maybe)

int i;
if (i < 3) . . . // i has no value�C/C++ declaration may have initializing assignment (except for fields in

struct /class):

int i = 3;

CS 246 12

2.3.4 Type Qualifier�C/C++ provide only two basic integral typeschar andint .�Other integral types are generated using type qualifiers.�C/C++ provide signed (positive/negative) and unsigned (positive only)
integral types:

integral types range
signed char / char at least-127 to 127
unsigned char at least0 to 255
signed short int / short at least-32767 to 32767
unsigned short int / unsigned short at least0 to 65535
signed int / int at least-32767 to 32767
unsigned int at least0 to 65535
signed long int / long at least-2147483647 to 2147483647
unsigned long int / unsigned long at least0 to 4294967295�Range of values forint is machine specific: 2 bytes for 16-bit computers

and 4 bytes for 32/64-bit computers.� long is 4 bytes for 16-bit computers and 8 bytes for 32/64-bit computers.

CS 246 13�C/C++ support write-once/read-only constant variables with type
qualifierconst (Javafinal), in any variable declaration context.

Java C/C++

final short x = 3, y;
y = x + 7;
final char c = ’x’;

const short int x = 3, y = x + 7;
disallowed
const char c = ’x’;�C/C++const identifiermustbe assigned a value at declaration (or by a

constructor’s declaration); the value can be the result of an expression:� A constant variable can appear in read-only contexts after it is initialized.

2.3.5 Constants� Java and C/C++ share almost all the same constants for the basic types
(except for unsigned).� A designated constantindicates its type with suffixes:L/l for long,LL/ll
for long long,U/u for unsigned, andF/f for float.�Unlike Java, there is noD/d suffix for double constants.

CS 246 14� The type of anundesignated integral constant
(octal/decimal/hexadecimal) is the smallestint type that holds the value,
and the type of a floating-point constant isdouble .

boolean false , true
decimal 123, -456L, 789u, 21UL

octal, prefix0 0144, -045l, 0223U, 067ULL
hexadecimal, prefix0X or 0x 0xfe, -0X1fL, 0x11eU, 0xffUL

floating-point .1, 1., -1., -7.3E3, -6.6e-2F, E/e exponent
character, single character’a’, ’\’’

string, multi-character"abc", "\"\""�Use the right constant with types character or string:

char ch = "a"; // use ’a’
char *str = ’a’; // use “a”� An escape sequence allows special characters to appear in a character or

string constant and starts with a backslash,\.

"\\ \" \t \n \012 \xf3"� The most common escape sequences are (see a C++ textbook for others):

CS 246 15

’\\’ backslash
’\’’, "\"" single and double quote
’\t’, ’\n’ tab, newline
’\0’ zero, string termination character
’\ooo’ octal value,ooo up to 3 octal digits
’\xhh’ hexadecimal value,hh up to 2 hexadecimal digits (not in Java)�C/C++ string constant implicitly terminated with character ’\0’.� E.g.,"abc" is 4 characters composed of’a’, ’b’, ’c’, ’\0’.

2.3.6 Type Constructor� A type constructor is a declaration that builds a more complex type
from the basic types.

CS 246 16

constructor Java C/C++
enumerationenum Colour { R, G, B } enum Colour { R, G, B }

pointer any-type *p;
referenceclass-type r; any-type &r; (C++ only)
structureclass struct or class

array int v[] = new int [10]; int v[10];
int m[][] = new int [10][10]; int m[10][10];� Java/C/C++ usename equivalenceto decide if two types are the same:

class T1 { class T2 { // identical structure
int i, j, k; int i, j, k;
double x, y, z; double x, y, z;

} }
T1 t1;
T2 t2 = t1; // incompatible types� TypesT1 andT2 have identical structure but have different names so the

initialization of variablet2 fails, even though technically it could work.� An alias is a different name for same type, so alias types are equivalent.

CS 246 17

2.3.6.1 Enumeration� An enumeration is a type defining a set of named constants with only
assignment, comparison and implicit cast to integer operations:
enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering
Day day = Sat; // variable declaration, initialization
enum {Yes, No} vote = Yes; // anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type/variable declaration, explicit numbering
colour = B; // assignment
day = colour; // fails C++, works C�Names in an enumeration are calledenumerators.� Enumerators can be numbered explicitly.� Enumeration in C++ denotes a new type; enumeration in C is alias forint .�C/C++ enumeration only has underlying typeint ; Java enumeration can
give names (and operations) to any value.� Java enumerator names must always be qualified.�C/C++ enumerator names are unqualified) unique in a lexical scope.� In C, enum must always be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

CS 246 18

2.3.6.2 Pointer/Reference� pointer/referenceis an indirect mechanism to access a type instance.� All variables have an address in memory, e.g.,int x = 5, y = 7:

x 5 7

100 200

int int

address

variable/value

type

y� Value of a pointer/reference is the address of a variable.� Accessing this address is different for a pointer or reference.� Two basic pointer/reference operations:

1. referencing: obtain address of a variable; unary operator& in C++:

&x ! 100
&y ! 200

2.dereferencing: retrieve value at an address; unary operator* in C++:

*(&x) ! *(100) ! 5
*(&y) ! *(200) ! 7�Compiler automatically does first dereference, sox is really*(&x).

CS 246 19�Unary and binary use of operators&/* for reference/deference and
conjunction/multiplication.� Special address no variable has (null pointer), null in Java, 0 in C++.� Pointer/reference variable has: memory address of anothervariable
(indirection), null pointer (or an undefined address if uninitialized).

null pointer0p3

70

y

200

7

60

200p2

intpointer to int

100

5 x

50

100p1 &p1 ! 50
&p2 ! 60
&p3 ! 70
*(&p1) ! 100
*(&p2) ! 200
*(&p3) ! 0
((&p1)) ! 5
((&p2)) ! 7
((&p3)) ! error� Because of implicit 1st dereference,p1 is 100 and*p1 is 5.� A pointer/reference may point to the same memory address as another

pointer/reference (dashed line).

CS 246 20�Dereferencing null pointer is an error as no variable at address0.� Explicit dereference is an operation usually associated with a pointer:

*p2 = *p1; � y = x; // value assignment
*p1 = *p2 * 3; � x = y * 3;� Address assignment does not require dereferencing:

p2 = p1; // address assignment� p2 is assigned the same memory address asp1, i.e.,p2 points atx; values
of x andy do not change.�Having to perform explicit dereferencing can be tedious anderror prone.

p1 = p2 * 3; // implicit deference
unreasonable asp1 is assigned address inp2 times 3.�Reasonable if value pointed to byp1 is assigned value pointed to byp2
times 3.� A pointer that provides implicit dereferencing is areference.�However, implicit dereferencing generates an ambiguous situation for:

p2 = p1;

CS 246 21� Should this expression perform address or value assignment, and how
are both cases specified?�C provides only a pointer; C++ provides a pointer and a restricted
reference; Java provides only a general reference.�C/C++ pointer:
– created using the* type-constructor,
– may point to any type (i.e., basic or object type) in any storage

location (i.e., global, stack or heap storage),
– and no implicit referencing or dereferencing.
– type qualifiers can be used to modify pointer types:

const short int w = 25;
const short int *p3 = &w;

int * const p4 = &x;
(int &p4 = x;)

const long int z = 37;
const long int * const p5 = &z; 308 37p5 z

5100p4 x

25 w300p3

CS 246 22

– p3 may point at anyconst short int variable.
– Pointer can change to point at different variables, but the value of the

variables cannot be changed through the pointer.
– p4 may only point at variablex.
– Pointer cannot change to point at a different variable, but the value of

the variable can be changed through the pointer.
– p5 may only point at variablez.
– Pointer cannot change to point at a different variable, and the value of

the variablez cannot be changed through the pointer.�C++ reference
– created using the& type-constructor,
– may point to any type (i.e., basic or object type) in any storage

location (i.e., global, stack or heap storage),
– restricted to a constant pointer to user created

(non-temporary/non-constant) storage,
– and always has implicit dereferencing.
– constant-pointer restriction of a C++ reference is equivalent to a Java

final reference or* const pointer with implicit dereferencing.

CS 246 23

– Java reference can vary what it points to, but it can only point to
objects in heap storage.

– C++ constant-pointer restriction has two implications:
1. A C++ reference must be initialized at the point of declaration.� initializing expression has implicit referencing becausean address

is alwaysrequired;

int &r1 = &x; // error, unnecessary & before x
2. No need for address assignment after a C++ reference declaration

because the address cannot change.� Java interprets reference assignmentr2 = r1 as address assignment
and has no mechanism to perform value assignment between
reference types.� Pointer/reference type-constructor is not distributed across the

identifier list:

int * p1, p2; only p1 is a pointer, p2 is an integer, should beint *p1, *p2;
int & rx, ry; only rx is a reference, ry is an integer, should beint &rx, &ry;

CS 246 24

2.3.6.3 Aggregation (Structure/Array)� Like Java, C++ is object-oriented, but it does not subscribeto the notion
that everything is a basic type or an object.� Instead, aggregation is performed by structures and arrays, and
computation is performed by routines.� An object type is the composition of a structure and routines.� In C++, a routine can exist without being embedded in astruct /class .

Structure is a mechanism to group together heterogeneous values,
including (nested) structures:

Java C/C++

class Foo {
public int i = 3;
. . . // more fields

}

struct Foo {
int i; // no initialization
. . . // more members

}; // semi-colon terminated�Components of a structure are calledmembers1 in C++.
1Java subdivides members into fields (data) and methods (routines).

CS 246 25� All members of a structure are accessible (public) by default (excluding
Javapackage visibility).� A structure member cannot be directly initialized (unlike Java) , and a
structure is terminated with a semicolon.� As for enumerations, a structure can be defined and instancesdeclared in
a single statement.

struct S { int i; } s; // definition and declaration� In C, struct must always be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration�Recursive types (lists, trees) are defined using a pointer in a structure:

struct Node {
. . . // data members
Node *link; // pointer to another Node

};� A bit field allows direct access to individual bits of memory:

CS 246 26

struct S {
int i : 3; // 3 bits
int j : 7; // 7 bits
int k : 6; // 6 bits

};
i = 2; // 10
j = 5; // 101
k = 9; // 1001� A bit field must be an integral type.�Unfortunately, bit-fields are not portable.�On little-endian architectures (e.g., like Intel/AMD x86), the compiler

reverses the bit order.�However, the compiler does not implicitly reverse the bit order.�Hence, the bit-fields in variables above must be reversed for
little-endian architectures.�While it is unfortunate C/C++ bit-fields lack portability, they are the
highest-level mechanism to manipulate bit-specific information.

CS 246 27

Union is a heterogeneous aggregation mechanism, where all members
overlay the same storage:

union U {
char c;
int i;
double d;

} u;

i dcu�Used to access internal representation or save storage by reusing it for
different purposes at different times.

union U {
float f;
struct {

unsigned int sign : 1;
unsigned int exp : 8;
unsigned int val : 23;

} s;
int i;

} u;

CS 246 28

u.f = 3.5; cout << hex << u.f << "\t" << u.i << endl;
u.i = 3; cout << u.i << "\t" << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val <<
u.f = -3.5e-3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val <<

produces:

3.5 40600000
3 4.2039e-45
0 8a 5ac000
1 76 656042�Reusing storage is dangerous and can usually be accomplished via

other techniques.

Array is a mechanism to group together homogeneous values.�C/C++ array is simple because dimension information is not stored with
an array object.�No equivalent to Java’slength member for arrays,no subscript
checking, and no array assignment.� Array variables can have dimensions specified on a declaration and all
the array elements are implicitly allocated:

CS 246 29

int x[10]; // int x[] = new int[10]
int y[10][20]; // int y[][] = new int[10][20]� Be careful not to write:

int b[10, 20]; // not int b[10][20]�C++ only supports a compile-time dimension value;g++ allows a runtime
expression.

int r, c;
cin >> r >> c; // input dimensions
int array[r]; // dynamic dimension, g++ only
int matrix[r][c]; // dynamic dimension, g++ only� Like Java, an array is subscripted starting at 0.

2.3.7 Type-Constructor Constant
enumerationenumerators
pointer 0 or NULL indicates a null pointer
structure struct { double r, i; } c = { 3.0, 2.1 };
array int v[3] = { 1, 2, 3 };

CS 246 30�C/C++ use0 to initialize pointers versusnull in Java.� System include-files define the preprocessor variableNULL as0.� Structure and array initialization can only occur as part ofa declaration.
struct { int i; struct { double r, i; } s; } d = { 1, { 3.0, 2.1 } }; // nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array� Values in initialization list are placed into a variable starting at the
beginning of the structure or array.�Not all the members/elements must be initialized.� A nested structure or multidimensional array is created using braces.� String constants can be used as a shorthand array initializer value:

char s[6] = "abcde"; rewritten as char s[6] = { ’a’, ’b’, ’c’, ’d’, ’e’, ’\0’ };� It is possible to leave out the first dimension, and its value is inferred
from the number of constants in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 6?)
int v[] = { 0, 1, 2, 3, 4 } // 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

CS 246 31

2.3.8 Type Aliasing�C/C++ providestypedef to create a synonym for an existing type:

typedef short int shrint1; // shrint1 => short int
typedef shrint1 shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrint1 s1; // implicitly rewritten as: short int s1
shrint2 s2; // implicitly rewritten as: short int s2
shrint3 s3; // implicitly rewritten as: short int s3� All combinations of assignments are allowed amongs1, s2 ands3,

because they have the same type name “short int ”.� Java provides no mechanism to rename types.

CS 246 32

2.4 Expression

Java C/C++ priority
unary., (), [], call ., ->, (), [], call, dynamic_cast high

cast,+, -, !, ~ cast,+, -, !, ~, &, *
new new , delete , sizeof

binary*, /, % *, /, %
+, - +, -

bit shift<<, >>, >>> <<, >>
relational<, <=, >, >=, instanceof <, <=, >, >=
equality==, != ==, !=
bitwise& and &

^ exclusive-or ^
| or |

logical&& short-circuit &&
| | | |

conditional?: ?:
assignment=, +=, -=, *=, /=, %= =, +=, -=, *=, /=, %=

<<=, >>=, >>>=, &=, ^=, |= <<=, >>=, &=, ^=, |=
comma , low

CS 246 33� Like algebra, operators are prioritize and performed from high to low.�Operators with same priority are done left to right, except for unary,?,
and assignment operators, which associate right to left.

int **a, **b, c, d, *w[10];
**a = **b > c ? (*a = *b, d - 1) : (*w)[3] * 7 + 3;�Order of evaluation of subexpressions and argument evaluation is

unspecified (Java left to right).

(i + j) * (k + j); // either + done first
(i = j) + (j = i); // either = done first
g(i) + f(k) + h(j); // g, f, or h called in any order
f(p++, p++, p++); // arguments evaluated in any order�Referencing (address-of),&, and dereference,*, operators do not exist in

Java because access to storage is restricted.� Find address of any variable in any storage context, e.g.,&x, &s.d, &v[5].� Arrow operator,->, is unique to C/C++ and is an anomaly among
programming languages.� Exists because the priority of selection operator “.” is incorrectly higher
than dereference operator “*”, so *p.f executes as*(p.f) instead of(*p).f.

CS 246 34� -> operator performs a dereference and member selection in thecorrect
order, i.e.,p->f is implicitly rewritten as(*p).f.� Assignment is an operator; useful forcascade assignmentto initialize
multiple variables of the same type:

a = b = c = 0; // cascade assignment
x = y = z + 4;�Other uses of assignment in an expression are discouraged!; i.e.,

assignment only on left side.�C/C++ allows any expression to appear as a statement:

3; j + i; (i + j) * (k + j); sin(x);�Complex assignment operators, e.g.,lhs += rhs, are implicitly rewritten:

temp = &(lhs); *temp = *temp + rhs;�Hence, the left-hand side,lhs, is evaluated only once:

v[rand() % 5] += 1; // only calls random once
v[rand() % 5] = v[rand() % 5] + 1; // calls random twice�Comma expression is a series of expressions separated by commas:

CS 246 35

a, f + g, k(3) / 2, m[i][j] value returned� Expressions evaluated left to right with the value of rightmost
expression returned as result.�Comma expression allows multiple expressions to be evaluated in a
context where only a single expression is allowed.�Dimension problemm[10, 20] actually meansm[20] because10, 20 is a
comma expression not a dimension list.� Subscripting problemm[3, 4] meansm[4], 4th row of matrix.�Operators++ / -- are discouraged because subsumed by general+= / -=.

2.4.1 Conversion�Conversion implicitly/explicitly transforms a value fromone type to
another.� Two kinds of conversions:
– widening conversion, no information is lost:

char ! short int ! long int ! double
’\x7’ 7 7 7.000000000000000

CS 246 36

– narrowing conversion, information can be lost:
double ! long int ! short int ! char

77777.77777777777 77777 12241 ’\xd1’�C/C++ support both implicit widening and narrowing conversions (Java
only implicit widening).� Implicit narrowing conversions can cause problems:

int i; double r;
i = r = 3.5; // r -> 3.5
r = i = 3.5; // r -> 3.0 ???� Better to perform narrowing conversions explicitly usingcastoperator.

int i; double x, y;
i = (int) x; // explicit narrowing conversion
i = (int) x / (int) y; // explicit narrowing conversions for integer division
i = (int)(x / y); // alternative technique�C/C++ supports casting among the basic types and user definedtypes.� g++ has a cast extension allowing construction of structure andarray

constants in executable statements not just declarations:

CS 246 37

void rtn(const int m[2][3]);
struct Complex { double r, i; } c;
rtn((int [2][3]){ {93, 67, 72}, {77, 81, 86} }); // g++ only
c = (Complex){ 2.1, 3.4 }; // g++ only� In both cases, a cast is used to indicate the meaning and structure of the

constant.

CS 246 38

2.5 Control Structures

Java C/C++
block { intermixed decls/stmts } { intermixed decls/stmts }

selection if (bool-expr1) stmt1
else if (bool-expr2) stmt2
. . .
else stmtn

if (cond-expr1) stmt1
else if (cond-expr2) stmt2
. . .
else stmtn

switch (integral-expr) {
case c1: stmt1; break ;
. . .
case cn: stmtn; break ;
default : stmt0;

}

switch (integral-expr) {
case c1: stmt1; break ;
. . .
case cn: stmtn; break ;
default : stmt0;

}
looping while (bool-expr) stmt while (cond-expr) stmt

do stmt while (bool-expr) ; do stmt while (cond-expr) ;

for (init-expr ;bool-expr ;incr-expr) stmt for (init-expr ;cond-expr ;incr-expr) stmt
transfer break [label] break

continue [label] continue
goto label

return [expr] return [expr]
label label : stmt label : stmt

CS 246 39

2.5.1 Block� Block is a series of statements bracketed by braces,{. . .}, which can be
nested.� Block serves two purposes: bracket several statements intoa single
statement and introduce local declarations.�When a statement is required, good practice is to always use ablock
to allow easy insertion and removal of statements to or from block.� Putting local declarations precisely where they are neededcan help
reduce declaration clutter at the beginning of an outer block.�However, it can also make locating them more difficult.

2.5.2 Conditional�C/C++ uses aconditional expressionin control structures to cause
conditional transfer (Java uses a boolean expression).� A conditional expression is evaluated and implicitly tested for not equal
to zero, i.e.,cond-expr � expr != 0.� Boolean expressions are converted to 0 forfalse and 1 fortrue before
comparison to zero, e.g.:

CS 246 40

if (x > y). . . implicitly rewritten as if ((x > y) != 0). . .�Hence, other expressions are allowed in a conditional (C/C++ idiom):

if (x) . . . implicitly rewritten as if ((x) != 0). . .
while (x). . . while ((x) != 0). . .�Watch for the common mistake in a conditional:

if (x = y). . . implicitly rewritten as if ((x = y) != 0). . .
which assignsy to x and testsx != 0 (possible in Java for one type).

2.5.3 Selection�C/C++ selection statements areif andswitch (same as Java, except for
boolean versus conditional expression).� An if statement selectively executes one of two alternatives based on the
result of a comparison, e.g.:

if (x > y) max = x;
else max = y;� Java/C/C++ have thedangling elseproblem of associating anelse clause

with its matchingif in nestedif statements.

CS 246 41� E.g., reward WIDGET salesperson who sold more than $10,000 worth
of WIDGETS and dock pay of those who sold less than $5,000.

Dangling Else Fix Using Null Else Fix Using Blocks

if (sales < 10000)
if (sales < 5000)

income -= penalty;
else // incorrect match!!!

income += bonus;

if (sales < 10000)
if (sales < 5000)

income -= penalty;
else ; // null statement

else
income += bonus;

if (sales < 10000) {
if (sales < 5000) {

income -= penalty;
}

} else {
income += bonus;

}� A switch statement selectively executes one ofN alternatives based on
matching an integral value with a series of case clauses, e.g.:

CS 246 42

switch (day) { // integral expression
case MON: case TUE: case WED: case THU: // case value list

cout << "PROGRAM" << endl;
break ; // exit switch

case FRI:
wallet += pay;
// fall through !!!!!

case SAT:
cout << "PARTY" << endl;
wallet -= party;
break ; // exit switch

case SUN:
cout << "REST" << endl;
break ; // exit switch

default :
cerr << "ERROR" << endl;
exit(-1); // terminate program

}�Once a case clause is matched, its statements are executed, and control
continues to thenext statement.� break statement is used at end of a case clause to exitswitch statement.

