University of

Waterloo

%

School of Computer Science

Course Notes
CS 246

Software Abstraction and Specification

http: //www.student.cs.uwaterloo.ca/ ~cs246

Winter 2009

1 Administration

1.1 What CS 246 is about

o C/CH
e UNIX tools
e software design

CS 246

1.2 Individual Course Work

e All course assignments are done independently, except finptoject
(pairs).

e Students may:

—study together
—help each other in diagnosing compiler/runtime errors
—help each other to use tools

e Students may not:

—discuss assignment answers before due date
—show work (in progress or completed) to each other

e Students must protect the confidentiality of source codettiey
develop.

2 CH

2.1 Program Structure

e A CH program is composed of comments strictly for peopld, an
statements for both people and the preprocessor/compiler.

e A source file contains a mixture of comments and statements.

e The C/C+ preprocessor/compiler only reads the statenagatsgnores
the comments.

2.1.1 Comment

e Comments document what a program does and how it does it.

e A comment may be placed anywhere a whitespace (space, talmake
Is allowed.

e There are two kinds of comments in C/C+ (same as Java):

Java/ C /[C+H
1 /...«
2 |/l remainder of line

© Peter A. Buhr
4

CS 246 5

e First comment begins with the start symbe|and ends with the
terminator symboly/, and hence, can extend over multiple lines.

e Cannot be nested one within another

[« .. I« ... [... «

T 1
end comment treated as statements

e Be extremely careful in using this comment to elide/comnrwarttcode:

[+ attempt to comment-out a humber of statements
while (...) {
[« ... nested comment causes errors x/

it (...)]

[+ ... nested comment causes errors x/
x/

e Second comment begins with the start symlipdnd continues to the
end of the line, I1.e., only one line long.

e Can be nested one within another:

CS 246 6

/[l ... Il ... nested comment
SO It can be used to comment-out code:
/I while (...){

// [+ ... nested comment does not cause errors »*/

oot)

Il /l ... nested comment does not cause errors
/l }
I}

2.1.2 Statement

e C+ Is actually composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edgsptagram
beforecompilation .

2. The template (generic) language adds new types and esutiming
compilation .

3. The C programming language specifying basic declaratoal
control flow to be executeafter compilation.

4. The CH programming language specifying advanced cdaas and
control flow to be executeafter compilation.

CS 246 7

e A programmer uses the four programming languages as fallows

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

e C Is composed of languages 1 & 3.

e A preprocessor statement ig&haracter, followed by a series of tokens
separated by whitespace, which is usually a single line ahd n
terminated by punctuation.

e The syntax for a C/C+ statement (both template and regslarseries
of tokens separated by whitespace and terminated by a Semi¢® is
an exception)

CS 246

2.2 First Program
e Java

Import java.lang.x; // implicit
class hello {
public static void main(String[] args) {
System.out.printin(" Hel | o Wor 1 d! *);
System.exit(0);

o CH

#include <iostream> // insert contents of file iostream
using namespace std; // direct naming of I/O facilities

iInt main() { I/l program starts here
cout << "Hell o Wor |l d!'" << endl:
return O; /l return O to shell

}

e #include <iostream> copies basic I/O descriptions (no equivalent in
Java).

CS 246 9

e using namespace std allows imported I/O names to be accessed
directly, I.e.,without qualification.

e int main() IS the routine where execution starts.

e curly braces{ ... }, denote a block of code, i.e., routine bodynhain.

e cout << "HelloWrld!'" <<endl prints"Hel | o Wr | d!" to standard
output, callectout (System.out In Java).

e endl start newline aftetHel | o Wor 1 d! " (println In Java).

e Optionalreturn 0 returns zero to the shell indicating successful
completion of the program; non-zero usually indicates aorer

e main magic! If no value is returned, 0 is implicitly returned.

e Routineexit (JavaSystem.exit) Stops a program at any location and
returns a code to the shell, e.gxit(0).

2.3 Declaration
e Declarations define new variables and types in a program.

CS 246 10

2.3.1 Identifier
e Nname used to refer to a variable or type.
e syntax :(letter | " _") (letter | " " | digit)«
e case-sensitive
VeryLongVariableName Pagel Income _Tax _ 75
e Some identifiers are reserved (eify.while), and hencekeywords.

2.3.2 Basic Types

Java C/CH
boolean | bool (C <stdbool.h>)
char char / wchar_t
byte char / wchar_t Integral types
Int Int
float float floating-point types
double | double

e C/CH treatchar andwchar_t (unicode characters) as an integral type.
e Java typeshort andlong are created using type qualifiers.

CS 246 11

2.3.3 Variable Declaration

e Declaration in C/C+H same as Java: type followed by list ehtifiers.

Java/ C /[CH

char a, b, c, d;

int i, j, k;

double x,v, z;

e Declarations can be intermixed among executable statsmeatblock.

¢ Variable names can be reused in nested blocks, I.e., higer(de)
names in a containing block.

{ Inti ... Il first |
{ Inti ... [/lsecondi

e C/C+ do not check for uninitialized variables. (maybe)

Int i
if (1<3)... // 1 has no value

e C/CH declaration may have initializing assignment (exd¢epfields in
struct /class):

int 1 = 3;

CS 246 12

2.3.4 Type Qualifier

e C/CH provide only two basic integral typeisar andint.
e Other integral types are generated using type qualifiers.

e C/CH provide signed (positive/negative) and unsignedi{p@ only)
Integral types:

Integral types range

signed char [char at least127 to 127

unsigned char at leas to 255

signed short int / short at least32767 to 32767

unsigned short int / unsigned short |at leas to 65535

signed int /int at least32767 to 32767

unsigned int at leas to 65535

signed long int / long at least2147483647 to 2147483647
unsigned long int / unsigned long at leasi to 4294967295

e Range of values fant is machine specific: 2 bytes for 16-bit computers
and 4 bytes for 32/64-bit computers.

e long Is 4 bytes for 16-bit computers and 8 bytes for 32/64-bit cotars.

CS 246 13

e C/C+ support write-once/read-only constant variabldh tyipe
gualifierconst (Javafinal), In any variable declaration context.

Java C/CH
final short x = 3, y;|lconst short int x =3,y =X+ 7,
y=x+7, disallowed
final char ¢ ="Xx"; |const char ¢ ="x’;

e C/CHconst Iidentiflermustbe assigned a value at declaration (or by a
constructor’s declaration); the value can be the resulhahgression:

e A constant variable can appear in read-only contexts dftemitialized.

2.3.5 Constants

e Java and C/C+ share almost all the same constants for thetyass
(except for unsigned).

e A designated constanindicates its type with suffixes/I for long, LL/Il
for long long,U/u for unsigned, an&/f for float.

e Unlike Java, there is nb/d suffix for double constants.

CS 246 14

e The type of anundesignated integral constant
(octal/decimal/hexadecimal) is the smallesttype that holds the value,
and the type of a floating-point constantisible .

pooleanfalse, true
decimal 123, -456L, 789u, 21UL
octal, prefix0 | 0144, -045l, 0223U, 067ULL
hexadecimal, prefiRX or Ox | Oxfe, -0X1fL, Ox11eU, OxffUL
floating-point .1, 1., -1., -7.3E3, -6.6e-2F, E/e exponent
character, single charactea’, '\ "’
string, multi-character abc", "\ "\ ""

e Use the right constant with types character or string:

char ch ="a"; /| use 'a’
char xstr = "a’;: /l use “a”

e An escape sequence allows special characters to appeahnanacter or
string constant and starts with a backslash,

AWV ANt \n\ 012 \ xf 3"
e The most common escape sequences are (see a C+ textbotkei®)D

CS 246 15

"\ packslash
"7, "\"" |single and double quote
"\t’,’\'n |tab, newline

NN

"\ O’ zero, string termination character
"\ 000’ octal valuepoo up to 3 octal digits
"\ xhh’ hexadecimal valuenh up to 2 hexadecimal digits (not in Ja\

e C/C+ string constant implicitly terminated with characteo’ .
e E.9.,"abc" Is 4 characters composed’'af ,’b’,’c’,’\ 0.

2.3.6 Type Constructor

e A type constructor is a declaration that builds a more complex type
from the basic types.

a)

CS 246 16

constructor Java C/CH
enumerationenum Colour {R, G, B} |enum Colour {R, G, B}
pointer any-type p;
referenceclass-type r; any-type &r; (C+ only)
structure class struct Or class
array| int v[] = new int [10]; Int v[10];
Int m[][] = new int [10][10]; || int m[10][10];

e Java/C/C+ useame equivalencdo decide if two types are the same:

class T1 { class T2 { // identical structure
int i, j, k; int i, |, k;
double X, vy, z; double X, vy, z;

} }

T1 t1;

T2 t2 = 1, // iIncompatible types

e TypesT1 andT2 have identical structure but have different names so th
Initialization of variable2 fails, even though technically it could work.

e An aliasis a different name for same type, so alias types are equivale

CS 246 17

2.3.6.1 Enumeration

e An enumerationis a type defining a set of named constants with only
assignment, comparison and implicit cast to integer opmersit

enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering

Day day = Sat; /[variable declaration, initialization

enum {Yes, No} vote = Yes; /[anonymous type and variable declaration

enum Colour {R=0x1, G=0x2, B=0x4} colour; // typel/variable declaration, explicit numberi
colour = B; /I assignment

day = colour; /[fails C++, works C

e Names in an enumeration are callstimerators.
e Enumerators can be numbered explicitly.
e Enumeration in C+ denotes a new type; enumeration in Cas &brint .

e C/C+ enumeration only has underlying tyipg Java enumeration can
give names (and operations) to any value.

e Java enumerator names must always be qualified.
e C/CH enumerator names are unqualiffedunique in a lexical scope.
e In C, enum must always be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

CS 246 18

2.3.6.2 Pointer/Reference

e pointer/referenceis an indirect mechanism to access a type instance.
e All variables have an address in memory, éng.x =5,y = 7:

type Int Int
variable/value x 5 y 7
address 100 200

¢ Value of a pointer/reference is the address of a variable.
e Accessing this address is different for a pointer or refegen
e Two basic pointer/reference operations:
1.referencing. obtain address of a variable; unary operatam C+:

&x — 100
&y — 200

2.dereferencing retrieve value at an address; unary operatarC+-:

#(&X) — %(100) — 5
x(&y) — %(200) — 7

e Compiler automatically does first dereferencex soreally »(&x).

CS 246

19

e Unary and binary use of operat@&s: for reference/deference and

conjunction/multiplication.

e Special address no variable hasll{ pointer), null in Java, 0 in C+-.

e Pointer/reference variable has: memory address of anedneble
(indirection), null pointer (or an undefined address if uninitialized).

pomter to int

pl

p2

pP3

100

INnt

50

200

60

0

70

200

null pointer

&pl — 50

&p2 — 60

&p3 — 70
*(&pl) — 100
*(&p2) — 200
((&pl)) — 5
*(x(&p3)) — error

e Because of implicit 1st dereferengs, is 100 andxp1 IS 5.

¢ A pointer/reference may point to the same memory addressclex
pointer/reference (dashed line).

CS 246 20

e Dereferencing null pointer is an error as no variable at @s.

e EXplicit dereference is an operation usually associatéld avpointer:
*p2 = *pl;
*Pl = P2 * 3;

e Address assignment does not require dereferencing:

y = X; [/ value assignment
X =Y x 3;

p2 = pl; // address assignment

e p2 Is assigned the same memory addregslase.,p2 points atx; values
of x andy do not change.

e Having to perform explicit dereferencing can be tedious@mdr prone.

pl = p2 = 3; /I implicit deference
unreasonable g4l is assigned addresspa times 3.

e Reasonable if value pointed to by is assigned value pointed to bg
times 3.

e A pointer that provides implicit dereferencing isederence
e However, implicit dereferencing generates an ambiguduatson for:

p2 = pi;

CS 246

21

e Should this expression perform address or value assigner@emhow
are both cases specified?

e C provides only a pointer; C+ provides a pointer and a reistill

reference; Java provides only a general reference.

e C/C+ pointer:

— created using thetype-constructor,
—may point to any type (i.e., basic or object type) in any gjera

location (i.e., global, stack or heap storage),
—and no implicit referencing or dereferencing.
—type qualifiers can be used to modify pointer types:

const short int
const short int

w = 25;
*p3 = &W;

INnt » const p4 = &x;

(int &p4 = X;)

const long int
const long int

z = 37,
* const ps = &z;

p3| 300
p4| 100
05 308

- 25w
-)
- 37 |

CS 246 22

—p3 may point at anyonst short int variable.

—Pointer can change to point at different variables, but #iee/of the
variables cannot be changed through the pointer.

—p4 may only point at variable.

—Pointer cannot change to point at a different variable, lheivialue of
the variable can be changed through the pointer.

—p5 may only point at variable.
—Pointer cannot change to point at a different variable, aed/alue of
the variablez cannot be changed through the pointer.
e C+ reference

—created using th& type-constructor,
—may point to any type (i.e., basic or object type) in any gjera
location (i.e., global, stack or heap storage),

—restricted to a constant pointer to user created
(non-temporary/non-constant) storage,

—and always has implicit dereferencing.

— constant-pointer restriction of a C+ reference is eqentlo a Java
final reference ok const pointer with implicit dereferencing.

CS 246 23

—Java reference can vary what it points to, but it can only {xoin
objects in heap storage.

— C+ constant-pointer restriction has two implications:

1. A CH reference must be initialized at the point of dedlara

x Initializing expression has implicit referencing becaaseaddress
IS alwaysrequired,;

Int &rl = &X; // error, unnecessary & before x
2. No need for address assignment after a C+ referencerdecia
because the address cannot change.
x Java Interprets reference assignment r1 as address assignment
and has no mechanism to perform value assignment between
reference types.

¢ Pointer/reference type-constructor is not distributed acoss the
identifier list:

int » p1, p2; only plis a pointer, p2 is an integer, should bt *p1, *p2;
int & rx, ry; only rxis areference, ry is an integer, shouldibe &rx, &ry;

CS 246 24

2.3.6.3 Aggregation (Structure/Array)

e Like Java, CH Is object-oriented, but it does not subsdoldae notion
that everything is a basic type or an object.

e Instead, aggregation is performed by structures and araags
computation is performed by routines.

e An object type is the composition of a structure and routines
e In C+, a routine can exist without being embedded stract /class .

Structure is a mechanism to group together heterogeneous values,
Including (nested) structures:

Java C/CH
class Foo { struct Foo {
public int | = 3; Int 1; // no Initialization
... /I more fields ... /I more members
} }, /] semi-colon terminated

e Components of a structure are calleémberst in C+.
1Java subdivides members into fields (data) and methodsr(esit

CS 246 25
e All members of a structure are accessible (public) by défaxcluding
Javapackage Vvisibility).

e A structure member cannot be directly initialized (unliked) , and a
structure Is terminated with a semicolon.

e As for enumerations, a structure can be defined and instalectesred In
a single statement.

struct S {int 1, } s; // definition and declaration
e In C, struct must always be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration
e Recursive types (lists, trees) are defined using a pointer in a structure:

struct Node {
/[data members
Node *link; /[pointer to another Node

%
e A bit field allows direct access to individual bits of memory:

CS 246

struct S {
int 1:3; // 3 bits
int | .7, /I 7 bits
Int kK:6; [/ 6 bits

};

1= 2: [/l 10
j=5 /101
k =9;: // 1001

e A bit fleld must be an integral type.
e Unfortunately, bit-fields are not portable.

26

¢ On little-endian architectures (e.g., like Intel/AMD x8®)e compiler

reverses the bit order.

e However, the compiler does not implicitly reverse the bdear

e Hence, the bit-fields in variabkabove must be reversed for
little-endian architectures.

e While it is unfortunate C/C+ bit-fields lack portabilityey are the
highest-level mechanism to manipulate bit-specific infation.

CS 246 27

Union Is a heterogeneous aggregation mechanism, where all member
overlay the same storage:

union U {
char c; .
int i; u |c | d
double d:;
}u;

e Used to access internal representation or save storageisimgat for
different purposes at different times.

union U {

float f;

struct {
unsigned int sign : 1;
unsigned int exp : 8;
unsigned int val : 23;
}'s;
Int 1,

}u;

CS 246 28

u.f = 3.5; cout << hex << uf << "\'t" << u.i << endl:
u.i = 3; cout << u.i << "\'t" << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val

u.f = -3.5e-3; cout << u.s.sign << "\t" << us.exp << "\t" << u.s.wal
produces:

3.5 40600000

3 4.2039e-45
0O 8a 5ac000
1 76 656042

e Reusing storage is dangerous and can usually be accomplistia
other techniques.

Array Is a mechanism to group together homogeneous values.

e C/C+ array Is simple because dimension information is tares with
an array object.

e No equivalent to Javalength member for arrays)o subscript
checking and no array assignment.

e Array variables can have dimensions specified on a deaarand all
the array elements are implicitly allocated:

CS 246 29

Int x[10]; Il Int X[] = new Int[10]

int y[10][20]; /I int y[][] = new int[10][20]
e Be careful not to write:

int b[10, 20]; /I not int b[10][20]

e C+ only supports a compile-time dimension valget allows a runtime
expression.

Int r, c;

cin >>r >> c; // Input dimensions

Int array|r]; // dynamic dimension, g++ only
Int matrix[r][c]; /[dynamic dimension, g++ only

e Like Java, an array Is subscripted starting at O.

2.3.7 Type-Constructor Constant

enumerationenumerators

pointer 0 or NULL Indicates a null pointer
structure struct { double r,i;} c={3.0, 2.1 };
array int v[3]={1, 2, 3};

CS 246 30

e C/C+ used to Initialize pointers versusull in Java.
e System include-files define the preprocessor varisiblie. aso.
e Structure and array initialization can only occur as pad declaration.

struct {int i; struct { double r,i;}s;}d={1,{3.0,21}} [/l nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

e Values in initialization list are placed into a variablersitag at the
beginning of the structure or array.

e Not all the members/elements must be initialized.
e A nested structure or multidimensional array is createdgibraces.
e String constants can be used as a shorthand array initishage:

char s[6] = "abcde"”; rewritten as char sl6] ={'a’, 'b’,’'c’,’'d,’ e, '\0 }

e It Is possible to leave out the first dimension, and its vatuefierred
from the number of constants in that dimension:

char s[] = "abcde”; /I 1st dimension inferred as 6 (Why 67?)
int v[]={0,1, 2, 3,4}/l 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

CS 246

2.3.8 Type Aliasing
e C/CH providesypedef to create a synonym for an existing type:

typedef short int shrintl; // shrintl => short int
typedef shrintl shrint2; /l shrint2 => short int
typedef short int shrint3; // shrint3 => short int

shrintl si; /[implicitly rewritten as: short int sl
shrint2 s2; /[implicitly rewritten as: short int s2
shrint3 s3; I/l implicitly rewritten as: short int s3

e All combinations of assignments are allowed amengs2 ands3,
because they have the same type nashert int .

e Java provides no mechanism to rename types.

CS 246 32
2.4 EXxpression
Java C/CH priority
unary., (), [], call ., ->, (), [], call, dynamic_cast |high
cast+, -, I, ~ cast,+, -, |, ~, &, *
new new, delete, sizeof
binary*, /, % x, I, %
+, - +, -
bit shift<<, >>, >>> <<, >>
relationak, <=, >, >=, instanceof |<, <=, >, >=
equality::, = ==, I=
bitwise& and &
~ exclusive-or n
| or |
logical&& short-circuit &&
1 1
conditional?: ?:
assignmenmnt, +=, -=, x=, /=, %= =, +=, -5, x=, /=, %=

<<=, >>= >>>= &=

N— |—
-, j—

commed

A

low

CS 246 33

e Like algebra, operators are prioritize and performed fraog o low.
e Operators with same priority are done left to right, exceptunary,?,
and assignment operators, which associate right to left.

Int x+a, *xb, c, d, »w[10];
@ =xxD >C?(x@a=+b,d-1): (GW[3] 7 + 3;

e Order of evaluation of subexpressions and argument evaiuigt
unspecified (Java left to right).

(i+j)«(k+]j); /I either + done first
(1=])+()J=1); /I either = done first
g(i)+f(k)+h(j), [/lg,f orhcalled in any order

f(pt+, p++, pt++), /[arguments evaluated in any order

e Referencing (address-o8, and dereference, operators do not exist in
Java because access to storage is restricted.

e Find address of any variable in any storage context, &g&s.d, &v[5].

e Arrow operator;>, is unigue to C/C+ and is an anomaly among
programming languages.

e EXists because the priority of selection operatdrs'incorrectly higher
than dereference operataf’,‘so «p.f executes agp.f) instead of(xp).f.

CS 246 34

e -> operator performs a dereference and member selection ocothect
order, i.e.p->f Is Implicitly rewritten ag(=p).f.

e Assignment is an operator; useful fomscade assignmerto initialize
multiple variables of the same type:

a =Db =c =0, // cascade assignment
X=Yy=2z+4

e Other uses of assignment in an expression are discouragedkg.,
assignment only on left side.

e C/C+ allows any expression to appear as a statement:
3, 1+ (i+])«(k+]) sinx);

e Complex assignment operators, eligs,+= rhs, are implicitly rewritten:
temp = &(lhs); xtemp = xtemp + rhs;

e Hence, the left-hand sidths, Is evaluated only once:

vfrand() % 5] +=1; // only calls random once
virand() % 5] =v[rand() % 5] + 1; // calls random twice

e Comma expression Is a series of expressions separated logasom

CS 246 35

a, f+g, k@B@)/2, m[i][j] < valuereturned

e EXxpressions evaluated left to right with the value of rigbsin
expression returned as result.

e Comma expression allows multiple expressions to be eveduata
context where only a single expression is allowed.

e Dimension problenm[10, 20] actually means[20] becausdo, 20 is a
comma expression not a dimension list.

e Subscripting problemm(3, 4] meansan[4], 4th row of matrix.
e Operators+ / -- are discouraged because subsumed by gewrerak.