CS 246 43� It is a common error to forget the break .� If no case clause is matched and there is adefault clause, its statements
are executed, and control continues to thenext statement.�Otherwise, theswitch statement does nothing.�Only one label for eachcase clause but a list ofcase clauses is allowed.

2.5.4 Conditional Expression Evaluation�Conditional expression evaluationperforms partial evaluation of
expressions.�Control structures not operators because both operands maynot be
evaluated.

&& only evaluates the right operand if the left operand is true
| | only evaluates the right operand if the left operand is false
?: only evaluates one of two alternative parts of an expression� && and| | (short-circuit) are similar to logical& and| for bitwise

operands, i.e., both produce a logical conjunctive or disjunctive result.�However, conditional&& and| | evaluate operands lazily until a result is
determined, short-circuiting the evaluation of other operands.

CS 246 44� Logical& and| evaluate operands eagerly, evaluating both operands.�With boolean operands, corresponding operators are interchangeable.�Conditional?: evaluates one of two expressions, and returns the result of
the evaluated expression.� Acts like anif statement in an expression:

abs2 = (a < 0 ? -a : a) + 2 if (a < 0) {
abs2 = -a;

} else {
abs2 = a;

}
abs2 += 2;

2.5.5 Looping�C/C++ looping statements arewhile , do andfor (same as Java, except for
boolean versus conditional expression).� while statement executes its statement zero or more times.

CS 246 45� Beware of accidental infinite loops.
x = 0;
while (x < 5); // extra semicolon!

x = x + 1;

x = 0;
while (x < 5) // missing block

y = y + x;
x = x + 1;� do statement executes its statement one or more times.

do {
. . . // executed at least once

} while (x < 5);� for statement is a specializedwhile statement for iterating with an index.

init-expr ;
while (cond-expr) {

stmt ;
incr-expr ;

}

for (init-expr ; cond-expr ; incr-expr) {
stmt ;

}�Many ways to use thefor statement to construct iteration:

for (i = 1; i <= 10; i += 1) { // count up
// loop 10 times

} // i has the value 11 on exit

CS 246 46

for (i = 10; 1 <= i; i -= 1) { // count down
// loop 10 times

} // i has the value 0 on exit
for (p = l; p != NULL; p = p->link) { // pointer index

// loop through list structure
} // p has the value NULL on exit
for (i = 1, p = l; i <= 10 & p != NULL; i += 1, p = p->link) { // 2 indices

// loop until 10th node or end of list encountered
}�Comma expression is used to initialize and increment 2 indices in a

context where normally only a single expression is allowed.�Default true value inserted if no conditional is specified infor statement.

for (; ;) // rewritten as: for (; true ;)� Short-circuit expression evaluation is often used for a linear search of an
array for a key, where the loop index indicates the position of the key in
the array if the key is found, or the array size plus 1 if not found:

for (i = 0; i < size && list[i] != key; i += 1); // no loop body

CS 246 47� Short-circuit&& prevents evaluation of conditional second operand if the
first operand is true to prevent subscript error when the key is not found.� Logical& would be incorrect because it evaluates both operands.� continue /break statements available in all iteration constructs to
immediately advance to next loop iteration or terminate loop construct.

for (i = 0; ; i += 1) { // infinite loop, conditional is “true”
if (i == size) break ; // exit if not found
if (list[i] == key) break ; // exit if found

}�C/C++goto statement simulates Java labelledbreak andcontinue .

CS 246 48

Java C / C++

L1: {
. . . declarations . . .
L2: switch (. . .) {

L3: for (. . .) {
. . . break L1; . . . // exit block
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit loop

}
. . .

}
. . .

}

{
. . . declarations . . .
switch (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . .

} L1: ;
. . .

} L2: ;
. . .

} L3: ;�Only usegoto to simulate labelledbreak and continue .

2.6 Preprocessor� Preprocessor manipulates the text of the programbeforecompilation.� Program you see is not what the compiler sees!� The three most commonly used preprocessor facilities are substitution,

CS 246 49

file inclusion, and conditional inclusion.

2.6.1 Substitution� #define statement declares a preprocessor variable, and its value is all
the text after the name up to the end of line.

#define Integer int
#define begin {
#define end }
#define PI 3.14159
#define gets =
#define set
#define with =
Integer main() begin // same as: int main() {

Integer x gets 3, y; // same as: int x = 3, y;
x gets PI; // same as: x = 3.14159;
set y with x; // same as: y = x;

end // same as: }� Preprocessor can transform the syntax of C/C++ program (discouraged).� Predefined preprocessor-variables exist identifying hardware and
software environment, e.g.,mcpu is kind of CPU.

CS 246 50�Useconst declarations (final in Java) rather that#define :

const double PI = 3.14159;
const int arraySize = 100;� #define can declare macros with parameters, which expand during

compilation, textually substituting arguments for parameters, e.g.:

#define MAX(a, b) ((a > b) ? a : b)
z = MAX(x, y); // implicitly rewritten as: z = ((x > y) ? x : y)�Useinline routines in C/C++ rather that#define macros.

2.6.2 File Inclusion� File inclusion copies text from a file into a C/C++ program.� An included file may contain anything.� An include file normally imports preprocessor and C/C++
templates/declarations for use in a program.� All included text goes through every compilation step, i.e., preprocessor,
compiler, etc.

CS 246 51� Java does implicit inclusion by matching class names with file names in
CLASSPATH directories, then extracting and including necessary
declarations.� The#include statement specifies the file to be included.�C convention uses suffix “.h” for include files containing C declarations.�C++ convention drops suffix “.h” for its standard libraries and has special
file names for equivalent C files, e.g.,cstdio versusstdio.h.

#include <stdio.h> // C style
#include <cstdio> // C++ style
#include "user.h"� A file name can be enclosed in<> or "".� <> means preprocessor only looks in the system include directories.� "" means preprocessor starts looking for the file in the same directory as

the file being compiled, then in the system include directories.� System fileslimits.h andunistd.h contains many useful#define s, like the
null pointer constantNULL (e.g., see/usr/include/limits.h).

CS 246 52

2.6.3 Conditional Inclusion� Preprocessor has anif statement, which may be nested, to conditionally
add/remove code from a program.�Conditional ofif uses the same relational and logical operators as C/C++,
but operands can only be integer or character values.

#define DEBUG 0 // declare and initialize preprocessor variable
. . .
#if DEBUG == 1 // level 1 debugging
include "debug1.h"
. . .
#elif DEBUG == 2 // level 2 debugging
include "debug2.h"
. . .
#else // non-debugging code
. . .
#endif� By changing value of preprocessor variableDEBUG, different parts of

the program are included for compilation.� To exclude code (comment-out), use0 conditional as0 implies false.

CS 246 53

#if 0
. . . // code commented out
#endif

Independent of language structure, can overlap definitionsand routines.� It is also possible to check if a preprocessor variable is defined or not
defined by using#ifdef or #ifndef :

#ifndef _ _MYDEFS_H_ _ // if not defined
#define _ _MYDEFS_H_ _ 1 // make it so
. . .
#endif�Used in an#include file to ensure its contents are only expanded once.�Note difference between checking if a preprocessor variable is defined

and checking the value of the variable.� The former capability does not exist in most programming languages,
i.e., checking if a variable is declared before trying to useit.

2.7 Input/Output� Input/Output (I/O) is divided into two kinds:

CS 246 54

1.Formatted I/O transfers data with implicit conversion of internal
values to/from human-readable form.
– Conversion is based on the type of variables and format codes.

2.Unformatted I/O transfers data without conversion, e.g., internal
integer and floating-point values.

CS 246 55

2.7.1 Formatted I/O
Java C C++
File, Scanner, PrintStream FILE ifstream, ofstream
Scanner in = new in = fopen("f", "r"); ifstream in("f");

Scanner(new File("f"))
PrintStream out = new out = fopen("g", "w") ofstream out("g")

PrintStream("g")
in.close() close(in) scope ends
out.close() close(out) scope ends
nextInt() fscanf(in, "%d", &i) in >> T
nextFloat() fscanf(in, "%f", &f)
nextByte() fscanf(in, "%c", &c)
next() fscanf(in, "%s", &s)
hasNext() feof(in) in.eof()
hasNextT() fscanf return value in.fail()

in.clear()
skip("regexp") fscanf(in, "%*[regexp]") in.ignore(n, c)
out.print(String) fprintf(out, "%d", i) out << T

fprintf(out, "%f", f)
fprintf(out, "%c", c)
fprintf(out, "%s", s)

CS 246 56� Formatted I/O occurs to/from astream file.�C++ has three implicit stream files:cin, cout andcerr, which are
automatically declared and opened (Java hasin, out anderr).�C hasstdin, stdout andstderr, which are automatically declared and
opened.� Includeiostream has all necessary declarations forcin, cout andcerr.� cin reads input from the keyboard (unless redirected by shell).� cout writes to the terminal screen (unless redirected by shell).� cerr writes to the terminal screen even whencout output is redirected.� Error and debugging messages should always be written tocerr :
– normally not redirected by the shell,
– unbuffered so output appears immediately.� Stream files other than 3 implicit ones require declaring each file object:

#include <fstream> // required for stream-file declarations
ifstream infile("myinfile"); // input file
ofstream outfile("myoutfile"); // output file

CS 246 57� Type of the file,ifstream or ofstream, indicates whether the file can be
read or written.�Declarationopens a file making it accessible through the variable name,
e.g.,infile andoutfile are used for file access.�Check for successful opening of a file using the stream memberfail, e.g.,
infile.fail(), which returnstrue if the open failed andfalse otherwise.�Connection between the file name in the program and operating-system
file is done at the declaration:
– infile reads from filemyinfile
– outfile writes to filemyoutfile
where both files are located in the directory where the program is run.�C++ I/O library overloads the bit-shift operators<< and>> to perform
I/O.�C I/O library usesfscanf(outfile,. . .) andfprintf(infile,. . .), which have short
formsscanf(. . .) andprintf(. . .) for stdin andstdout.� Parameters in C are always passed by value, so arguments tofscanf must
be preceded with& (except arrays) so they can be changed.

CS 246 58� Both I/O libraries can cascade multiple I/O operations, i.e., input or
output multiple values in a single expression.

2.7.1.1 Input� Java formatted input uses anexplicit Scanner attached to an input file to
convert characters to basic types.�C/C++ formatted input hasimplicit character conversion for all basic
types and is extensible to user-defined types.

CS 246 59

Java C C++

import java.io.*;
import java.util.Scanner;
Scanner in =

new Scanner(new File("f"));
PrintStream out =

new PrintStream("g");
int i, j;
while (in.hasNext()) {

i = in.nextInt(); j = in.nextInt();
out.println("i:"+i+" j:"+j);

}
in.close();
out.close();

#include <stdio.h>
FILE *in = fopen("f", "r");

FILE *out = fopen("g", "w");

int i, j;
for (;;) {

fscanf(in, "%d%d", &i, &j);
if (feof(in)) break ;

fprintf(out,"i:%d j:%d\n",i,j);
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out("g");

int i, j;
for (;;) {

in >> i >> j;
if (in.eof()) break ;

out << "i:" << i
<<"j:"<<j<<endl;

}
// in/out closed implicitly� Input values for a stream file are C/C++ constants:3, 3.5e-1, etc.,

separated by whitespace.� Except for characters and character strings,which are not in quotes, so
cannot read strings containing white spaces.� Type of operand indicates the kind of constant expected in the stream
file, e.g., an integer operand means an integer constant is expected.� Streamcin starts reading where the lastcin left off.

CS 246 60� After all input values on current line are read,cin proceeds to next line.�Hence, the placement of input values on lines of a file is oftenarbitrary.�Unlike Java, C/C++ must attempt to readbeforeend-of-file is set and can
be tested for.� End of file can be detected in two ways:� cin andfscanf return0 andEOF when eof is reached.�C++ membereof and the C routinefeof return true when eof is reached.� end-of-file is the detection of the physical end of a file; there is no
end-of-file character.� From a keyboard,<ctrl>-d (press the<ctrl> andd keys simultaneously)
causes the shell to close the current input file marking its physical end.�When bad data is read, stream must be reset and bad data cleared:

CS 246 61

#include <iostream>
using namespace std;
int main() {

int n;
for (;;) {

cout << "Enter a number: ";
cin >> n;

if (cin.eof()) break ; // eof ?
if (! cin.fail()) { // number ?

cout << "n = " << n << endl;
} else {

cout << "Not a number. ";
cin.clear(); // reset stream failure
cin.ignore(numeric_limits<int >::max(), ’\n’); // skip until newline

}
}
cout << endl;

}� After an unsuccessful read,clear() resets the stream.� ignore skips eithern characters, e.g.,cin.ignore(5) or until a specified
character.

CS 246 62

2.7.1.2 Output� Java output style converts values to strings, concatenatesstrings, and
prints final long string:

System.out.println(i + " " + j); // build a string and print it�C/C++ output style supplies a list of formats and values, andoutput
operation generates the strings:

cout << i << " " << j << endl; // print each string when formed� There is no implicit conversion from the basic types to string in C++ (but
one can be constructed).�While it is possible to use the Java string-concatenation style in C++,
it is incorrect style.� Input/output format is controlled viamanipulators defined in include
file iomanip:

CS 246 63

#include <iostream> // cin, cout, cerr
#include <iomanip> // manipulators
using namespace std;
int i = 7; double r = 2.5; char c = ’z’; char *s = "abc";
cout << "i:" << setw(2) << i

<< " r:" << fixed << setw(7) << setprecision(2) << r
<< " c:" << c << " s:" << s << endl;

#include <stdio.h>
fprintf(stdout, "i:%2d r:%7.2f c:%c s:%s\n", i, r, c, s);
" i: 7 r: 2.50 c:z s:abc"

oct values in octal
dec values in decimal
hex values in hexadecimal
left / right (default) values with padding after / before values
boolapha / noboolapha (default) bool values as false/true instead of 0/1
showbase / noshowbase (default) values with / without prefix 0 for octal & 0x for hex
fixed (default) /scientific float-point values without / with exponent
setprecision(N) fraction of float-point values in maximum of N columns
setw(N) NEXT VALUE ONLY in minimum of N columns
setfill(’ch’) padding character before/after value (default blank)
endl flush output buffer and start new line (output only)
skipws (default) /noskipws skip whitespace characters (input only)

CS 246 64�manipulators applies to all constants/variables after it,even to the next
I/O expression for a specific stream file.� Except manipulator setw , which only applies to the next value in the
I/O expression.� endl is not the same as’\n’; only endl flushes for interactive output.

2.7.2 Unformatted I/O�Unformatted I/O transfers data without conversion, e.g., internal
integer and floating-point values.�Uses same mechanisms as formatted I/O to connect program to file
(open/close).�Usesread andwrite routines to transfer bytes without conversion from/to
a file.

CS 246 65

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile("xxx"); // open output file “xxx”
if (outfile.fail()) { // successful open ?

cerr << "Error!" << endl;
exit(-1);

} // if

double d = 3.0;
outfile.write((char *)&d, sizeof (d)); // coercion
outfile.close(); // close file before attempting read

CS 246 66

ifstream infile("xxx"); // open input file “xxx”
if (infile.fail()) { // successful open ?

cerr << "Error!" << endl;
exit(-1);

} // if

double e;
infile.read((char *)&e, sizeof (d)); // coercion
cout << e << endl;
infile.close();

}� read andwrite take achar * pointer and length.

read(char *buffer, streamsize num);
write(char *buffer, streamsize num);� To pass any kind of pointer for unformatted I/O requires acoercion,

which is a castwithout a conversion.�Coercion breaks the type system; use it very sparingly(and would be
unnecessary if buffer type wasvoid *).

CS 246 67

2.8 Dynamic Storage Management�C++ operatornew takes a type operand and return a pointer to new
storage of that type allocated in an area called theheap.�Unlike Java, C/C++ allowall types to be dynamically allocated not just
object types, e.g.,new int .�C/C++ do not havegarbage collectionof dynamically allocated storage
after a variable is no longer accessible.� Therefore, an additional dynamic storage-management operation to free
storage.�C++ provides dynamic storage-management operationsnew /delete and
C providesmalloc/free.�Do not mix the two forms in a C++ program.

CS 246 68

Java C/C++

class Foo {
char a, b, c;

}
class Test {

public static void main(String[] args) {
Foo f = new Foo();
f.c = ’R’;

}
}

struct Foo {
char a, b, c;

};

int main() {
Foo *f = new Foo(); // opt parenthesis
f->c = ’R’;
delete f; // explicit free

}� Parenthesis after the type name in thenew operation are optional.� After storage is no longer needed itmustbe explicitly deleted.� After storage is deleted, itmustnot be used:

delete f;
f->c = ’S’; // result of dereference is undefined� Aggregate types can be allocated on the stack, i.e., local variables of a

block:

CS 246 69

Java C++

{ // basic & reference
int i;
double d;
ObjType obj =

new ObjType();
. . .

} // garbage collected

i

d

...

heapstack

obj

{ // all types
int i;
double d;
ObjType obj;
. . .

} // implicit delete

stack heap

...

obj

d

i

� Stack allocation is more efficient than heap allocation and does not
require explicit storage management — use it whenever possible.�Dynamic allocation in C++ should be used only when:
– a variable’s storage must outlive the block in which it is allocated:

ObjType *rtn(. . .) {
ObjType *obj = new ObjType();
. . . // use obj
return obj; // storage outlives block

} // obj deleted later

– when each element of an array of objects needs initialization:

CS 246 70

ObjType *v[10]; // array of object pointers
for (int i = 0; i < 10; i += 1) {

v[i] = new ObjType(i); // each element has different initialization
}�Declaration of a pointer to an array is complex in C/C++.� Because no array-size information, the dimension value foran array

pointer is often unspecified:

int *arr = new int [10]; // think arr[], pointer to array of 10 ints� Java notation:

int arr[] = new int [10];

cannot be used becauseint arr[] is actually rewritten asint arr[N], where
N is the size of the initializer value.�Note, the lack of dimension information for an array means there is no
subscript checking.� As well, no dimension information results in the following ambiguity:

CS 246 71

int *var = new int ;

int *arr = new int [10]; // arr[] 8 8 0 4 640

no sizevar

arr size in
bytes

9

7

5 7 3 5� Variablesvar andarr have the same type but one is an array, which poses
a problem when deleting a dynamically allocated array.� To solve the problem, special syntax is used to distinguish these cases:

delete var; // single element
delete [] arr; // multiple elements� [] indicates multiple elements (but unknown number and size of

dimensions) and array-size is stored with the array.�Never do this:

delete [] arr, var; // => (delete [] arr), var;

which is an incorrect use of a comma expression;var is not deleted.�Declaration of a pointer to a matrix is complex in C/C++, e.g., int *x[5]
could mean:

CS 246 72

...

3

2

1

8

9

. . .

. . .

. . .

. . .

. . .

x 6 4 09 2x

� Left: array of 5 pointers to an array of unknown number of integers.�Right: pointer to matrix of unknown number of rows with 5 columns of
integers.� For * and[] which applied first?�Dimension is higher priority (as subscript, see Section 2.4, p. 32), so
declaration is interpreted asint (*(x[5])) (left).� To read a declaration, parenthesize type qualifiers, read inside
parenthesis outwards, start with variable name and end withtype name
on left.

CS 246 73�Only the left example (above) of declaring a matrix can be generalized
to allow a dynamically-sized matrix.

int main() {
int *m[5]; // 5 rows
for (int r = 0; r < 5; r += 1) {

m[r] = new int [4]; // 4 columns per row
for (int c = 0; c < 4; c += 1) { // initialize matrix

m[r][c] = r + c;
}

}
for (int r = 0; r < 5; r += 1) { // print matrix

for (int c = 0; c < 4; c += 1) {
cout << m[r][c] << ", ";

}
cout << endl;

}
for (int r = 0; r < 5; r += 1) {

delete [] m[r]; // delete each row
}

} // implicitly delete array “m”

CS 246 74

2.9 Routine
C C++

void p(or T f(// parameters
T1 a // pass by value

)
{ // routine body

// intermixed decls/stmts
}

void p(or T f(// parameters
T1 a, // pass by value
T2 &b, // pass by reference
T3 c = 3 // optional, default value
)

{ // routine body
// intermixed decls/stmts

}�C++ routines are not part of aggregation (not combined in an object),
e.g., routinemain is not defined in a type.� A routine is either aprocedure or a function based on the return type.� A procedure does return a value, indicated with return type of void :

void r(. . .) { . . . }� A routine with no parameters has parametervoid in C and empty
parameter list in C++:

CS 246 75

. . . r(void) { . . . } // C: no parameters

. . . r() { . . . } // C++: no parameters�Routines cannot be nested in other routines, so all routine names are at
the same scope level in a source file.�Routine scope is between the global scope of the source file and a
routine body:

int i = 1; // global scope
int main() {

int i = 2; // local scope, hides previous variable i
}� A procedure terminates when control runs off the end of routine body or

a return statement is executed:

void proc() {
. . . return ; . . .
. . . // run off end

}� A functionmustexecute areturn statement specifying a value:

CS 246 76

int func() {
. . . return 3; . . .
return a + b;

}� A return statement can appear anywhere in a routine body, and multiple
return statements are possible.

2.9.1 Argument/Parameter Passing� Arguments are passed to parameters by:
– value: parameter is initialized by the argument (usually bit-wise

copy).
– reference: parameter is a reference to the argument and is initialized

to the argument’s address.
pass by value

copy
parameter

argument
pass by reference

address-of (&)

CS 246 77� Java/C, parameter passing is by value, i.e., basic types andobject
references are copied.�C++, parameter passing is by value or reference depending onthe type of
the parameter.� Argument expressions are evaluatedin any order.� For value parameters, each argument-expression result is pushed on the
stack to become the corresponding parameter,which may involve an
implicit conversion.� For reference parameters, each argument-expression result is referenced
(address of) and this address is pushed on the stack to becomethe
corresponding reference parameter.

CS 246 78

#include <iostream>
using namespace std;
struct Complex { double r, i; };
void r(int i, int &ri, Complex c, Complex &rc) {

ri = i = 3;
rc = c = (Complex){ 3.0, 3.0 };

}
int main() {

int i1 = 1, i2 = 2;
Complex c1 = { 1.0, 1.0 }, c2 = { 2.0, 2.0 };
r(i1, i2, c1, c2);

}�Which arguments change?�What if routine call is changed tor(i1, i1+i2, c1, c2).� Value passing is most efficient for basic and small structures because the
values are accessed directly in the routine.�Reference passing is most efficient for large structures andarrays
because the values are not duplicated in the routine.�Use type qualifiers to create read-only reference parameters so the
corresponding argument is guaranteed not to change:

CS 246 79

void r(const int &i, const Complex &c, const int v[5]) {
i = 3; // assignments disallowed, read only!
c.r = 3.0;
v[0] = 3;

}
r(i + j, (Complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 });� Provides efficiency of pass by reference for large variables, security of

pass by value because argument cannot change, and allows temporary
variables and constants as arguments.�C++ parameter can have adefault value, which is passed as the
argument value if no argument is specified at the call site.

void r(int i, double g, char c = ’*’, double h = 3.5) { . . . }
r(1, 2.0, ’b’, 9.3); // maximum arguments
r(1, 2.0, ’b’); // h defaults to 3.5
r(1, 2.0); // c defaults to ’*’, h defaults to 3.5� In a parameter list, once a parameter has a default value, allparameters

to the right must have default values.� In a call, once an argument is omitted for a parameter with a default
value, no more arguments can be specified to the right of it.

CS 246 80

2.9.2 Array Parameter� Array copy is unsupported so arrays cannot be passed by valueonly by
reference.� Therefore, all array parameters are implicitly reference parameters, and
hence, do not have a reference symbol.� A formal parameter array declaration can specify the first dimension
with a dimension value,[10] (which is ignored), an empty dimension list,
[], or a pointer,*:

double sum(double v[5]);
double sum(double *m[5]);

double sum(double v[]);
double sum(double *m[]);

double sum(double *v);
double sum(double **m);�Good programming practice uses the middle form because it clearly

indicates the variable is going to be subscripted.� An actual declaration cannot use[]; it must use*:

double sum(double v[]) { // formal declaration
double *cv; // actual declaration, think cv[]
cv = v; // address assignment�Routine to add up the elements of an arbitrary-sized array ormatrix:

CS 246 81

double sum(int cols, double v[]) {
int total = 0.0;
for (int c = 0; c < cols; c += 1)

total += v[c];
return total;

}

double sum(int rows, int cols, double *m[]) {
int total = 0.0;
for (int r = 0; r < rows; r += 1)

for (int c = 0; c < cols; c += 1)
total += m[r][c];

return total;
}

2.9.3 Routine Pointer� The flexibility and expressiveness of a routine comes from the
argument/parameter mechanism, which generalizes a routine across any
argument variables of matching type.�However, the code within the routine is the same for all data in these
variables.� To generalize a routine further, it is necessary to pass codeas an
argument, which is executed within the routine body.�Most programming languages allow a routine pointer (Java does not) for
further generalization and reuse.� As for data parameters, routine pointers are specified with atype (return

CS 246 82

type, and number and types of parameters), and any routine matching
this type can be passed as an argument, e.g.:

int f(int v, int (*p)(int)) { return p(v * 2) + 2; }
int g(int i) { return i - 1; }
int h(int i) { return i / 2; }
cout << f(4, g) << endl; // pass routines g and h as arguments
cout << f(4, h) << endl;�Routinef is generalized to accept any routine argument of the form:

returns anint and takes anint parameter.�Within the body off, the parameterp is called with an appropriateint
argument, and the result of callingp is further modified before it is
returned.� A routine pointer is passed as a constant reference in virtually all
programming languages; in general, it makes no sense to change or copy
routine code, like copying a data value.�C/C++ require the programmer to explicitly specify the reference via a
pointer, while other languages implicitly create a reference.� Two common uses of routine parameters are fix-up and call-back

CS 246 83

routines.� A fix-up routine is passed to another routine and called if an unusual
situation is encountered during a computation.� E.g., when inverting a matrix, the matrix may not be invertible if its
determinant is 0 (singular).�Rather than halt the program for a singular matrix, invert routine calls a
user supplied fix-up routine to possible recover and continue with a
correction (e.g., modify the matrix):

int singularDefault(. . .) { return 0; }
int invert(int matrix[][10], int rows, int cols,

int (*singular)(. . .) = singularDefault) {
. . .
if (determinant(matrix, rows, cols) == 0) {

// compute correction to continue the computation
correction = singular(matrix, rows, cols);

}
. . .

}� A fix-up parameter generalizes a routine as the corrective action is
specified for each call, and the action can be tailored to a particular

CS 246 84

usage.�Giving fix-up parameter a default value, eliminates having to provide a
fix-up argument.� A call-back routine is used in event programming.�When an event occurs, one or more call-back routines are called
(triggered) and each one performs an action specific for thatevent.� E.g., a graphical user interface has an assortment of interactive
“widgets”, such as buttons, sliders and scrollbars.�When a user manipulates the widget, events are generated representing
the new state of the widget, e.g., button down or up.� A program registers interest in transitions for different widgets by
supplying a call-back routine, and each widget calls its supplied
call-back routine(s) when the widget changes state.�Normally, a widget passes the new state of the widget to each call-back
routine so it can perform an appropriate action, e.g.:

CS 246 85

int callback(/* information about event */) {
// examine event information and perform appropriate action
// return status of callback action

}
. . .
registerCB(closeButton, callback);�Call-back programming become difficult if it depending on the number

of times it is called or previous argument values.

2.10 String� Strings are supported in C by language and library facilities.� Language facility ensures all string constants are terminated with a
character value’\0’.� E.g., the string constant"abc" is actually an array of the 4 characters:
’a’, ’b’, ’c’, and’\0’, which occupies 4 bytes of storage.� Zero value is asentinelused by C string routines to locate the string end.�Drawbacks:
1. A string cannot contain a character with the value’\0’.

CS 246 86

2. String operations needing the length of a string must linearly search
for ’\0’, which is expensive for long strings.

3. Management of variable-sized strings is the programmer’s
responsibility, with complex storage management problems.�C++ solves these Drawbacks by providing astring type using a length

member and managing all of the storage for the variable-sized strings.�Unlike Java, instances of the C++string type are not constant.� Values can change so a companion type likeStringBuffer in Java is
unnecessary.�Note, it is seldom necessary to iterate through the characters of a
string variable!

CS 246 87

JavaString methods C char [] routines C++ string members
strcpy, strncpy =

+, concat strcat, strncat +
compareTo strcmp, strncmp ==, !=, <, <=, >, >=
length strlen length
charAt [] []
substring substr
replace replace
indexOf, lastIndexOf strstr find, rfind

strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of� All of the C++ string find members returnstring::npos if a search is

unsuccessful.

CS 246 88

string a, b, c; // declare string variables
cin >> c; // read white-space delimited sequence of characters
getline(cin, c, ’\n’); // read remaining characters until newline (newline is def
cout << c << endl; // print string
a = "abc"; // set value, a is “abc”
b = a; // copy value, b is “abc”
c = a + b; // concatenate strings, c is “abcabc”
if (a == b) // compare strings, lexigraphical ordering
string::size_type l = c.length(); // string length, l is 6
char ch = c[4]; // subscript, ch is ’b’, zero origin
c[4] = ’x’; // subscript, c is “abcaxc”, must be character constant
string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d,
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”,
p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5
p = c.find_first_of("aeiou"); // search for first vowel, p is 0
p = c.find_first_not_of("aeiou"); // search for first consonant (not vowel),
p = c.find_last_of("aeiou"); // search for last vowel, p is 5
p = c.find_last_not_of("aeiou"); // search for last consonant (not vowel),

CS 246 89

2.11 Shell Argument�Routinemain can be written without parameters, but it actually has two
parameters, passed arguments from the invoking shell.

int main(int argc, char *argv[])� Shell takes the command line tokens and transforms them intoC/C++
arguments.� argc is the number of tokens in the shell command, including the name
of executable file.� Because the executable file-name is included,number of tokens is one
greater than in Java.� argv is an array of pointers to the character strings that make up token
arguments.

CS 246 90

% ./a.out -option infile.C outfile.C

argc = 4
argv[0] = "./a.out\0" // not included in Java
argv[1] = "-option\0"
argv[2] = "infile.C\0"
argv[3] = "outfile.C\0"
argv[4] = 0 // mark end of variable length list�Note, call ofmain by the shell is different because string tokens are

passed not C/C++ values of or references to variables.� A shell argument of"32" does not mean integer 32, and may have to
converted.�Routinemain usually begins by checkingargc for shell arguments.

CS 246 91

Java C/C++

class Prog {
public static void main(String[] args) {

switch (args.length) {
case 0: . . . // no args

break ;
case 1: . . . args[0] . . . // 1 arg

break ;
case . . . // others args

break ;
default : . . . // usage message

System.exit(-1);
}
. . .

int main(int argc, char *argv[]) {
switch (argc) {

case 1: . . . // no args
break ;

case 2: . . . args[1] . . . // 1 arg
break ;

case . . . // others args
break ;

default : . . . // usage message
exit(-1);

}
. . .� Arguments are processed in the rangeargv[1] throughargv[argc - 1], i.e.,

starting one greater than Java.

2.12 Object�Object-oriented programming was developed in the mid-1960s by Dahl
and Nygaard and first implemented in SIMULA67.�Objects are structure based, used for organizing logicallyrelated data:

CS 246 92

unorganized organized

int people_age[30];
bool people_sex[30];
char people_name[30][50];

struct Person {
int age;
bool sex;
char name[50];

} people[30];� Both approaches create an identical amount of information.�Difference is solely in the information organization (and memory
layout).�Computer does not care as the information and its manipulation is
largely the same.� Structuring is an administrative tool for programmer understanding and
convenience.�Objects extend organizational capabilities of the structure by allowing
routine members.

CS 246 93

structure form object form

struct Complex {
double re, im;

};
double abs(Complex &This) {

return sqrt(This.re * This.im);
}
Complex x; // structure
abs(x); // call abs

struct Complex {
double re, im;
double abs() {

return sqrt(re * im);
}

};
Complex x; // object
x.abs(); // call abs� Each object provides both data and the operations necessaryto

manipulate that data in one self-contained package.�Routine member is constant, and cannot be assigned (e.g.,const
member).�What is the scope of a routine member?� Structure creates a scope, and therefore, a routine member can access
the structure members, e.g.,abs member can refer to membersre andim.� Structure scope is implemented via a pointer-to-structureparameter,
calledthis , implicitly passed to each routine member (like left example).

CS 246 94

double abs() { return sqrt(this ->re + this ->im); }� Except for the syntactic differences, the two forms are identical.� Like Java, the use of implicit parameterthis , e.g.,this ->f, is seldom
necessary in C++.�Member routines are accessed like other members, using member
selection,x.abs, and called with the same form,x.abs().�No parameter needed because of implicit structure scoping via this
parameter.� Add arithmetic operations:

struct Complex {
. . .
Complex add(Complex c) {

Complex sum = { re + c.re, im + c.im };
return sum;

}
};� To sumx andy, write x.add(y).

CS 246 95� Because addition is a binary operation,add needs a parameter as well as
the implicit context in which it executes.

2.12.1 Operator Member� It is possible to use operator symbols for routine names:

struct Complex {
. . .
Complex operator +(Complex c) {

Complex sum = { re + c.re, im + c.im };
return sum;

}
};� Addition routine is called+, andx andy can be added byx.operator +(y)

or y.operator +(x), which is only slightly better.� For convenience, C++ implicit rewritesx + y asx.operator +(y).

CS 246 96

Complex x = { 3.0, 5.2 }, y = { -9.1, 7.4 };
cout << "x:" << x.re << "+" << x.im << "i" << endl;
cout << "y:" << y.re << "+" << y.im << "i" << endl;
Complex sum = x + y;
cout << "sum:" << sum.re << "+" << sum.im << "i" << endl;

2.12.2 Type Nesting� Type nesting is useful for controlling visibility for types:

struct Foo {
enum Colour { R, G, B }; // nested type
. . .

};� EnumerationColour is nested inFoo to control visibility.�References outside the object must be qualified with type operator “::”:

Foo::Colour colour = Foo::R;�C++ selection operator “.”, e.g.,Foo.Colour, cannot be used because it
requires an object not a type.� Aggregate types may be nested, butnesting does not imply scoping:

CS 246 97

struct Foo {
int g;
int r(. . .) { . . . }
struct Bar { // nested object type

int s(. . .) { g = 3; r(. . .); } // references to g and r fail
};

};� In effect, structure nesting is flattened.� As a result, the references in routines to membersg andr in Foo fail
because there is no scope relationship between typesBar andFoo.

2.12.3 Constructor� A constructor is a special member used to perform initialization after
object allocation to ensure the object is valid before use.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
. . . // other members

};

CS 246 98�Constructor name is unusual because it is overloaded with the type name
of the structure in which it is defined.�Constructor without parameters is thedefault constructor and is
implicitly called after storage allocation:

Complex x;
Complex *y = new Complex;

implicitly
rewritten as

Complex x; x.Complex();
Complex *y = new Complex;

y->Complex();�Unlike Java, C++ does not initialize all object members to default values.�When a C++ constructor executes, the constructor is responsible for
initializing members not initialized via other constructors.� Because a constructor is a routine, arbitrary execution canbe performed
(e.g., loops, routine calls, etc.) to perform initialization.� A constructor may have parameters but no return type (not even void).�When declaring a local object in C++, never put parenthesis to invoke
the default constructor:

Complex x(); // routine with no parameters and returning a complex�Once a constructor is specified, structure initialization is disallowed:

CS 246 99

Complex x = { 3.2 }; // disallowed
Complex y = { 3.2, 4.5 }; // disallowed�Replaced using overloaded constructors with parameters:

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; }
Complex(double r) { re = r; im = 0.; }
Complex(double r, double i) { re = r; im = i; }
. . .

};�Unlike Java, constructor argument(s) can be specifiedafter a variable for
local declarations:

Complex x, y(1.0), z(6.1, 7.2); implicitly
rewritten as

Complex x; x.Complex();
Complex y; y.Complex(1.0);
Complex z; z.Complex(6.1, 7.2);�Dynamic allocation is same as Java:

CS 246 100

Complex *x = new Complex(); // parenthesis optional
Complex *y = new Complex(1.0);
Complex *z = new Complex(6.1, 7.2);�Unlike Java, constructor cannot be called explicitly at start of another

constructor, so constructor reuse done through a separate member:
Java C++

class Foo {
int i, j;

Foo() { this (2); } // explicit call
Foo(int p) { i = p; j = 1; }

}

struct Foo {
int i, j;
void common(int p) { i = p; j = 1; }
Foo() { common(2); }
Foo(int p) { common(p); }

};

2.12.3.1 Constant�Constructors can be used to create object constants, likeg++
type-constructor constants:

CS 246 101

Complex x, y, z;
x = Complex(3.2); // complex constant with value 3.2+0.0i
y = x + Complex(1.3, 7.2); // complex constant with value 1.3+7.2i
z = Complex(2); // 2 widened to 2.0, complex constant with value 2.0+0.0i� Previous operator+ for Complex is changed because type-constructor

constants are disallowed for a type with constructors:

Complex operator +(Complex c) {
return Complex(re + c.re, im + c.im); // create new complex value

}

2.12.3.2 Conversion�Constructors are implicitly used for conversions:
int i;
double d;
Complex x, y;

x = 3.2;
y = x + 1.3;
y = x + i;
y = x + d;

implicitly
rewritten as

x = Complex(3.2);
y = x.operator +(Complex(1.3));
y = x.operator +(Complex((double)i);
y = x.operator +(Complex(d));

CS 246 102� Allows built-in constants and types to interact seamlesslywith
user-defined types.�Note, two implicit conversions are performed on variablei in x + i: int to
double and thendouble to Complex.� Implicit constructor conversion is turned off with qualifier explicit :

struct Complex {
. . .
explicit Complex(double r) { re = r; im = 0.; } // turn off
. . . // implict conversion

};�However, this capability fails for commutative binary operators.� 1.3 + x, fails because it is rewritten as(1.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typedouble .� Solution, move operator+ out of the object type and made into a routine,
which can also be called in infixed form:

CS 246 103

struct Complex { . . . }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters

return Complex(a.re + b.re, a.im + b.im);
}

x + y;
1.3 + x;
x + 1.3;

implicitly
rewritten as

+(x, y)
+(Complex(1.3), x)
+(x, Complex(1.3))�Compiler first checks for an appropriate operator in object type, and if

found, applies conversions only on the second operand.� If no appropriate operator in object type, the compiler checks for an
appropriate routine (it is ambiguous to have both), and if found, applies
applicable conversions toboth operands.� In general, commutative binary operators should be writtenas routines
to allow implicit conversion on both operands.

2.12.3.3 Copy�Constructor with aconst reference parameter is thecopy constructor:

Complex(const Complex &c) { . . . }

CS 246 104�Used in two important initialization contexts: declarations and
parameters.�Declaration initialization:

Complex y = x implicitly rewritten as Complex y; y.Complex(x);�Operator “=” is misleading because it calls copy constructor not
assignment operator.� Value on the right-hand side of assignment is argument to copy
constructor.� Parameter initialization:

Complex foo(Complex a, Complex b);
Complex x, y;
foo(x, y)�Call foo(x, y) performing the following implicit action infoo:

Complex foo(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with arguments� If a copy constructor is not specified, an implicit one is generated that

does a bit-wise copy.

CS 246 105�Why does C++ differentiate between copy and assignment?� For copy situation (and constructors in general), after allocation, an
object’s members contain undefined values (unless a member has a
constructor) and a constructor initializes appropriate members.� For assignment,lhs = rhs, the left-hand variable may contain values and
assignment only needs to copy a subset of values from the right-hand
variable.� For example, if an object type has a member variable to count the
number of assignments, the counter is set to zero on initialization and
incremented on assignment.�Hence, changing a variable in C++ can be redefined to selectively modify
its members.

2.12.3.4 const /Object Member�Unlike Java, a C/C++const member of a structure must be initialized at
the declaration:

CS 246 106

struct Foo {
const int i; . . .

} x = { 3 }; // must be initialized as it is write-once/read-only�However, this form of initialization is disallowed for objects, and must
be replaced with a constructor:

struct Foo {
const int i; . . .
Foo() { i = 3; } // attempt to initialize const member

};�However, this fails because it is assignment not initialization, and a
const variable can only be initialized to ensure a read does not occur
before the initial write.� Therefore, a special syntax is used for initializingconst members of an
objectbefore the constructor is executed:

CS 246 107

Java C++

class Bar {}
class Foo {

final int i;

final Bar rp;
Foo (Bar b) {

i = 3;

rp = b;
. . .

}
}

class Bar {};
class Foo {

const int i;
Bar * const p; // explicit const pointer
Bar &rp; // implicit const reference
Foo (Bar b) : // initializing const members

i(3),
p(&b), // explicit referencing
rp(b) { // implicit referencing
. . .

}
};� In the example, memberi is initialized to 3, andp andr are initialized to

point at argumentb, for the object’s lifetime.� This syntax is also used for local objects with constructors, and can be
used to initialize non-const members:

CS 246 108

struct Bar {
Bar(int i) {. . .}

};
struct Foo {

Bar b(3); // fails
int i;
Foo() : b(3), i(3) {. . .} // b initialized here

};

2.12.4 Destructor� A destructor (finalize in Java) is a special member used to perform
uninitialization at object deallocation:

Java C++

class Foo {
. . .
finalize() { . . . }

}

struct Foo {
. . .
~Foo() { . . . } // destructor

};� An object type has one destructor; its name is the character “~” followed
by the type name (like a constructor).

CS 246 109� A destructor has no parameters nor return type (not evenvoid):� A destructor is only necessary if an object changes its environment,
e.g., closing files, freeing dynamically allocated storage, etc.� A self-contained object, like aComplex object, requires no destructor.� A destructor is invoked immediatelybefore an object is deallocated,
either implicitly at the end of a block or explicitly by adelete :

{
Foo x, y;
Foo *z = new Foo;
. . .
delete z;
. . .