2.4.1 Conversion

e Conversion implicitly/explicitly transforms a value froome type to
another.

e Two kinds of conversions:

—widening conversion no information is lost:

char — shortint — longint — double
"\ X7’ 7 7 7.000000000000000

CS 246 36

—narrowing conversion, information can be lost:

double — long int — shortint — char
(7777.77777777777 77777 12241 "\ xdl’

e C/CH support both implicit widening and narrowing convens (Java
only implicit widening).

e Implicit narrowing conversions can cause problems:

Int i; double r;
| =1 = 3.5 Il r->35
r=1i=3.5; Il r->3.0??7?
e Better to perform narrowing conversions explicitly usoegtoperator.
Int 1, double X, v;
| = (mt) X; /I explicit narrowing conversion
| = (int) x / (int) y; // explicit narrowing conversions for integer division
| = (int)(x /y); // alternative technique

e C/C+ supports casting among the basic types and user dé&fnesl

e g++ has a cast extension allowing construction of structureaairay
constants in executable statements not just declarations:

CS 246

void rtn(const int m[2][3]);
struct Complex { double r, i; } c;

rtn((int [2][3]){ {93, 67, 72}, {77, 81, 86} });
c = (Complex){ 2.1, 3.4 },

/[g++ only
/[g++ only

37

¢ In both cases, a cast is used to indicate the meaning andwstws the

constant.

CS 246

2.5 Control Structures

38

Java

C/CH

block

{ intermixed decls/stmts }

{ intermixed decls/stmts }

selection

if (bool-exprl) stmtl
else if (bool-expr2) stmt2

else stmtn

if (cond-exprl) stmtl
else if (cond-expr2) stmt2

else stmtn

switch (integral-expr) {
case cl: stmtl; break;

case cn: stmtn: break
default : stmtO:;

}

switch (integral-expr) {
case cl: stmtl; break;

case cn: stmtn: break
default : stmtO:;

}

looping

while (bool-expr) stmt

while (cond-expr) stmt

do stmt while (bool-expr) ;

do stmt while (cond-expr) ;

for (init-expr;bool-expr;incr-expr) stmt

for (init-expr;cond-expr;incr-expr) stmt

transfer

break [label]

break

continue [label]

continue

goto label

return [expr]

return [expr]

label

label : stmt

label : stmt

CS 246 39

2.5.1 Block

e Block is a series of statements bracketed by brgces$, which can be
nested.

e Block serves two purposes: bracket several statementa isitogle
statement and introduce local declarations.

e \When a statement is required, good practice is to always useldock
to allow easy insertion and removal of statements to or from lmck.

e Putting local declarations precisely where they are needadelp
reduce declaration clutter at the beginning of an outerkbloc

e However, it can also make locating them more difficult.

2.5.2 Conditional
e C/C+ uses a@onditional expressionin control structures to cause
conditional transfer (Java uses a boolean expression).

e A conditional expression is evaluated and implicitly teldier not equal
to zero, I.e.cond-expr = expr != 0.

e Boolean expressions are converted to Ofdse and 1 fortrue before
comparison to zero, e.g.:

CS 246 40

if (x>y)... Implicitly rewrittenas if ((x>y)!=0)...
e Hence, other expressions are allowed in a conditional ¢Qdem):

if (x)... implicitly rewrittenas if ((x)!=0)...
while (x)... while ((x) '=0)...
e Watch for the common mistake in a conditional:
if (x=y)... Implicitly rewrittenas if ((x=y)!=0)...
which assigng to x and testx != 0 (possible in Java for one type).

2.5.3 Selection

e C/CH selection statements af@ndswitch (same as Java, except for
boolean versus conditional expression).

e An if statement selectively executes one of two alternativesdoais the
result of a comparison, e.g.:

If (X>y) max = x;
else max =y;

e Java/C/C+ have th@angling elseproblem of associating asise clause
with its matchingf in nestedf statements.

CS 246 41

e E.g., reward WIDGET salesperson who sold more than $10,@bthw
of WIDGETS and dock pay of those who sold less than $5,000.

Dangling Else Fix Using Null Else Fix Using Blocks
if (sales < 10000) if (sales < 10000) if (sales < 10000) {

if (sales < 5000) if (sales <5000) if (sales <5000) {

income -= penalty; income -= penalty; income -= penalty;

else // incorrect match!!! else ; /I null statement }

income += bonus; else } else {

iIncome += bonus; iIncome += bonus;
}

e A switch statement selectively executes one\oalternatives based on
matching an integral value with a series of case clauses, e.g

CS 246 42

switch (day) { /Il Integral expression
case MON: case TUE: case WED: case THU: // case value list
cout << " PROGRAM' << endl:
break ; /I exit switch
case FRI:
wallet += pay;

case SAT:
cout << " PARTY" << endl;
wallet -= party;

break ; /I exit switch
case SUN:

cout << "REST" << endl:

break ; /I exit switch
default :

cerr << "ERROR' << endl:

exit(-1); // terminate program

}

e ONnce a case clause is matched, its statements are executexbrdarol
continues to th@ext statement.

e break statement is used at end of a case clause tx@kdh Statement.

CS 246 43

e |t IS a common error to forget the break.

e If no case clause is matched and theredefault clause, Its statements
are executed, and control continues tonlegt statement.

e Otherwise, thawitch statement does nothing.
e Only one label for eachase clause but a list ofase clauses is allowed.

2.5.4 Conditional Expression Evaluation

e Conditional expression evaluationperforms partial evaluation of
expressions.

e Control structures not operators because both operandsotde
evaluated.

&& |only evaluates the right operand If the left operand Is true
|| |only evaluates the right operand if the left operand Is false
?: | only evaluates one of two alternative parts of an expression

e && and|| (short-circuit) are similar to logicak and| for bitwise
operands, I.e., both produce a logical conjunctive or didjine result.

e However, conditionak& and|| evaluate operands lazily until a result is
determined, short-circuiting the evaluation of other ajpels.

CS 246 44

e Logical & and| evaluate operands eagerly, evaluating both operands.
¢ With boolean operands, corresponding operators are hdageable.

e Conditional?: evaluates one of two expressions, and returns the result
the evaluated expression.

e Acts like anif statement in an expression:
abs2 =(a<0?-a:a)+2 if(a<0){

abs2 = -a;
} else {

abs?2 = a;
}
abs2 += 2;

2.5.5 Looping

e C/C+ looping statements angile , do andfor (same as Java, except for
boolean versus conditional expression).

e while statement executes Its statement zero or more times.

CS 246 45

e Beware of accidental infinite loops.

X = 0; X =0;
while (x < 5); /I extra semicolon! while (x < 5) // missing block
X=x+1 y=Yy+X;
X=X+ 1;
e do statement executes Iits statement one or more times.
do {

... [l executed at least once
} while (x <5);

e for statement is a specializedhile statement for iterating with an index.

Init-expr;

while (cond-expr) { for (init-expr; cond-expr; incr-expr) {
stmt; stmt;
Incr-expr;

} }
e Many ways to use thfar statement to construct iteration:
for (1=1,1<=10;1+=1){ /[count up

// loop 10 times
} /1 has the value 11 on exit

CS 246 46

for (1=10;1<=11-=1){ /[count down
/[loop 10 times

} /'l has the value 0 on exit

for (p=1;p!=NULL;, p =p->link) { // pointer index
I/ loop through list structure

} /I p has the value NULL on exit

for (1=1,p=11<=10&p!=NULL; 1 +=1, p = p->link) { /I 2 indices
// loop until 10th node or end of list encountered

}

e Comma expression is used to initialize and increment 2 exlic a
context where normally only a single expression is allowed.

e Defaulttrue value inserted if no conditional is specifiedfen statement.

for (;;) Il rewritten as: for (; true ;)

e Short-circuit expression evaluation is often used for adinsearch of an
array for a key, where the loop index indicates the positicihe key In
the array if the key is found, or the array size plus 1 if notrfou

for (1=0;1<size && list]i] '= key; 1 +=1); /I no loop body

CS 246 47

e Short-circuit&& prevents evaluation of conditional second operand if th
first operand is true to prevent subscript error when the &ept found.

e Logical & would be incorrect because it evaluates both operands.
e continue /break statements available in all iteration constructs to
Immediately advance to next loop iteration or terminatgloonstruct.

for (1=0;;1+=1){ Il infinite loop, conditional is “true”
If (1 == size) break; Il exit if not found
If (list[i] == key) break; /I exit if found

}

e C/C+Hgoto statement simulates Java labelleeak andcontinue .

CS 246 48
Java C/CH
L1: { {
... declarations declarations ...
L2: switch (...) { switch (...) {
L3: for (...) { for (...){
... break L1; ... // exit block ... goto L1, ...
... break L2; ... // exit switch ... goto L2; ...
... break L3; ... /I exit loop ... goto L3; ...
} } L1
| \ L2':';'
\ | L3':';'

e Only usegoto to simulate labelledbreak and continue .

2.6 Preprocessor

e Preprocessor manipulates the text of the progvaforecompilation.
e Program you see is not what the compiler sees!
e The three most commonly used preprocessor facilities drstisution,

CS 246 49

file inclusion, and conditional inclusion.

2.6.1 Substitution

e #define statement declares a preprocessor variable, and its \&adlie |
the text after the name up to the end of line.

#define Integer Iint
#define begin {
#define end }
#define Pl 3.14159
#define gets =

#define set

#define with =

Integer main() begin /[same as: int main() {
Integer x gets 3, ; /[same as: int X = 3, V;
X gets PI, I/ same as: x = 3.14159;
set y with X; // same as:. y = X;

end /[same as: }

e Preprocessor can transform the syntax of C/C+ progrhscguraged.

e Predefined preprocessor-variables exist identifyingWward and
software environment, e.gncpu Is kind of CPU.

CS 246 50

e Useconst declarationsfi{nal in Java) rather thatdefine :

const double PI = 3.14159;
const int arraySize = 100;

e #define can declare macros with parameters, which expand during
compilation, textually substituting arguments for parteng e.g.:

#define MAX(a, b)) ((a>Db) ?a:b)
z = MAX(X,y); [/l implicitly rewritten as: z = (X >y) ? X : y)

e Useinline routines in C/CH rather thatlefine macros.

2.6.2 File Inclusion

e File inclusion copies text from a file into a C/C+ program.
e An included file may contain anything.

e An include file normally imports preprocessor and C/C+
templates/declarations for use in a program.

¢ All included text goes through every compilation step, peeprocessor,
compiler, etc.

CS 246 51

e Java does implicit inclusion by matching class names wigrfdmes in
CLASSPATH directories, then extracting and including necessary
declarations.

e The#include statement specifies the file to be included.
e C convention uses suffixi” for include files containing C declarations.

e C+ convention drops suffixi” for its standard libraries and has special
file names for equivalent C files, e.gstdio versusstdio.h.

#include <stdio.h> I/l C style
#include <cstdio> /[C++ style
#include "user.h"

e A file name can be enclosed4» or"".
e <> means preprocessor only looks in the system include dmesto

e "" means preprocessor starts looking for the file in the saneetdiry as
the file being compiled, then in the system include direesri

e System filesimits.h andunistd.h contains many usefudefine s, like the
null pointer constaniULL (e.g., seéusr/include/limits.h).

CS 246 52

2.6.3 Conditional Inclusion

e Preprocessor has érstatement, which may be nested, to conditionally
add/remove code from a program.

e Conditional ofif uses the same relational and logical operators as C/C
but operands can only be integer or character values.

#define DEBUG 0 /[declare and Initialize preprocessor variable
#If DEBUG == /Il level 1 debugging

include "debugl. h”

#.e.lif DEBUG == Il level 2 debugging

include "debug2.h”

#.ellse // non-debugging code

#endif

e By changing value of preprocessor variabEEBUG, different parts of
the program are included for compilation.

e To exclude code (comment-out), useonditional a® implies false.

CS 246 53

#if O
// code commented out
#endif
Independent of language structure, can overlap definiaadsoutines.
e It Is also possible to check if a preprocessor variable isxddfor not
defined by usingifdef or #ifndef :

#ifndef = MYDEFS_H__ /I if not defined
#define = MYDEFS H_ 1 // make it so

#endif
e Used Iin artinclude file to ensure its contents are only expanded once.

¢ Note difference between checking if a preprocessor vaigliefined
and checking the value of the variable.

e The former capability does not exist in most programming@lsages,
l.e., checking if a variable is declared before trying to ise

2.7 Input/Output
e Input/Output (I/O) Is divided into two kinds:

CS 246 54

1. Formatted I/O transfers data with implicit conversion of internal
values to/from human-readable form.

— Conversion is based on the type of variables and format codes

2.Unformatted I/O transfers data without conversion, e.g., internal
Integer and floating-point values.

CS 246
2.7.1 Formatted |I/O
Java C CH
File, Scanner, PrintStream FILE ifstream, ofstream

Scanner in = new

Scanner(new File("f"))

in = fopen(“f","r");

ifstream in("f ");

PrintStream out = new
PrintStream(" g")

out = fopen("g", "W)

ofstream out(" g")

in.close() close(in) scope ends
out.close() close(out) scope ends
nextint() fscanf(in, " %d", &i) in>>T
nextFloat() fscanf(in, " 9% ", &f)
nextByte() fscanf(in, " %", &c)
next() fscanf(in, "9%6", &S)
hasNext() feof(in) in.eof()
hasNextT() fscanf return value in.fail()
in.clear()
skip(" regexp) fscanf(in, " %[regexd”) |in.ignore(n, c)
out.print(String) fprintf(out, " %™ , 1) out<< T
fprintf(out, "% ", f)
fprintf(out, " %", c)
fprintf(out, " 9%8", s)

25

CS 246 56

e Formatted I/O occurs to/fromsream file.

e C+ has three implicit stream filesin, cout andcerr, which are
automatically declared and opened (Javaihasut anderr).

e C hasstdin, stdout andstderr, which are automatically declared and
opened.

¢ Includeiostream has all necessary declarations ¢or, cout andcerr.

e cin reads input from the keyboard (unless redirected by shell).

e cout writes to the terminal screen (unless redirected by shell).

e cerr Writes to the terminal screen even wheit output is redirected.
e Error and debugging messages should always be writteneio :

—normally not redirected by the shell,
—unbuffered so output appears immediately.

e Stream files other than 3 implicit ones require declaringndée object:

#include <fstream> // required for stream-file declarations
ifstream infile("nyi nfile”); /I input file
ofstream outfile("nmyout fil e”); // output file

CS 246 57
e Type of the filefstream or ofstream, indicates whether the file can be
read or written.

e Declarationopers a file making it accessible through the variable name
e.g.,infile andoutfile are used for file access.

e Check for successful opening of a file using the stream mefahes.g.,
infile.fail(), which returngrue if the open failed anéhise otherwise.

e Connection between the file name in the program and operayisigm
file is done at the declaration:

—infile reads from filenyi nfil e
—outfile writes to filemyoutfil e

where both files are located in the directory where the pragsarun.

e C+ |/O library overloads the bit-shift operaters and>> to perform
/0.

e C I/O library usedscanf(outfile,. . .) andfprintf(infile,. . .), which have short
formsscanf(...) andprintf(. . .) for stdin andstdout.

e Parameters in C are always passed by value, so arguméstartbmust
be preceded witlk (except arrays) so they can be changed.

CS 246 58

e Both I/O libraries can cascade multiple I/O operations, irgut or
output multiple values in a single expression.

2.7.1.1 Input

e Java formatted input uses arplicit Scanner attached to an input file to
convert characters to basic types.

e C/C+ formatted input hasnplicit character conversion for all basic
types and is extensible to user-defined types.

CS 246

59

Java

C

CH

Import java.io.x,
import java.util.Scanner;
Scanner in =
new Scanner(new File("f"));
PrintStream out =
new PrintStream("g");
int i, j;
while (in.hasNext()) {
| = in.nextInt();] = in.nextint();
out.printin("1 : " +i+" J "4);

in.close();
out.close();

#include <stdio.h>
FILE «in = fopen("f", "r"),

FILE ~out = fopen("g", "W');

int i, j;
for (5;) {
fscanf(in, " %d%l" , &i, &));
if (feof(in)) break;
fprintf(out,”i : %@ | : %@\ n" ,i,));
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out("g");

int i, j;
for (;;) {
in >>1i>>j;
if (in.eof()) break;
out << "i:" <<
<<"j " <<j<<end]

}

Il infout closed implicitly

e Input values for a stream file are C/C+ constaBgis.5e-1, etc.,
separated by whitespace.

e Except for characters and character stringsch are not in quotesso
cannot read strings containing white spaces.

e Type of operand indicates the kind of constant expectedarstieam
file, e.g., an integer operand means an integer constanpescted.

e Streanxin starts reading where the last left off.

CS 246 60

e After all input values on current line are reafth proceeds to next line.
e Hence, the placement of input values on lines of a file is coddrtrary.

e Unlike Java, C/C+ must attempt to relaeforeend-of-file is set and can
be tested for.

e End of file can be detected in two ways:
e cin andfscanf return0 andEOF when eof Is reached.
e CH memberof and the C routinéof return true when eof is reached.

e end-of-file Is the detection of the physical end of a file; there is no
end-of-file character.

e From a keyboardsctrl>-d (press thecctrl> andd keys simultaneously)
causes the shell to close the current input file marking ysigal end.

e \When bad data is read, stream must be reset and bad datalcleare

CS 246 61

#include <iostream>
using namespace std;

iInt main() {
Int n;
for (5;){
cout << "Ent er a nunber: “;
cin >> n;
If (cin.eof()) break; /Il eof ?
if (! cin.fail()) { // number ?
cout << "n =" << n << end|
} else {
cout << "Not a nunber. “;
cin.clear(); /I reset stream failure
cin.ignore(numeric__limits<int>::max(), '\ n’); // skip until ne\
}
}
cout << endl;

}
e After an unsuccessful readear() resets the stream.

e ignore skips eithem characters, e.gcjn.ignore(5) or until a specified
character.

CS 246 62

2.7.1.2 Output

e Java output style converts values to strings, concatentirgs, and
prints final long string:

System.out.printin(i + " * +j); // build a string and print it

e C/C+ output style supplies a list of formats and values, @rt@ut
operation generates the strings:

cout << j << " " << j << end // print each string when formed

e There is no implicit conversion from the basic types to stimC+ (but
one can be constructed).

e While it is possible to use the Java string-concatenation gle in C+,
It IS Incorrect style.

e Input/output format is controlled viaanipulators defined in include
file iomanip:

CS 246

#include <iostream>
#include <iomanip>

63

/I cin, cout, cerr
// manipulators

using namespace std;
Int i = 7; double r = 2.5; char c ="'z"; char xs = "abc";

cout << " "
<< 111 r:ll
<< 1] C:ll <<C<< 1] S

#include <stdio.h>

<< setw(2) << i
<< fixed << setw(7) << setprecision(2) <<r

<< s << endl:

fprintf(stdout, "i :%2d r: %/. 2f c: % s: %\n", i, 1, C, S);

“i1: 7r: 2.50c:z s:abc”
oct values In octal
dec values in decimal
hex values in hexadecimal
left / right (default) values with padding after / before values

boolapha / noboolapha (default)
showbase / noshowbase (default)
fixed (default) /scientific
setprecision(N)

setw(N)

setfill(ch)

end|

skipws (default) /noskipws

bool values as false/true instead of 0/1

values with / without prefix O for octal & Ox for hex
float-point values without / with exponent

fraction of float-point values in maximum of N colum
NEXT VALUE ONLY in minimum of N columns
padding character before/after value (default blank)
flush output buffer and start new lineutput only)

skip whitespace charactersgut only)

n

CS 246 64
e manipulators applies to all constants/variables afte&ven to the next
/O expression for a specific stream file.

e Except manipulator setw, which only applies to the next value in the
/O expression.

e endl IS not the same d$ n’; only endl flushes for interactive output.

2.7.2 Unformatted I/O

e Unformatted I/O transfers data without conversion, e.g., internal
iInteger and floating-point values.

e Uses same mechanisms as formatted I/O to connect prograla to fi
(open/close).

e Usesread andwrite routines to transfer bytes without conversion from/tc
a file.

CS 246 65

#include <iostream>
#include <fstream>
using namespace std;

iInt main() {
ofstream outfile(" xxx"); // open output file “xxx”
If (outfile.fail()) { I/l successful open ?
cerr << "Error!" << endl
exit(-1);
Y if
double d = 3.0;

outfile.write((char %)&d, sizeof (d)); // coercion
outfile.close(); Il close file before attempting read

CS 246 66

ifstream infile(" xxx"); I/l open input file “xxx”
If (infile.fail()) { Il successful open ?
cerr << "Error!" << endl
exit(-1);
Y
double e;

infile.read((char «)&e, sizeof(d)); // coercion
cout << e << end];

infile.close();

}
e read andwrite take achar pointer and length.

read(char xbuffer, streamsize num);
write(char xbuffer, streamsize num);

e To pass any kind of pointer for unformatted I/O requiresarcion,
which is a caswithout a conversion.

e Coercion breaks the type system; use it very sparin@iyd would be
unnecessary if buffer type wasid «).

CS 246 67

2.8 Dynamic Storage Management

e C++ operatonew takes a type operand and return a pointer to new
storage of that type allocated in an area calledep.

e Unlike Java, C/C+ allovall types to be dynamically allocated not just
object types, e.gnew int .

e C/C+ do not havegarbage collectionof dynamically allocated storage
after a variable is no longer accessible.

e Therefore, an additional dynamic storage-managemenabpetito free
storage.

e C+ provides dynamic storage-management operatiensielete and
C providesmalloc/free.

e Do not mix the two forms in a C+ program.