}

implicitly
rewritten as

{ // allocate local storage
Foo x; x.Foo(); y.Foo();
Foo *z = new Foo; z->Foo();
. . .
z->~Foo(); delete z;
. . .
y.~Foo(); x.~Foo();

} // deallocate local storage� For local variables in a block, destructors are called inreverseorder to
constructors (independent of explicitdelete).� A destructor is more common in C++ than a finalize in Java due tothe
lack of garbage collection in C++.

CS 246 110� If an object type performs dynamic storage allocation, it needs a
destructor to free the storage:

struct Foo {
int *i; // think int i[]
Foo(int size) { i = new int [size]; } // dynamic allocation
~Foo() { delete [] i; } // must deallocate storage
. . .

};� Also, a C++ destructor is invoked at a deterministic time (block
termination ordelete), ensuring prompt cleanup of the execution
environment.� A Javafinalize is invoked at a non-deterministic time during garbage
collection ornot at all, so cleanup of the execution environment is
unknown.

2.13 Forward Declaration�C/C++ haveDeclaration Before Use(DBU), e.g., a variable declaration
must appear before its usage in a block:

CS 246 111

{
i += 1; // no prior declaration of i
int i; // declaration after usage

}� A compiler can handle some DBU situations, but there are ambiguous
cases:

int i;
{

i += 1; // now which i should be used?
int i; // declaration after usage

}�C always requires DBU.�C++ requires DBU in a block and among types but not within a type.� Java only requires DBU in a block, but not for declarations inor among
classes.�DBU has a fundamental problem specifyingmutually recursive
references:

CS 246 112

void f() { // f calls g
g(); // g is not defined and being used

}
void g() { // g calls f

f(); // f is defined and can be used
}�Cannot type-check the call tog in f to ensure matching number and type

of arguments and the return value is used correctly.�Clearly, interchanging the two routines does not solve the problem.� A forward declaration introduces a routine’s type before its actual
declaration:

int f(int i, double); // routine prototype: parameter names optional
. . . // and no routine body
int f(int i, double d) { // type repeated and checked with prototype

. . .
}� Prototype parameter names are optional (good documentation).� Actual routine declaration repeats routine type, which must match

prototype.

CS 246 113�Routine prototypes also useful for organizing routines in asource file.

void g(int); // forward declarations without parameter names
void f(int);
int main() { // appears first rather than last

f(5); // actual declarations later
g(4);

}
void g(int i) { . . . } // actual declarations
void f(int i) { . . . }� E.g., allowingmain routine to appear first, and for separate compilation.� Like Java, C++ does not require DBU for mutually-recursive routines

within a type:

struct T {
void f(int i) { . . . g(. . .); . . . } // g is not defined but it works!
void g(int i) { . . . f(. . .); . . . }

};�Unlike Java, C++ requires a forward declaration for mutually-recursive
declarations among types:

CS 246 114

Java C++

class T1 {
final T2 t2;
T1(final T2 t2) { this .t2 = t2; }
void g(int i) { . . . t2.f(. . .) . . . }

}
class T2 {

final T1 t1
= new T1(this);

void f(int i) { . . . t1.g(. . .) . . . }
}

struct T2; // forward declaration, no body
struct T1 { // T1 referencing T2

T2 &t2; // know about T2 from forward
T1(T2 &t2) : t2(t2) {} // constructor initialize
void g(int i) { . . . t2.f(. . .); . . . } // FAILS!!!

};
struct T2 { // T2 referencing T1

T1 &t1;
T2() : t1(*this) {} // constructor initialize
void f(int i) { . . . t1.g(. . .); . . . }

};� The forward declaration ofT2 allows the declaration of variableT1::t2.�Note, a forward declaration only introduces the name of a type.�Given just a type name, only pointer/reference declarations to the type
are possible, which allocate storage for an address versus an object.� An object declaration and usage requires the object’s size and members
so storage can be allocated, initialized, and usages type-checked.� As a result, the C++ usaget2.f in T1::g fails because the information
about typeT2’s members is defined later.

CS 246 115� Is it possible to change the declaration ofT2::t1 from T1 &t1 to T1 t1,
i.e., from a reference to an actual object?� Java’s solution to this problem is to find the definition ofT2 to obtain
needed information (not DBU).�C++’s solution involves forward declarations and a syntactic trick (DBU).� First, a member containing the non-DBU reference is replaced by a
forward declaration:

struct T1 { // T1 referencing T2
. . . // as above
void g(int i); // forward

};� Second, a syntactic trick allows the actual member definition to be
placedafter both types are defined:

void T1::g(int i) { . . . t2.f(. . .); . . . }�Now the compiler knows all the information about the types toverify
usage inT1::g.

CS 246 116�Note, the trick use of qualified namesT1::g to specify this is actually a
member logically declared inT1 but physically located after the types.

2.14 Overloading�Overloading occurs when a name has multiple meanings in the same
context.�Most languages have some overloading.� E.g., most built-in operators are overloaded on both integral and
floating-point operands, i.e., the+ operator is different for1 + 2 than for
1.0 + 2.0.�Overloading requires the compiler to disambiguate among identical
names based on some criteria.� The normal criterion is type information.� In general, overloading is done on operations not variables:

int i; // variable overloading disallowed
double i;
void r(int) {} // routine overloading allowed
void r(double) {}

CS 246 117� Power of overloading occurs when the type of a variable changes:
operations on the variable are implicitly reselected to thevariable’s new
type.� E.g., after changing a variable’s type fromint to double , all operations
implicitly change from integral to floating-point.� Like Java, C++ overloads the built-in operators for the basic types and
allows users to overload members in a type.�C++ also allows routines to be overloaded including operators.�Number and types of the parametersbut not the return typeare used to
select among a name’s different meanings:

int r(int i, int j) { . . . } // overload name r three different ways
int r(double x, double y) { . . . }
int r(int k) { . . . }
r(1, 2); // invoke 1st r based on integer arguments
r(1.0, 2.0); // invoke 2nd r based on double arguments
r(3); // invoke 3rd r based on number of arguments� Implicit conversions between arguments and parameters cancause

problems:

CS 246 118

r(1, 2.0); // ambiguous, convert either argument to integer or double�Use explicit cast to disambiguate:

r(1, (int)2.0) // 1st r
r((double)1, 2.0) // 2nd r�Overlap between overloading and default arguments for parameters with

same type:

Overloading Default Argument

int r(int i, int j) { . . . }
int r(int i) { int j = 2; . . . }
r(3); // 2nd r

int r(int i, int j = 2) { . . . }

r(3); // default argument of 2� If the overloaded routine bodies are essentially the same, use a default
argument, otherwise use overloaded routines.� I/O operators<< and>> often overloaded for user types:

ostream &operator <<(ostream &os, Complex c) {
return os << c.re << "+" << c.im << "i";

}
cout << "x:" << x; // rewritten as: <<(cout.operator<<(“x:”), x)

CS 246 119� Standard C++ convention for I/O operators to take and returna stream
reference to allow cascading stream operations.� << operator in objectcout is used to first print string value, then
overloaded routine<< to print the complex variablex.�Why write as a routine versus a member?

2.15 Inheritance� object-oriented languages usually provideinheritance for writing
general, reusable program components.

Java C++

class Base { . . . }
class Derived extends Base { . . . }

struct Base { . . . }
struct Derived : public Base { . . . };� Inheritance has two orthogonal sharing concepts: implementation and

type, each is discussed separately.

CS 246 120

2.15.1 Implementation Inheritance� Implementation inheritance reuses declarations in one object to build
another object.�One way to understand this technique is to model it via explicit
inclusion, e.g.:

Inclusion Inheritance

struct Base {
int i;
int r(. . .) { . . . }
Base() { . . . }

};
struct Derived {

Base b; // explicit inclusion
int s(. . .) { b.i = 3; b.r(. . .); . . . }
Derived() { . . . }

} d;
d.b.i = 3; // inclusion reference
d.b.r(. . .); // inclusion reference
d.s(. . .); // direct reference

struct Base {
int i;
int r(. . .) { . . . }
Base() { . . . }

};
struct Derived : public Base { // implicit inclusion

int s(. . .) { i = 3; r(. . .); . . . }
Derived() { . . . }

} d;
d.i = 3; // direct reference
d.r(. . .); // direct reference
d.s(. . .); // direct reference

CS 246 121� Inclusion implies explicitly creating an object member,b, to aid in the
implementation.�Object typeDerived inherits fromBase type via “public Base” clause.� Inheritance implicitly:
– creates an anonymous object member
– opensthe scope of anonymous member so its members are accessible

without qualification, both inside and outside the inheriting object
type.� A Derived declaration must first implicitly create an invisibleBase

object in theDerived object, like inclusion, for the implicit references to
Base::i andBase::r in Derived::s.� As well, constructors and destructors must be invoked for all implicitly
declared objects in the inheritance hierarchy as done for anexplicit
member in the inclusion.

Derived d;
. . .

implicitly
rewritten as

Base b; b.Base(); // implicit, hidden declaration
Derived d; d.Derived();
. . .
d.~Derived(); b.~Base(); // reverse order of construction

CS 246 122� If included object type has members with the same name as including
type, it works like nested blocks: a name in the inner scope hides
(overrides) a name at the outer scope.� It is always possible to access these members with “::” qualification to
specify the particular nesting level.

CS 246 123

Java C++

class Base1 {
int i;

}
class Base2 extends Base1 {

int i;
}
class Derived extends Base2 {

int i;
void s() {

int i = 3;
this .i = 3;
((Base1)this).i = 3; // super.i
((Base2)this).i = 3;

}
}

struct Base1 {
int i;

};
struct Base2 : public Base1 {

int i; // hides Base1::i
};
struct Derived : public Base2 {

int i; // hides Base2::i
void r() {

int i = 3; // hides Derived::i
Derived::i = 3; // this.i
Base2::i = 3;
Base2::Base1::i = 3;

}
};� Implementation inheritance reuses program components by composing a

new object’s implementation from an existing object, taking advantage
of previously written and tested code.� Substantially reduces the time to compose and debug a new object type.

CS 246 124�Unfortunately, having to inherit all of the members is not always
desirable; some members may be inappropriate for the new type (e.g,
large array).� As a result, both the inherited and inheriting object must bevery similar
to have so much common code.� In general, routines provide smaller units for reuse than entire objects.

2.15.2 Type Inheritance� Type inheritance extends name equivalence to allow routines to handle
multiple types, calledpolymorphism, e.g.:

struct Foo { struct Bar {
int i; int i;
double d; double d;

} f; } b;
void r(Foo f) { . . . }
r(f); // valid call
r(b); // should also work� Since typesFoo andBar are identical, instances of either type should

work as arguments to routiner.

CS 246 125� Even if typeBar has more members at the end, routiner only accesses
the common ones at the beginning as its parameter is typeFoo.�However, name equivalence precludes the callr(b) even thoughb is
structurally identical tof.� Type inheritance relaxes name equivalence by aliasing the derived name
with its base-type names:

struct Foo { struct Bar : public Foo { // inheritance
int i; // no members
double d;

} f; } b;
void r(Foo f) { . . . }
r(f); // valid call, derived name matches
r(m); // valid call because of inheritance, base name matches� E.g., create a new typeMycomplex that counts the number of timesabs is

called for eachMycomplex object.�Use both implementation and type inheritance to simplify building type
Mycomplex:

CS 246 126

struct Mycomplex : public Complex {
int cntCalls; // add
Mycomplex() : cntCalls(0) {} // add
double abs() { // override, reuse complex’s abs routine

cntCalls += 1;
return Complex::abs();

}
int calls() { return cntCalls; } // add

};�Derived typeMycomplex uses the implementation of the base type
Complex, adds new members, and overridesabs to count each call.� Allows reuse ofComplex’s addition and output operation forMycomplex
values, because of the relaxed name equivalence provided bytype
inheritance between argument and parameter.�Why is the qualificationComplex:: necessary inMycomplex::abs?�Now variables of typeComplex are redeclared toMycomplex, and
membercalls returns the current number of calls toabs for any
Mycomplex object.� Implementation inheritance provides reuseinsidean object type; type

CS 246 127

inheritance provides reuseoutsidethe object type by allowing existing
code to access the base type.� I.e, any routine that manipulates the base type also manipulates the
derived type.� Two significant problems with type inheritance.
1. – Complex routineoperator + is used to add theMycomplex values

because of the relaxed name equivalence provided by type
inheritance:

int main() {
Mycomplex x;
x = x + x;

}
– However, the result type fromoperator + is Complex, notMycomplex.
– Assignment of acomplex (base type) toMycomplex (derived type)

fails because theComplex value is missing thecntCalls member!
– Hence, aMycomplex can mimic aComplex but not vice versa.
– This fundamental problem of type inheritance is called

contra-variance.
– C++ provides various solutions, all of which have problems and are

CS 246 128

beyond this course.
2. void r(Complex &c) { c.abs(); }

int main() {
Mycomplex x;
x.abs(); // direct call of abs
r(x); // indirect call of abs
cout << "x:" << x.calls() << endl;

}

– While there are two calls toabs on objectx, only one is counted!

2.15.3 Virtual Routine�When a member is called, it is usually obvious which one is invoked
even with overriding:

CS 246 129

struct Base {
void r() { . . . }

};
struct Derived : public Base {

void r() { . . . } // override Base::r
};
Base b;
b.r(); // call Base::r
Derived d;
d.r(); // call Derived::r�However, it is not obvious for arguments/parameters and

pointers/references:

void s(Base &b) { b.r(); }
s(d); // inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); // Base::r or Derived::r ?� Inheritance masks the actual type of the object, but both calls should

invokeDerived::r because argumentb and referencebp point at an object
of typeDerived.� If variabled is replaced withb, the calls should invokeBase::r.

CS 246 130� Programmer may want to access members inBase even if the actual
object is of typeDerived, which is possible becauseDerived contains a
Base.�C++ provides mechanism to override the default at the call site.� To invoke the routine defined in the referenced object, qualify the
member routine withvirtual .� To invoke the routine defined by the type of the pointer/reference, do not
qualify the member routine withvirtual .�C++ uses non-virtual as the default because it is more efficient.� Javaalwaysuses virtual for all calls to objects.�Once a base type qualifies a member as virtual,it is virtual in all derived
types regardless of the derived type’s qualification for that member.

CS 246 131

Java C++

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual

}
class Derived extends Base {

public void g() {} // virtual
public void h() {} // virtual

}
final Base bp = new Derived();
bp.f(); // Base.f
((Base)bp).g(); // Derived.g
bp.g(); // Derived.g
((Base)bp).h(); // Derived.h
bp.h(); // Derived.h

struct Base {
void f() {} // non-virtual
void g() {} // non-virtual
virtual void h() {} // virtual

};
struct Derived : public Base {

void g() {}; // non-virtual
void h() {}; // virtual

};
Base &bp = *new Derived(); // polymorphic assignment
bp.f(); // Base::f, pointer type
bp.g(); // Base::g, pointer type
((Derived &)bp).g(); // Derived::g, pointer type
bp.Base::h(); // Base::h, explicit selection
bp.h(); // Derived::h, object type� Java casting does not provide access to base-type’s member routines.� Virtual members are only necessary to access derived members

through a base type reference or pointer.

CS 246 132� If a type is not involved in inheritance (final class in Java), virtual
members are unnecessary so use more efficient call to its members.� For inheritance, C++ virtual members are qualification in the base type as
opposed to the derived type.�Hence, C++ requires the base-type definer to presuppose how derived
definers might want the call default to work.�Good programming practice for inheritable object types is to make all
routine members virtual.� Any type with virtual members and a destructor needs to make the
destructor virtual so the most derived destructor is calledthrough a
base-type pointer/reference.� Virtual routines are implemented by routine pointers.

class Base {
int x, y; // data members
virtual void m1(. . .); // routine members
virtual void m2(. . .);

};�May be implemented in a number of ways:

CS 246 133

m2

m1

y

x

copy

y

x

direct routine pointer

y

x

VRT

m1

m2

m1

m2

indirect routine pointer

2.15.4 Down Cast� Type inheritance can mask the actual type of an object through a
pointer/reference.� Like Java, C++ provides a mechanism to dynamically determine the
actual type of a pointer/reference.� The Java operatorinstanceof and the C++ operatordynamic_cast
perform a dynamic check of the object addressed by a pointer/reference:

CS 246 134

Java C++

Base bp = new Derived();
if (bp instanceof Derived)

((Derived)bp).rtn();

Base *bp = new Derived();
if (dynamic_cast <Derived *>(bp) != 0)

((Derived *)bp)->rtn();� To usedynamic_cast on a type, the type must have at least one virtual
member.

2.15.5 Constructor/Destructor�Constructors areimplicitly executed top-down, from base to most
derived type.�Mandated by scope rules, which allow a derived-type constructor to use
a base type’s variables so the base type must be initialized first.�Destructors areimplicitly executed bottom-up, from most derived to
base type.�Order is mandated by the scope rules, which allow a derived-type
destructor to use a base type’s variables so the base type must be
uninitialized last.� Javafinalize must beexplicitly called from derived to base type.

CS 246 135�Unlike Java, C++ disallows calls to other constructors at the start of a
constructor.� To pass arguments to other constructors, use the same syntaxas for
initializing const members.

Java C++

class Base {
Base(int i) { . . . }

};
class Derived extends Base {

Derived() { super(3); . . . }
Derived(int i) { super(i); . . . }

};

struct Base {
Base(int i) { . . . }

};
struct Derived : public Base {

Derived() : Base(3) { . . . }
Derived(int i) : Base(i) {. . .}

};

2.15.6 Abstract Interface�Create an abstract interface from which actual types are defined:

CS 246 136

Java C++

interface Shape {
void move(int x, int y);

};
class Circle implements Shape {

public void move(int x, int y) {}
};

struct Shape {
virtual void move(int x, int y) = 0;

};
struct Circle : public Shape {

void move(int x, int y) {}
};�Note strange initialization of memberShape::move to 0, which means

this membermust be defined by any derived type ofShape.�Cannot instantiate objects from an abstract interface.�C++ allows the abstract interface to contain actual members, which
results in a combination of implementation inheritance andabstract
description.

2.16 Template� Inheritance provides reuse for types organized into a hierarchy that
extends name equivalence.

CS 246 137� Alternate kind of reuse where no type hierarchy and types arenot
equivalent.� E.g., overloading, where there is identical code but different types:

int abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }� Template routine eliminates duplicate code by using types as

compile-time parameters:

template <typename T> T abs(T val) { return val >= 0 ? val : -val; }� template introduces type parameterT used to declare return and
parameter types.� At a call, compiler infers typeT from argument(s), and constructs a
specialized routine with inferred type(s):

cout << abs(1) << " " << abs(-1) << endl; // T-> int
cout << abs(1.1) << " " << abs(-1.1) << endl; // T -> double� Template type prevents duplicating code that manipulates different

types.

CS 246 138� E.g., collection data-structures (e.g., stack), have common code to
manipulate data structure, but type stored in collection varies:

template <typename T, int N = 10> struct Stack {
T elems[N]; // maximum N elements
int size;
Stack() { size = 0; }
void push(T e) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems[size]; }

};� Type parameter,T, declares the element type of arrayelems, and return
and parameter types of the member routines.� Integer parameter,N, denotes the maximum stack size.� For template types, the compiler cannot infer the type parameter, so it
must be explicitly specified:

CS 246 139

Stack<int , 20> si; // stack of int
Stack<double > sd; // stack of double
Stack< Stack<int > > ssi; // stack of stack of int
si.push(3);
sd.push(3.0);
ssi.push(si);
int i = si.pop();
double d = sd.pop();
si = ssi.pop();� There must be a space between the two ending chevrons or>> is

parsed asoperator>> .�C++ Standard Template Library (STL) provides different kinds of
containers:vector, stack, queue, list, deque, set, map.� STL vector container is an alternative to C/C++ arrays.

CS 246 140

#include <vector>
int i, size;
cin >> size;
vector<int > vals(size); // think int vals[size]
for (i = 0; i < vals.size(); i += 1) {

cin >> vals.at(i); // think vals[i]
}
vector<int > v; // think: int v[]
v = vals; // array assignment
for (i = v.size() - 1; 0 <= i; i -= 1) {

cout << v.at(i) << " ";
}
cout << endl;� vector is dynamically sized, length is accessiblesize, has subscript

checkingat, and supports assignment.� Vector declarationmayspecify an initial size, e.g.,vector<int > vals(size),
like a dimension.�While the size of a vector may increase (or decrease) dynamically, it is
more efficient to dimension, when the size is known.�Matrix declaration is a vector of vectors, e.g.,

CS 246 141

vector< vector<int > > m(5), which specifies 5 rows.

#include <vector>
vector< vector<int > > m(5); // 5 rows
for (int r = 0; r < m.size(); r += 1) {

m[r].resize(4); // 4 columns per row
for (int c = 0; c < m[r].size(); c += 1) {

m[r][c] = r+c; // or m.at(r).at(c)
}

}
for (int r = 0; r < m.size(); r += 1) {

for (int c = 0; c < m[r].size(); c += 1) {
cout << m[r][c] << ", ";

}
cout << endl;

}� Before values can be assigned into a row, each row is dimensioned to the
specific size,m[r].resize(4).� All loop bounds are controlled using dynamic size of the row or column.� If indexed (direct) access is not required, use more efficient STL list
container(s):

CS 246 142

#include <list>
struct Node {

char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

};
list<Node> top; // doubly linked list
for (int i = 0; i < 10; i += 1) { // create list nodes

Node n(’a’+i, i, i+0.5); // node to be added
top.push_back(n); // copy node at end of list

}
list<Node>::iterator ni; // iterator for doubly linked list
for (ni = top.begin(); ni != top.end(); ++ni) { // traverse list

cout << "c:" << ni->c << " i:" << ni->i << " d:" << ni->d << endl;
}
cout << endl;
while (0 < top.size()) { // destroy list nodes

Node n = top.front(); // copy node at front of list
top.erase(top.begin()); // remove first node
cout << "c:" << n.c << " i:" << n.i << " d:" << n.d << endl;

}� First loop creates and initializes a node, and callspush_back to copy

CS 246 143

node at end (back) of list.� push_back is also used withvector to extend a vector’s size.�Containers either copy nodes into the list or point to the nodes outside
the list.�Copying implies node type must have default and/or copy constructor so
instances can be created without having to know constructorarguments.� STL containers use copying and requires node type to have a default
constructor.�Containers use aniterator to traverse nodes so knowledge about
container implemented is hidden.� Iterator capabilities depend on container, e.g., a singly linked list only
allows unidirectional traversal while doubly linked list allows
bidirectional traversal.� STL containers provides iterator(s) as a nested object type, e.g.,
list<Node> haslist<Node>::iterator.� Second loop traverses list using iterator index,ni, from start of the list,
stepping through nodes untilni is pastthe listend().�Note, iteratorni points to a node in the list so field access is with->.

CS 246 144� As well, the operator “++” advancesni to the next node.� Third loop destroys list by repeatedly erasing the first nodeuntil the
number of nodes is zero.� For bidirectional iterators, operator “--” moves in the reverse direction to
“++”.� STL template-routinefor_each provides an alternate mechanism to
iterate through a container, applying an action to each node:

CS 246 145

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) { cout << i << " "; } // print node
int main() {

list< int > int_list;
vector< int > int_vec;
for (int i = 0; i < 10; i += 1) { // create lists

int_list.push_back(i);
int_vec.push_back(i);

}
for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}� An action routine tofor_each is called for each node in the container
passing the node to the routine for processing.� In general, the type of the action routine isvoid rtn(T), whereT is the
type of the container node.� E.g.,print has anint parameter matching the container node type.

CS 246 146�More complex actions are possible by constructing a “function object”,
called afunctor , using the routine-call operator.� E.g., an action to print on a specified stream must store the stream and
have anoperator () allowing the object to behave like a function:

struct Print {
ostream &stream; // stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i << " "; }

};
int main() {

list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));

}� ExpressionPrint(cout) creates a constantPrint object, andfor_each calls
operator ()(Node) in the object.

CS 246 147

2.17 Namespace�C++ has a mechanism to organize complex programs and libraries
composed of multiple types and declarations.� E.g., namespacestd contains all the I/O declarations and container types.�Names in a namespace form a declaration region, like the scope of block.�Unlike Java, C++ allows multiple namespaces to be defined in afile.� Types and declarations do not have to be added consecutively.

Java source file C++ source file

package Foo; // one package / file
// types / declarations

namespace Foo {
// types / declarations

};
namespace Bar {

// types / declarations
};
namespace Foo {

// more types / declarations
};�Contents of a namespace can be accessed using full-qualifiednames:

CS 246 148

Java C++

Foo.T t = new Foo.T(); Foo::T *t = new Foo::T();�Or by importing individual items or all of the namespace content.

Java C++

import Foo.T;
import Foo.*;

using Foo::T; // import individual
using namespace Foo; // import all

2.18 Abstraction/Encapsulation� Abstraction is the separation of interface and implementation allowing
an object’s implementation to change without affecting usage, which is
essential for reuse and maintenance.� E.g., a user of typeComplex should not have or need direct access its
implementation to perform operations:

struct Complex {
double re, im; // implementation data
. . . // interface routine members

};

CS 246 149� Possible to change from Cartesian to polar coordinates and user
interface remains constant.�Developing good interfaces for objects is important.� Encapsulation is hiding the implementation for security or financial
reasons (access control).� Abstraction and encapsulation are neither essential nor required to
develop software.�Uses follow a convention of not directly accessing the implementation.�However, relying on users to follow conventions is dangerous.� Encapsulation is provided by a combination of C and C++ features.�C features work largely among source files, and are indirectly tied into
separate compilation.�C++ features work both within and among source files.� Like Java, C++ provides 3 levels of visibility control for object types:

CS 246 150

Java C++

class Foo {
private . . .
. . .
protected . . .
. . .
public . . .
. . .

};

struct Foo {
private : // within and friends

// private members
protected : // within, friends, inherited

// protected members
public : // within, friends, inherited, users

// public members
};� Java requires encapsulation specification for each member.�C++ groups members with the same encapsulation, i.e., all members after

a label,private , protected or public , have that visibility.� Visibility labels can occur in any order and multiple times in an object
type.�Only the object type can access the private members,so implementation
members are normally private.� Inherited object types can access and modify public and protected
members allowing access to some of an object’s implementation.

CS 246 151� Public members define an object type’sinterface, i.e., what a user can
access.�While a user can see private and protected members, they cannot be
accessed, preventing code from violating abstraction.� struct has an implicitpublic inserted at the beginning, i.e., all members
are public.� class is the same asstruct except it has an implicitprivate at the
beginning, i.e., all members are private:

CS 246 152

class Base {
private :

int x;
protected :

int y;
public :

int z;
};
class Derived : public Base {

public :
Derived() { x; y; z; };

};
int main() {

Derived d;
d.x; d.y; d.z;

}� Encapsulation introduces a new problem for routines outside of an
object used to implement binary operations for an object.� An outside routine may need to access an object’s implementation, but it
cannot access private members.�C++ provides a mechanism to state that an outside routine is allowed

CS 246 153

access to its implementation, calledfriendship (similar to package
visibility in Java).

class Complex {
friend Complex operator +(Complex a, Complex b);
. . .

};
Complex operator +(Complex a, Complex b) { . . . }� The friend prototype indicates a routine with the specified name and

type may access this object’s implementation:

CS 246 154

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im;

public :
double abs() { return sqrt(re * re + im * im); }
Complex() { re = 0.; im = 0.; }
Complex(double r) { re = r; im = 0.; }
Complex(double r, double i) { re = r; im = i; }

};
Complex operator +(Complex a, Complex b) { . . . }
ostream &operator <<(ostream &os, Complex c) { . . . }

2.19 Separate Compilation� Like Java’s package access, a C/C++source fileprovides another
mechanism for encapsulation.� By default, all global variables and routines in a source fileare exported
outside the file (package).� To encapsulate declarations in a source file, the declaration must be
qualified withstatic .

CS 246 155

// file.C
int i; // public (exported)
void f(. . .) {} // public (exported)
static int j; // private
static void g(. . .) {} // private� Like Java, a type is encapsulated in a source file, unless explicitly

denoted as public.� Java has automatic access to public contents of a source file.� First, C/C++ require the use of the preprocessor and forwarddeclarations
to access public contents.�Declarations are divided into its interface and implementation in two (or
more) files.� Interface declarations are usually composed of the prototype
declaration(s) (but possibly some implementation).� Implementation declarations are composed of the actual declarations
and code.� Second, interface is entered into one or more include files (.h files), and
the implementation is entered into one or more source files (.C files).

CS 246 156� Encapsulation is provided by giving a user access to only theinclude
file(s) and the compiled source file(s), but not the implementation in the
source file(s).�Most software supplied from software vendors comes this way.� Include files contain prototypes for exported variables androutines,
which are qualified withextern (not types):

// file.h
extern int i; // public, implementation elsewhere
extern void f(. . .); // public, implementation elsewhere (extern optional for� Complex prototype information is placed into filecomplex.h, which users

include in their programs.

CS 246 157

#ifndef _ _COMPLEX_H_ _
#define _ _COMPLEX_H_ _ // protect against multiple inclusion
#include <iostream> // access: ostream
using std::ostream;
extern void complexStats();
class Complex {

friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im; // exposed implementation

public :
Complex();
Complex(double r);
Complex(double r, double i);
double abs();

};
extern Complex operator +(Complex a, Complex b);
extern ostream &operator <<(ostream &os, Complex c);
#endif // _ _COMPLEX_H_ _� Complex implementation information is placed in filecomplex.C.

CS 246 158

#include "complex.h"
#include <cmath> // access: sqrt
using namespace std;
// private declarations
static int cplxObjCnt = 0; // must be initialized
// interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
complex::complex() { re = 0.; im = 0.; cplxObjCnt += 1; }
complex::complex(double r) { re = r; im = 0.; cplxObjCnt += 1; }
complex::complex(double r, double i) { re = r; im = i; cplxObjCnt += 1; }
double complex::abs() { return sqrt(re * re + im * im); }
complex operator +(complex a, complex b) {

return complex(a.re + b.re, a.im + b.im);
}
ostream &operator <<(ostream &os, complex c) {

return os << c.re << "+" << c.im << "i";
}� .C file normally includes the.h file so that there is only one copy of the

constants, declarations, and prototype information.� cplxObjCnt is qualified withstatic to make it a private variable to this
source file.

CS 246 159�No user can access it, but each constructor implementation can
increment it when aComplex object is created.� All static variables, whether in a class or file, must be explicitly
initialized in the .C file, e.g.,cplxObjCnt is set to0.�Users callcomplexStats to print the number ofComplex objects created
so far in a program.�Notice, all the member routines ofComplex are separated into a forward
declaration and an implementation after the object type, allowing the
implementation to be placed in the.C file.�Note, by reading.h, it may be possible to determine the implementation
technique used, so there is only partial encapsulation.� To provide complete encapsulation requires abstract type and (more
expensive) references:

CS 246 160

#ifndef _ _COMPLEX_H_ _
#define _ _COMPLEX_H_ _ // protect against multiple inclusion
#include <iostream> // access: ostream
using std::ostream;
extern void complexStats();
class Complex {

friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
struct ComplexImpl; // hidden implementation, nested class
ComplexImpl &impl; // indirection to implementation

public :
Complex();
Complex(double r);
Complex(double r, double i);
~Complex();
Complex(const Complex &c); // copy constructor
Complex &operator =(const Complex &c); // assignment operator
double abs();

};
extern Complex operator +(Complex a, Complex b);
extern ostream &operator <<(ostream &os, Complex c);
#endif // _ _COMPLEX_H_ _

CS 246 161�Compiler requires a template definition for each usage so both the
interface and implementation of a template must be in a.h file,
precluding some forms of encapsulation.

CS 246 162

#include "complex.h"
#include <cmath> // access: sqrt
using namespace std;
// private declarations
static int cplxObjCnt = 0;
struct Complex::ComplexImpl { // actual implementation, nested class

double re, im;
};
// interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
Complex::Complex() : impl(*new ComplexImpl) {

impl.re = 0.; impl.im = 0.; cplxObjCnt += 1;
}
Complex::Complex(double r) : impl(*new ComplexImpl) {

impl.re = r; impl.im = 0.; cplxObjCnt += 1;
}
Complex::Complex(double r, double i) : impl(*new ComplexImpl) {

impl.re = r; impl.im = i; cplxObjCnt += 1;
}
Complex::~Complex() { delete &impl; }
Complex::Complex(const Complex &c) : impl(*new ComplexImpl) {

impl.re = c.impl.re; impl.im = c.impl.im; cplxObjCnt += 1;
}

CS 246 163

Complex &Complex::operator =(const Complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return *this ;

}
double Complex::abs() {

return sqrt(impl.re * impl.re + impl.im * impl.im);
}
Complex operator +(Complex a, Complex b) {

return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}
ostream &operator <<(ostream &os, Complex c) {

return os << c.impl.re << "+" << c.impl.im << "i";
}� A copy constructor and assignment operator must be used because

complex objects now contain a reference pointer to the implementation.� A reference pointer cannot be copied on initialization or assignment
without generating storage management problems.� E.g., copying the reference pointer can result in two complex objects
pointing at the same complex value and both may eventually attempt to
delete it.� As well, overwriting a reference pointer may lose the only pointer to the

CS 246 164

storage so it can never be freed.� An encapsulated object is compiled using the-c compilation flag and
subsequently linked with other compiled source files to forma program:

g++ -c complex.C�Creates filecomplex.o containing a compiled version of the source code.� To use an encapsulated object, a program specifies the necessary include
file(s) to access the object’s interface:

#include "complex.h"
#include <iostream>
using namespace std;
int main() {

Complex x, y, z;
x = Complex(3.2);
y = x + Complex(1.3, 7.2);
z = Complex(2);
cout << "x:" << x << " y:" << y << " z:" << z << endl;

}� Then links with any necessary executables:

CS 246 165

g++ usecomplex.C complex.o�Notice,iostream is included twice, once in this program and once in
complex.h, which is why each include file needs to prevent multiple
inclusions.

3 Software Tools

3.1 Shell� After signing onto a computer, there must exist a way to display
information and perform operations.� The two main approaches are graphical and command-line.� A graphical interface:
– uses icons to represent programs (actions),
– clicking on an icon launches (starts) a program,
– the program may pop up a dialog box to obtain arguments to specify

its execution.� A command-line interface:
– uses text strings (names) to represent programs (commands),
– a command is typed after a prompt in an interactive area to start it,
– arguments follow the command to specify its execution.�Graphical interfaces can be convenient for people, but seldom
generalizes to a programming environment.

c
 Peter A. Buhr

166

CS 246 167�Command-line interfaces are slightly more work for people,but
generalizes to a programming environment.� A shell is a program that reads commands and shell statements, and
interprets them.� Shell statements often form a complete programming language with
string variables and executable statements.�Unix shell falls into two basic camps, sh and csh, each with different
syntax and semantics.� sh has variants: ksh, bash� csh has variants: tcsh� In UNIX, the area (window) in which a shell runs is called anxterm.� Each shell line begins with a prompt denoted by the% sign (the prompt
can be customized).� A command is typed after the prompt.� A command isnot executed until<Return> is pressed:

CS 246 168

% date<Return>
Sun Oct 19 19:27:30 EDT 2008
% uname
SunOS�Most commands have options, specified by a minus followed by one or

more characters, which change how the command operates.

% uname -a
SunOS services16.student.cs 5.8 Generic_117350-56 sun4u sparc SUNW,Ultr�Unfortunately, there is no standardization for option syntax and names.�Most shells terminate with commandexit.� If an xterm’s shell terminates, the xterm terminates, and ifthe xterm is

the login window, you are signed off of the computer.

3.1.1 File System� Files are containers for data stored on secondary storage (e.g., usually
disk).� Each file has a unique name.

CS 246 169�UNIX organizes file names in a hierarchy: directories are thevertices
and files are the leaves.

/ root of the local file system
usr

bin more UNIX commands
lib system libraries
include system include files, .h files

bin basic UNIX commands
lib system libraries
tmp system temporary files
u1 user files
u2 user files

. . .
jfdoe student home directory

.cshrc, .emacs, .login, . . . student’s files
cs246

assign1
q1, q2, q3

. . .
u magic directory combining what is under u1-u5� usr, etc, bin, lib – most of the UNIX commands, and system include and

CS 246 170

library files.� tmp – location of temporary files created by commands.� u1, u2, u3, u4, u5 – user files are distributed across these directories.
The directory for a particular user is called the user’shome directory.� u – magic directory that contains all of the users under the individual
user directories.� A file is referenced in one of two ways:absolute pathnameor relative
pathname.� An absolute pathname is a list of all the directories from theroot to the
file separated by the character “/”.� E.g., the absolute pathname/u/jfdoe/cs246/assign1/q1 denotes the fileq1.� The name/u2/jfdoe/cs246/assign1/q1 denotes the same file.� A relative pathname requires a starting location other thanthe root,
called thecurrent directory .�When you sign on, the current directory is set to your home directory.� Any file name not starting with “/” is automatically prefixed with the
current directory.

CS 246 171� E.g., if userjfdoe signs on and specifies the file namecs246/assign1/q1,
then the actual file used is/u/jfdoe/cs246/assign1/q1.� There are special directory names, “.” (dot), “ . .” (dot dot), and “~”
(tilde).� “ .” is the name of the current directory, so./cs246/assign1/q1 is the same
as/u/jfdoe/cs246/assign1/q1.� “ . .” is the name of the directory above the current directory, i.e., the
parent directory, so. ./jfdoe/cs246/assign1/q1 is the same as
/u/jfdoe/cs246/assign1/q1.� “~” is a user’s home directory, so~/cs246/assign1/q1 is the same as
/u/jfdoe/cs246/assign1/q1.

3.1.2 Pattern Matching� Shell’s support pattern matching of file names (globbing) toreduce
typing lists of file names.� Pattern matching is provided through special characters,*, ?, [, {,
denoting different wildcards.

CS 246 172� (Different shells and commands support slightly differentforms and
syntax for patterns.)� A file name containing a special character is enclosed in quotes"".� * matches 0 or more characters, e.g., if the current directoryis
/u/jfdoe/cs246/assign1, file nameq*, matches file namesq1, q2, q3.� ?, matches 1 characters, e.g., file nameq?, matches file namesq1, q2, q3.� [. . .], matches any characters in the set, e.g., filenameq[123] matches file
namesq1, q2, q3� ranges are possible using the hyphen,[0-3] matches characters 0,1,2,3,
[a-zA-Z] matches a lower or upper case letter,[^a-zA-Z] matches any
character not a letter.� range can be modified with* to be any number of characters in the set,
[a-zA-Z]* matches any number of lower or upper case letters.� {. . .}, matches any alternative in the set,f.{cc,cpp,C}, matchesf.cc, f.cpp,
f.C.� Patterns can be composed, e.g.,q[0-9]*a*.c matches file names that start
with q followed by 0 or more digits, followed bya, followed by 0 or
more characters, and terminating with the two characters “.c”.

CS 246 173

3.2 Commands
3.2.1 Shell Commands�Commands executed directly by the shell because they usually update its

state.� cd change the current directory.

cd [new-directory-path]

– argument must be a directory pathname and not a file pathname
– cd . . moves you up one directory level
– no directory pathname means moves to home directory (same ascd ~)
– cd ~/bin moves to thebin directory contained in your home directory
– If the specified path does not exist,cd fails and the current directory is

not changed.� time execute a command and print a time summary� history print a numbered history of last N commands entered.
– re-run commandN, type “!N”;
– “ !!” re-runs the last command.

CS 246 174

– re-run last command starting with the string “xyz”, use the command
“ !xyz”.� alias define string substitutions for command names.

alias [command-name [=] value]

– without arguments, print all currently defined alias names and values.
– value is substituted for commandcommand-name (= may be required)
– provide nickname for frequently use or variation of a command:

% alias d date
% d
Mon Oct 27 12:56:36 EDT 2008

– aliases are composable:

% alias now d
% now
Mon Oct 27 12:56:37 EDT 2008

– useful for setting command options for particular commands, as in:

% alias cp cp -i
% alias mv mv -i
% alias rm rm -i

CS 246 175

which always uses the-i option on commandscp, mv andrm.
– A sequence of commands can be specified separated by semi-colons

in quotation marks:

% alias off "clear; logout"

which clears the screen before logging off.
– An alias can be overridden by putting quoting the command name:

% "rm" -r xyz
which does not add the-i option

– An alias entered on a command line only takes effect for the current
shell session.

– There are two options for making aliases permanent for across login
session:
1. insert thealias commands in your.{shell}rc file
2. place a list ofalias commands in a file called.aliases in your home

directory and execute that file from your.{shell}rc file.

3.2.2 System Commands�Commands executed by UNIX.

CS 246 176� pwd print the current directory.� ls lists the directories and files in the specified directory.

ls [-al] [directory-name]

– -a listsall files, including those that begin with a dot.
– -l generates along listing for each file: mode, number of links, owner,

size in bytes, last modification time and file name.
– If no directory is given, the current directory is assumed.�mkdir creates a new directory in the current directory.

mkdir directory-name-list� cp copies files, and with the-r option, copies directories.

cp [-i] source-file target-file
cp [-i] -r source-file/directory-list target-directory

– -i prompt for verification if a target file is being replaced.
– -r recursively copy the contents of a source directory to the target

directory.�mv moves files and/or directories to another location in the filehierarchy.

CS 246 177

mv [-i] source-file target-file
mv [-i] source-file target-directory
mv [-i] source-directory target-directory

– if the target-file does not exist, the source-file is renamed;otherwise
the target-file is replaced.

– -i prompt for verification if a target file is being replaced.� rm removes (deletes) files, and with the-r option, removes directories.

rm [-ir] directory-list

– rmdir command is the same asrm -r.
– -i prompts for verification for each file/directory being removed.
– -r recursively delete the contents of a directory.
– UNIX does not give you a second chance to recover deleted files, so

you must be very careful when usingrm.�more/less/cat list a file’s content to standard out.
– more/less paginate the contents one screen at a time
– cat shows the contents in one continuous stream.� lpr/lpq/lprm add, query and remove files from the printer queues.