CS 246 638

Java C/CH+
class Foo { struct Foo {
char a, b, c; char a, b, c;
} 3
class Test { _ _
public static void main(String[] args) {| int main() {
Foo f = new Foo(); Foo +f = new Foo(); // opt parenthesis
fc="R: f->c="R;
} delete f; /I explicit free
} }

e Parenthesis after the type name in tle& operation are optional.
e After storage is no longer neededntstbe explicitly deleted.
e After storage Is deleted, ihustnot be used:

delete f:
f->c='9; /| result of dereference is undefined

e Aggregate types can be allocated on the stack, I.e., lociablas of a
block:

CS 246 69

Java CH

{ /] basic & reference stack heap { /I all types stack heap

int i A . int I A _

double d; | double d; |

ObjType obj = g ObjType obj; g

new ObjType();

Py } /I implicit delete -

} /I garbage collected oD ob)
Voo '

e Stack allocation is more efficient than heap allocation and des not
require explicit storage management — use it whenever posse.

e Dynamic allocation in C+ should be used only when:
—a variable’s storage must outlive the block in which it i®afited:

ObjType =rtn(...) {

ObjType *0obj = new ObjType();

... Il use obj

return obj; // storage outlives block
} /I obj deleted later

—when each element of an array of objects needs initializatio

CS 246 70

ObjType xv[10]; // array of object pointers
for (int i=0;1<10;i+=1){

v[i] = new ObjType(i1); // each element has different initialization
}

e Declaration of a pointer to an array is complex in C/C+.

e Because no array-size information, the dimension valuaricarray
pointer is often unspecified:

Int xarr = new Int [10]; // think arr[], pointer to array of 10 ints
e Java notation:

Int arr[] = new int [10];

cannot be used because arr[] Is actually rewritten ast arr[N], where
N is the size of the initializer value.

e Note, the lack of dimension information for an array meamsehs no
subscript checking.

e As well, no dimension information results in the followingphiguity:

CS 246 71

int xvar = new int: var no siz§7__
int +arr = new int[10]; // arr[] arr /WS 7/3/5/9/8/8/0/4|6
ytes--—-

¢ Variablesvar andarr have the same type but one is an array, which pose
a problem when deleting a dynamically allocated array.

e To solve the problem, special syntax is used to distingunebd cases:

delete var; Il single element
delete [] arr; // multiple elements

¢ [] indicates multiple elements (but unknown number and size of
dimensions) and array-size is stored with the array.

e Never do this:

delete [] arr, var; /| => (delete [] arr), var;
which is an incorrect use of a comma expressivanjs not deleted.

e Declaration of a pointer to a matrix is complex in C/CH+, grg. «x[5]
could mean:

CS 246 72

X | ™9 __'J X [——"9/2/6/4 0
g : :
il | |
=1 ‘| | |
4 Lo _ il

__>2 :

- =

__>3 __._E

e Left: array of 5 pointers to an array of unknown number of getes.

e Right: pointer to matrix of unknown number of rows with 5 cains of
Integers.

e For« and[] which applied first?

e Dimension is higher priority (as subscript, see Sectionf2.82), so
declaration is interpreted @as (x(x[5])) (left).

e To read a declaration, parenthesize type qualifiers, readan
parenthesis outwards, start with variable name and endtyp#hname
on left.

CS 246 73

e Only the left example (above) of declaring a matrix can beegalized
to allow a dynamically-sized matrix.

iInt main() {
int «m[5]; Il'5 rows
for (int r=0;r<5;r+=1){
m[r] = new Int [4]; I/l 4 columns per row

for (int c=0;c<4;c+=1){/ initialize matrix
mr]lc] = r + ¢;
}
}

for (int r=0;r<5;r+=1){ /I print matrix
for (Int c=0;c<4;,c+=1){
cout << m[r][c] << ", ";

}

cout << endl;
}
for (int r=0;r<5;r+=1){

delete [] m]r]; I/l delete each row
}

} /[implicitly delete array “m”

CS 246 74
2.9 Routine
C C+H

{
}

void p(or T f(// parameters

Tl a // pass by value

)
/l routine body

/I Intermixed decls/stmts

void p(or T f(// parameters

{
}

T1 a, I/l pass by value

T2 &b, I/l pass by reference

T3 ¢ =3 [/l optional, default value
)

/[routine body

I/l intermixed decls/stmts

e C+ routines are not part of aggregation (not combined in@eaab),
e.g., routinamain is not defined in a type.

e A routine Is either arocedure or afunction based on the return type.
e A procedure does return a value, indicated with return tyfp@id :

void r(...){...}

¢ A routine with no parameters has parametad in C and empty
parameter list in C+:

CS 246 75

.r(void){...} // C: no parameters
1) {...} /[C++. no parameters

e Routines cannot be nested in other routines, so all rouanaas are at
the same scope level in a source file.

e Routine scope Is between the global scope of the source fllaan
routine body:

Int 1 = 1; I/l global scope
iInt main() {

Int 1 = 2; // local scope, hides previous variable |
}

e A procedure terminates when control runs off the end of nauiody or
areturn statementis executed:

void proc() {
. return; ...

/l run off end

}
e A function mustexecute aeturn statement specifying a value:

CS 246 /6

Int func() {
. return 3; ...
return a + b;

}

e A return statement can appear anywhere in a routine body, and naultip
return statements are possible.

2.9.1 Argument/Parameter Passing

e Arguments are passed to parameters by:

—value: parameter is initialized by the argument (usually bitavis

copy).
—reference parameter is a reference to the argument and is initializec
to the argument’s address.
pass by value pass by reference

argument

copy, t address-of (&)
parameter |

CS 246 77

e Java/C, parameter passing is by value, i.e., basic typeslgadt
references are copied.

e C++, parameter passing is by value or reference dependitigedype of
the parameter.

e Argument expressions are evaluate@ny order.

e For value parameters, each argument-expression resuisieed on the
stack to become the corresponding parameteich may involve an
iImplicit conversion

e For reference parameters, each argument-expressionisasferenced
(address of) and this address is pushed on the stack to béheme
corresponding reference parameter.

CS 246 /8

#include <iostream>

using namespace std;

struct Complex { double r, i; };

void r(int 1, int &ri, Complex ¢, Complex &rc) {
n=1=3;
rc = ¢ = (Complex){ 3.0, 3.0 };

}

iInt main() {
int il =1, 12 = 2;
Complex c1 ={1.0,1.0}, ¢c2={20, 2.0 };
r(11, 12, cl, c2);

}

e \Which arguments change?
e \What if routine call is changed t@ i1, i1+i2, c1, c2).

e Value passing is most efficient for basic and small strustbexause the
values are accessed directly in the routine.

e Reference passing is most efficient for large structuressays
because the values are not duplicated in the routine.

e Use type qualifiers to create read-only reference paramstethe
corresponding argument is guaranteed not to change:

CS 246 79

void r(const int &I, const Complex &c, const int v[5]) {
| = 3; /[assignments disallowed, read only!
c.r = 3.0;
v[0] = 3;

}
r(1+], (Complex){ 1.0, 7.0 }, (int [5){ 3, 2,7, 9,0 });

e Provides efficiency of pass by reference for large varialslesurity of

pass by value because argument cannot change, and allopsreemn
variables and constants as arguments.

e C+ parameter can havedafault value, which is passed as the
argument value if no argument is specified at the call site.

void r(int i, double g, char c = "'+«’, double h=35){...}

r(1, 20, 'b’, 9.3); /[maximum arguments
r(1, 2.0, 'b"); I/l h defaults to 3.5
r(1, 2.0); // ¢ defaults to "« , h defaults to 3.5

e In a parameter list, once a parameter has a default valysar@meters
to the right must have default values.

e In a call, once an argument is omitted for a parameter withfaudte
value, no more arguments can be specified to the right of it.

CS 246 30

2.9.2 Array Parameter

e Array copy Is unsupported so arrays cannot be passed by ealydy
reference.

e Therefore, all array parameters are implicitly referenammeters, and
hence, do not have a reference symbol.

e A formal parameter array declaration can specify the finstagision
with a dimension valug10] (which is ignored), an empty dimension list,
[], Oor a pointers:

double sum(double v[5]); double sum(double v[]); double sum(double v);
double sum(double =m[5]); double sum(double +m[]); double sum(double xm);

e Good programming practice uses the middle form becauseatlgl
Indicates the variable is going to be subscripted.

e An actual declaration cannot ugeit must use::

double sum(double v[]) { // formal declaration
double =xcv; // actual declaration, think cv][]
CV = V; /[address assignment

e Routine to add up the elements of an arbitrary-sized arrawyatrix:

CS 246 81

double sum(int cols, double v[]) { double sum(int rows, int cols, double «m[]) {

int total = 0.0; int total = 0.0;
for (int c=0;c<cols;c+=1) for (intr=0;r<rows;r+=1)
total += v]c]; for (int c=0;c<cols;c+=1)
return total, total += mlr][c];
} return total;
}

2.9.3 Routine Pointer

e The flexibility and expressiveness of a routine comes froen th
argument/parameter mechanism, which generalizes a ecatioss any
argument variables of matching type.

e However, the code within the routine is the same for all dathese
variables.

e To generalize a routine further, it is necessary to pass as@m
argument, which is executed within the routine body.

e Most programming languages allow a routine pointer (Jaess ahot) for
further generalization and reuse.

e As for data parameters, routine pointers are specified wiypbea (return

CS 246 82

type, and number and types of parameters), and any routitehhmg
this type can be passed as an argument, e.g.:

int f(int v, |int (xp)(int)|) {return p(v+2) + 2; }

int g(int i) {retun i-1;}

Int h(int i) {return 1/ 2;}

cout << f(4, g) << endl; /I pass routines g and h as arguments
cout << f(4, h) << endl;

e Routinef Is generalized to accept any routine argument of the form:
returns arnt and takes aint parameter.

¢ Within the body off, the parametes is called with an appropriaiet
argument, and the result of callipgs further modified before it is
returned.

e A routine pointer is passed as a constant reference in \hytala
programming languages; in general, it makes no sense t@el@rcopy
routine code, like copying a data value.

e C/CH require the programmer to explicitly specify the refece via a
pointer, while other languages implicitly create a refesen

e Two common uses of routine parameters are fix-up and cal-bac

CS 246 33

routines.

e A fix-up routine Is passed to another routine and called if an unusual
situation is encountered during a computation.

e £.g., when inverting a matrix, the matrix may not be invaeiib its
determinant is O (singular).

e Rather than halt the program for a singular matrix, inveutiree calls a
user supplied fix-up routine to possible recover and coetimith a
correction (e.g., modify the matrix):

Int singularDefault(...) { return O; }
Int invert(int matrix[][10], int rows, int cols,
Int (xsingular)(...) = singularDefault) {

If (determinant(matrix, rows, cols) == 0) {
/[compute correction to continue the computation
correction = singular(matrix, rows, cols);

}

}

e A fix-up parameter generalizes a routine as the correctirerais
specified for each call, and the action can be tailored to t&cpé&r

CS 246 34

usage.

e Giving fix-up parameter a default value, eliminates havimgrovide a
fix-up argument.
e A call-back routine is used in event programming.

e \When an event occurs, one or more call-back routines aredcall
(triggered) and each one performs an action specific foreet.

e £.9., a graphical user interface has an assortment of atheza
“widgets”, such as buttons, sliders and scrollbars.

e \When a user manipulates the widget, events are generatesesping
the new state of the widget, e.g., button down or up.

e A program registers interest in transitions for differemtigets by
supplying a call-back routine, and each widget calls itgpsad
call-back routine(s) when the widget changes state.

e Normally, a widget passes the new state of the widget to ealtiback
routine so it can perform an appropriate action, e.g.:

CS 246 85

Int callback(/« information about event %/) {
/Il examine event information and perform appropriate action
/I return status of callback action

}

registerCB(closeButton, callback);

e Call-back programming become difficult if it depending oa tlumber
of times it is called or previous argument values.

2.10 String

e Strings are supported in C by language and library facslitie

e L anguage facility ensures all string constants are tertathaith a
character valué\ 0’ .

e E.Q., the strlng constantbc” Is actually an array of the 4 characters:
'a’,’b’,’c’,and’\ 0’, which occupies 4 bytes of storage.

e Z€Ero value IS aentinelused by C string routines to locate the string enc
e Drawbacks:
1. A string cannot contain a character with the value .

CS 246 36

2. String operations needing the length of a string muséaliyesearch
for’\ 0’, which is expensive for long strings.

3. Management of variable-sized strings is the progransmer’
responsibility, with complex storage management problems

e C+ solves these Drawbacks by providingtidng type using a length
member and managing all of the storage for the variabledsengs.

e Unlike Java, instances of the Gstring type are not constant.

¢ Values can change so a companion type 8k@ngBuffer in Java is
unnecessary.

e Note, it Is seldom necessary to iterate through the charastef a
string variable!

CS 246

87

Java String methods

)

C char [] routines

C+H string members

+, concat
compareTlo

length

charAt

substring

replace

iIndexOf, lastindexOf

strcpy, strncpy
strcat, strncat
strcmp, strncmp
strlen

[]

strstr
strcspn

strspn

n
==, !:’ <, <=, > >=

length

[]

substr

replace

find, rfind

find_first_of, find_last_of
find_first_not_of, find_last not_ of

e All of the C+ string find members returntring::npos If a search is

unsuccessful.

CS 246 38

string a, b, c; I/l declare string variables

cin >> c; I/l read white-space delimited sequence of characters
getline(cin, ¢, '\ n’); // read remaining characters until newline (newline is (
cout << ¢ << endl; // print string

a="abc"; Il set value, a is “abc”

b = a; I/l copy value, b is “abc”

c=a+b; /[concatenate strings, c is “abcabc”

if (a==Db) // compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; I/ subscript, ch is "b’, zero origin

c[4] = "x’; I/l subscript, c is “abcaxc”, must be character constant

string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for len
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d,
string::size_type p = c.find("ax"); // search for 1st occurrence of string “a>
p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5

p = c.find_first_of("aei ou”); // search for first vowel, p is O

p = c.find_first_not_of("aei ou”); // search for first consonant (not vowel),
p = c.find_last_of("aei ou”); // search for last vowel, pis 5

p = c.find_last _not_of("aei ou”); // search for last consonant (not vowel),

CS 246 89

2.11 Shell Argument

e Routinemain can be written without parameters, but it actually has two
parameters, passed arguments from the invoking shell.

iInt main(int argc, char xargv[])

e Shell takes the command line tokens and transforms thenCiti@er
arguments.

e argc IS the number of tokens in the shell command, including threana
of executable file.

e Because the executable file-name Is includeohnber of tokens Is one
greater than in Java

e argv IS an array of pointers to the character strings that makekgnt
arguments.

CS 246 90

% ./a.out -option infile.C outfile.C

argc =4

argv[0] ="./a.out\0" // not included in Java

argv[l] = "-opti on\ 0"

argv[2] ="infile. Q0"

argv[3] = "outfile. Q0"

argv[4] =0 // mark end of variable length list

e Note, call ofmain by the shell is different because string tokens are
passed not C/C+ values of or references to variables.

e A shell argument of 32" does not mean integer 32, and may have to
converted.

e Routinemain usually begins by checkingrgc for shell arguments.

CS 246 91

Java C/CH+
class Prog {
public static void main(String[] args) {| int main(int argc, char =argv[]) {
switch (args.length) { switch (argc) {
case 0: ... /I no args case 1. ... /I no args
break ; break ;
case 1. ... args[0] ... /[1 arg case 2. ... args[l] ... // 1 arg
break ; break ;
case ... /I others args case ... /I others args
break break;
default: ... // usage message default: ... // usage message
System.exit(-1); exit(-1);
} }

e Arguments are processed in the raag#[1] throughargv[argc - 1], I.e.,
starting one greater than Java.

2.12 Object

e ODbject-oriented programming was developed in the mid-$3§0Dahl
and Nygaard and first immplemented in SIMULAG7.

e ODbjects are structure based, used for organizing logicalated data:

CS 246

unorganized

organized

int people age[30];
bool people sex[30];
char people_name[30][50];

struct Person {
Int age;
bool sex;
char name[50];
} people[30];

e Both approaches create an identical amount of information.
e Difference is solely in the information organization (anémory

layout).

e Computer does not care as the information and its manipulai

largely the same.

92

e Structuring is an administrative tool for programmer uistinding and

convenience.

e ODbjects extend organizational capabillities of the stmechy allowing

routine members.

CS 246 93

structure form object form

struct Complex { struct Complex {
double re, im; double re, im;

H double abs() {

double abs(Complex &This) { return sqrt(re = im);
return sqgrt(This.re = This.im); }

} I}

Complex x; // structure Complex x; // object

abs(x); // call abs x.abs(); /[call abs

e Each object provides both data and the operations necessary
manipulate that data in one self-contained package.

e Routine member is constant, and cannot be assigneddengt,
member).

e \What is the scope of a routine member?

e Structure creates a scope, and therefore, a routine meb@iccess
the structure members, e.gbs member can refer to membeaesandim.

e Structure scope is implemented via a pointer-to-strugharameter,
calledthis , Implicitly passed to each routine member (like left exampl

CS 246 94

double abs() { return sqrt(this->re + this->im); }
e Except for the syntactic differences, the two forms are tidah

e Like Java, the use of implicit parametehis, e.g.,this ->f, is seldom
necessary in C+.

e Member routines are accessed like other members, using aremb
selectionx.abs, and called with the same formabs().

e NO parameter needed because of implicit structure scopant)iy
parameter.

e Add arithmetic operations:

struct Complex {

éémplex add(Complex ¢) {
Complex sum = { re + c.re, im + c.im },
return sum;

}
%

e To sumx andy, write x.add(y).

CS 246 95

e Because addition is a binary operatiadgd needs a parameter as well as
the implicit context in which it executes.

2.12.1 Operator Member
e |t IS possible to use operator symbols for routine names:

struct Complex {

Complex operator +(Complex ¢) {
Complex sum = { re + c.re, im + c.im },
return sum;

}
%

e Addition routine is called, andx andy can be added by.operator +(y)
or y.operator +(x), which is only slightly better.

e For convenience, CH implicit rewrites+ y asx.operator +(y).

CS 246 06
Complex x ={3.0,52}y={-91, 74}

cout << "x:" << xre << "+" << x.m << "i1" << endl

cout << "y:" <<yre << "+" <<yim<<"|" << endl
Complex sum = X + ;

cout << "sum " << sum.re << "+" << sum.im << "1 " << endl;

2.12.2 Type Nesting
e Type nesting Is useful for controlling visibility for types

struct Foo {
enum Colour { R, G, B }; /Il nested type

%
e EnumeratiorColour is nested irFoo to control visibility.
e References outside the object must be qualified with typeadme™:”™:

Foo::Colour colour = Foo::R;

e C++ selection operator™, e.g.,Foo.Colour, cannot be used because it
reguires an object not a type.

e Aggregate types may be nested, basting does not imply scoping

CS 246 97

struct Foo {

Int g;
int r(...){...}
struct Bar { I/l nested object type
int s(...){g=3;r(..);} Il references to g and r falil
%

%
e |In effect, structure nesting is flattened.

e As a result, the references in routisméo membersg andr in Foo fall
because there is no scope relationship between B4oeandFoo.

2.12.3 Constructor

e A constructor Is a special member used to perform initialization after
object allocation to ensure the object is valid before use.

struct Complex {
double re, Im;
Complex() { re = 0.; im = 0.; } // default constructor
... /I other members

%

CS 246 98

e Constructor name is unusual because it is overloaded wettyfife name
of the structure in which it is defined.

e Constructor without parameters is thefault constructor and is
iImplicitly called after storage allocation:

Complex x; x.Complex();
Complex vy = new Complex;
y->Complex();

Complex x; implicitly
Complex xy = new Complex; rewritten as

e Unlike Java, CH does not initialize all object members tadk values.

e When a C+ constructor executes, the constructor is regperier
Initializing members not initialized via other construto

e Because a constructor is a routine, arbitrary executiorbegmerformed
(e.g., loops, routine calls, etc.) to perform initializati

e A constructor may have parameters but no return type (not eie).

e \When declaring a local object in C+, never put parenthesisihvoke
the default constructor:

Complex x(); // routine with no parameters and returning a complex
e Once a constructor is specified, structure initializatedisallowed:

CS 246 99

Complex x ={ 3.2 }; // disallowed
Complex y ={ 3.2, 45 }, // disallowed

e Replaced using overloaded constructors with parameters:

struct Complex {
double re, im;
Complex() { re = 0.; im =0.; }
Complex(double r){re=r;,im=0.; }
Complex(double r, double 1){re=r,im=1,}

%
e Unlike Java, constructor argument(s) can be specd#iesd a variable for
local declarations:

implicit Complex x; x.Complex();
Complex x, y(1.0), z(6.1, 7.2); ewritt ?1/ Complex y; y.Complex(1.0);
ewritten as Complex z; z.Complex(6.1, 7.2);

e Dynamic allocation is same as Java:

CS 246

100

Complex «x = new Complex(); // parenthesis optional
Complex vy = new Complex(1.0);
Complex »z = new Complex(6.1, 7.2);

e Unlike Java, constructor cannot be called explicitly attsthanother
constructor, so constructor reuse done through a sepaeatdar:

Java

C+H

class Foo {
int i, J;

Foo() { this(2); } /I explicit call
Foo(int p){i1=p;]=1,}

}

struct Foo {
Int 1, J;
void common(int p){i=p;j=1;}
Foo() { common(2); }
Foo(int p) { common(p); }

%

2.12.3.1 Constant

e Constructors can be used to create object constantgy+ike

type-constructor constants:

CS 246 101

Complex x, vy, z;

X = Complex(3.2); // complex constant with value 3.2+0.0i

y = X + Complex(1.3, 7.2); // complex constant with value 1.3+7.2

z = Complex(2); // 2 widened to 2.0, complex constant with value 2.0+0.

e Previous operator for Complex is changed because type-constructor
constants are disallowed for a type with constructors:

Complex operator +(Complex c) {
return Complex(re + c.re, Im + c.im); // create new complex value
}

2.12.3.2 Conversion
e Constructors are implicitly used for conversions:

Int 1,

double d;

Complex x, v;

X = 3.2, X = Complex(3.2);

y = x + 1.3; implicitly y = x.operator +(Complex(1.3));

y =X+ rewritten as y = x.operator +(Complex((double)i);

y =X+ d; y = x.operator +(Complex(d));

CS 246 102
e Allows built-in constants and types to interact seamlegst
user-defined types.

e Note, two implicit conversions are performed on variabiex + i: int to
double and therdouble to Complex.

e Implicit constructor conversion is turned off with qualrfexplicit :

struct Complex {

.e.x.plicit Complex(double r) {re =r;, im = 0.; } // turn off
/[implict conversion
I3
e However, this capabillity fails for commutative binary ogiens.

e 1.3 + x, falls because it is rewritten &%.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typéouble .

e Solution, move operator out of the object type and made into a routine
which can also be called in infixed form:

CS 246 103

struct Complex { ... }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}

X+, i +(X, Y)

1.3 + X; |mpI|_C|tIy +(Complex(1.3), X)
X + 1.3; rewritten as . complex(1.3))

e Compiler first checks for an appropriate operator in objgeet and if
found, applies conversions only on the second operand.

e If N0 appropriate operator in object type, the compiler &sdor an
appropriate routine (it is ambiguous to have both), anduhfih applies
applicable conversions taoth operands.