CS 246 178

lpr [-P printer-name] options file-list
lpq -P printer-name
lprm -P printer-name job-number

– if no printer is specified, the queue is a default printer.
– each job on a printer’s queue has a unique number.
– use this number to remove a job from a print queue.

3.2.3 File Permissions�UNIX file structure supports 3 levels of security on each file or directory:
– user : owner of the file,
– group : arbitrary name associated with a number of userids,
– other : any other userid.� At each level, a directory or file can have the following permissions:
read, write, and execute (or search).�Readable and writable allow any of the specified users to reador
write/change a file/directory.� Executable for files means the file can be executed as a command, e.g.,
file contains a program or shell script.

CS 246 179� Executable for directories means the directory can be searched by
certain system operations but not read in general.�Usels -l to see file permission information in the current directory:

drwx------ 7 cs246 cs246 4096 Oct 20 13:07 ./
drwxr-x--- 5 cs246 cs246 4096 Oct 15 08:07 ../
drwx------ 2 cs246 cs246 4096 Oct 19 18:19 C++/
drwx------ 2 cs246 cs246 4096 Oct 21 08:51 Tools/
-rw------- 1 cs246 cs246 22714 Oct 21 08:50 notes.aux
-rw------- 1 cs246 cs246 63332 Oct 21 08:50 notes.dvi�Columns are permissions, #-files-in-directory, owner, group, file size,
change date, file name.� chgrp command changes the group associated with the file:

chgrp group-name file-list� Permission information is complex:

CS 246 180

user permissiond = directory
- = file

other permissions
group permissions

rwxd r-x --x� E.g.,drwxr-x---, indicates
– directory in which the user has read, write and execute permissions,
– group has only read and execute permissions,
– others have no permissions at all.� In general, you should not allow other users to read or write your files.�Default permissions on a file arerw-r----- (usually), which means owner
has read/write permission, and group has only read permission.�Default permissions on a directory arerwx------, which means owner has
read/write/execute.� chmod command allows adding or removing from any of the 3 security
levels.

chmod mode-list file-list

CS 246 181�mode-list has the formsecurity-level operator permission.� security levels are denoted byu for you user,g for group,o for other.�Operator+ adds permission,- removes permission.� Permissions are denoted byr for readable,w for writable andx for
executable.� The elements of themode-list are separated by commas.� E.g., to remove read and write permissions from security levels group
and other for filexyz, in the long and short forms:

chmod g-r,o-r,g-w,o-w xyz
chmod go-rw xyz

3.2.4 Input/Output Re-direction� Input or output of commands can be redirect by the shell to/from sources
other than the keyboard (standard in) and screen (standard out/error).� Shell provides the redirection operators< for redirecting standard input
and> for redirecting standard output.� A command is unaware of the redirection.

CS 246 182� ls -l > xxx put output ofls into file xxx�more < xxx get input from filexxx and print on standard output�more < xxx > yyy get input from filexxx and print to fileyyy�Normally, standard error (e.g., error messages) are not redirected
because of their importance.� To redirectall output, use the redirection operator>& in the csh and
2>&1 in sh.

(csh) % a.out >& xxx # put standard out and error into file xxx
(sh) % a.out 2>&1 xxx # put standard out and error into file xxx� Shell pipe operator| takes the output of one command and makes it the

input to the next command, without having to create an intermediate file.� ls -al | more�Output from thels command is “piped” into themore command as input.

CS 246 183

3.3 Compilation

cc1plus

assembly code

as

ld

object code

header files C/C++ source files

-E, -Ddefine=value

-o object/pgm-name
files and libraries
other object-code

-v, -g, -S, -c, -O1/2/3

object./a.out

preprocessed source code

cpp

CS 246 184�Compilation is the process of translating a program from human to
machine readable form.� The translation is performed by a tool called acompiler.�Compilation is subdivided into multiple steps, using a number of tools.�Often a number of options to control the behaviour of each step.�Option are presented forg++, but other compilers have similar options.�General format:

g++ option-list infiles -o outfile

whereinfiles is C/C++ source (.C) and object files (.o).

3.3.1 Preprocessor� Preprocessor (cpp) takes a C++ source file, removes comments, and
expands#include , #define , and#if directives.�Options:
– -E run only the preprocessor step and writes the preprocessor output to

standard out.

CS 246 185

% g++ -E source-files
... much output from the preprocessor

– -D define and optionally initialize preprocessor variables from the
compilation command:

% g++ -DDEBUG=2 -DASSN . . . source-files
same as putting the following#define s in a program without changing
the program:

#define DEBUG 2
#define ASSN

3.3.2 Compiler (cc1plus)�Compiler (cc1plus) takes a preprocessed file and converts the C++
language into assembly language for the target machine.�Options:
– -v shows each step of the compilation and information about what

each step is doing:

% g++ -v source-files
... much output from each compilation step

CS 246 186

Look for these system include files:

#include <. . .> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

wherecpp looks for system includes.
– -g add symbol-table information to object file for debugger
– -S stop after translation and write assemble code to filesource-file.s
– -O1/2/3 optimize translation to different levels, where eachlevel takes

more compilation time and possibly more space in executable

3.3.3 Assembler� Assembler (as) takes an assembly language file and converts it to object
code (machine language).

CS 246 187

3.3.4 Linker� Linker (ld) takes the implicit.o file from translated source and any
explicit .o files from the command line, and combines them into a new
object or executable file.� Linking options:
– -o gives the file name where the combined object/ executable is placed.
– If no name is specified, default namea.out is used.

3.4 Debugging�Debugging is the process of determining why a program does have an
intended behaviour.�Often debugging is associated with fixing a program after a failure.�However, debugging can be applied to fixing other kinds of problems,
like poor performance.� Before using debugger tools it is important to understand what you are
looking for and if you need them.

CS 246 188

3.4.1 Debug Print Statements� An excellent way to debug a program is tostart by inserting debug print
statements (i.e., as the program is written).� It takes more time, but the alternative is wasting hours trying to figure
out what the program is doing.� The two aspects of a program that you need to know are: where the
program is executing and what values it is calculating.�Debug print statements show the flow of control through a program and
print out intermediate values.� E.g., every routine should have a debug print statement at the beginning
and end, as in:

int p(. . .) {
// declarations
cerr << "Enter p " << parameter variables << endl;
. . .
cerr << "Exit p " << return value(s) << endl;
return r;

}

CS 246 189�Result is a high-level audit trail of where the program is executing and
what values are being passed around.� Finer resolution requires more debug print statements in important
control structures:

if (a > b) {
cerr << "a > b" << endl ; // debug print
for (. . .) {

cerr << "x=" << x << ", y=" << y << endl; // debug print
. . .

}
} else {

cerr << "a <= b" << endl; // debug print
. . .

}� By examining the control paths taken and intermediate values generated,
it is possible to determine if the program is executing correctly.�Unfortunately, debug print statements can generate enormous amounts
of output.

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which

CS 246 190

vital. (Sherlock Holmes, The Reigate Squires)�Gradually comment out (#if) debug statements as parts of the program
begin to work to remove clutter from the output, but do not delete them
until the program works completely.�When you go for help, either from your instructor or an advisor, you
should have debug print statements in your program.� In general, debug print statements never appear in the program you hand
in for marking.

3.4.2 Assertions� Assertions enforce pre-conditions, post-conditions, and invariants,
which document program assumptions:

#include <cassert>
int main(int argc, char *argv[]) {

assert(argc == 2); // must have 1 argument
}�When run without an argument, this produces:

CS 246 191

% ./a.out
Assertion failed: argc == 2, file test.cc, line 3
Abort (core dumped)�Codify program assumptions with assertions:

int main(int argc, char *argv[]) {
vector<int > a(10), b(10);
// read values into a, b
assert(a.size() == b.size()); // must be the same size
for (i = 0; a[i] == b[i]; i += 1) {

assert(i < a.size()); // must have an unequal element
}
cout << i << endl;

}� Assertions can significantly increase a program’s cost.�Compiling a program with preprocessor variableNDEBUG defined
removes all asserts.

% g++ -DNDEBUG . . . # all asserts removed

CS 246 192

3.4.3 Errors�Debug print statements do not prevent errors, they simply aid in finding
errors.�What you do about an error depends on the kind of error.� Errors fall into two basic categories: syntax and semantic.� Syntax error is in the arrangement of the tokens in the programming
language.� These errors correspond to spelling or punctuation errors when writing
in a human language.� Fixing syntax errors is usually straight forward especially if the compiler
generates a meaningful error message.� Always read the error message carefully andcheckthe statement in
error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal
in Bohemia)�Difficult syntax errors are:

CS 246 193

– Forgetting a closing" or */, as the remainder of the program is
swallowed as part of the character string or comment.

– Missing a{ or }, especially if the program is properly indented (editors
can help here)� Semantic error is incorrect behaviour or logic in the program.� These errors correspond to incorrect meaning when writing in a human

language.� Semantic errors are harder to find and fix than syntax errors.� A semantic or execution error message only tells why the program
stopped not what caused the error.�Must work backwards from the error to determine the cause of the
problem.

In solving a problem of this sort, the grand thing is to able to reason
backwards. This is very useful accomplishment, and a very easy
one, but people do not practise it much. In the everyday affairs of
life it is more useful to reason forward, and so the other comes to be
neglected. (Sherlock Holmes, A Study in Scarlet)

CS 246 194� E.g., an infinite loop with nothing wrong with the loop; the initialization
is wrong.

i = 10;
while (i != 5) {

. . .
i += 2;

}� In general, when a program stops with a semantic error, the statement
that caused the error is not usually the one that must be fixed.�Difficult semantic errors are:
– Forgetting to assign a value to a variable before using it in an

expression.
– Using an invalid subscript or pointer value.� Finally, if a statement appears not to be working properly, but looks
correct, check the syntax.

if (a = b) {
cerr << "a == b" << endl;

}

CS 246 195

When you have eliminated the impossible whatever remains,
however improbable must be the truth. (Sherlock Holmes, Sign of
Four)

3.5 Debugger� An interactive, symbolicdebuggereffectively allows debug print
statements to be added and removed to/from a program dynamically.� You should not rely solely on a debugger to debug a program.� You may work on a system without a debugger or the debugger maynot
work for certain kinds of problems.� A good programmer uses a combination of debug print statements and a
debugger when debugging a complex program.� A debugger does not debug your program for you, it merely helps in the
debugging process.� Therefore, you must have some idea about what is wrong with a
program before starting to look or you will simply waste yourtime.

CS 246 196

3.5.1 GDB� The two most common UNIX debuggers are: dbx and gdb.� File test.cc contains:

1 void r(int a[]) {
2 int i = 100000000;
3 a[i] += 1; // really bad subscript error
4 }
5 int main() {
6 int a[10] = { 0, 1 };
7 r(a);
8 }�Compile program using the-g flag to include names of variables and

routines for symbolic debugging:

% g++ -g test.cc� Start gdb:

% gdb ./a.out
. . . gdb disclaimer
(gdb) gdb prompt

CS 246 197� Like a shell, gdb uses a command line to accept debugging commands.� run command begins execution of the program:

(gdb) run
Starting program: /u1/cs246/u/pabuhr/teaching/notes/Tools/a.out
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error

– If there are no errors in a program, running in GDB is the same as
running in a shell.

– If there is an error, control returns to gdb to allow examination.� backtrace command prints a stack trace of calledroutine activations.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:7� frame [n] command moves thecurrent stack frame to thenth routine

activation on the stack.

CS 246 198

(gdb) f 0
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) f 1
#1 0x00010764 in main () at test.cc:7
7 r(a);

– If n is not present, prints the current frame
– Once moved to a new frame, it becomes the current frame.
– All subsequent commands apply to the current frame.� print command prints variables accessible in the current routine, object,
or external area.

(gdb) f 0
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) print i
$1 = 100000000

– $1 is the name of a history variable (like history variables in ashell).
– Name$N can be used in subsequent commands to access previous

values ofi.

CS 246 199�Can print any C++ expression:

(gdb) print a
$2 = (int *) 0xffbefa20
(gdb) p *a
$3 = 0
(gdb) p a[1]
$4 = 1
(gdb) p a[1]+1
$5 = 2
(gdb) p $3
$6 = 0� set variable command changes the value of a variable in the current

routine, object or external area.

CS 246 200

(gdb) set variable i = 7
(gdb) p i
$7 = 7
(gdb) set var a[0] = 3
(gdb) p a[0]
$8 = 3
(gdb) p $3
$9 = 0�Change the values of variables while debugging to:

– investigate how the program behaves with new values without
recompile and restarting the program,

– to make local corrections and then continue execution.� To trace program execution,breakpoints are required.� break command establishes a point in the program where execution
suspends and control returns to the debugger.

(gdb) break main
Breakpoint 1 at 0x10710: file test.cc, line 6.
(gdb) break test.cc:3
Breakpoint 2 at 0x106d8: file test.cc, line 3.

CS 246 201

– Set breakpoint using routine name or source-file:line-number.
– If program is not compiled with-g flag, only the location is given.
– Commandinfo breakpoints prints breakpoints currently set.

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010710 in main at test.cc:6
2 breakpoint keep y 0x000106d8 in r(int*) at test.cc:3� Breakpoints numbered consecutively from1 and can be disabled,

enabled or deleted at any time using commands:

(gdb) disable 1 temporarily disable breakpoint 1
(gdb) enable 1 re-enable disabled breakpoint 1
(gdb) delete 1 remove breakpoint completely 1

(Pretend none of these commands are entered.)�Run program again to get to the breakpoint:

CS 246 202

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /u1/cs246/u/pabuhr/teaching/notes/Tools/a.out
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) p a[7]
$10 = 0�Once a breakpoint is reached, execution of the program can be

continued in several ways.� step [n] command executes the nextn lines of the program and stop.

CS 246 203

(gdb) step
7 r(a);
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;
(gdb) s
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb)
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) s
Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

– If n is not present, 1 is assumed.
– <Return> without a command repeats the last command.
– If the next line is a routine call, control enters the routineand stops at

the first line.� next [n] command, likestep, but routine calls are treated as a single
statement, so control stops at the statement after the routine call instead

CS 246 204

of the first statement of the called routine.

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) next
7 r(a);
(gdb) n
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) n
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error� continue command continues execution until the next breakpoint is

reached.

CS 246 205

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) s
7 r(a);
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;
(gdb) s
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) p i
$4 = 100000000
(gdb) set var i = 3
(gdb) c
Continuing.
Program exited normally.� finish command finishes execution of the current routine and stops at the

statement after the routine call.

CS 246 206

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) c
Continuing.
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) set var i = 3
(gdb) fin
Run till exit from #0 r (a=0xffbefa20) at test.cc:3
main () at test.cc:8
8 }
(gdb) c
Continuing.
Program exited normally.

– Print the value returned by the finished routine, if any.�During debugging, it is useful to print variables each time the program
stops at a breakpoint.�Normally, requires typing aprint commands each time the program stop.

CS 246 207� display command is like the print command, with the addition of
printing each time the program stops.

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) display a[0]
1: a[0] = 67568
(gdb) s
7 r(a);
1: a[0] = 0
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;

– Each displayed variable is numbered, in this case,a is numbered 1.
– Use number to stop displaying a variable viaundisplay n command.
– If a variable goes out of scope, the display stops printing.� l ist command lists source code.

CS 246 208

(gdb) list
2 int i = 100000000;
3 a[i] += 1;
4 }
5 int main() {
6 int a[10];
7 r(a);
8 }
(gdb) list 3
1 void r(int a[]) {
2 int i = 100000000;
3 a[i] += 1;
4 }
5 int main() {
6 int a[10];
7 r(a);
8 }

– with no argument, list code around current execution location
– with argument line number, list code around line number� quit command terminate gdb.

CS 246 209

(gdb) run
. . .
Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };
(gdb) quit
The program is running. Exit anyway? (y or n) y

3.6 Compiling Complex Programs� Separate compilation has an advantage and disadvantage.� Advantage: saves significant amounts of computer and peopletime by
recompiling only the portions of a program that are changed.� In theory, if an expression is changed, only that expressionneeds to be
recompiled.� In practice, the unit of compilation is much coarser: thetranslation unit
(TU), which is a file in C/C++.� In theory, each line of code (expression) could be put in a separate file,
but impractical (and doesn’t work).� So a TU should not be too big and not be too small.

CS 246 210�Disadvantage: TUs must depend on each other because a program
shares many forms of information, especially types.�Not a problem when all the code is in a single TU (except for DBU).� As a program grows, the number of TUs grow, so does the dependencies
among TUs.�Now, when one TU is changed, it may require other TUs to changethat
depend on some or all of the shared information.� For a large numbers of TUs, the dependencies turn into a nightmare with
respect to recompiled.

3.6.1 Dependences�Dependences in C/C++ normally occur as follows:
– executable depends on.o files
– .o files depend on.C files
– .C files depend on.h files

CS 246 211

source tree dependencies

x.h #include "y.h"
x.C #include "x.h"

y.h #include "z.h"
y.C #include "y.h"

z.h #include "y.h"
z.C #include "z.h"

a.out

anon.o

y.o

z.o

x.h

y.h

z.hz.C

y.C

x.C

� The hierarchicalsource treeis compiled as follows:

% g++ -c z.C # generates z.o
% g++ -c y.C # generates y.o
% g++ x.C y.o z.o # generates a.out
alternative
% g++ -c x.C # generates x.o
% g++ x.o y.o z.o # generates a.out� If a change is made toy.h, which files need to be recompiled?�Doesany change toy.h require these recompilations?� There is no mechanism to know the kind of change made within a file,

CS 246 212

e.g., changing a comment, type, variable.� So dependence is coarse grain, based onanychange to a file.�One way to denote file changes is withtime stamps.�UNIX stores in the directory the time a subfile was last changed, with
second precision.� Establishing dependencies means establishing a temporal ordering in the
dependence graph so the root has the newest (or equal) time and the
leafs the oldest (or equal) time.

3.6.2 Make�make is a UNIX command that takes a dependence graph and uses file
change-times to trigger rules that bring the dependence graph up to date.� A make dependence graph expresses a relationship between a product
and a set of sources.�Make does not express a relationship among sources, one thatexists at
the source code level and is important.� E.g., sourcex.C depends on sourcex.h but x.C is not a product ofx.h like
x.o is a product ofx.C andx.h.

CS 246 213� The two most common UNIX makes are: make and gmake (on Linux,
make is gmake).� Like shells, there is minimal syntax and semantics formake, which is
mostly portable across systems.� The most common non-portable features are specifying dependencies
and implicit rules.� A basic makefile consists of string variables with initialization and a list
of targets and rules.� This file can have any name, butmake implicitly looks for a file called
makefile or Makefile if no file is specified.� Each target has a list of dependencies, and possibly a set of commands
specifying how to re-establish the target.

variable = value
target : dependency1 dependency2 . . .

command1
command2
. . .�make is invoked with a target, which is a subnode or root of a

dependence hierarchy.

CS 246 214�make builds the dependency graph and decorates the edges with time
stamps for the specified files.� If any of the dependency files (leafs) are newer than the target file (root),
or if the target file does not exist, the commands are executedby the
shell to update the target (generate a new product).�Makefile for previous dependencies:

a.out : x.o y.o z.o
g++ x.o y.o z.o -o a.out

x.o : x.C x.h y.h z.h
g++ -g -Wall -c x.C

y.o : y.C y.h z.h
g++ -g -Wall -c y.C

z.o : z.C z.h y.h
g++ -g -Wall -c z.C�Update dependencies by:

CS 246 215

% gmake -n -f Makefile a.out
g++ -g -Wall -c x.C
g++ -g -Wall -c y.C
g++ -g -Wall -c z.C
g++ x.o y.o z.o -o a.out

– -n only checks the dependencies and shows rules to be triggered(leave
off to trigger rules)

– -f Makefile is the dependency file (leave off if named[M|m]akefile)
– a.out target name to be updated (leave off if first target)� Eliminate duplication using variables:

CS 246 216

CXX = g++ # variables
CXXFLAGS = -g -Wall -c
OBJECTS = x.o y.o z.o
EXEC = a.out

${EXEC} : ${OBJECTS}
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h
${CXX} ${CXXFLAGS} x.C

y.o : y.C y.h z.h
${CXX} ${CXXFLAGS} y.C

z.o : z.C z.h y.h
${CXX} ${CXXFLAGS} z.C� Eliminate common rules:

CS 246 217

CXX = g++ # variables and initialization
CXXFLAGS = -g -Wall # can remove -c
OBJECTS = x.o y.o z.o
EXEC = a.out

${EXEC} : ${OBJECTS}
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h
y.o : y.C y.h z.h
z.o : z.C z.h y.h

clean :
rm -rf ${OBJECTS} ${EXEC}

– gmakeknows how to construct simple rules when files have specific
suffixes and when special variable names are used.