¢ In general, commutative binary operators should be wreieroutines
to allow implicit conversion on both operands.

2.12.3.3 Copy
e Constructor with aonst reference parameter is thepy constructor.

Complex(const Complex &c) { ...}

CS 246 104

e Used in two important initialization contexts: declaraiscand
parameters.

e Declaration initialization:

Complex y = x Implicitly rewritten as Complex y; y.Complex(x);

e Operator =" Is misleading because it calls copy constructor not
assignment operator.

¢ Value on the right-hand side of assignment is argument tg cop
constructor.

e Parameter Initialization:

Complex foo(Complex a, Complex b);
Complex x, v;
foo(X, y)

e Call foo(x, y) performing the following implicit action itfioo:

Complex foo(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with arguments

e If a copy constructor is not specified, an implicit one is gamed that
does a bit-wise copy.

CS 246 105

e Why does C+ differentiate between copy and assignment?

e For copy situation (and constructors in general), aftecallion, an
object’s members contain undefined values (unless a membex h
constructor) and a constructor initializes appropriateners.

e For assignmenths = rhs, the left-hand variable may contain values and
assignment only needs to copy a subset of values from thehayid
variable.

e For example, If an object type has a member variable to cdwent t
number of assignments, the counter is set to zero on iziin and
Incremented on assignment.

e Hence, changing a variable in CH can be redefined to seddgtwodify
Its members.

2.12.3.4 const /Object Member

e Unlike Java, a C/C+tonst member of a structure must be initialized at
the declaration:

CS 246 106

struct Foo {
const int I; .
} x ={ 3 }; /I must be initialized as it is write-once/read-only

e However, this form of initialization is disallowed for olgs, and must
be replaced with a constructor:

struct Foo {
const int 1I; ...
Foo() { | = 3; } /] attempt to initialize const member

%
e However, this fails because it is assignment not initizira and a

const variable can only be initialized to ensure a read does natrocc
before the initial write.

e Therefore, a special syntax is used for initializgagpst members of an
objectbefore the constructor is executed:

CS 246 107

Java CH
class Bar {} class Bar {};
class Foo { class Foo {
final int 1; const int I;
_ Bar » const p; // explicit const pointer
final Bar rp; Bar &rp; /I implicit const reference
Foo (Bar b) { Foo (Bar b) : // initializing const members
=3 i(3),
pP(&b), Il explicit referencing
p = b; rp(b) { // implicit referencing
} e } " on o
} %

¢ In the example, members initialized to 3, ang andr are initialized to
point at argument, for the object’s lifetime.

e This syntax is also used for local objects with constructansl can be
used to initialize norconst members:

CS 246

struct Bar {

Bar(int i) {...}
%

struct Foo {
Bar b(3); /[fails
Int 1,

Foo() : b(3),1(3) {..} // binitialized here

%

2.12.4 Destructor

108

e A destructor (finalize in Java) Is a special member used to perform
uninitialization at object deallocation:

Java CH
class Foo { struct Foo {
finalize() { ...} ~Foo() { ... } /I destructor

e An object type has one destructor; its name is the charaetdollowed
by the type name (like a constructor).

CS 246 109

e A destructor has no parameters nor return type (not evidr):

e A destructor is only necessary if an object changes its eadiment
e.g., closing files, freeing dynamically allocated storasge.

¢ A self-contained object, like @omplex object, requires no destructor.

e A destructor Is invoked immediatebefore an object is deallocated,
either implicitly at the end of a block or explicitly bydelete :

{ { /| allocate local storage
Foo X, V,; Foo Xx; Xx.Foo(); y.Foo();
Foo xz = new Foo; o Foo xz = new Foo; z->Foo();
. implicitly ..
delete z; rewritten as z->~Foo(); delete z;

y.~Foo(): x.~Foo():
} } /I deallocate local storage

e For local variables in a block, destructors are calleteirerseorder to
constructors (independent of expliddlete).

e A destructor is more common in C+ than a finalize in Java dukédo
lack of garbage collection in C+.

CS 246 110

e If an object type performs dynamic storage allocation, itews a
destructor to free the storage:

struct Foo {
Int «i; // think int i[]
Foo(int size) { | = new int [size]; } // dynamic allocation
~Foo() { delete [] 1; } /I must deallocate storage

%
e Also, a C+ destructor is invoked at a deterministic timed¢hl

termination ordelete), ensuring prompt cleanup of the execution
environment.

e A Javafinalize Is invoked at a non-deterministic time during garbage
collection ornot at all, so cleanup of the execution environment is
unknown.

2.13 Forward Declaration

e C/C+ haveDeclaration Before Usg(DBU), e.g., a variable declaration
must appear before its usage in a block:

CS 246 111
{

| += 1; // no prior declaration of i
Int 1, // declaration after usage

}

e A compiler can handle some DBU situations, but there are gnauis
cases:

Int 1,

{
| += 1; /[now which 1 should be used?
Int 1, // declaration after usage

}

e C always requires DBU.
e C+ requires DBU in a block and among types but not within atyp

e Java only requires DBU in a block, but not for declarationsniamong
classes.

e DBU has a fundamental problem specifyimgitually recursive
references:

CS 246 112

void f() { // fcallsg
90); /I g is not defined and being used

void g() { // gcallsf
f0); I/l fis defined and can be used
}

e Cannot type-check the call tpin f to ensure matching number and type
of arguments and the return value is used correctly.

e Clearly, interchanging the two routines does not solve tiodlpm.

e A forward declaration introduces a routine’s type before its actual
declaration:

iInt f(int 1, double); // routine prototype: parameter names optional
/[and no routine body
|nt f(Int 1, double d) { // type repeated and checked with prototype

}
e Prototype parameter names are optional (good documemfatio

e Actual routine declaration repeats routine type, whichtmatch
prototype.

CS 246 113

e Routine prototypes also useful for organizing routines soarce file.

void g(int); // forward declarations without parameter names
void f(int);
iInt main() { /I appears first rather than last
f(5); // actual declarations later
g(4);
}

void g(int i) { ...} // actual declarations
void f(int 1) {...}

e E£.g., allowingmain routine to appear first, and for separate compilation

e Like Java, C+ does not require DBU for mutually-recursmaetmes
within a type:

struct T {
void f(int 1) {...9(...); ...} /I gis not defined but it works!

void g(int i) {...f(...); ...}
I3
e Unlike Java, C+ requires a forward declaration for muiuedicursive
declarations among types:

CS 246 114
Java CH
struct T2; /l forward declaration, no body
class T1 { struct T1 { /I T1 referencing T2
final T2 t2; T2 &t2; /I know about T2 from forward

T1(final T2 t2) { this .t2 = 2; }
void g(int i) {...t2f.) ...}

}
class T2 {
final T1 t1
= new T1(this);
void f(inti){...tl.g(...)...}
}

T1(T2 &t2) : t2(t2) {} // constructor initialize
void g(int i) {...t21f(..); ...}/l FAILSI!!

%

struct T2 { I/l T2 referencing T1
T1 &t1;
T2() : t1(«this) {} // constructor initialize
void f(int i) {...t1.9(...); ...}

%

e The forward declaration of2 allows the declaration of variablé.::t2.
e Note, a forward declaration only introduces the name of a.typ

e Given just a type name, only pointer/reference declarationihe type
are possible, which allocate storage for an address vensoisjact.

e An object declaration and usage requires the object’s sidareembers
S0 storage can be allocated, initialized, and usages typeked.

e As a result, the C+ usagef in T1::g fails because the information
about typer2’s members is defined later.

CS 246 115
e IS it possible to change the declaratioriraf:t1 from T1 &t1 to T1 t1,
l.e., from a reference to an actual object?

e Java’s solution to this problem is to find the definitiontafto obtain
needed information (not DBU).

e C+'s solution involves forward declarations and a syntacick (DBU).

e First, a member containing the non-DBU reference is repldgea
forward declaration:

struct T1 { /' T1 referencing T2
/I as above
void g(int 1); // forward

I3

e Second, a syntactic trick allows the actual member defmtiabe
placedafter both types are defined

void T1l:g(int i) { ... t2f(C.); ...}

e Now the compiler knows all the information about the typesdafy
usage Iinri:g.

CS 246 116

e Note, the trick use of qualified names::g to specify this is actually a
member logically declared mi1 but physically located after the types.

2.14 Overloading

e Overloading occurs when a name has multiple meanings in the same
context.

e Most languages have some overloading.

e E.g., most built-in operators are overloaded on both iratiegnd
floating-point operands, I.e., theoperator is different fot + 2 than for

1.0 + 2.0.

e Overloading requires the compiler to disambiguate amoeagtidal
names based on some criteria.

e The normal criterion is type information.
e In general, overloading is done on operations not variables

Int 1, /[variable overloading disallowed
double i;
void r(int) {} // routine overloading allowed

void r(double) {}

CS 246 117

e Power of overloading occurs when the type of a variable casng
operations on the variable are implicitly reselected tovdmgable’s new
type.

e £.g., after changing a variable’s type frain to double , all operations
iImplicitly change from integral to floating-point.

e Like Java, CH overloads the built-in operators for the bagres and
allows users to overload members in a type.

e C+ also allows routines to be overloaded including opesato

e Number and types of the parametbrg not the return typeare used to
select among a name’s different meanings:

Int r(int 1, int j){...} /I overload name r three different ways
Int r(double x, double y) {...}
Int r(int k) { ...}

(1, 2); I/l iInvoke 1st r based on integer arguments
r(1.0, 2.0); // invoke 2nd r based on double arguments
r(3); // iInvoke 3rd r based on number of arguments

e Implicit conversions between arguments and parametersaizse
problems:

CS 246 118

r(1, 2.0); // ambiguous, convert either argument to integer or double
e Use explicit cast to disambiguate:

r(1, (int)2.0) /[1str
r((double)1, 20) // 2nd r

e Overlap between overloading and default arguments fompetiers with
same type:

Overloading Default Argument

int r(int 1, int j){...} int r(int 1, int j=2){...}
nt r(int 1){int j=2;...}

r(3);// 2nd r r(3); // default argument of 2

e |f the overloaded routine bodies are essentially the saseeaulefault
argument, otherwise use overloaded routines.

e |/O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &0S, Complex c){
return os << c.re << "+" << c.im<<"i";

cout << "x: " << x; /I rewritten as: <<(cout.operator<<(“x:”), x)

CS 246 119
e Standard C+ convention for I/O operators to take and redigineam
reference to allow cascading stream operations.

e << operator in objectout is used to first print string value, then
overloaded routine< to print the complex variable

e \Why write as a routine versus a member?

2.15 Inheritance

e Object-oriented languages usually provideeritance for writing
general, reusable program components.

Java C+H
class Base { ...} struct Base { ...}
class Derived extends Base { ... }|struct Derived : public Base { ... };

¢ Inheritance has two orthogonal sharing concepts: impléatien and
type, each is discussed separately.

CS 246

120

2.15.1 Implementation Inheritance
e Implementation inheritance reuses declarations in onecbkp build

another object.

e One way to understand this technique is to model it via explic

Inclusion, e.g.:
Inclusion Inheritance
struct Base { struct Base {
Int 1, Int 1,
int r(...){...} int r(...){...}
Base() { ... } Base() { ...}

s’truct Derived {
Base b; // explicit inclusion

int s(...) {b.i=23br(.) ...

Derived() { ... }
} d;
d.b.i = 3; /I inclusion reference
d.b.r(...); // inclusion reference
d.s

.S(...); /I direct reference

s’truct Derived : public Base { // implicit Ir

int s(..){1=3;r(..); ...}
Derived() { ... }
}d;
d.i = 3; // direct reference
d.r(...); /I direct reference
d.s(...); // direct reference

CS 246 121

¢ Inclusion implies explicitly creating an object membherto aid in the
Implementation.

e ODbject typeDerived inherits fromBase type via “public Base” clause.
e Inheritance implicitly:

— creates an anonymous object member

—opensthe scope of anonymous member so its members are accessi
without qualification, both inside and outside the inhagtobject

type.
e A Derived declaration must first implicitly create an invisiBase

object in theDerived object, like inclusion, for the implicit references to
Base::i andBase::r in Derived::s.

e As well, constructors and destructors must be invoked tangdlicitly
declared objects in the inheritance hierarchy as done fexphcit
member in the inclusion.

Base b; b.Base(); // implicit, hidden declaration
Derived d; Implicitly Derived d;: d.Derived();

rewritten as - . .
d.~Derived(); b.~Base(); // reverse order of constrt

CS 246 122

e If included object type has members with the same name asdimg)
type, it works like nested blocks: a name in the inner scogedi
(overrides) a name at the outer scope.

e It Is always possible to access these members witlgtialification to
specify the particular nesting level.

CS 246 123

Java C+
class Basel { struct Basel {
int i; int i;
} It |
class Base2 extends Basel { struct BaseZ2 : public Basel {
Int 1, Int 1, // hides Basel::i
} I3
class Derived extends Base2 { struct Derived : public Base2 {
Int 1, Int 1, /[hides Base2::i
void s() { void r() {
Int 1 = 3; Int 1 = 3; // hides Derived::i
this .i = 3; Derived::i = 3; // this.i
((Basel)this).i = 3; // super.i Base2::i = 3;
((Base2)this).i = 3; Base2::Basel: = 3;
} }
} %

e Implementation inheritance reuses program componentsimpaosing a
new object’s implementation from an existing object, takauvantage
of previously written and tested code.

e Substantially reduces the time to compose and debug a neetdippe.

CS 246 124

e Unfortunately, having to inherit all of the members is natays

desirable; some members may be inappropriate for the nes(&yg,
large array).

e As a result, both the inherited and inheriting object mustdny similar
to have so much common code.

e In general, routines provide smaller units for reuse thamesabjects.

2.15.2 Type Inheritance

e Type inheritance extends name equivalence to allow rositmé@andle
multiple types, callegholymorphism, e.g.:

struct Foo { struct Bar {
Int 1, Int 1,
double d; double d;
H } b;

void r(Foo f) { ...}
r(f); [/l valid call
r(b), /I should also work

e Since typesoo andBar are identical, instances of either type should
work as arguments to routine

CS 246 125

e Even If typeBar has more members at the end, routiloaly accesses
the common ones at the beginning as its parameter isFygpe

e However, name equivalence precludes ther¢all) even thouglb is
structurally identical ta.

e Type inheritance relaxes name equivalence by aliasinggheatl name
with its base-type names:

struct Foo { struct Bar : public Foo { // inheritance
Int 1, // no members
double d;

T, } b;

void r(Foo f) { ...}
r(f); // valid call, derived nhame matches
r(m); // valid call because of inheritance, base name matches

e £.9g., create a new typeycomplex that counts the number of timebs is
called for eaciMycomplex object.

e Use both implementation and type inheritance to simplifydoag type
Mycomplex:

CS 246 126

struct Mycomplex : public Complex {
Int cntCalls; // add
Mycomplex() : cntCalls(0) {} // add
double abs() { // override, reuse complex’ s abs routine
cntCalls += 1,
return Complex::abs();

}
Int calls() { return cntCalls; } // add

I3
e Derived typeMycomplex uses the implementation of the base type
Complex, adds new members, and overriaés to count each call.

e Allows reuse ofComplex’s addition and output operation fotycomplex
values, because of the relaxed name equivalence providggéy
Inheritance between argument and parameter.

e Why Is the qualificatiorComplex:: necessary iiMycomplex::abs?

e Now variables of typ&omplex are redeclared thlycomplex, and
membelrcalls returns the current number of callsdbs for any
Mycomplex object.

e Implementation inheritance provides reusgdean object type; type

CS 246 127

Inheritance provides reuseitsidethe object type by allowing existing
code to access the base type.

e |.e, any routine that manipulates the base type also matgsrithe
derived type.

e Two significant problems with type inheritance.

1. — Complex routineoperator + 1S used to add th®lycomplex values
because of the relaxed name equivalence provided by type
Inheritance:

iInt main() {
Mycomplex X;
X =X+ X;

}
—However, the result type fromwperator + IS Complex, notMycomplex.

—Assignment of aomplex (base type) tdlycomplex (derived type)
fails because th€omplex value is missing thentCalls member!

—Hence, avlycomplex can mimic aComplex but not vice versa.

— This fundamental problem of type inheritance is called
contra-variance.

— C+ provides various solutions, all of which have problemag are

CS 246 128

beyond this course.
2. void r(Complex &c) { c.abs(); }

iInt main() {
Mycomplex X;
x.abs(); // direct call of abs
r(X), // indirect call of abs

cout << "x: " << x.calls() << endl;

}
—While there are two calls tabs on objectx, only one is counted!

2.15.3 Virtual Routine

e When a member is called, it is usually obvious which one iskew
even with overriding:

CS 246 129

struct Base {

void r) { ...}
%
struct Derived : public Base {
void r() { ...} I/l override Base::r
%
Base Db;
b.r(); /I call Base:r
Derived d;

d.r(); /I call Derived::rr

e However, it is not obvious for arguments/parameters and
pointers/references:

void s(Base &b) { b.r(); }

s(d); /I inheritance allows call: Base::r or Derived:.r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); /[Base::r or Derived::r ?

¢ Inheritance masks the actual type of the object, but both shbuld

Invoke Derived::r because argumehtand referencép point at an object
of type Derived.

e If variabled is replaced withb, the calls should invokBase::r.

CS 246 130

e Programmer may want to access membeBase even if the actual
object is of typeDerived, which is possible becauserived contains a
Base.

e C+ provides mechanism to override the default at the dall si

¢ To invoke the routine defined in the referenced object, Gutie
member routine withvirtual .

e To invoke the routine defined by the type of the pointer/iexfiee, do not
gualify the member routine wittirtual .

e CH uses non-virtual as the default because it iIs more gtficie
e Javaalwaysuses virtual for all calls to objects.

e Once a base type qualifies a member as virtuad,virtual in all derived
types regardless of the derived type’s qualification for timmember

CS 246

131

Java

C+H

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual
}
class Derived extends Base {
public void g() {} // virtual
public void h() {} // virtual

}

final Base bp = new Derived();
bp.f(); /| Base.f
((Base)bp).g(); // Derived.g
bp.g(); I/l Derived.g
((Base)bp).h(); // Derived.h
bp.h(); /[Derived.h

struct Base {
void () {} // non-virtual
void g() {} // non-virtual
virtual void h() {} // virtual
I3
struct Derived : public Base {
void g() {}; // non-virtual
void h() {}; / virtual

Base &bp = xnew Derived(); // polymorphic assi
bp.f(); // Base::f, pointer type

bp.g(); /[Base:.g, pointer type
((Derived &)bp).g(); /I Derived::.g, pointer type
bp.Base::h(); // Base::h, explicit selection
bp.h(); I/l Derived::h, object type

e Java casting does not provide access to base-type’s meautigres.

¢ Virtual members are only necessary to access derived mesmber
through a base type reference or pointer.

CS 246 132

e If a type is not involved in inheritancdrfal class in Java), virtual
members are unnecessary so use more efficient call to its exemb

e For inheritance, C+ virtual members are qualification mbase type as
opposed to the derived type.

e Hence, C+ requires the base-type definer to presuppose érovedl
definers might want the call default to work.

e Good programming practice for inheritable object types tsrhake all
routine members virtual.

e Any type with virtual members and a destructor needs to niade t
destructor virtual so the most derived destructor is caledugh a
base-type pointer/reference.

e Virtual routines are implemented by routine pointers.

class Base {
Int X, v, // data members
virtual void m1(...); // routine members
virtual void m2(...);

%
e May be implemented in a number of ways:

CS 246

X

y

ml

m2

Copy

— 1 = ml

1 ™ m2

direct routine pointer

2.15.4 Down Cast

e Type inheritance can mask the actual type of an object thraug
pointer/reference.

e Like Java, C+ provides a mechanism to dynamically detegithe
actual type of a pointer/reference.

e The Java operatanstanceof and the C+H operatalynamic_ cast
perform a dynamic check of the object addressed by a paieterénce:

133

y VRT

— ™ — > ml

"™ m2

Indirect routine pointer

CS 246 134

Java CH

Base bp = new Derived(); | Base xbp = new Derived();
If (bp instanceof Derived) | if (dynamic_cast <Derived »>(bp) != 0)
((Derived)bp).rtn(); ((Derived x)bp)->rtn();

e TO usedynamic_cast 0on a type, the type must have at least one virtual
member

2.15.5 Constructor/Destructor

e Constructors aramplicitly executed top-down, from base to most
derived type.

e Mandated by scope rules, which allow a derived-type congiruo use
a base type’s variables so the base type must be initializtd fi

e Destructors aramplicitly executed bottom-up, from most derived to
base type.

e Order iIs mandated by the scope rules, which allow a deriypd-t
destructor to use a base type’s variables so the base tygdmus
uninitialized last.

e Javafinalize must beexplicitly called from derived to base type.

CS 246 135

e Unlike Java, C+ disallows calls to other constructors atdtart of a
constructor.

e TO pass arguments to other constructors, use the same sytax
Initializing const members.