– Targetclean removes files that can be rebuilt to save space.

gmake clean� Eliminate dependencies:

CS 246 218

CXX = g++ # variables and initialization
CXXFLAGS = -g -Wall -MMD # build dependency graph in .d files
OBJECTS = x.o y.o z.o
DEPENDS = ${OBJECTS:.o=.d} # substitute “.o” with “.d”
EXEC = a.out

${EXEC} : ${OBJECTS}
${CXX} ${OBJECTS} -o ${EXEC}

clean :
rm -rf ${DEPENDS} ${OBJECTS} ${EXEC}

-include ${DEPENDS}

– g++ flag -MMD generates a dependency graph for only user source file.

x.d
x.o: x.C x.h y.h z.h

y.d
y.o: y.C y.h z.h

z.d
z.o: z.C z.h y.h

– g++ flag -MD generates a dependency graph for user and system

CS 246 219

source file.
– -include reads the.d files and runs dependencies again.

3.7 Source Code Management�UNIX files are used for TUs.� These files only support thecurrent version of the program.� As a program develops/matures, it changes in many ways.�UNIX files do not support this temporal notion of a program, i.e., history
of program over time.� A history allows access to older versions of the program, supporting
operations like backing out of changes because of design changes or
problems.� Another issue is sharing program files among multiple developers each
making independent changes.�Current sharing allows damaging the contents of the files for
simultaneous writes.� Approaches:

CS 246 220

– Make copies of some or all of the project files before making changes.
Wastes storage for unchanged files and burden of managing copied
files.

– Share files using group file permissions.
Simultaneous access is unsafe and developers cannot test changes in
isolation.

– Giving each developer a separate copy of the code base.
Merging in changes from different developers is tricky and time
consuming.� To solve these problems, asource control systemis used to manage

cooperative work.

3.7.1 CVS�Concurrent Versions System(CVS) is a source control system with the
following features:
– Master copy of all project files is kept in arepository.
– Multiple versions of files are automatically stored in the repository.
– Developers can check out a complete copy of the project.

CS 246 221

– Helpful integrated back into the repository using text merging.
Programmers still have to deal with conflicts.

3.7.2 Repository� A shared repository must be created at some accessible location in the
file system:

% cd cs246
% mkdir cvsroot # make repository directory
% chgrp cs246_75 cvsroot # set group on directory
% chmod g+rwx cvsroot # allow group members access
% mkdir cvsroot/CVSROOT # required (administration)
% mkdir cvsroot/assn6 # specific project�Must have administration CVSROOT directory at the root of repository.�Other directories at root represent projects (can have any name).�Group members must add this line to their shell startup file:

CS 246 222

sh:
% set CVSROOT /u/userid/cs246/cvsroot
% export CVSROOT

csh:
% setenv CVSROOT /u/userid/cs246/cvsroot

3.7.3 Checking Out� checkout command creates a working copy of the project:

% cvs checkout assn6 # checkout project
cvs checkout assn6
cvs checkout: Updating assn6
U assn6/y.C
U assn6/y.h
U assn6/z.C
U assn6/z.h
% cd assn6 # move into project directory�Copies the entire project directory to the current directory.� A checked out copy can be modify in any way without other developers

seeing these changes until committed.

CS 246 223

3.7.4 Adding/Editting/Removing� add command tell CVS to add new files (in current directory) to the
repository:

% . . . # add files x.h, x.C
% cvs add x.*
cvs add: scheduling file ‘x.C’ for addition
cvs add: scheduling file ‘x.h’ for addition
cvs add: use ’cvs commit’ to add these files permanently� Schedules files for addition, which occurs on cvs commit.� Forgetting cvs add is a common mistake.� Edited files (in current directory) do not require any CVS command:

% . . . # edit files y.h y.C� Implicitly schedules files for update, which occurs on cvs commit.� remove command tell CVS to remove existing files from the repository:

CS 246 224

% . . . # remove files z.h z.C
% cvs remove z.h z.C
cvs remove: scheduling ‘z.h’ for removal
cvs remove: scheduling ‘z.C’ for removal
cvs remove: use ’cvs commit’ to remove these files permanently� Schedules files for removal, which occurs on cvs commit.� In fact, any removed file can always be retrieved from old versions.

3.7.5 Checking In� commit updates the repository with the changes made in checkout
directory.

CS 246 225

% cvs commit -m "... description of changes ..."
cvs commit: Examining .
RCS file: /u/userid/cs246/cvsroot/assn6/x.C,v
done
Checking in x.C;
/u/userid/cs246/cvsroot/assn6/x.C,v <-- x.C
initial revision: 1.1
done
RCS file: /u/userid/cs246/cvsroot/assn6/x.h,v
done
Checking in x.h;
/u/userid/cs246/cvsroot/assn6/x.h,v <-- x.h
initial revision: 1.1
done
Checking in y.C;
/u/userid/cs246/cvsroot/assn6/y.C,v <-- y.C
new revision: 1.2; previous revision: 1.1
done
Checking in y.h;
/u/userid/cs246/cvsroot/assn6/y.h,v <-- y.h
new revision: 1.2; previous revision: 1.1
done

CS 246 226

Removing z.C;
/u/userid/cs246/cvsroot/assn6/z.C,v <-- z.C
new revision: delete; previous revision: 1.1
done
Removing z.h;
/u/userid/cs246/cvsroot/assn6/z.h,v <-- z.h
new revision: delete; previous revision: 1.1
done� Provides a record of the changes that have been made, which are

available using cvs log.� If -m flag not used, cvs prompts for a change description using an editor.� Always make sure that your code compiles and runs before committing.� It is unfair to pollute the source base with bugs.

3.7.6 Update�Cannot commit changes if other developers have checked in changes
during a checkout.�Changes must now be merged and then committed.� update command merges changes into repository.

CS 246 227�Causes merged file in current directory to be updated.�Merge algorithm is generally very good if changes do not overlap.�Overlapping changes result in a conflict, which must be resolved
manually.

% cvs commit
cvs commit: Examining .
cvs commit: Up-to-date check failed for ‘Makefile’
cvs [commit aborted]: correct above errors first!
% cvs update
cvs update: Updating .
RCS file: /u/userid/cvsroot/assn6/Makefile,v
retrieving revision 1.2
retrieving revision 1.3
Merging differences between 1.2 and 1.3 into Makefile�Conflict is marked inMakefile:

CS 246 228

CXX = g++ # variables and initialization
<<<<<<< Makefile
CXXFLAGS = -g -MMD
=======
CXXFLAGS = -g -Wall
>>>>>>> 1.3

3.7.7 Versions� Each time a file is committed, it receives a new version number.� Version number is displayed during commit, and at other times.� cvs status prints version information.�Old versions are accessible using:

cvs update -p -r 1.2 Makefile # -p prints to standard output

which prints version 1.2 of Makefile to standard output.�Differences between versions can be generated:

cvs diff -r 1.2 -r 1.1 Makefile

which shows the differences between version 1.2 and version1.1.

CS 246 229

3.7.8 Tagging� Version numbers are nondescript and often too low level (i.e., little
changes here and there).� It is possible to give a meaningful, symbolic name to a version, often at
a stable point or before big changes.� tag command adds a synbolic name to the current version of every file
checked out:

cvs tag debug1 # name current version “debug1”�Use symbolic name like version number:

cvs update -p -r debug1� To compare named versions:

cvs diff -r debug1 -r debug2

4 Software Engineering� Software Engineering(SE) is the social process of designing, writing,
and maintaining computer programs.� SE attempts to find good ways to help people understand and develop
software.�However, what is good for people is not necessarily good for the
computer.�Many SE approaches are counter productive in the development of
high-performance software.� E.g.: The computer does not execute the documentation!�Documentation is unnecessary to the computer, and significant amounts
of time are spent building it so can be ignored (program comments).�Remember, thetruth is always in the code.�However, without documentation, developers have difficulty designing
and understanding software.� E.g., designing by anthropomorphizing the computer is seldom a good
approach (desktops/graphical interfaces).

c
 Peter A. Buhr

230

CS 246 231�What works for people does not necessarily work for the computer.� Software tools spend significant amounts of time undoing SE design and
coding approaches to generate efficient programs.� It is important to know these differences to achieve a balance between
programs that are good for people and good for the computer.

4.1 Software Crisis� Large software systems (> 100,000 lines of code) require many people
and months to develop.� These projects normally emerge late, over budget, and do notwork well.� Today, hardware costs are nil, and manpower cost is great.�While commodity software is available, someone still has towrite it.� Since people produce software) software cost is great.�Coupled with a shortage of software personnel) problems.�Unfortunately, software is complex and precise, which requires time and
patience.

CS 246 232

4.2 Software Development� Techniques for program development for small, medium, and large
systems.�Objectives:
– to plan and schedule software projects
– to produce reliable, flexible, efficient programs
– to produce programs that are easily maintained
– to reduce the cost of software
– to reduce program failure� E.g., a typical software project:
– estimate 12 months of work
– hire 3 people for 4 months
– make up milestones for the end of each month�However, first milestone is reached after 2 months instead of1.� To finish on time, hire 2 more people, but:
– new people require training
– work must be redivided

CS 246 233

This takes at least 1 month.�Now 2 months behind with 9 months of work to be done in 1 month by5
people.� To get the project done:
– must reschedule
– trim project goals� In general, adding manpower to a late software project makesit later.� Illustrates the need for a methodology to aid in the development of
software projects.

4.2.1 Programming Methodology� System Analysis (next year)
– Study the problem, the existing systems, the requirements,the

feasibility.
– Analysis is a set of requirements describing the system inputs,

outputs, processing, and constraints.� System Design

CS 246 234

– Breakdown of requirements into modules, with their relationships and
data flows.

– Results in a description of the various modules required, and the data
interrelating these.� Implementation

– writing the program� Testing & Debugging
– get it working�Operation & Review
– was it what the customer wanted and worth the effort?� Feedback
– If possible, go back to the above steps and augment the project as

needed.

4.2.2 System Design� In designing a system of any size it must be modularized.

CS 246 235�Modularization is the division of the system into smaller parts on some
systematic basis.�Modularization is necessary to:
– make it easier to design and implement
– make it easier to read
– make it easier to maintain and modify
– abstract the data structures
– abstract the algorithms� Two basic strategies exist to systematically modularize a system:
– top-down or functional decomposition
– bottom-up� Both techniques have much in common and so examine only one.

4.2.3 Top-Down Design� Start at highest level of abstraction and break down probleminto
cohesive units.� Then refine each unit further generating more detail at each division.

CS 246 236� This recursive process is calledstepwise refinement.� Each subunit is divided until a level is reached where the parts are
comprehensible, and can be coded directly.�Unit are independent of a programming language, but ultimately must be
mapped into constructs like:
– generics (templates)
– modules
– classes
– routines�Details look at data and control flow within and among units.� Implementation programming language is often chosen only after the
system analysis/design process.

4.2.4 Factoring� Factoring is the modularization of code in one module into multiple
modules.� Stop factoring when:

CS 246 237

– cannot find a well defined function to factor out
– interface to the module would be as complicated as the moduleitself� Factoring is done to:
– reduce module size :� 30-60 lines of code, i.e., 1-2 screens with

documentation
– make system easier to understand
– eliminate duplicate code
– localize modifications� Avoid having the same function performed in more than one module
(create useful general purpose modules)� Separate work from management:
– Higher-level modules only make decisions (management) andcall

other routines to do the work.
– Lower-level modules become increasingly detailed and specific,

performing finer grain operations.� In general:
– do not worry about little inefficiencies unless the code is executed a

LARGE number of times

CS 246 238

– put thought into readability of program
– avoid high levels of nesting (3-5 levels is fine)

4.3 Structured Programming� Structured programming is about managing (restricting) control flow
using a fixed set of well defined control structures.� A small set of control structures used with a particular programming
style make programs easier to write and understand, as well as maintain.� All programmers adopt this approach so there is universal (common)
approach to managing control flow (e.g., like traffic rules).�Developed during the 1970’s to overcome the indiscriminantuse of the
GOTO statement.�GOTO leads to convoluted logic in programs (i.e., does NOT support a
methodical thought process).� Arbitrary transfer of control results in programs that are difficult to
understand and maintain.� Fixed control structures fix the points where the flow of control can be
altered, and therefore, are easy to follow.

CS 246 239� There are 3 levels of structured programming:

CS 246 240

CS 246 241

classical
– sequence: series of statements
– if-then-else: conditional structure for making decisions
– while: structure for loops with test at top
Can write any program (actually only need while).

extended
– classical control structures
– repeat/do-while: structure for loops with test at bottom
– case/switch: conditional structure for making decisions

modified
– extended control structures
– one or more exits from arbitrary points in a loop
– exits from multiple nested control structures
– exits from multiple nested routine calls
Eliminates the need for flag variables.

4.3.1 Multi-Exit Loops� A multi-exit loop (or mid-test loop) is a loop with one or more exit
locations occurringwithin the body of the loop.

CS 246 242

loop
. . .

exit when i >= 10;
. . .

end loop�Or allow multiple exit conditions:

loop
. . .

exit when i >= 10;
. . .

exit when j >= 10;
. . .

end loop� Eliminates priming (copied) code necessary withwhile :

read(input, d); loop
while ! eof(input) do read(input, d);

. . . exit when eof(input);
read(input, d); . . .

end while end loop�C/C++ idioms for this situation are:

CS 246 243

C C++

while ((d = getc(stdin)) != EOF) while (cin >> d)�Results in expression side-effects and precludes analysisof d without
code duplication.� The loop exit is always outdented (likeelse) or clearly commented (or
both) so it can be found without having to search the entire loop body.� A multi-exit loop can be written in C/C++ in the following ways:

for (;;) { while (true) { do {
.

if (i >= 10) break ; if (i >= 10) break ; if (i >= 10) break ;
.

if (j >= 10) break ; if (j >= 10) break ; if (j >= 10) break ;
.

} } } while (true);� The for version is more general as it can be easily modified to have a
loop index or a while condition.

for (int i = 0; i < 10; i += 1) { // loop index
for (; x < y;) { // while condition

CS 246 244� In general, the programming language and code-typing styleshould
allow insertion of new code without having to change existing code.� E.g., write linear search such that:
– no invalid subscript for unsuccessful search
– index points at the location of the key for successful search.� Some languages have a specialshort-circuit version of logicaland and
or with minimum evaluation.

for (i = 0; i < size && key != list[i]; i += 1){};
// rewrite: if (i < size) if (key != list[i])

if (i < size) { . . . // found
} else { . . . // not found
}� Short-circuit logical operators are control structures inthe middle of an

expression becausee1 && e2 6� &&(e1, e2) (unless lazy evaluation).� Alternatively, using multi-exit loop.

CS 246 245

for (i = 0; ; i += 1) { // or for (i = 0; i < size; i += 1)
if (i >= size) break ;
if (key == list[i]) break ;

}
if (i < size) { . . . // found
} else { . . . // not found
}� The extra test after the loop can be eliminated by introducing it into the

loop body.

for (i = 0; ; i += 1) {
if (i >= size) { . . . // not found

break ;
} // exit

if (key == list[i]) { . . . // found
break ;

} // exit
} // for� E.g., an element is looked up in a list of items, if it is not in the list, it is

added to the end of the list, if it exists in the list its associated list
counter is incremented.

CS 246 246

for (i = 0; ; i += 1) {
if (i >= size) {

list[size].count = 1;
list[size].data = key;
size += 1;

break ;
} // exit

if (key == list[i].data) {
list[i].count += 1;

break ;
} // exit

} // for

4.3.2 Static Multi-Level Exit� Static multi-level exit exits multiple control structures where exit points
areknown at compile time.� Labelled exit (break) (or continue) often provides this capability:

CS 246 247

L1: {
. . . declarations . . .
L2: switch (. . .) {

case . . .:
L3: for (. . .) {

. . . break L1; . . . // exit compound statement

. . . break L2; . . . // exit switch

. . . break L3; . . . // exit loop
}
break ;
. . . // more case clauses

}
. . .

}� Labelledbreak transfers control out of the control structure with the
corresponding label, terminating any block that it passes through.�Commonly used with nested loops:

CS 246 248

A: for (;;) { // while (flag1 && . . .)
B: for (;;) { // while (flag2 && . . .)

C: for (;;) { // while (flag3 && . . .)
. . .

if (. . .) break A; // exit 3 levels
. . .

if (. . .) break B; // exit 2 levels
. . .

if (. . .) break C; // or break, exit 1 level
. . .

}
}

}

A:, B: andC: are labels.� Labelledbreak transfers control out of thefor with the corresponding
label, terminating any block that it passes through.� Eliminates flag variables, which are the variable equivalent to a goto.�Normal and labelledbreak are agoto with restrictions:
– Cannot be used to create a loop (i.e., cause a backward branchin the

program); hence, all situations that result in repeated execution of

CS 246 249

statements in a program are clearly delineated.
– Cannot be used to branchinto a control structure.� The simple case (exit 1 level) of multi-level exit is a multi-exit loop.�Why is good practice to label all exits?� A static multi-level exits is written in C/C++ in the following way:

for (;;) {
for (;;) {

for (;;) {
. . .

if (. . .) goto A;
. . .

if (. . .) goto B;
. . .

if (. . .) goto C; // or break
. . .

} C: ;
} B: ;

} A: ;� return statements in a routine can generate multi-exit loop and
multi-level exit.

CS 246 250� Static multi-level exits appear infrequently, but are extremely concise
and execution-time efficient.

4.3.3 Dynamic Multi-Level Exit� Basic and advanced control structures allow virtually any control flow
within a routine.�However, control flowamong routines is rigidly controlled by the
call/return mechanism.
– given A calls B calls C, it is impossible to transfer directlyfrom C

back to A, terminating B in the transfer.�Dynamic multi-level exit extend call/return semantics to transfer in the
reversedirection to normal routine calls.� This complex control-flow among routines is often calledexception
handling.� Exception handling is more than error handling.� An exceptional eventis an event that is (usually) known to exist but
which isancillary to an algorithm.
– an exceptional event usually occurs with low frequency

CS 246 251

– e.g., division by zero, I/O failure, end of file, pop empty stack� Exceptions in Java/C++ provide alimited mechanism to transfer to
blocks on the call stack:

struct E {}; // label
void C(. . .) throw (E) {

. . . throw E(); // raise (goto)
// control never returns here

}
void B(. . .) throw (E) {

. . . C() . . .
}
void A() {

try {
. . . B(. . .); . . .

} catch (E) {. . .} // handler 1

try {
. . . B(. . .); . . .

} catch (E) {. . .} // handler 2
}

CS 246 252

B

try

throw

A

B

try

A

stack unwind

try

A A A

catch(E)

C

� Stack is unwound from the raise to the handler.�Destructors are invoked for objects contained in unwound blocks.�Handler is called like a routine fromA.�Handler continues aftertry block not afterthrow .�Do not know statically wherethrow E() is caught (handler1 or handler2).

4.4 System Design� System designinvolves modelling a complex system in an abstract way
to provide a specific description of how the system works.� The design grows from nothing to become a model of sufficient detail to
be transformed into a functioning system.

CS 246 253� After which, the design provides high-level documentationof the
system, for understanding (education) and for making changes in a
systematic manner.� Top-down successive refinement (TDSR) is a foundational mechanism
used in all system design.� System modelling has multiple viewpoints:
– class model: describes static kinds and structure of system objects
– state model: describes dynamic (temporal) behaviour of system

objects
– interaction model : describes the kinds of interactions among objects�Multiple design tools (past and present) for supporting system design,
most are graphical and all are programming language independent:
– flowcharts (1920-1970)
– pseudo-code
– Warnier-Orr Diagrams
– Hierarchy Input Process Output (HIPO)
– UML�Design tools can be used in various ways:

CS 246 254

– to sketch out high-level design or complex parts of a system,
– to blueprint the entire system abstractly with high accuracy,
– to generate interfaces directly.� Key advantage of design tool is the generic, abstract model of the
system, which can be transformed into any format.� Key disadvantage is the design tool is seldom linked to the
implementation mechanism, so the two often differ
(implementation = truth) .� As with design strategies, design tools have much in common and so
only one is studied.

4.4.1 UML�Unified Modelling Language(UML) is a graphical notation for
describing and designing software systems, with emphasis on the
object-oriented style.�UML can handle class, state and interaction modelling. (focus on class
modelling)�Note/comment

CS 246 255

comment text comment target�Class diagramcollection of class templates and associated
relationships.�Class specifies a template for objects : name, attributes, operations.� attribute : value description (field)
[visibility] name [“:” [type] [“[” multiplicity “]”] [“=” d efault]
[“ f” property “g”]]
– visibility : access of attribute information by other classes+) public,�) private
– name : required identifier for attribute (like field name in structure)
– type : restriction on kind of objects associated with attribute
– multiplicity : restriction on number of objects associatedwith attribute� range 0..(N j�), from 0 toN or unlimited,N short forN ..N , � short

for 0..�
– default : value of newly created object

CS 246 256

– property : additional aspects of attribute, e.g.,f readonlyg
– class attributes (static) are underlined� operation : action changing or returning object state (method)
[visibility] name [“(” f direction parameter-attribute g* “)”]
[“:” return-attribute] [“ f” property “g”]
– name : required identifier for operation (like method name in

structure)
– visibility : access of attribute information by other classes,+)

public,�) private
– direction : [in j out j inout ℄ indicates direction of parameter data flow
– parameters : input/output values for operation
– return-type : output from operation
– property : additional aspects of operation, e.g.,f readonlyg

CS 246 257

Vending
- printer : Printer
- nameServer : NameServer

attributes- Id : Integer
- sodaCost : Integer
- maxStockPerFlavour : Integer
- stock : Integer [*]
+ buy(in flavour : Flavours, inout card : WATCard) : Boolean
+ inventory : Integer [*]

operations+ restocked
+ cost : Integer
+ getId : Integer�Object diagram : instance of a class.

vm3:Vendingvm2:Vendingvm1:Vending� Association: a named conceptual/physical connection among objects.

CS 246 258

class diagram
kind

Car
*

owns
*

Person

name 1 1..5

object diagram
name=”Fredrick”

Fred:Person

kind=”Civic”

Honda:Car

Mary:Person

name=”Mary”

Peg:Person

name=”Margaret”

owner purchaser

kind=”CRV”

Honda:Car

kind=”CRV”

Honda:Car

CS 246 259� name depicts connection : employee, hasGame, ownsHouse� Association is inherently bidirectional even if name implies a specific
direction.� end names depict specific bidirectional aspect
employerj worksForj employee� association isownership (owns)
– person canown 0 or more cars (*)

person canown 1 to 5 cars
– car can beowned by 0 or more people (*)

car can beowned by 1 person� Association may be implemented in a number of ways:
– pointer from one object to another
– related elements in arrays� Association Class: association that is also a class

CS 246 260

kind

CarPerson

name

Owns

licence
bill of sale

Owns

L345YH454
Ted’s Honda

Mary:Person

name=”Mary”

Honda:Car

kind=”Civic”

– people without cars do not need “owns” fields
cars without owners do not need “owns” fields

CS 246 261

– not real class because it cannot logically exist without association�Generalization : reuse through form of inheritance.

multiple inheritanceInheritance

Super

Sub

SuperSuper

SubSub

– Inheritance establishes “is-a” relationship on type, and reuse of
attributes and operations.

– Association class can be implemented with forms of multiple
inheritance (mixin).� Sequence diagram: describes control-flow among objects with respect

to particular scenario.
– show static frame of program animation (call sequence).

CS 246 262

sd name

new object

self-callmessage

return other-calls

returns

delete

class name

CS 246 263

– show control flow

[other condition]

[else]

[for all things]

[condition]alt

[condition]opt

loop

– complex and specific
– more concise to use pseudo-code (or actual code if it exists)
– use to show important/complex control flow sequences�UML is significantly more general, supporting very complex

CS 246 264

descriptions of relationships among entities.�However, it is a VERY large visual mechanisms, with several confusing
graphical representations.�Code = truth

4.5 Programming Language Selection� imperative, functional, logic
– imperative : prescribes a sequence of actions directed by the state of

variables, which are allowed to have multiple values (i.e.,vary)
– functional : like imperative, but variables are restrictedto only one

value (i.e., constant)
– logic : series of logical expressions that are proven correct or incorrect

through unification� scripting : specialized languages (often only string type)for specific
purpose (shell, GUI, awk, Perl)� interactive/interpreted : not compiled, can be typed and executed
immediately (shell language)

CS 246 265�managed language : hide aspects of implementation to simplify
programming, e.g., hide memory management via garbage collection,
execution via virtual machine� static/dynamic type-system : variable types are fixed at compile time or
allowed to vary at runtime.� reification : manipulate program symbol-table and code at runtime,
possibly with dynamic compilation.�Useful language properties for SE:
– abstraction/encapsulation : separate implementation from interface,

and hide implementation
– module/package : high-level bundling of types/variables/code with

global initialization, e.g., container library� requires transitive closure of modules over program for initialization
(cycles?)

– class : aggregate data and code into single type
– coroutines : retain control flow knowledge across routine call
– concurrency : multiple simultaneous threads of execution (inherently

difficult and complex)

CS 246 266

– polymorphism : generalization data/code across multiple types with
similar structure and behaviour

– libraries : error-free, efficient, reusable abstractions:� data structures�math�GUI� distributed/web
– compilation/runtime errors : specific, comprehensible error messages
– efficiency : after it works, after its good code, then make sure it is

efficient� efficiency should never be an afterthought; it comes from good
programming practice� nevertheless, programs have execution hot-spots that require extra
attention

– security : subscript checking, type checking, virtual machine,
dynamic checking, etc.� Java : imperative, managed, static typing (inconsistent builtin & object

types), reification, abstraction/encapsulation, packages, class (strongly
object-oriented), concurrency, medium polymorphism, large libraries,

CS 246 267

good error reporting, average to poor efficiency�C++: imperative, not managed, static typing (consistent builtin & object
types), abstraction/encapsulation, weak packages, class, routines, no
concurrency, strong polymorphism, average libraries, poor error
reporting, average to excellent efficiency� Ada : imperative, many good features, but not used much anymore� Python/Ruby/Tcl : scripting�Haskell, Scheme : functional

4.6 Development Processes� There are different conceptual approaches for developing software, e.g.:
waterfall : break down project based on activity and divide activities

across a timeline
– activities : (cycle of) requirements, analysis, design, coding, testing,

debugging
– timeline : assign time to accomplish each activity up to project

completion time

CS 246 268

iterative/spiral : break down project based on functionality and divide
functions across a timeline
– functions : (cycle of) acquire/verify data, process data, generate data

reports
– timeline : assign time to perform software cycle on each function up

to project completion time
staged delivery: combination of waterfall and iterative

– start with waterfall for analysis/design, and finish with iterative for
coding/testing

agile/extreme: short, intense iterations focused largely on code (versus
documentation)
– often analysis and design are done dynamically
– often coding/testing done in pairs� Pure waterfall is problematic because all coding/testing comes at end)

major problems can appear near project deadline.� Pure agile can leave a project with little or no documentation.� Selecting a process depends on:
– kind/size of system

CS 246 269

– quality of system (mission critical?)
– hardware/software technology used
– kind/size of programming team
– working style of teams
– nature of completion risk
– consequences of failure
– culture of company�Meta-processes specifying the effectiveness of processes:
– Capability Maturity Model Integration (CMMI)
– International Organization for Standardization (ISO) 9000�Requirements
– procedures cover key aspects of processes
– monitoring mechanisms
– adequate records
– checking for defects, with appropriate and corrective action
– regularly reviewing processes and its quality
– facilitating continual improvement

CS 246 270

4.7 Design Patterns�Design patternshave existed since people/trades developed formal
approaches.� E.g., parent’s raising children, mason’s building pyramid/cathedral.� Pattern is a common/repeated issue; it can be a problem or a solution.�Name and codify common patterns for educational and communication
purposes.� Software pattern are solutions to problems:
– name : descriptive name
– problem : kind of issues pattern can solve
– solution : general elements composing the design, and their

relationships, responsibilities, and collaborations
– consequences : results and trade-offs of applying the pattern

(alternative/implementation issues)

CS 246 271

4.7.1 Pattern Catalog
creational structural behavioural

class factory method adapter interpreter
template

object abstract factory adapter responsibility chain
builder bridge command
prototype composite iterator
singleton decorator mediator

facade memento
flyweight observer
proxy state

strategy
visitor� Scope : applies to classes or objects� Purpose : class/object creation issues, structural form, and behavioural

interaction

CS 246 272�Class
factory method/abstract : abstract class/template defining structure

(and possibly some implementation) for creating other classes

struct F { // factory/abstract-class
virtual void m1() = 0;
virtual void m2() = 0;

};
struct P1 : public F { // products

void m1();
void m2();

};
struct P2 : public F {

void m1();
void m2();

};

CS 246 273

adapter/wrapper : convert interface into another

struct T1 { struct T2 {
virtual void x(. . .); virtual void x(. . .);
virtual void y(. . .); virtual void z(. . .);

}; };
struct T2toT1 : public T1, private T2 { // adapter/wrapper

void x(. . .) { T2::x(. . .); }
void y(. . .) { . . . z(. . .); . . . }

};
void p(T1 t1) { . . . }
T2toT1 t;
p(t);

CS 246 274

template method: provide pre/post actions for subclass methods

class TM {
virtual void doAction() = 0;

protected :
virtual void action() {

pre-code doAction(); post-code
}

};
class AM : public TM {

void doAction() {. . .}
public :

void action() { TM::action(); }
};

CS 246 275�Object
adapter : convert interface into another

struct T1 { struct T2 {
virtual void x(. . .); virtual void x(. . .);
virtual void y(. . .); virtual void z(. . .);

}; };
struct T2toT1 : public T1 { // adapter/wrapper

T2toT1 &t2;
T2toT1(T2 &t2) : t2(t2) {}
void x(. . .) { t2.x(. . .); }
void y(. . .) { . . . t2.z(. . .); . . . }

};
void p(T1 t1) { . . . }
T2 t2;
T2toT1 t(t2); // any T2
p(t);

CS 246 276

iterator : abstract mechanism to traverse container

list<Node>::iterator ni;
for (ni = top.begin(); ni != top.end(); ++ni) { // traverse list

cout << "c:" << ni->c << " i:" << ni->i << endl;
}

singleton: single instance of class

class Singleton {
struct SingletonImpl { int x, y; . . . };
static SingletonImpl *impl; // one for all objects

public :
void m(. . .) { impl->x; . . . impl->y; . . . }

};
Singleton::SingletonImpl *Singleton::impl = new Singleton::SingletonImpl;

CS 246 277

proxy : frontend for another object to control access

struct T {
void m1(. . .);
void m2(. . .);

};
struct SProxyT : public T { // static

void m1(. . .) { . . . T:m1(. . .); . . . }
void m2(. . .) { . . . T:m2(. . .); . . . }

};
struct DProxyT : public T { // dynamic

T *t;
DProxyT() { t = NULL; }
void m1(. . .) { if (t == NULL) t = new T; t->m1(. . .); . . . }
void m2(. . .) { . . . don’t need t . . . }

};

CS 246 278

decorator : attach additional responsibilities to an object dynamically

struct Abstract { struct Concrete : public Abstract {
virtual void m1(. . .) = 0; void m1(. . .);
virtual void m2(. . .) = 0; void m2(. . .);

}; };
struct Decorator : public Abstract { // generalize

Abstract *parent;
Decorator(Abstract &parent) : parent(&parent) {}
void m1(. . .) { parent->m1(. . .); } // forward
void m2(. . .) { parent->m1(. . .); } // forward

};
struct Decoratee : public Decorator { // specialize

. . .
Decoratee(Abstract &parent, . . .) : Decorator(parent), . . . {}
void m1(. . .) { decorate Decorator::m1(. . .); decorate }
void m2(. . .) { decorate Decorator::m2(. . .); decorate }

};
Concrete c;
Decoratee d(c);
d.m1(. . .);

CS 246 279

observer: 1 to many dependency) change updates dependencies

struct Observee { // generalize
Observer &oer;
Observee(Observer &oer) : oer(oer) {}
virtual void update() = 0;

};
struct Observer {

list<Observee *> oees; // list of observees
static void perform(Observee *oee) { oee->update(); }
void attach(Observee &oee) { oees.push_back(&oee); }
void deattach(Observee &oee) { oees.remove(&oee); }
void notify() { for_each(oees.begin(), oees.end(), perform); }

};
struct Oee : private Observee { // specialize

Oee(Observer &oer) : Observee(oer) { oer.attach(*this); }
~Oee() { oer.deattach(*this); }
void update() { perform update action }

};
Observer oer;
Oee oee1(oer), oee2(oer); // register
oer.notify(); // trigger updates

CS 246 280

visitor : perform operation on elements of heterogeneous container

struct Visitor {
void visit(N1 &n) { perform action on node }
void visit(N2 &n) { perform action on node }

};
struct Node {

virtual void action(Visitor &v) = 0;
};
struct N1 : public Node {

void action(Visitor &v) { v.visit(*this); } // overload
};
struct N2 : public Node {

void action(Visitor &v) { v.visit(*this); } // overload
};
Visitor v;
list<Node *> l;
for (int i = 0; i < 10; i += 1) {

l.push_back(i % 2 == 0 ? (Node *)new N1 : (Node *)new N2);
}
for (list<Node *>::iterator it = l.begin(); it != l.end(); ++it) {

(*it)->action(v);
}

CS 246 281

4.8 Testing and Debugging� A major phase in program development is testing and debugging.� This phase often requires more time and effort than design and coding
phases combined.� Testing and debugging are not one and the same.� Testing is the process of “executing” a program with the intent of
discovering errors.
– Good test is one with a high probability of finding an error.
– Successful test is one that finds a new error.�Debuggingis the process of determining the cause of an error
discovered by testing and correcting it.

4.8.1 Techniques�Human testing is the process by which people attempt to discover
errors in a program by reading its source code.
– This is normally performed after the program has been coded but

before it has been run.

CS 246 282

– Studies have shown that 30–70% of logic design and coding errors
can be detected in this manner.�Code inspectiona team of people check the program for a list of

common errors such as the following:
– data reference errors: undefined variables, bad subscripts, incorrect

data types
– data declaration errors: undeclared variables, improperly initialized

variables
– computation errors: mixed mode, overflow, zero divide, etc.
– comparison errors: incorrect relational operators (== instead of!=)
– control errors: loop termination and initialization, off-by-one errors,

boundary values
– interface errors: arguments/parameters not matched in number or type

(especially for external programs)
– I/O errors: incorrect formats, end of file, titles, etc.�Walkthrough a team of people examining the logic of a program,
executing the program by hand (“play computer”)�Desk checkinga single person “plays computer”

CS 246 283�Machine Testing is the process of running the program using test data
which has been designed to discover errors in the code.
– Machine testing should be attempted only after human testing has

been performed.
– Test-case design, for machine testing, involves determining what

subset of all possible test cases has the highest probability of detecting
the greatest number of errors.

– There are two major methods of doing this:� Black-Box Testing : program’s design and internal logic are
unknown when the test cases are drawn up (i.e., program is treated
as a black box)�White-Box Testing : knowledge of the program’s design and
internal logic are used to develop the test cases

– In generating test cases it is usually best to start with the black-box
approach and then supplement these test cases with white-box tests.

– Black-Box Testing� equivalence partitioning� partition all possible input cases into equivalence classes� select only one representative from each class for testing

CS 246 284� E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)� 3 equivalence classes, plus invalid hours� Since there are many types of invalid data, invalid hours canalso

be partitioned into equivalence classes� boundary value testing� test cases which are on, above, and below boundary cases

39, 40, 41 (hours)
44, 45, 46 "
-1, 0, 1 "� cause-effect graphing� used to generate test cases representing combinations of conditions� construct boolean logic-graphs, which are converted to decision

tables (describing test inputs and expected outputs)� error guessing� surmise, through intuition and experience, what the likelyerrors
are and then test for them

CS 246 285

– White-Box (logic coverage) Testing� develop test cases which attempt to cover (exercise) every possible
logic path through the program� test every decision alternative at least once� test all combinations of decisions that may affect execution� often impossible because of the number of tests involved� E.g., consider a program which contains 32 independent decisions:

32 independent decisions
=> 4,294,967,296 logic paths (test cases)

assume 10 test cases can be run per second
=> over 5 yr. CPU time to run

assume 1 line of output per test case
=> 70,000,000 pages long
=> stretches half way around the world
=> would fill 1600 disc dives

assume a person can read 1 line per second
=> would take 120 yr. to read output�Clearly in this case it is impossible to perform a complete test.

CS 246 286

4.8.2 Testing Mechanics�Module testing involves the testing of a module separately before it is
integrated into, and tested with, the entire program.� There are two major approaches to integration:
– Non-incremental (big bang approach) : after testing (or nottesting) all

individual modules, of which there may be hundreds in a largesystem,
put all the modules together and test the entire system at once

– Incremental : as each module is tested, integrate it with modules
which have already been tested and integrated� Incremental vs Non-incremental

– non-incremental requires the construction of test driversto call the
module and pass it different test values

– non-incremental also requires the construction of stub modules to
simulate the modules called by the module being tested

– non-incremental testing allows a greater number of tests tobe carried
out in parallel

– incremental requires fewer drivers and stubs since some of the real
modules already exist and will be used in testing

CS 246 287

– incremental detects interfacing problems earlier
– incremental debugging should be simplified because of earlydetection

of interface problems
– incremental testing is usually more thorough
– incremental testing is considered superior to non-incremental testing.� Stub and driver:

// Stub module used in testing a higher-level routine
// which calls a table insert procedure.
void tab_insert(Rectype rec) {

cout << "TAB_INSERT INVOKED" << endl
<< "INSERTING RECORD : " << rec << endl
<< "TAB_INSERT RETURNING" << endl;

}

CS 246 288

// Driver module to test search routine.
// Passes multiple search KEYS and prints result of each search.
void search_driver() {

cout << "BEGINNING SEARCH TESTS" << endl;
for (;;) {

cin >> key;
if (cin.eof()) break ;

search(key, posn, found);
cout << "KEY:" << key << " POSN:" << posn << endl;
cout << (found ? "" : "NOT") << "FOUND" << endl;

} // for
cout << "TERMINATING SEARCH TESTS" << endl;

} // search_driver

4.8.3 Top-down and Bottom-up Incremental Testing� Top-down incremental testing is performed by writing the high level
(control) module first, and testing it with stubs.� Subordinate modules are written, tested, and integrated into the system,
until the lowest level (worker) modules have been added.� Bottom-up incremental testing is performed by writing the low level

CS 246 289

(worker) modules first, and testing them with driver modules.�Repeated by writing, testing, and integrating successively higher-level
modules into the system, until the top-level module is reached.� Top-down
– disadvantages� need to write stub modules� some stub modules may be complicated since they must simulate

the actions of the lower level modules� some complex tests are hard to perform because many lower level
modules are missing and can’t be simulated adequately by stubs� until the I/O modules are present, it is difficult to read testdata and
print results (I/O modules are typically low level)� encourages implementation to proceed in parallel with design (if
both are top-down) which will inhibit high level design changes� encourages deferred testing since one is tempted to wait forthe real
subordinate modules to be written rather than writing stubs

– advantages� better at testing the high level control logic of the system

CS 246 290� boosts morale since parts of the system are working earlier (i.e.,
overall system using stubs is running early)� Bottom-up

– disadvantages� need to write driver modules� program as an entity does not work until the last (top) moduleis
produced

– advantages� better for testing low level logic� test conditions are easier to create� observation of results is easier (since I/O routines are written early)� In practice, a combination of top-down and bottom-up testing is usually
used.

4.8.4 Higher-Order Testing� Testing methods discussed so far only test the program from the tester’s
point of view.

CS 246 291� That is, the tests check that the program behaves as the tester believes it
should.� The end user, who is paying for the program, may have a different idea
of what the program should do.� To test the program from this point of view the following tests are
performed:
– Functional testing : test program against its specifications to

determine if it actually performs the desired functions.
– System testing: compare the program against the original objectives

to test the specifications and determine if the program can beused to
solve the original problem

– Performance testing: test if the program lives up to its speed and
throughput requirements.

– Volume testing: test program with large volumes of test data,
possibly over long period of time.

– Stress testing: test program with extreme volumes of data over a
short period of time, e.g., can air traffic control system handle 250
planes at same time?

CS 246 292

– Usability testing : test whether users have the skill necessary to
operate the system

– Security testing: test whether programs and data are secure, i.e., can
unauthorized people gain access to programs, files, etc.

4.8.5 Tester� A program should not be tested by its writer, but in practice this often
occurs.�Remember, the tester only tests what they thinks it should do.� Any misunderstandings the writer had while coding the program are
carried over into testing.� Any system written for an end user must be tested by the end user to
determine if it is acceptable.� I.e., is the system what the user ordered?� This process is known asacceptance testing.� Points to the need for a written specification to protect boththe end user
and the supplier.

CS 246 293

4.8.6 Debugging� This is the process of first determining the cause of an error discovered
by testing and then fixing the problem.�While it is undesirable to test your own programs, it is generally more
productive.�Debugging can be very hard on the ego because you have to search out
your own faults.� It can be taxing mentally as some problems can be very difficult and
time consuming to track down.� (i.e., Is the error in the algorithm or is it in the coding of the algorithm.)

4.8.7 Techniques� Brute Force
– throw in random print statements to display execution behaviour
– use debugger after program fails
– By far the most common method of debugging and by far the least

efficient.

CS 246 294

– While it requires the least effort, provides the least focuson where and
what the problem is.

– Using these basic techniques with more sophisticated techniques can
be very useful.� Induction

– Involves reasoning from the particular (clues, symptoms ofthe error)
to the general (the cause of the error).� locate all pertinent data : categorize output data as correct or

incorrect� organize data: look for contradictions� devise a hypothesis for the cause of the problem� prove the hypothesis is consistent with both correct and incorrect
data, and does it account for all errors�Deductive

– Involves starting with a set of theories and, using the process of
elimination, working towards the cause of the error.� list all possible causes of the problem� use data to find contradictions to eliminate as many hypotheses as

possible

CS 246 295� refine any remaining hypotheses� prove the hypothesis� Backtracking
– Working backwards through the program logic (from the pointof the

incorrect result) to determine where the program went wrong.�Debugging by Testing
– Once a problem has been discovered, make up additional test cases to

zero in on this particular error.�Debugging Principles
– THINK
– If you reach an impasse, sleep on it or describe it to someone else.
– Avoid blind experimentation; it is unproductive and often complicates

the problem by introducing new errors or spurious information.
– Use debugging tools only as aids, not as the primary technique.