Java CH
class Base { struct Base {
Base(inti){...} Base(inti){...}
5 I3
class Derived extends Base { struct Derived : public Base {
Derived() { super(3); ...} Derived() : Base(3) { ...}
Derived(int 1) { super(i); ...} Derived(int 1) : Base(1) {...}
} I3

2.15.6 Abstract Interface
e Create an abstract interface from which actual types araetefi

CS 246

136

Java

C+H

interface Shape {
void move(int X, int y);
3

class Circle implements Shape {
public void move(int X, int y) {}
%

struct Shape {

}
struct Circle : public Shape {

void move(int x, int y) {}
%

virtual void move(int X, int y) =0;

e Note strange initialization of membghape::move to O, which means
this membemust be defined by any derived type shape.

e Cannot instantiate objects from an abstract interface.

e C+ allows the abstract interface to contain actual membdrsh
results in a combination of implementation inheritance abbstract

description.

2.16 Template

¢ Inheritance provides reuse for types organized into a fubyathat

extends name equivalence.

CS 246 137

¢ Alternate kind of reuse where no type hierarchy and typesatre
equivalent.

e E£.g., overloading, where there is identical code but cffetypes:

iInt abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }

e Template routine eliminates duplicate code by using tyges a
compile-time parameters:

template <typename T> T abs(T val) { return val >= 0 ? val : -val; }

e template Introduces type paramet@mused to declare return and
parameter types.

e At a call, compiler infers typ& from argument(s), and constructs a
specialized routine with inferred type(s):

cout << abs(1)<<" " <<abs(-1) <<endl/l T-> int
cout << abs(1.1)<<" " <<abs(-1.1) << endl; // T -> double

e Template type prevents duplicating code that manipulatés et
types.

CS 246 138

e E.g., collection data-structures (e.g., stack), have comaode to
manipulate data structure, but type stored in collectiarega

template <typename T, int N = 10> struct Stack {
T elems[N]; // maximum N elements
Int size;
Stack() { size = 0; }
void push(T e) { elems[size] = e; size += 1, }
T pop() { size -= 1, return elems]size]; }

%

e Type parametef, declares the element type of ar&yms, and return
and parameter types of the member routines.

e Integer parameteN, denotes the maximum stack size.

e For template types, the compiler cannot infer the type patamso it
must be explicitly specified:

CS 246 139

Stack<int, 20> si; /I stack of int
Stack<double > sd: /| stack of double
Stack< Stack<int> > ssi; /] stack of stack of int
si.push(3);

sd.push(3.0);
ssi.push(si);
Int 1 = si.pop();
double d = sd.pop();
si = ssi.pop();
e There must be a space between the two ending chevrons-0s
parsed asperator>> .

e C++ Standard Template Library (STL) provides differentdsrof
containersvector, stack, queue, list, deque, set, map.

e STL vector container is an alternative to C/C+ arrays.

CS 246 140

#include <vector>
Int i, size;
cin >> size;
vector<int> vals(size); // think int vals[size]
for (i =0;i<vals.size();i+=1){
cin >> vals.at(i); // think valsi]

}

vector<int> v; I/ think: int v[]

v = vals; /[array assignment

for (1=vsize()-1,0<=1;1-=1){
cout << v.at(i) << " ";

}

cout << endl;

e vector IS dynamically sized, length is accessibige, has subscript
checkingat, and supports assignment.

e \ector declaratiomayspecify an initial size, e.gvector<int> vals(size),
like a dimension.

e While the size of a vector may increase (or decrease) dyradyit is
more efficient to dimension, when the size is known.

e Matrix declaration is a vector of vectors, e.g.,

CS 246 141

vector< vector<int> > m(5), which specifies 5 rows.

#include <vector>

vector< vector<int> > m(5); // 5 rows

for (int r=0;r<m.size(); r += 1) {
mlr].resize(4); I/l 4 columns per row
for (int ¢ =0; c <mjr].size(); c += 1) {

mir][c] = r+c; // or m.at(r).at(c)

}

}

for (int r=0;r<m.size(); r += 1) {
for (Int ¢ =0; c <mirl.size(); c +=1) {
cout << mjfr][c] << ", ";
}

cout << endl;

}

e Before values can be assigned into a row, each row is dimeedio the
specific sizem|[r].resize(4).

¢ All loop bounds are controlled using dynamic size of the reve@umn.

e If Indexed (direct) access is not required, use more efficd. list
container(s):

CS 246 142

#include <list>
struct Node {
char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

I
list<Node> top; // doubly linked list
for (Int 1=0;1<10;1+=1){ [/l create list nodes
Node n("a’ +i, i, i+0.5); // node to be added
top.push__back(n); // copy node at end of list
}
list<Node>::iterator ni; /[iterator for doubly linked list
for (ni = top begin(); ni != top. end() ++ni) { /] traverse list
cout << "c:" << ni->c << " << ni->i << " d: " << ni->d << endl
}
cout << endl;
while (O < top.size()) { // destroy list nodes
Node n = top.front(); // copy node at front of list
top.erase(top.begin()); /I remove first node
cout << "c:" <«<nc<<" i:" <«<ni<<” d:" << nd << endl
}

e First loop creates and initializes a node, and galkh _back to copy

CS 246 143

node at end (back) of list.
e push_back IS also used witlvector to extend a vector’s size.

e Containers either copy nodes into the list or point to theasazltside
the list.

e Copying implies node type must have default and/or copytcoa®r so
Instances can be created without having to know constracgmments.

e STL containers use copying and requires node type to haviaaltde
constructor.

e Containers use aierator to traverse nodes so knowledge about
container implemented is hidden.

e Iterator capabilities depend on container, e.g., a singked list only
allows unidirectional traversal while doubly linked lislcavs
bidirectional traversal.

e STL containers provides iterator(s) as a nested object B/pe
list<Node> haslist<Node>::iterator.

e Second loop traverses list using iterator indeéxfrom start of the list,
stepping through nodes until is pastthe listend().

e Note, iteratomi points to a node in the list so field access is wih

CS 246 144

e As well, the operator++” advancesi to the next node.

e Third loop destroys list by repeatedly erasing the first naakd the
number of nodes is zero.

e For bidirectional iterators, operator™ moves in the reverse direction to

++7,

e STL template-routinéor_each provides an alternate mechanism to
iterate through a container, applying an action to each:node

CS 246 145

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) {cout <<i<<™ ";} // print node
iInt main() {
list< Int > int_ list;
vector< int > int_vec;
for (Int 1=0;1<10;1+=1) { Il create lists
Int_ list.push__back(1);
Int_vec.push_back(i);
}
for _each(int_list.begin(), int_list.end(), print); // print each node
for _each(int_vec.begin(), int_vec.end(), print);

}

e An action routine tdor_each iIs called for each node in the container
passing the node to the routine for processing.

e In general, the type of the action routinevsd rtn(T), whereT iIs the
type of the container node.

e E.g.,print has annt parameter matching the container node type.

CS 246 146

e More complex actions are possible by constructing a “fuumctibject”,
called afunctor, using the routine-call operator.

e £.g., an action to print on a specified stream must store tharatand
have aroperator () allowing the object to behave like a function:

struct Print {

ostream &stream; I/l stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i<<"™ ";}
I3
iInt main() {
list< Int > int_ list;
vector< int > int_vec;
for _each(int_list.begin(), int_list.end(), Print(cout));
for _each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e EXpressiorPrint(cout) creates a constaRtint object, andor_each calls
operator ()(Node) In the object.

CS 246 147

2.17 Namespace

e C+ has a mechanism to organize complex programs and kigrari
composed of multiple types and declarations.

e E£.g., namespacad contains all the I/O declarations and container type:
e Names in a namespace form a declaration region, like theesufdgock.

e Unlike Java, C+ allows multiple namespaces to be definedila.a

e Types and declarations do not have to be added consecutively

Java source file C+ source file
package Foo; // one package / file | namespace Foo {
Il types / declarations Il types / declarations
}

namespace Bar {
Il types / declarations
%

namespace Foo {
/[more types / declarations
I

e Contents of a namespace can be accessed using full-quakinés:

CS 246 148

Java CH

Foo.T t = new Foo.T(); | Foo:T «t = new Foo::T();

e Or by importing individual items or all of the namespace eont

Java CH
Import Foo.T; | using Foo::T; /[import individual
Import Foo.x; | using namespace Foo; // import all

2.18 Abstraction/Encapsulation

e Abstraction is the separation of interface and implementation allowing
an object’s implementation to change without affectinggesavhich is
essential for reuse and maintenance.

e £.g., a user of typ€omplex should not have or need direct access its
Implementation to perform operations:

struct Complex {
double re, im; // implementation data
... Il Interface routine members

%

CS 246 149

e Possible to change from Cartesian to polar coordinates s&d u
Interface remains constant.

e Developing good interfaces for objects is important.

e Encapsulationis hiding the implementation for security or financial
reasonsgccess contro).

e Abstraction and encapsulation are neither essential nograred to
develop software.

e Uses follow a convention of not directly accessing the im@atation.
e However, relying on users to follow conventions is dangsrou
e Encapsulation is provided by a combination of C and C+ festu

e C features work largely among source files, and are indy¢ettl into
separate compilation.

e C+ features work both within and among source files.
e Like Java, C+ provides 3 levels of visibility control forjelst types:

CS 246 150

Java CH

class Foo { struct Foo {

private ... private : /[within and friends

/I private members

protected ...| protected : // within, friends, inherited

e /I protected members

public ... public : /I within, friends, inherited, users
1 /I public members
’ %

e Java requires encapsulation specification for each member.

e C+ groups members with the same encapsulation, i.e., atlbaes after
a label,private , protected or public , have that visibility.

e Visibility labels can occur in any order and multiple timesain object
type.

e Only the object type can access the private memlsersnplementation
members are normally private

¢ Inherited object types can access and modify public anckpred
members allowing access to some of an object’s implementati

CS 246 151
e Public members define an object typeiterface, i.e., what a user can
access.

e \While a user can see private and protected members, thegtdaan
accessed, preventing code from violating abstraction.

e struct has an implicipublic inserted at the beginning, i.e., all members
are public.

e class Is the same astruct except it has an impliciirivate at the
beginning, i.e., all members are private:

CS 246 152

class Base {
private :

Int X;
protected :
Int v;
public :

Int z;
%

class Derived : public Base {
public :
Derived() { x; y; z; };

int main() {
Derived d;
d.x; d.y; d.z;
}

e Encapsulation introduces a new problem for routines oetsfcn
object used to implement binary operations for an object.

e An outside routine may need to access an object’s implernenidut it
cannot access private members.

e C+ provides a mechanism to state that an outside routinmsexl

CS 246 153
access to its implementation, callEdendship (similar to package
visibility in Java).

class Complex {
friend Complex operator +(Complex a, Complex b);

%
Complex operator +(Complex a, Complex b) { ... }

e Thefriend prototype indicates a routine with the specified name and
type may access this object’s implementation:

CS 246 154

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im;

public :

double abs() { return sqrt(re x re + iIm = im); }
Complex() { re = 0.; im =0.; }
Complex(double r) {re =1, im =0.; }
Complex(double r, double 1) {re =1, Im=1; }

%

Complex operator +(Complex a, Complex b) { ... }

ostream &operator <<(ostream &os, Complex c) { ...}

2.19 Separate Compilation

e Like Java’s package access, a C/€stirce fileprovides another
mechanism for encapsulation.

e By default, all global variables and routines in a sourcedrke exported
outside the file (package).

e To encapsulate declarations in a source file, the declaraticst be
gualified withstatic .

CS 246 155

/I file.C

Int 1, I/ public (exported)
void f(...) {} I/ public (exported)
static int |; /I private

static void g(...) {} /I private

e Like Java, a type is encapsulated in a source file, unlesscakpl
denoted as public.

e Java has automatic access to public contents of a source file.

e First, C/C+ require the use of the preprocessor and forgactarations
to access public contents.

e Declarations are divided into its interface and implemeaan two (or
more) files.

e Interface declarations are usually composed of the prpéoty
declaration(s) (but possibly some implementation).

e Implementation declarations are composed of the actus@daions
and code.

e Second, interface is entered into one or more include fiefd¢s), and
the implementation is entered into one or more source fie8lés).

CS 246 156

e Encapsulation is provided by giving a user access to onlynitiade
file(s) and the compiled source file(s), but not the impleraeon in the
source file(s).

e Most software supplied from software vendors comes this way

¢ Include files contain prototypes for exported variables @udines,
which are qualified witlextern (not types):

/I file.h
extern int 1 /[public, implementation elsewhere
extern void f(...); // public, implementation elsewhere (extern optional for

e Complex prototype information is placed into fimplex.h, which users
Include in their programs.

CS 246 157

#ifndef = COMPLEX_H_
#define COMPLEX_H__

. // protect against multiple inclusion
#include <iostream> /| access: ostream

using std::ostream,;
extern void complexStats();
class Complex {

friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im; I/l exposed implementation
public :
Complex();
Complex(double r);
Complex(double r, double 1);
double abs();
%
extern Complex operator +(Complex a, Complex b);
extern ostream &operator <<(ostream &os, Complex c);
#endif // __ COMPLEX_ H

e Complex Implementation information is placed in fitemplex.C.

CS 246 158

#include "conpl ex. h"
#include <cmath> /[access: sqgrt
using namespace std;
/[private declarations
static int cplxObjCnt = 0O; /[must be Initialized
Il interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
complex::complex() { re = 0.; im = 0.; cplxObjCnt += 1; }
complex::complex(double r) { re =r; im = 0.; cplxObjCnt += 1, }
complex::complex(double r, double i) { re = r; Im = i; cplxOb|Cnt += 1; }
double complex::abs() { return sqrt(re = re + Im = Im); }
complex operator +(complex a, complex b) {

return complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &os, complex c) {

e .C file normally includes theh file so that there is only one copy of the
constants, declarations, and prototype information.

e cplxObjCnt Is qualified withstatic to make it a private variable to this
source file.

CS 246 159

e NO user can access it, but each constructor implementadion c
Increment it when &omplex object is created.

e All static variables, whether in a class or file, must be exqilly
initialized in the .C file, e.g.,cplxObjCnt IS set to0.

e Users caltomplexStats to print the number o€omplex objects created
so far in a program.

¢ Notice, all the member routines Gbmplex are separated into a forward
declaration and an implementation after the object typewahg the
Implementation to be placed in the file.

e Note, by readingh, it may be possible to determine the implementation
technigue used, so there is only partial encapsulation.

e To provide complete encapsulation requires abstract tgggraore
expensive) references:

CS 246 160

#iftndef = COMPLEX_ _H_
#define = COMPLEX H // protect against multiple inclusion
#include <iostream> /[access: ostream
using std::ostream,;
extern void complexStats();
class Complex {

friend Complex operator +(Complex a, Complex b);

friend ostream &operator <<(ostream &os, Complex c);

struct Compleximpl; // hidden implementation, nested class
Compleximpl &impl; // Indirection to implementation

public :
Complex();

Complex(double r);

Complex(double r, double 1);

~Complex();

Complex(const Complex &c); // copy constructor

Complex &operator =(const Complex &c); // assignment operator
double abs();

%
extern Complex operator +(Complex a, Complex b);

extern ostream &operator <<(ostream &os, Complex c);
#endif // _ COMPLEX H_

CS 246 161

e Compiler requires a template definition for each usage solbtite
interface and implementation of a template must be intefile,
precluding some forms of encapsulation.

CS 246 162

#include "conpl ex. h"

#include <cmath> /[access: sqgrt

using namespace std;

/[private declarations

static int cplxObjCnt = 0O;

struct Complex::Compleximpl { /[actual implementation, nested class
double re, im;

I3

Il interface declarations

void complexStats() { cout << cplxObjCnt << endl; }

Complex::Complex() : impl(xnew Compleximpl) {
impl.re = 0.; impl.im = 0.; cplxObjCnt += 1;

}

Complex::Complex(double r) : impl(xnew Compleximpl) {
impl.re = r; impl.im = 0.; cplxObjCnt += 1;
}

Complex::Complex(double r, double i) : impl(xnew Compleximpl) {
impl.re = r; impl.im = i; cplxObjCnt += 1;
}

Complex::~Complex() { delete &impl; }

Complex::Complex(const Complex &c) : impl(xnew Compleximpl) {
impl.re = c.impl.re; impl.im = c.impl.im; cpIxOb)Cnt += 1;

}

CS 246 163

Complex &Complex::operator =(const Complex &c) {
Impl.re = c.impl.re; impl.im = c.impl.im; return «this;
}

double Complex::abs() {
return sqrt(impl.re = impl.re + impl.im » impl.im);
}

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &o0s, Complex c) {

return os << c.impl.re << "+" << c.impl.im << "i ";
}
e A copy constructor and assignment operator must be used$®ca
complex objects now contain a reference pointer to the imptdation.

e A reference pointer cannot be copied on initialization agsment
without generating storage management problems.

e £.g., copying the reference pointer can result in two complgects
pointing at the same complex value and both may eventudéynit to
delete it.

e As well, overwriting a reference pointer may lose the onlynper to the

CS 246 164

storage so it can never be freed.

e An encapsulated object is compiled using #fieompilation flag and
subsequently linked with other compiled source files to farprogram:

g++ -c complex.C

e Creates fileeomplex.o containing a compiled version of the source code

e TO Use an encapsulated object, a program specifies the agcesdude
file(s) to access the object’s interface:

#include "conpl ex. h"
#include <iostream>
using namespace std;
iInt main() {
Complex X, vy, z;
X = Complex(3.2);
y = x + Complex(1.3, 7.2);
z = Complex(2);
cout << "Xx:" << x<<" y:" «<y<<" z2:" <<z << end;

}
e Then links with any necessary executables:

CS 246 165

g++ usecomplex.C complex.o

e Notice,iostream IS included twice, once in this program and once in
complex.h, which is why each include file needs to prevent multiple
Inclusions.

3 Software Tools

3.1 Shell

e After signing onto a computer, there must exist a way to dgpl
iInformation and perform operations.

e The two main approaches are graphical and command-line.
e A graphical interface:

—uses icons to represent programs (actions),
—clicking on an icon launches (starts) a program,
—the program may pop up a dialog box to obtain arguments tafgpec
Its execution.
e A command-line interface

—uses text strings (names) to represent programs (commands)
—a command is typed after a prompt in an interactive area toista
—arguments follow the command to specify its execution.

e Graphical interfaces can be convenient for people, butseld
generalizes to a programming environment.

© Peter A. Buhr
166

CS 246 167
e Command-line interfaces are slightly more work for peopi,
generalizes to a programming environment.

e A shellis a program that reads commands and shell statements, and
Interprets them.

e Shell statements often form a complete programming langjwaiip
string variables and executable statements.

e Unix shell falls into two basic camps, sh and csh, each wiflerdint
syntax and semantics.

e sh has variants: ksh, bash
e csh has variants: tcsh
e In UNIX, the area (window) in which a shell runs is called>darm.

e Each shell line begins with a prompt denoted by%hsign (the prompt
can be customized).

e A command is typed after the prompt.
e A command ixnot executed untikReturn> IS pressed:

CS 246 168

% date<Return>

Sun Oct 19 19:27:30 EDT 2008
% uname

SunOS

e Most commands have options, specified by a minus followedayar
more characters, which change how the command operates.

% uname -a
SunOS servicesl6.student.cs 5.8 Generic_117350-56 sun4u sparc SUNW

e Unfortunately, there is no standardization for option axrdnd names.
e Most shells terminate with commalesit.

e If an xterm’s shell terminates, the xterm terminates, artdafxterm is
the login window, you are signed off of the computer.

3.1.1 File System

e Files are containers for data stored on secondary storamefsually
disk).

e Each file has a unique name.

CS 246 169

e UNIX organizes file names in a hierarchy: directories arevéréices
and files are the leaves.

/ root of the local file system
usr
bin more UNIX commands
lib system libraries
Include system include files, .h files
bin basic UNIX commands
lib system libraries
tmp system temporary files
ul user files
u2 user files
jfdoe student home directory
.cshrc, .emacs, .login, ... student’s files
CsS246
assignl
ql, 92, g3
u magic directory combining what is under ul-u5

e usr, etc, bin, lib — most of the UNIX commands, and system include anc

CS 246 170

library files.
e tmp — location of temporary files created by commands.

e ul, u2, u3, u4, us — user files are distributed across these directories.
The directory for a particular user is called the useosne directory.

e U — magic directory that contains all of the users under the individua
user directories.

e A file is referenced in one of two wayabsolute pathnameor relative
pathname

e An absolute pathname is a list of all the directories fromrtiad to the
file separated by the charactét. “

e E.g., the absolute pathnam#jfdoe/cs246/assignl/ql denotes the filga.
e The nameu2/jfdoe/cs246/assignl/ql denotes the same file.

¢ A relative pathname requires a starting location other thamoot,
called thecurrent directory .

¢ \When you sign on, the current directory is set to your homectiary.

e Any file name not starting with/* is automatically prefixed with the
current directory.

CS 246 171

e E.g., If useljfdoe signs on and specifies the file nans246/assigni/ql,
then the actual file used fg/jfdoe/cs246/assign1/ql.

e There are special directory names,(tlot), “..” (dot dot), and =
(tilde).

e “." Is the name of the current directory, slos246/assignl/ql is the same
as/u/jfdoe/cs246/assignl/ql.

e “..” Is the name of the directory above the current directoey, the
parent directory, so./iffdoe/cs246/assignl/ql IS the same as
/u/jfdoe/cs246/assignl/ql.

e “~" IS a user’'s home directory, sgcs246/assignl/ql IS the same as
/u/jfdoe/cs246/assignl/ql.

3.1.2 Pattern Matching

e Shell’'s support pattern matching of file names (globbingetiuce
typing lists of file names.

e Pattern matching is provided through special characte?s|, {,
denoting different wildcards.

CS 246 172

¢ (Different shells and commands support slightly differfemins and
syntax for patterns.)

e A file name containing a special character is enclosed inaplot

¢ « matches O or more characters, e.g., if the current direcsory
/uljfdoe/cs246/assignl, file namegx, matches file namesl, g2, g3.

¢ ?, matches 1 characters, e.g., file nagpematches file names., g2, g3.
e [...], matches any characters in the set, e.g., fileng®3] matches file
namesyl, g2, g3

e ranges are possible using the hypherg] matches characters 0,1,2,3,
[a-zA-Z] matches a lower or upper case letjea;zA-Z] matches any
character not a letter.

e range can be modified withto be any number of characters in the set,
[a-zA-Z]« matches any number of lower or upper case letters.

e {...}, matches any alternative in the Sgtc,cpp,C}, matches.cc, f.cpp,
f.C.

e Patterns can be composed, egfp;9]«ax.c matches file names that start
with g followed by 0 or more digits, followed by, followed by O or
more characters, and terminating with the two charactefs *“

CS 246 173

3.2 Commands
3.2.1 Shell Commands

e Commands executed directly by the shell because they ysiyzdate its
state.

e cd change the current directory.

cd [new-directory-path]

—argument must be a directory pathname and not a file pathname
—cd .. moves you up one directory level
—no directory pathname means moves to home directory (same-as
—cd ~/bin moves to thevin directory contained in your home directory
— If the specified path does not exist, fails and the current directory is
not changed.

e time execute a command and print a time summary

e history print a numbered history of last N commands entered.
—re-run command, type “IN”;
—“I"" re-runs the last command.

CS 246 174

—re-run last command starting with the string “xyz”, use tbenemand
1 !XyZ”_

e alias define string substitutions for command names.

alias [command-name [=] value]

—without arguments, print all currently defined alias namas\alues.
—value IS substituted for commangmmand-name (= may be required)
—provide nickname for frequently use or variation of a comchan

% alias d date
% d
Mon Oct 27 12:56:36 EDT 2008

—aliases are composable:
% alias now d

% now
Mon Oct 27 12:56:37 EDT 2008

—useful for setting command options for particular commaadsn:
% alias cp cp -

% alias mv mv -
% alilas rm rm -i

CS 246 175

which always uses théoption on commandsp, mv andrm.

— A segquence of commands can be specified separated by semscol
In quotation marks:

% alias off “cl ear; | ogout™
which clears the screen before logging off.
—An alias can be overridden by putting quoting the commandeiam

% "rm’ -r xyz
which does not add th&option

—An alias entered on a command line only takes effect for tiesat
shell session.

—There are two options for making aliases permanent for adoggn
session:

1. insert thaalias commands in yougshell}rc file

2. place a list otlias commands in a file calledliases in your home
directory and execute that file from yogshell}rc file.

3.2.2 System Commands
e Commands executed by UNIX.

CS 246 176

e pwd print the current directory.
e |s lists the directories and files in the specified directory.

Is [-al] [directory-name]

—-a lists all files, including those that begin with a dot.

—-l generates bong listing for each file: mode, number of links, owner,
size in bytes, last modification time and file name.

—If no directory Is given, the current directory Is assumed.
e mkdir creates a new directory in the current directory.

mkdir directory-name-list

e cp copies files, and with the option, copies directories.
cp [-i] source-file target-file
cp [-1]] -r source-file/directory-list target-directory

—-i prompt for verification if a target file is being replaced.

—-r recursively copy the contents of a source directory to thgeta
directory.

e mv moves files and/or directories to another location in thenigearchy.

CS 246 177

mv [-I] source-file target-file
mv [-I] source-file target-directory
mv [-I] source-directory target-directory

—If the target-file does not exist, the source-file is renanoduerwise
the target-file is replaced.

—-i prompt for verification if a target file is being replaced.
e rm removes (deletes) files, and with theption, removes directories.
rm [-ir] directory-list
—rmdir command Is the same as -r.
—-i prompts for verification for each file/directory being remady

—-r recursively delete the contents of a directory.

—UNIX does not give you a second chance to recover deleted $ibes
you must be very careful when using.

e more/less/cat list a file’'s content to standard out.

—more/less paginate the contents one screen at a time
—cat shows the contents in one continuous stream.

e Ipr/lpg/lprm add, query and remove files from the printer queues.

CS 246 178

lpr [-P printer-name] options file-list

Ipg -P printer-name

lprm -P printer-name job-number
—1f no printer is specified, the queue is a default printer.
—each job on a printer’s gueue has a unique number.
—use this number to remove a job from a print queue.

3.2.3 File Permissions

e UNIX file structure supports 3 levels of security on each fileioectory:

—user : owner of the file,
—group : arbitrary name associated with a number of userids,
—other : any other userid.

e At each level, a directory or file can have the following pessmns:
read, write, and execute (or search).

e Readable and writable allow any of the specified users tooead
write/change a file/directory.

e Executable for files means the file can be executed as a commagnd
file contains a program or shell script.

CS 246

179

e Executable for directories means the directory can be Bedroy
certain system operations but not read in general.

e Usels -l to see file permission information in the current directory:

dr wx- - - - - - / Ccs246
dr wxr - Xx--- 5 ¢s246
dr wx- - - - - - 2 Cs246
dr wx- - - - - - 2 Cs246

-TW------ 1 cs246
-TW------ 1 cs246

cs246 4096 Cct
cs246 4096 Cct
cs246 4096 Cct
cs246 4096 Cct
cs246 22714 Cct
cs246 63332 Cct

20
15
19
21
21
21

13:
08:
18:
08:
08:
08:

07
07
19
51
50
50

v

o

C++/
Tool s/
not es. a
notes.d

e Columns are permissions, #-files-in-directory, ownerugrdile size,

change date, file name.

e chgrp command changes the group associated with the file:

chgrp group-name file-list

e Permission information is complex:

CS 246 180

d = directory user permission
-=Tile group permissions
i other permissions

dirwx| Ir- x - - X

e £.g.,drwxr-x---, Indicates

—directory in which the user has read, write and execute [®sions,
—group has only read and execute permissions,
—others have no permissions at all.

¢ In general, you should not allow other users to read or writeyr files.

e Default permissions on a file ane-r----- (usually), which means owner
has read/write permission, and group has only read pemnissi

e Default permissions on a directory avex------, which means owner has
read/write/execute.

e chmod command allows adding or removing from any of the 3 security
levels.

chmod mode-list file-list

CS 246 181

e mode-list has the fornsecurity-level operator permission.
e security levels are denoted byfor you userg for group,o for other.
e Operator+ adds permission,removes permission.

e Permissions are denoted bfor readablew for writable andx for
executable.

e The elements of theode-list are separated by commas.

e E.g., to remove read and write permissions from securitgléegroup
and other for filexyz, in the long and short forms:

chmod g-r,0-r,g-w,0-w Xyz
chmod go-rw Xxyz

3.2.4 Input/Output Re-direction

e Input or output of commands can be redirect by the shelldoifsources
other than the keyboard (standard in) and screen (standéetor).

e Shell provides the redirection operaterfor redirecting standard input
and> for redirecting standard output.

e A command Is unaware of the redirection.

CS 246 182

e Is -| > xxx put output ofis into file xxx
e more < xxx get input from filexxx and print on standard output
e more < xxx > yyy get input from filexxx and print to fileyyy

e Normally, standard error (e.g., error messages) are noected
because of their importance.

e To redirectall output, use the redirection operat& in the csh and
2>&1 In sh.

(csh) % a.out >& xxx # put standard out and error into file xxx
(sh) % a.out 2>&1 xxx # put standard out and error into file xxx

e Shell pipe operatgrtakes the output of one command and makes it the
Input to the next command, without having to create an inéshate file.

e |s -al | more
e Output from thds command is “piped” into thenore command as input.

CS 246 183

3.3 Compilation
header files C/C++ source files

— =
Cpp

¢ (;E -E, -Ddefine=value

preprocessed source co

cclplus
- -V, -g, -S, -c, -01/2/3

assembly code |
as
object code

other object-code ¢ } -0 object/pgm-name
files and libraries ~ 'd

N

Ja.out object

CS 246 184
e Compilation is the process of translating a program from human to

machine readable form.
e The translation is performed by a tool calledanpiler.
e Compilation is subdivided into multiple steps, using a nemtif tools.
e Often a number of options to control the behaviour of eacp. ste
e Option are presented fgr+, but other compilers have similar options.
e General format:

g++ option-list infiles -0 outfile
whereinfiles Is C/C+ source.C) and object files.f).

3.3.1 Preprocessor

e Preprocessor (cpp) takes a C+ source file, removes compaailts
expandstinclude , #define , and#if directives.

e Options:

—-E run only the preprocessor step and writes the preprocessoutdo
standard out.

CS 246 185

% g++ -E source-files
... much output from the preprocessor

—-D define and optionally initialize preprocessor variablesrfithe
compilation command:

% g++ -DDEBUG=2 -DASSN ... source-files

same as putting the followingefine s in a program without changing
the program:

#define DEBUG 2
#define ASSN

3.3.2 Compiler (cclplus)

e Compiler (cclplus) takes a preprocessed file and convextGth
language into assembly language for the target machine.

e Options:
—-v shows each step of the compilation and information about wha
each step is doing:

% g++ -v source-files
... much output from each compilation step

CS 246 186

Look for these system include files:

#include <...> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/1486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

wherecpp looks for system includes.
—-g add symbol-table information to object file for debugger
—-S stop after translation and write assemble code tatilece-file.s

—-01/2/3 optimize translation to different levels, where ebssel takes
more compilation time and possibly more space in executable

3.3.3 Assembler

e Assembler (as) takes an assembly language file and converishject
code (machine language).

CS 246 187

3.3.4 Linker

e Linker (ld) takes the implicito file from translated source and any
explicit .o files from the command line, and combines them into a new
object or executable file.

e Linking options:
—-0 gives the file name where the combined object/ executablade.
—If no name is specified, default nara@ut is used.

3.4 Debugging

e Debugging is the process of determining why a program does &a
Intended behaviour.

e Often debugging is associated with fixing a program afterlar&a

e However, debugging can be applied to fixing other kinds obfmms,
like poor performance.

e Before using debugger tools it is important to understandtwhu are
looking for and if you need them.

CS 246 188

3.4.1 Debug Print Statements

e An excellent way to debug a program isdart by inserting debug print
statements (i.e., as the program is written).

e |t takes more time, but the alternative is wasting hoursigyo figure
out what the program is doing.

e The two aspects of a program that you need to know are: where th
program is executing and what values it is calculating.

e Debug print statements show the flow of control through a anogand
print out intermediate values.

e E.g., every routine should have a debug print statemenedigginning
and end, as in:

int p(...){
// declarations
cerr << "Enter p " << parameter variables << endl;

cernr << "Exit p " << return value(s) << endl;
return r;

CS 246 189

e Result is a high-level audit trail of where the program isaeeng and
what values are being passed around.

e Finer resolution requires more debug print statements pontant
control structures:

if (a>Db){
cerr << "a > b" << endl; /[debug print

for (...){

cerr << "x=" << x<<", y=" <<y << endl; // debug print

}

} else {
cerr << "a <= b" << endi; /[debug print

}

e By examining the control paths taken and intermediate wa@merated,
It IS possible to determine if the program is executing atitye

e Unfortunately, debug print statements can generate engamounts
of output.

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which

CS 246 190

vital. (Sherlock Holmes, The Reigate Squires)

e Gradually comment out{f) debug statements as parts of the program
begin to work to remove clutter from the output, but do notteethem
until the program works completely.

e \When you go for help, either from your instructor or an adgigou
should have debug print statements in your program.

¢ In general, debug print statements never appear in thegrogou hand
In for marking.

3.4.2 Assertions

e Assertions enforce pre-conditions, post-conditions, and invasiant
which document program assumptions:

#include <cassert>
Int main(int argc, char xargv[]) {

assert(argc == 2); /[must have 1 argument
}

e \When run without an argument, this produces:

CS 246

191
% ./a.out
Assertion failed: argc == 2, file test.cc, line 3
Abort (core dumped)
e Codify program assumptions with assertions:

Int main(int argc, char xargv[]) {

vector<int> a(10), b(10);

I/l read values into a, b

assert(a.size() == b.size()); // must be the same size

for (1=0;a[il=="D0b[];1+=1){

assert(| < a.size()); /[must have an unequal element

}

cout << | << endl;

}

e Assertions can significantly increase a program’s cost.

e Compiling a program with preprocessor varialBEBUG defined
removes all asserts.

% g++ -DNDEBUG ... # all asserts removed

CS 246 192

3.4.3 Errors

e Debug print statements do not prevent errors, they simplyndiinding
errors.

¢ \What you do about an error depends on the kind of error.
e Errors fall into two basic categories: syntax and semantic.

e Syntax error Is in the arrangement of the tokens in the programming
language.

e These errors correspond to spelling or punctuation errbexwvwriting
In a human language.

e Fixing syntax errors is usually straight forward espevgidithe compiler
generates a meaningful error message.

e Alwaysreadthe error message carefully anldeckthe statement in
error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal
In Bohemia)

e Difficult syntax errors are:

CS 246 193

—Forgetting a closing or «/, as the remainder of the program is
swallowed as part of the character string or comment.
—Missing a{ or}, especially if the program is properly indented (editor:
can help here)
e Semantic erroris incorrect behaviour or logic in the program.
e These errors correspond to incorrect meaning when writirghuman
language.
e Semantic errors are harder to find and fix than syntax errors.

e A semantic or execution error message only tells why thenarag
stopped not what caused the error.

e Must work backwards from the error to determine the causkef t
problem.

In solving a problem of this sort, the grand thing isto able to reason
backwards. Thisis very useful accomplishment, and a very easy
one, but people do not practise it much. In the everyday affairs of
life it is more useful to reason forward, and so the other comes to be
neglected. (Sherlock Holmes, A Sudy in Scarlet)

CS 246 194

e £.g., an infinite loop with nothing wrong with the loop; thetialization
IS wrong.
| = 10;
while (i!=5){
i .-I:: 2;
}

e In general, when a program stops with a semantic error, gteraent
that caused the error is not usually the one that must be fixed.

e Difficult semantic errors are:

—Forgetting to assign a value to a variable before using ihin a
expression.
—Using an invalid subscript or pointer value.

e Finally, if a statement appears not to be working propeuy,|toks
correct, check the syntax.

f (a=Db){
cerr << "a == b" << endl:
}

CS 246 195

When you have eliminated the impossible whatever remains,
however improbable must be the truth. (Sherlock Holmes, Sgn of
Four)

3.5 Debugger

e An interactive, symboliciebuggereffectively allows debug print
statements to be added and removed to/from a program dyaliynic

¢ You should not rely solely on a debugger to debug a program.

e You may work on a system without a debugger or the debuggemmiay
work for certain kinds of problems.

e A good programmer uses a combination of debug print statesaernl a
debugger when debugging a complex program.

e A debugger does not debug your program for you, it merelyshglphe
debugging process.

e Therefore, you must have some idea about what is wrong with a
program before starting to look or you will simply waste ydione.

CS 246 196

3.5.1 GDB

e The two most common UNIX debuggers are: dbx and gdb.
e File test.cc contains:

1 voidr(intal]) {

2 int i = 100000000;

3 afi] +=1; // really bad subscript error
4}

5 Int main() {

6 int a[10] = { 0, 1 };

7 r(a);

8 }

e Compile program using thg flag to include names of variables and
routines for symbolic debugging:

% g++ -g test.cc
e Start gdb:

% gdb ./a.out
... gdb disclaimer
(gdb) <+ gdb prompt

CS 246 197

e Like a shell, gdb uses a command line to accept debugging amusm
e run command begins execution of the program:

(gdb) run
Starting program: /ul/cs246/u/pabuhr/teaching/notes/Tools/a.out

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 afil +=1; /I really bad subscript error

—If there are no errors in a program, running in GDB is the sase a
running in a shell.

—If there Is an error, control returns to gdb to allow examuomat
e backtrace command prints a stack trace of calleditine activations.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3

#1 0x00010764 in main () at test.cc:7

e frame [n] command moves theurrent stack frame to thenth routine
activation on the stack.

CS 246 198

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 afil += 1; // really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:7

7 r(a);

—If niIs not present, prints the current frame
—Once moved to a new frame, it becomes the current frame.

— All subsequent commands apply to the current frame.

e print command prints variables accessible in the current roubinect,
or external area.

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 afil +=1; // really bad subscript error
(gdb) print |

$1 = 100000000

—%$1 Is the name of a history variable (like history variables shall).
—Names$ N can be used in subsequent commands to access previous
values ofi.

CS 246 199
e Can print any CH expression:

(gdb) print a

$2 = (int x) Oxffbefa20
(gdb) p »a

$3 =0

(gdb) p a[1]

$4 =1

(gdb) p a[1]+1

$5 =2

(gdb) p $3

$6 =0

e set valiable command changes the value of a variable in the current
routine, object or external area.

CS 246 200

(gdb) set variable 1 = 7
(gdb) p i
$7 =7
(gdb) set var a[0] = 3
(9db) p a[0]
$8 =3
(gdb) p $3
$9=0
e Change the values of variables while debugging to:

—Investigate how the program behaves with new values without
recompile and restarting the program,

—to make local corrections and then continue execution.
e To trace program executiohreakpoints are required.

e break command establishes a point in the program where execution
suspends and control returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 6.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

CS 246 201

— Set breakpoint using routine name or source-file:line-nemmb
—If program is not compiled withg flag, only the location is given.
—Commandnfo breakpoints prints breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:.6
2 Dbreakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Breakpoints numbered consecutively framrand can be disabled,
enabled or deleted at any time using commands:

(gdb) disable 1 temporarily disable breakpoint 1
(gdb) enable 1 re-enable disabled breakpoint 1
(gdb) delete 1 remove breakpoint completely 1

(Pretend none of these commands are entered.)
e Run program again to get to the breakpoint:

CS 246 202

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /ul/cs246/u/pabuhr/teaching/notes/Tools/a.out
Breakpoint 1, main () at test.cc:6

6 int a[10] = {0, 1 };
(gdb) p al/]
$10=0

e Once a breakpoint is reached, execution of the program can be
continued in several ways.

e Step [n] command executes the nexlines of the program and stop.

CS 246 203

(gdb) step

7 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afil +=1; /I really bad subscript error
(gdb)

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afil +=1; /I really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

—If nis not present, 1 is assumed.

—<Return> without a command repeats the last command.

—If the next line is a routine call, control enters the routamel stops at
the first line.

e Next [n] command, likestep, but routine calls are treated as a single
statement, so control stops at the statement after thensocdll instead

CS 246 204

of the first statement of the called routine.
(gdb) run

Breakpoint 1, main () at test.cc:6

6 int a[10] = { 0, 1 };

(gdb) next

7 r(a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afil +=1; /I really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afil +=1; /I really bad subscript error

e continue command continues execution until the next breakpoint is
reached.

CS 246 205

(gdb) run

Breakpoint 1, main () at test.cc:6

6 Int a[10] = { 0, 1 };

(gdb) s

7 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 afil +=1; /I really bad subscript error
(gdb) p |

$4 = 100000000

(gdb) set var i = 3

(gdb) ¢

Continuing.

Program exited normally.

e finish command finishes execution of the current routine and stojh&a
statement after the routine call.

CS 246 206
(gdb) run

Breakpoint 1, main () at test.cc:6

6 Int a[10] = { 0, 1 };

(gdb) c

Continuing.

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afil +=1; /I really bad subscript error
(gdb) set var i = 3

(gdb) fin

Run till exit from #0 r (a=0xffbefa20) at test.cc:3
main () at test.cc:8

8 1}

(gdb) c

Continuing.

Program exited normally.

—Print the value returned by the finished routine, if any.

e During debugging, it is useful to print variables each titme program
stops at a breakpoint.

e Normally, requires typing arint commands each time the program stop.

CS 246

e display command is like the print command, with the addition of
printing each time the program stops.

(gdb) run

Breakpoint 1, main () at test.cc:6
6 int a[10] = { 0, 1 };

(gdb) display a[0]

1: a[0] = 67568

(gdb) s

7 r(a);

1: a[0] =0

(gdb) s

r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;

207

—Each displayed variable is numbered, in this cass,numbered 1.
—Use number to stop displaying a variable wralisplay n command.

—If a variable goes out of scope, the display stops printing.

e list command lists source code.

CS 246 208

(gdb) list
2 int 1 = 100000000;
3 ali] += 1;
4}
Int main() {
int a[10];
r(a);
}

gdb) list 3

void r(int a[]) {
int i = 100000000;
afi] += 1,

—~ 00 N O O1

}

Int main() {
Int a[10];
r(a);

O~NOOITPR~WNPE

}

—with no argument, list code around current execution locati
—with argument line number, list code around line number

e (uit command terminate gdb.

CS 246 209

(gdb) run

iBIrIeakpoint 1, main () at test.cc:6
6 int a[10] = {0, 1 };

(gdb) quit

The program is running. Exit anyway? (y or n) y

3.6 Compiling Complex Programs

e Separate compilation has an advantage and disadvantage.

e Advantage: saves significant amounts of computer and p&aopdeby
recompiling only the portions of a program that are changed.

e In theory, If an expression is changed, only that expressemus to be
recompiled.

e In practice, the unit of compilation is much coarser: ti@mslation unit
(TU), which is a file in C/C+.

¢ In theory, each line of code (expression) could be put in arsge file,
but impractical (and doesn’t work).

e SO a TU should not be too big and not be too small.

CS 246 210

e Disadvantage: TUs must depend on each other because amrogra
shares many forms of information, especially types.

e Not a problem when all the code is in a single TU (except for DBU

e As a program grows, the number of TUs grow, so does the deperde
among TUs.

e Now, when one TU is changed, it may require other TUs to chamate
depend on some or all of the shared information.

e For a large numbers of TUs, the dependencies turn into amaylet with
respect to recompiled.

3.6.1 Dependences

e Dependences in C/C+H normally occur as follows:

—eXxecutable depends anfiles
—.o files depend onc files
—.C files depend orh files

CS 246 211

source tree dependencies

X.h #include " y.h" anon.o—=x.C—=x.h
X.C #include " x.h"
y.0o—=y.C—=v.h
yh #include "zh" &-OUl)
y.C #include "y.h" z.0—=2.C—=2z.h
z.h #include "y.h"
z.C #include " z.h"

e The hierarchicasource treeis compiled as follows:

% g++ -c z.C # generates z.0
% g++ -c y.C # generates y.o
% g++ X.C y.0 z.0 # generates a.out
alternative

% g++ -c x.C # generates Xx.0
% g++ X.0 y.0 2.0 # generates a.out

e If a change is made tph, which files need to be recompiled?
e Doesany change tg.h require these recompilations?
e There is no mechanism to know the kind of change made withie a fi

CS 246 212

e.g., changing a comment, type, variable.
e SO dependence is coarse grain, basedrgichange to a file.
e One way to denote file changes is wilime stamps.

e UNIX stores in the directory the time a subfile was last changeth
second precision.

e Establishing dependencies means establishing a tempdegimmg in the
dependence graph so the root has the newest (or equal) tohtaen
leafs the oldest (or equal) time.

3.6.2 Make

e makeis a UNIX command that takes a dependence graph and uses fil
change-times to trigger rules that bring the dependengehgra to date.

e A make dependence graph expresses a relationship betweedup
and a set of sources.

e Make does not express a relationship among sources, onexikes at
the source code level and is important.

e E£.7g., source.C depends on sourceh butx.C is not a product ok.h like
X.0 IS a product ok.C andx.h.

CS 246 213

e The two most common UNIX makes are: make and gmake (on Linux,
make IS gmake).

e Like shells, there is minimal syntax and semanticaniake, which is
mostly portable across systems.

e The most common non-portable features are specifying admenes
and implicit rules.

e A basic makefile consists of string variables with initialion and a list
of targets and rules.

¢ This file can have any name, bubtke implicitly looks for a file called
makefile or Makefile if no file is specified.

e Each target has a list of dependencies, and possibly a setrohands
specifying how to re-establish the target.

variable = value

target : dependencyl dependency? ...
commandl
command?2

e make IS Invoked with a target, which is a subnode or root of a
dependence hierarchy.

CS 246 214

e make builds the dependency graph and decorates the edges wéh tim
stamps for the specified files.

e If any of the dependency files (leafs) are newer than thettfitggroot),
or if the target file does not exist, the commands are exedydie
shell to update the target (generate a new product).

e Makefile for previous dependencies:

a.out : X.0 y.0 z.0
g++ X.0 y.0 .0 -0 a.out

X.0 : X.C x.h y.nh z.h

g++ -g -Wall -c x.C
y.0 : y.C y.h z.h

g++ -g -Wall -c y.C
2.0 :z.Cz.hy.h

g++ -g -Wall -c z.C

e Update dependencies by:

CS 246 215

% gmake -n -f Makefile a.out
g++ -g -Wall -c x.C

g++ -g -Wall -c y.C

g++ -g -Wall -c z.C

g++ X.0 y.0 2.0 -0 a.out

—-n only checks the dependencies and shows rules to be trig{eese
off to trigger rules)

—-f Makefile Is the dependency file (leave off if namptim]akefile)

—a.out target name to be updated (leave off if first target)

e Eliminate duplication using variables:

CS 246 216

CXX = g++ # variables
CXXFLAGS = -g -Wall -c

OBJECTS = x.0 y.0 z.0

EXEC = a.out

${EXEC} : ${OBJECTS}
${CXX} ${OBJECTS} -0 ${EXEC}

X.0 : X.C x.h y.n z.h

H{CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

H{CXX} ${CXXFLAGS} y.C
2.0 :z.Cz.hy.h

H{CXX} ${CXXFLAGS} z.C

e Eliminate common rules:

CS 246 217

CXX = g++ # variables and initialization
CXXFLAGS = -g -Wall # can remove -C
OBJECTS = x.0 y.0 z.0

EXEC = a.out

${EXEC} : ${OBJECTS}
${CXX} ${OBJECTS} -0 ${EXEC}

X.0 : X.C x.h y.n z.h
y.0 : y.C y.h z.h
2.0 :z.Cz.hy.h

clean :
rm -rf ${OBJECTS} ${EXEC}

—gmakeknows how to construct simple rules when files have specific
suffixes and when special variable names are used.

— Targetclean removes files that can be rebuilt to save space.

gmake clean
e Eliminate dependencies:

CS 246 218

CXX = g++ # variables and initialization
CXXFLAGS = -g -Wall -MMD # build dependency graph in .d files
OBJECTS = x.0 y.0 z.0

DEPENDS = ${OBJECTS..o=.d} # substitute “.0” with “.d”
EXEC = a.out

${EXEC} : ${OBJECTS}
${CXX} ${OBJECTS} -0 ${EXEC}

clean :
rm -rf ${DEPENDS} ${OBJECTS} ${EXEC}

-include ${DEPENDS}
—g++ flag -MMD generates a dependency graph for only user source fi

X.d
X.0: X.C x.h y.h z.h

y.d
y.0: y.C y.h z.h
z.d

2.0. z.C z.h y.h
—g++ flag -MD generates a dependency graph for user and system

CS 246 219

source file.
—-include reads thed files and runs dependencies again.

3.7 Source Code Management

e UNIX files are used for TUs.
e These files only support thrirrent version of the program.
e As a program develops/matures, it changes in many ways.

e UNIX files do not support this temporal notion of a programa,,ihistory
of program over time.

e A history allows access to older versions of the programpetpg
operations like backing out of changes because of desigmeisaor
problems.

e Another issue is sharing program files among multiple deszi®each
making independent changes.

e Current sharing allows damaging the contents of the files for
simultaneous writes.

e Approaches:

CS 246 220

—Make copies of some or all of the project files before makingngies.

Wastes storage for unchanged files and burden of managimgdcop
files.

— Share files using group file permissions.

Simultaneous access is unsafe and developers cannot a@sfasin
Isolation.

— Giving each developer a separate copy of the code base.

Merging in changes from different developers is tricky anukt
consuming.

e To solve these problemssaurce control systems used to manage
cooperative work.

3.7.1 CVS

e Concurrent Versions System(CVS) is a source control system with the
following features:
—Master copy of all project files is kept inrapository.
— Multiple versions of files are automatically stored in thpasitory.
—Developers can check out a complete copy of the project.

CS 246 221

—Helpful integrated back into the repository using text niagg
Programmers still have to deal with conflicts.

3.7.2 Repository

e A shared repository must be created at some accessibl@looathe
file system:

% cd cs246

% mkdir cvsroot # make repository directory

% chgrp ¢s246 75 cvsroot # set group on directory

% chmod g+rwx cvsroot # allow group members access
% mkdir cvsroot/CVSROOT # required (administration)

% mkdir cvsroot/assn6 # specific project

e Must have administration CVSROOT directory at the root glowtory.
e Other directories at root represent projects (can have amei
e Group members must add this line to their shell startup file:

CS 246 222

sh:

% set CVSROOT /ul/userid/cs246/cvsroot
% export CVSROOT
csh:

.% setenv CVSROOT /ul/userid/cs246/cvsroot

3.7.3 Checking Out
e checkout command creates a working copy of the project:

% cvs checkout assn6 # checkout project
cvs checkout assn6

cvs checkout: Updating assn6

U assn6/y.C

U assn6/y.h

U assn6/z.C

U assn6/z.h

% cd assn6 # move into project directory
e Copies the entire project directory to the current dirgctor

e A checked out copy can be modify in any way without other depets
seeing these changes until committed.

CS 246 223

3.7.4 Adding/Editting/Removing

e add command tell CVS to add new files (in current directory) to the
repository:

% ... # add files x.h, x.C

% cvs add X.x

cvs add: scheduling file ‘x.C’ for addition

cvs add: scheduling file ‘x.n’ for addition

cvs add: use 'cvs commi t’ to add these files permanently

e Schedules files for addition, which occurs on cvs commit.
e Forgetting cvs add is a common mistake.
e Edited files (in current directory) do not require any CVS ocoamd:

% ... # edit files y.h y.C
e Implicitly schedules files for update, which occurs on cvsaat.
e remove command tell CVS to remove existing files from the reposittory

CS 246 224

% ... # remove files z.h z.C

% cvs remove z.h z.C

cvs remove: scheduling ‘z.h’ for removal

cvs remove: scheduling ‘z.C’ for removal

CVS remove: use 'cvs comm t’ to remove these files permanently

e Schedules files for removal, which occurs on cvs commit.
e In fact, any removed file can always be retrieved from old vais

3.7.5 Checking In

e commit updates the repository with the changes made in checkout
directory.

CS 246 225

% cvs commit -m . . . description of changes .. ."
CVvS commit: Examining .

RCS file: /u/userid/cs246/cvsroot/assn6/x.C,v
done

Checking in x.C;
/u/userid/cs246/cvsroot/assn6/x.C,v <-- X.C
Initial revision: 1.1

done

RCS file: /u/userid/cs246/cvsroot/assn6/x.h,v
done

Checking in Xx.h;
/u/userid/cs246/cvsroot/assn6/x.h,v <-- X.h
Initial revision: 1.1

done

Checking in y.C;
/u/userid/cs246/cvsroot/assn6/y.C,v <-- y.C
new revision: 1.2; previous revision: 1.1
done

Checking in y.h;
/u/userid/cs246/cvsroot/assn6/y.h,v <-- y.h
new revision: 1.2; previous revision: 1.1
done

CS 246 226

Removing z.C;
/u/userid/cs246/cvsroot/assn6/z.C,v <-- z.C
new revision: delete; previous revision: 1.1
done

Removing z.h;
/u/userid/cs246/cvsroot/assn6/z.h,v <-- z.h
new revision: delete; previous revision: 1.1
done

e Provides a record of the changes that have been made, wiich ar
available using cvs log.

e If -m flag not used, cvs prompts for a change description using ifor.ed
e Always make sure that your code compiles and runs before cthimn
e It Is unfair to pollute the source base with bugs.

3.7.6 Update

e Cannot commit changes if other developers have checkecamges
during a checkout.

e Changes must now be merged and then committed.
e update command merges changes into repository.

CS 246 227

e Causes merged file in current directory to be updated.
e Merge algorithm is generally very good if changes do not iayer

e Overlapping changes result in a conflict, which must be wesbl
manually.

% cvs commit

CvS commit: Examining .

cvs commit: Up-to-date check failed for ‘Makefile’

cvs [commit aborted]. correct above errors first!

% cvs update

cvs update: Updating .

RCS file: /u/userid/cvsroot/assn6/Makefile,v

retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into Makefile

e Conflict is marked irMakefile:

CS 246 228

CXX = g++ # variables and initialization
<<<<<<< Makefile
CXXFLAGS = -g -MMD

CXXFLAGS = -g -Wall
>>S>S>S>>> 1.3

3.7.7 \ersions

e Each time a file is committed, it receives a new version number
e \ersion number is displayed during commit, and at other sime
e cvs status prints version information.

e Old versions are accessible using:

cvs update -p -r 1.2 Makefile # -p prints to standard output
which prints version 1.2 of Makefile to standard output.

¢ Differences between versions can be generated:

cvs diff -r 1.2 -r 1.1 Makefile
which shows the differences between version 1.2 and velshn

CS 246 229

3.7.8 Tagging

¢ \ersion numbers are nondescript and often too low level (itde
changes here and there).

e It Is possible to give a meaningful, symbolic name to a versoften at
a stable point or before big changes.

e tag command adds a synbolic name to the current version of every fi
checked out:

cvs tag debugl # name current version “debugl”
e Use symbolic name like version number:

Cvs update -p -r debugl
e To compare named versions:

cvs diff -r debugl -r debug2

4 Software Engineering

e Software Engineering(SE) Is the social process of designing, writing,
and maintaining computer programs.

e SE attempts to find good ways to help people understand aratioghev
software.

e However, what is good for people is not necessarily goodrer t
computer.

e Many SE approaches are counter productive in the develdjpomhen
high-performance software.

e E.g.. The computer does not execute the documentation!

e Documentation is unnecessary to the computer, and sigmiffcaounts
of time are spent building it so can be ignored (program conig)e

e Remember, th&uth is always in the code.

e However, without documentation, developers have difficdésigning
and understanding software.

e £.g., designing by anthropomorphizing the computer isaald good

approach (desktops/graphical interfaces).
© Peter A. Buhr

230

CS 246 231

e \What works for people does not necessarily work for the cdempu

e Software tools spend significant amounts of time undoing &g and
coding approaches to generate efficient programs.

e It Is Important to know these differences to achieve a badstween
programs that are good for people and good for the computer.

4.1 Software Crisis

e Large software systems-(100,000 lines of code) require many people
and months to develop.

e These projects normally emerge late, over budget, and daoratwell.
e Today, hardware costs are nil, and manpower cost is great.

e While commodity software is available, someone still hagitive it.

e Since people produce softwase software cost is great.

e Coupled with a shortage of software personseproblems.

e Unfortunately, software is complex and precise, which negutime and
patience.

CS 246 232

4.2 Software Development

e Techniques for program development for small, medium, argkl
systems.

e ODbjectives:

—to plan and schedule software projects

—to produce reliable, flexible, efficient programs
—to produce programs that are easily maintained
—to reduce the cost of software

—to reduce program failure

e E.g., a typical software project:

—estimate 12 months of work
—hire 3 people for 4 months
—make up milestones for the end of each month

e However, first milestone is reached after 2 months instedd of
e To finish on time, hire 2 more people, but:

—new people require training

—work must be redivided

CS 246 233

This takes at least 1 month.

e Now 2 months behind with 9 months of work to be done in 1 montb by
people.

e To get the project done:
—must reschedule
—trim project goals
¢ In general, adding manpower to a late software project miakser.

e lllustrates the need for a methodology to aid in the devekmof
software projects.

4.2.1 Programming Methodology

e System Analysis (next year)

— Study the problem, the existing systems, the requirem#mgs,
feasibllity.

—Analysis Is a set of requirements describing the systemtspu
outputs, processing, and constraints.

e System Design

CS 246 234

— Breakdown of requirements into modules, with their relasinips and
data flows.

—Results in a description of the various modules required tha data
Interrelating these.

e Implementation
—writing the program
e Testing & Debugging
—get it working
e Operation & Review
—was it what the customer wanted and worth the effort?
e Feedback

—If possible, go back to the above steps and augment the pegec
needed.

4.2.2 System Design
e In designing a system of any size it must be modularized.

CS 246 235

e Modularization is the division of the system into smaller parts on some
systematic basis.

e Modularization is necessary to:

—make it easier to design and implement
—make it easier to read

—make it easier to maintain and modify
—abstract the data structures

—abstract the algorithms

e Two basic strategies exist to systematically modularizgstem:

—top-down or functional decomposition
—bottom-up

e Both techniques have much in common and so examine only one.

4.2.3 Top-Down Design

e Start at highest level of abstraction and break down prolotgm
cohesive units.

e Then refine each unit further generating more detail at eacsiah.

CS 246 236

e This recursive process is calletepwise refinement

e Each subunit is divided until a level is reached where thésEae
comprehensible, and can be coded directly.

e Unit are independent of a programming language, but ulehgahust be
mapped into constructs like:

—generics (templates)
—modules

—classes

—routines

e Detalils look at data and control flow within and among units.

e Implementation programming language is often chosen dtay tne
system analysis/design process.

4.2.4 Factoring

e Factoring is the modularization of code in one module into multiple
modules.

e Stop factoring when:

CS 246 237

—cannot find a well defined function to factor out
—Interface to the module would be as complicated as the maoibeaié

e Factoring is done to:
—reduce module sizeaxz 30-60 lines of code, I.e., 1-2 screens with
documentation
—make system easier to understand
—eliminate duplicate code
—localize modifications

¢ Avoid having the same function performed in more than oneuted
(create useful general purpose modules)

e Separate work from management:

—Higher-level modules only make decisions (managementahd
other routines to do the work.
—Lower-level modules become increasingly detailed andipgec
performing finer grain operations.
e In general:

—do not worry about little inefficiencies unless the code isaited a
LARGE number of times

CS 246 238

— put thought into readability of program
—avoid high levels of nesting (3-5 levels is fine)

4.3 Structured Programming

e Structured programming is about managing (restricting) control flow
using a fixed set of well defined control structures.

e A small set of control structures used with a particular paogming
style make programs easier to write and understand, as svelbatain.

e All programmers adopt this approach so there is universah(aon)
approach to managing control flow (e.g., like traffic rules).

e Developed during the 1970’s to overcome the indiscrimingetof the
GOTO statement.

e GOTO leads to convoluted logic in programs (i.e., does NQipsut a
methodical thought process).

e Arbitrary transfer of control results in programs that aif@allt to
understand and maintain.

e Fixed control structures fix the points where the flow of colhtan be
altered, and therefore, are easy to follow.

CS 246 239

e There are 3 levels of structured programming:

CS 246 240

&
,-sf-é}i e i at?,o:
i H i 14 o . I . ~% &
g ; 2 5 30 3
‘ £3 g <>z
S E a
o e @
Iy -
. 3 * °
r—l (—j * - . s g
—‘ o [‘: - Epry - s 9
L }_} ege J‘L}_A s _i,_r@—ug-jjik,s : 2
L L s
)]
2
-
-
°
0
2
o
- e
a2 3 2
EE s g
g2 5§ §
o Q9
o ° - b
] el K] E 3
I : 3)
i — = g S 2
= 4 O6E
== ' -
T 1 1])
I VR —— °
i

SRR AFJ:‘}-—‘LE-'JAJB L'_L—-ﬂ{_u;—l—gj i-i' 3 3 G s) JHJ G Jrzi ’—-;—iJ 8 Lol Gl lag) sl el Ladl el el L

PR G R o Ry)

519

CS 246 241

classical

—seqguence: series of statements

—If-then-else: conditional structure for making decisions

—while: structure for loops with test at top

Can write any program (actually only need while).
extended

— classical control structures

—repeat/do-while: structure for loops with test at bottom

— case/switch: conditional structure for making decisions
modified

—extended control structures

—one or more exits from arbitrary points in a loop

— exits from multiple nested control structures

— exits from multiple nested routine calls

Eliminates the need for flag variables.

4.3.1 Multi-Exit Loops

e A multi-exit loop (or mid-test loop) is a loop with one or more exit
locations occurringvithin the body of the loop.

CS 246

loop
exit. When | >= 10;
end]Hop
e Or allow multiple exit conditions:

loop
exit. When | >= 10;
exit. When] >= 10;

end]éop

e Eliminates priming (copied) code necessary witfile :

read(input, d); loop

while ! eof(input) do read(input, d);

exit when eof(input);
read(input, d);

end while end loop

e C/C+ 1dioms for this situation are:

242

CS 246 243

C CH
while ((d = getc(stdin)) '= EOF) |while (cin >>d)

e Results in expression side-effects and precludes analfgig/ithout
code duplication.

e The loop exit is always outdented (likése) or clearly commented (or
both) so it can be found without having to search the entiog loody.

e A multi-exit loop can be written in C/C+- in the following way
for (;;){ while (true) { do {

if (i >=10) break; if (i >= 10) break; if (i >= 10) break:
if (j >=10) break: if (j >= 10) break; if (j >= 10) break:
y y } while (true):

e Thefor version is more general as it can be easily modified to have a
loop index or a while condition.

for (Int 1=0;1<10;1+=1) {// loop index
for (; x <vy;) {// while condition

CS 246 244

¢ In general, the programming language and code-typing shoeald
allow insertion of new code without having to change exgtinde.

e E£.g., write linear search such that:

—no invalid subscript for unsuccessful search
—Iindex points at the location of the key for successful search

e Some languages have a spesiabri-circuit version of logicaland and
or with minimum evaluation.

for (i =0;i< size && key != list[i]; i += 1 }{};
Il rewrite: if (1 < size) if (key = list[i])

if (1<size){... // found
}else { ... /[not found
}

e Short-circuit logical operators are control structureg@ middle of an
expression becausa && e2 = &&(el, e2) (unless lazy evaluation).

e Alternatively, using multi-exit loop.

CS 246 245

for (1=0;;1+=1){/lor for (1=0;1<size;1+=1)
If (1 >= size) break;

If (key == list[i]) break;
if (1<size){... // found
}else { ... // not found

}

e The extra test after the loop can be eliminated by introdyitimto the
loop bodly.

for (1=0;;i+=1){

if (1>=size){... // not found
break ;
} Il exit
if (key ==1list[i]) { ... /[found
break ;
} Il exit
} /] for

e E£.9., an element is looked up in a list of items, if it is nothe dist, it is
added to the end of the list, If it exists in the list its asatsl list
counter IS incremented.

CS 246 246

for (1=0;;i+=1){
if (1>=size) {
list[size].count = 1;
list[size].data = key;
size += 1,
break ;
} /] exit
If (key == list[i].data) {
list[i].count += 1;
break ;
} /] exit
} /] for

4.3.2 Static Multi-Level Exit

e Static multi-level exit exits multiple control structures where exit points
areknown at compile time.

e Labelled exit (break) (or continue) often provides thisatapty:

CS 246 247

L1: {
... declarations ...
L2: switch (...) {

case ...
L3: for (...){
... break L1; ... // exit compound statement
... break L2; ... // exit switch
... break L3; ... // exit loop
}
break ;

... Il more case clauses

}

e L abelledbreak transfers control out of the control structure with the
corresponding label, terminating any block that it paskesuigh.

e Commonly used with nested loops:

CS 246 248

A:for () { / while (flagl && ...)
B: for () { // while (flag2 && ...)
C:for () { // while (flag3 && ...)

if (...) break A:// exit 3 levels
if (...) break B: // exit 2 levels

If () break C; // or break, exit 1 level

}
}
}

A:, B: andC: are labels.

e L abelledbreak transfers control out of thier with the corresponding
label, terminating any block that it passes through.

e Eliminates flag variables, which are the variable equivaiea goto.
e Normal and labelletireak are agoto with restrictions:

—Cannot be used to create a loop (i.e., cause a backward kratinh
program); hence, all situations that result in repeatedugx@n of

CS 246

statements in a program are clearly delineated.
— Cannot be used to branafto a control structure.

e The simple case (exit 1 level) of multi-level exit is a muditit loop.

e \Why Is good practice to label all exits?
e A static multi-level exits is written in C/C+- in the followg way:

for () {
for (;;) {
for () {

if (...)goto A:

if (...) goto B:
If () goto C; /[or break

\ o
} B
A
e return statements in a routine can generate multi-exit loop and

multi-level exit.

249

CS 246 250

e Static multi-level exits appear infrequently, but are exrtely concise
and execution-time efficient.

4.3.3 Dynamic Multi-Level Exit

e Basic and advanced control structures allow virtually amytml flow
within a routine.

e However, control flonamong routines is rigidly controlled by the
call/return mechanism.

—qgiven A calls B calls C, it is impossible to transfer diredtigm C
back to A, terminating B in the transfer.

e Dynamic multi-level exit extend call/return semanticsreamisfer in the
reversedirection to normal routine calls.

e This complex control-flow among routines is often caleeateption
handling.

e Exception handling is more than error handling.

e An exceptional eventis an event that is (usually) known to exist but
which isancillary to an algorithm.

—an exceptional event usually occurs with low frequency

CS 246 251

—e.g., division by zero, I/O failure, end of file, pop emptyckta

e EXxceptions in Java/C+ providdianited mechanism to transfer to
blocks on the call stack:

struct E {}; /Il label
void C(...) throw (E) {
. throw E(); // raise (goto)
/[control never returns here
}
void B(...) throw (E) {
...CO ...
-
void A() {
try {

L. B(LLY); .
}catch(E) {...} // handler 1

try {

L. B(LLY); .
}catch(E) {...} // handler 2

CS 246 252

St?Ck _ unwind
C | throw
B B
try try try catch(E)
A A A A A

e Stack is unwound from the raise to the handler.

e Destructors are invoked for objects contained in unwoundkd.

e Handler is called like a routine from.

e Handler continues aftery block not afterthrow .

e Do not know statically wherénrow E() is caught (handlerl or handler2).

4.4 System Design

e System designnvolves modelling a complex system in an abstract way
to provide a specific description of how the system works.

e The design grows from nothing to become a model of sufficietditito
be transformed into a functioning system.

CS 246 253

e After which, the design provides high-level documentatbthe
system, for understanding (education) and for making chaunga
systematic manner.

e Top-down successive refinement (TDSR) is a foundationahar@sm
used in all system design.

e System modelling has multiple viewpoints:

—class model describes static kinds and structure of system objects

—state model: describes dynamic (temporal) behaviour of system
objects

—Interaction model : describes the kinds of interactions among object
e Multiple design tools (past and present) for supportingesysdesign,

most are graphical and all are programming language inak&gogn

—flowcharts (1920-1970)

—pseudo-code

—Warnier-Orr Diagrams

—Hierarchy Input Process Output (HIPO)

—UML

e Design tools can be used in various ways:

CS 246 254

—to sketch out high-level design or complex parts of a system,
—to blueprint the entire system abstractly with high accuracy,
—to generate interfaces directly.

e Key advantage of design tool is the generic, abstract mddkleo
system, which can be transformed into any format.

e Key disadvantage is the design tool is seldom linked to the
Implementation mechanism, so the two often differ
(iImplementation = truth).

e As with design strategies, design tools have much in commdrsa
only one is studied.

4.4.1 UML

e Unified Modelling Language (UML) Is a graphical notation for
describing and designing software systems, with emphasiise
object-oriented style.

e UML can handle class, state and interaction modelling.u$oan class
modelling)

e Note/comment

CS 246 255

commenttextr —— - comment target

e Class diagramcollection of class templates and associated
relationships.

e Class specifies a template for objects : name, attributesatpns.

e aftribute : value description (field)
[visibility | name [“” [type] [“[" multiplicity “]”][“="d efault]
[“{" property “}"]]
—visibility : access of attribute information by other class

+ = public,— = private

—name : required identifier for attribute (like field name irusture)
—type : restriction on kind of objects associated with attr&
—multiplicity : restriction on number of objects associateth attribute

x range 0..{V|x), from O to NV or unlimited, N short for NV..N, x short
for 0. .

—default : value of newly created object

CS 246 256

—property : additional aspects of attribute, e{greadonly}
—class attributes (static) are underlined

e Operation : action changing or returning object state (method)

[visibility] name [“(" { direction parametesttribute }* “)”]

[“” return-attribute] [“ {” property “}"]

—name : required identifier for operation (like method name in
structure)

—visibility : access of attribute information by other classt+ =
public, — = private

—direction :| in | out| inout] indicates direction of parameter data flow

—parameters : input/output values for operation

—return-type : output from operation

—property : additional aspects of operation, e{ggadonly}

CS 246

attributes- Id : Integer

operations

257

Vending

- printer : Printer
- nameServer : NameServer

- sodaCost : Integer

- maxStockPerFlavour : Integer
- stock : Integer [*]

+ buy(In flavour : Flavours, inout card : WATCard) : Boole:
+ Inventory : Integer [* |
5+ restocked

+ cost : Integer

+ getld : Integer

e Object diagram : instance of a class.

vml:Vending [vm2:Vending \vma3:Vending

e Association: a named conceptual/physical connection among objects.

CS 246

258

_ Person owns Car
class diagram * * _
name 1 1.5 kind
owner purchaser
_ _ Fred:Person Honda:Car
object diagra _ _ —

name="Fredrick’ Kind="Civic”
Mary:Person Honda:Car
name="Mary” kKind="CRV”
Peg:Person Honda:Car
name="Margaret” Kind="CRV”

CS 246 259

e name depicts connection : employee, hasGame, ownsHouse

e Association is inherently bidirectional even if name inagla specific
direction.

e end names depict specific bidirectional aspect
employer| worksFor| employee

e association i®wnership (owns)

—person cammwn 0 or more cars (*)
person cammwn 1 to 5 cars

—car can bewned by O or more people (*)
car can beowned by 1 person

e Association may be implemented in a number of ways:

—pointer from one object to another
—related elements in arrays

e Assoclation Class association that is also a class

CS 246 260

Person Car
name kind
Oowns

bill of sale
licence
Mary:Person Honda:Car
name="Mary” kind="Civic”
Owns
Ted’s Honda
L345YH454

—people without cars do not need “owns” fields
cars without owners do not need “owns” fields

CS 246 201

—not real class because it cannot logically exist withoubeisgion
e Generalization: reuse through form of inheritance.

Super Super Super
Sub Sub Sub
Inheritance multiple inheritance

—Inheritance establishes “is-a” relationship on type, angse of
attributes and operations.

—Association class can be implemented with forms of multiple
iInheritance (mixin).

e Sequence diagram describes control-flow among objects with respect
to particular scenario.

—show static frame of program animation (call sequence).

CS 246

sd name

class name

4>

—® new object

messa
J€-1— self-call
-
return
et . Other-calls
_— _ _returns

delete >'<

262

CS 246 263

—show control flow

oop . [forallthings]
opt ’ | condition]
alt ’ | condition]

—complex and specific
—more concise to use pseudo-code (or actual code If it exists)
—use to show important/complex control flow sequences

e UML is significantly more general, supporting very complex

CS 246 264

descriptions of relationships among entities.

e However, it is a VERY large visual mechanisms, with seveoalfasing
graphical representations.

e Code = truth

4.5 Programming Language Selection
e iImperative, functional, logic
—Imperative : prescribes a sequence of actions directedeogtéte of

variables, which are allowed to have multiple values (vary)

—functional : like imperative, but variables are restricteanly one
value (i.e., constant)

—logic : series of logical expressions that are proven cooemcorrect
through unification
e scripting : specialized languages (often only string tyfpespecific
purpose (shell, GUI, awk, Perl)

e interactive/interpreted : not compiled, can be typed areteted
Immediately (shell language)

CS 246 265

e managed language : hide aspects of implementation to $ympli
programming, e.g., hide memory management via garbagectiolh,
execution via virtual machine

e static/dynamic type-system : variable types are fixed afm@time or
allowed to vary at runtime.

e reification : manipulate program symbol-table and code @atime,
possibly with dynamic compilation.

e Useful language properties for SE:
—abstraction/encapsulation : separate implementation interface,
and hide implementation

—module/package : high-level bundling of types/varialuledé with
global initialization, e.g., container library

x requires transitive closure of modules over program fdrahzation
(cycles?)
—class : aggregate data and code into single type
—coroutines : retain control flow knowledge across routirle ca

—concurrency : multiple simultaneous threads of executiomefently
difficult and complex)

CS 246 266

—polymorphism : generalization data/code across multypes with
similar structure and behaviour

—libraries : error-free, efficient, reusable abstractions:
* data structures
* math
x GUI
« distributed/web
—compilation/runtime errors : specific, comprehensiblermessages

—efficiency : after it works, after its good code, then make=suis
efficient

x efficiency should never be an afterthought; it comes frondgoo
programming practice

x nevertheless, programs have execution hot-spots thatessra
attention

—security : subscript checking, type checking, virtual maeh
dynamic checking, etc.

e Java : imperative, managed, static typing (inconsisteiitiftd object
types), reification, abstraction/encapsulation, packaglass (strongly
object-oriented), concurrency, medium polymorphisngédrbraries,

CS 246 267

good error reporting, average to poor efficiency

e C+: Imperative, not managed, static typing (consisteritibi& object
types), abstraction/encapsulation, weak packages, ctagses, no
concurrency, strong polymorphism, average librariesy pomr
reporting, average to excellent efficiency

e Ada : imperative, many good features, but not used much arg/mo
e Python/Ruby/Tcl : scripting
e Haskell, Scheme : functional

4.6 Development Processes

e There are different conceptual approaches for develomfigare, e.g.:

waterfall : break down project based on activity and divide activities
across a timeline
—activities : (cycle of) requirements, analysis, desigmliag, testing,
debugging
—timeline : assign time to accomplish each activity up to @coj
completion time

CS 246 268

iterative/spiral : break down project based on functionality and divide
functions across a timeline

—functions : (cycle of) acquire/verify data, process daemagate data
reports

—timeline : assign time to perform software cycle on each fionaup
to project completion time

staged delivery. combination of waterfall and iterative

— start with waterfall for analysis/design, and finish witbrétive for
coding/testing

agile/lextreme: short, intense iterations focused largely on code (versu
documentation)

— often analysis and design are done dynamically
— often coding/testing done in pairs

e Pure waterfall is problematic because all coding/testmmges at end--
major problems can appear near project deadline.

e Pure agile can leave a project with little or no documeniatio
e Selecting a process depends on:
—Kkind/size of system

CS 246 269

—quality of system (mission critical?)
—hardware/software technology used
—kind/size of programming team
—working style of teams

—nature of completion risk
—consequences of failure

— culture of company

e Meta-processes specifying the effectiveness of processes

— Capability Maturity Model Integration (CMMI)
— International Organization for Standardization (ISO) @00

e Requirements

—procedures cover key aspects of processes
—monitoring mechanisms

—adequate records

—checking for defects, with appropriate and correctiveoacti
—reqgularly reviewing processes and its quality
—facilitating continual improvement

CS 246 270

4.7 Design Patterns

e Design patternshave existed since people/trades developed formal
approaches.

e E.g., parent’s raising children, mason’s building pyratoadhedral.
e Paftern is a common/repeated issue; it can be a problem or a solution

e Name and codify common patterns for educational and comratiaon
purposes.

e Software pattern are solutions to problems:

—name : descriptive name
—problem : kind of issues pattern can solve

—solution : general elements composing the design, and their
relationships, responsibilities, and collaborations

—consequences : results and trade-offs of applying therpatte
(alternative/implementation issues)

CS 246

4.7.1 Pattern Catalog

creational | structural behavioural
class factory method | adapter |interpreter
template
object| abstract factory adapter |responsibility chair
builder bridge command
prototype composite iterator
singleton decorator | mediator
facade |memento
flyweight |observer
proxy state
strategy
visitor

—

e Scope : applies to classes or objects
e Purpose : class/object creation issues, structural fanohpahavioural

Interaction

271

CS 246 272

e Class

factory method/abstract: abstract class/template defining structure
(and possibly some implementation) for creating otherseas

struct F { I/ factory/abstract-class
virtual void m1() = O;
virtual void m2() = 0O;

%
struct P1 : public F { // products
void m1();
void m2();
%
struct P2 : public F {
void m1();
void m2();

%

CS 246 273

adapter/wrapper . convert interface into another

struct T1 { struct T2 {
virtual void x(...); virtual void x(...);
virtual void y(...); virtual void z(...);
I3 3

struct T2toT1 : public T1, private T2 { // adapter/wrapper
void x(...) { T2:x(...); }
| void y(...){...z(...); ...}

void p(T1tl){...}
T2toT1 t;

p(t);

CS 246 274

template method: provide pre/post actions for subclass methods

class TM {
virtual void doAction() = 0;
protected
virtual void action() {
pre-code doAction(); post-code
}
%

class AM : public TM {
void doAction() {...}
public :
void action() { TM::action(); }
I3

CS 246 275

e Object
adapter: convert interface into another

struct T1 { struct T2 {
virtual void x(...); virtual void x(...);
virtual void y(...); virtual void z(...);

I3 3

struct T2toT1 : public T1 { // adapter/wrapper
T2toT1 &t2;

T2toT1(T2 &t2) : t2(t2) {}
void x(...) {t2.x(...); }

void y(...) {...t12.z(...); ... }
}

void p(T1tl){...}
T2 12;
T2toT1 t(t2); /[any T2

p(t);

CS 246 276

iterator : abstract mechanism to traverse container

list<Node>::iterator ni;
for (ni = top begin(); ni != top. end() ++ni) { // traverse list
cout << "c:" << ni->c << " 1 :" << ni->i << endl;
}
singleton: single instance of class

class Singleton {

struct Singletonimpl { int X, y; ... };
static Singletonlmpl «simpl; // one for all objects
public :

void m(...) { impl->x; ... impl->y; ...}
I

Singleton::Singletonimpl «Singleton::impl = new Singleton::Singletonimpl

CS 246

proxy : frontend for another object to control access

struct T {
void ml1(...);
void m2(...);

%

struct SProxyT : public T { /[static
void mi(..){... Timl(...); ...}
void m2(...){... Tim2(...); ... }

%

struct DProxyT : public T { /Il dynamic
T «t;
DProxyT() { t = NULL,; }

void mil(..){if (t=NULL)t=new T; t->ml(...); ... }

void m2(...){ ... dontneedt ...}
%

277

CS 246 278

decorator : attach additional responsibilities to an object dynartyca

struct Abstract { struct Concrete : public Abstract {
virtual void ml1(...) = O; void ml(...);
virtual void m2(...) = 0O; void m2(...);

} I3

struct Decorator : public Abstract { // generalize
Abstract xparent;
Decorator(Abstract &parent) : parent(&parent) {}

void m1(...) { parent->m1(...); } // forward
void m2(...) { parent->m1(...); } // forward
I3

struct Decoratee : public Decorator { // specialize

Decoratee(Abstract &parent, ...) : Decorator(parent), ... {}
void ml(...) { decorate Decorator::ml(...); decorate }

void m2(...) { decorate Decorator::m2(...); decorate }

I
Concrete c;
Decoratee d(c);
d.ml(...);

CS 246 279

observer: 1 to many dependency change updates dependencies

struct Observee { /I generalize
Observer &oer;
Observee(Observer &oer) : oer(oer) {}
virtual void update() = 0O;

I3
struct Observer {
list<Observee x> oees; /Il list of observees
static void perform(Observee xoee) { oee->update(); }
void attach(Observee &oee) { oees.push_back(&oee); }
void deattach(Observee &oee) { oees.remove(&oee); }
void notify() { for _each(oees.begin(), oees.end(), perform); }
%

struct Oee : private Observee { // specialize
Oee(Observer &oer) : Observee(oer) { oer.attach(=this); }
~0Oee() { oer.deattach(*this); }
void update() { perform update action }

%

Observer oer;

Oee oeel(oer), oee2(oer); /I reqgister

oer.notify(); Il trigger updates

CS 246 280

visitor : perform operation on elements of heterogeneous container

struct Visitor {
void visit(N1 &n) { perform action on node }
void visit(N2 &n) { perform action on node }
%
struct Node {
virtual void action(Visitor &v) = 0;
%

struct N1 : public Node {
void action(Visitor &v) { v.visit(«this); } // overload
%

struct N2 : public Node {
void action(Visitor &v) { v.visit(«this); } // overload

%
Visitor v;
list<Node *> |;
for (int i =0;1<10;i+=1){
l.push_back(1 % 2 == 0 ? (Node x)new N1 : (Node x)new N2);
}

for (list<Node »>:iterator it = l.begin(); it '= L.end(); ++it) {
(xit)->action(v);
}

CS 246 281

4.8 Testing and Debugging

e A major phase in program development is testing and debgggin

¢ This phase often requires more time and effort than desidrcading
phases combined.

e Testing and debugging are not one and the same.

e Testingis the process of “executing” a program with the intent of
discovering errors.

— Good test is one with a high probability of finding an error.
— Successful test is one that finds a new error.

e Debuggingis the process of determining the cause of an error
discovered by testing and correcting it.

4.8.1 Techniques

e Human testingis the process by which people attempt to discover
errors in a program by reading its source code.

—This is normally performed after the program has been coded b
before it has been run.

CS 246 282

— Studies have shown that 30—70% of logic design and codigserr
can be detected in this manner.

e Code inspectiona team of people check the program for a list of
common errors such as the following:

—data reference errors: undefined variables, bad subsanptsrect
data types

—data declaration errors: undeclared variables, imprgpeitialized
variables

—computation errors: mixed mode, overflow, zero divide, etc.
—comparison errors: incorrect relational operatersi(istead of=)

—control errors: loop termination and initialization, diff~one errors,
boundary values

—Interface errors: arguments/parameters not matched ifeuar type
(especially for external programs)

—1/O errors: incorrect formats, end of file, titles, etc.

e \Walkthrough a team of people examining the logic of a program,
executing the program by hand (“play computer™)

e Desk checkinga single person “plays computer”

CS 246 283

e Machine Testingis the process of running the program using test data
which has been designed to discover errors in the code.

—Machine testing should be attempted only after human w@&ias
been performed.

— Test-case design, for machine testing, involves detenginwhat
subset of all possible test cases has the highest prolpaidibletecting
the greatest number of errors.

—There are two major methods of doing this:

x Black-Box Testing: program’s design and internal logic are
unknown when the test cases are drawn up (i.e., progranaigtre
as a black box)

x White-Box Testing . knowledge of the program’s design and
Internal logic are used to develop the test cases

—In generating test cases it is usually best to start with thekbbox
approach and then supplement these test cases with whitiedis.

—Black-Box Testing
x equivalence partitioning
- partition all possible input cases into equivalence classe
- select only one representative from each class for testing

CS 246 284
- E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

- 3 equivalence classes, plus invalid hours

- Since there are many types of invalid data, invalid hoursaism
be partitioned into equivalence classes

x boundary value testing
- test cases which are on, above, and below boundary cases
39, 40, 41 (hours)

44, 45, 46
1, 0, 1

x cause-effect graphing
- used to generate test cases representing combinationsdifions
- construct boolean logic-graphs, which are converted tcsagtT
tables (describing test inputs and expected outputs)
* error guessing
- surmise, through intuition and experience, what the lilezhprs
are and then test for them

CS 246 285

—White-Box (logic coverage) Testing
x develop test cases which attempt to cover (exercise) evasilpe
logic path through the program
x test every decision alternative at least once
x test all combinations of decisions that may affect executio
x often Impossible because of the number of tests involved
x E.g., consider a program which contains 32 independensidas:

32 independent decisions
=> 4,294,967,296 logic paths (test cases)
assume 10 test cases can be run per second
=> over 5 yr. CPU time to run
assume 1 line of output per test case
=> 70,000,000 pages long
=> stretches half way around the world
=> would fill 1600 disc dives
assume a person can read 1 line per second
=> would take 120 yr. to read output

x Clearly in this case it is impossible to perform a complest.te

CS 246 286

4.8.2 Testing Mechanics

e Module testing involves the testing of a module separatefgie it is
Integrated into, and tested with, the entire program.

e There are two major approaches to integration:

—Non-incremental (big bang approach) : after testing (ont@sting) all
iIndividual modules, of which there may be hundreds in a |aggtem,
put all the modules together and test the entire system &t onc

—Incremental : as each module is tested, integrate it withuilesd
which have already been tested and integrated
¢ Incremental vs Non-incremental
—non-incremental requires the construction of test driteisll the
module and pass it different test values

—non-incremental also requires the construction of stubulasto
simulate the modules called by the module being tested

—non-incremental testing allows a greater number of tedig toarried
out in parallel

—Incremental requires fewer drivers and stubs since sonteeakal
modules already exist and will be used in testing

CS 246 287

—Iincremental detects interfacing problems earlier

—Iincremental debugging should be simplified because of eaitkyction
of interface problems

—Iincremental testing is usually more thorough
—Incremental testing is considered superior to non-increaléesting.

e Stub and driver:

// Stub module used in testing a higher-level routine
// which calls a table insert procedure.
void tab _insert(Rectype rec) {
cout << "TAB | NSERT | NVCKED" << endl
<< "I NSERTI NG RECORD : " << rec << end|
<< "TAB | NSERT RETURNI NG' << end];

CS 246 288

/I Driver module to test search routine.
I/l Passes multiple search KEYS and prints result of each search.
void search _driver() {
cout << "BEG NNI NG SEARCH TESTS" << endl;
for (;;){
cin >> key;
If (cin.eof()) break;
search(key, posn, found);
cout << "KEY: " << key << " POSN: " << posn << end;
cout << (found ? "" : "NOT") << "FOUND" << end];
} /I for
cout << " TERM NATI NG SEARCH TESTS" << endl;
} /I search_driver

4.8.3 Top-down and Bottom-up Incremental Testing

e Top-down incremental testing is performed by writing thghlevel
(control) module first, and testing it with stubs.

e Subordinate modules are written, tested, and integratedhe system,
until the lowest level (worker) modules have been added.

e Bottom-up incremental testing is performed by writing toe level

CS 246 289

(worker) modules first, and testing them with driver modules

e Repeated by writing, testing, and integrating successiwgher-level
modules into the system, until the top-level module is redch

e Top-down

—disadvantages

* nheed to write stub modules

x some stub modules may be complicated since they must senulat
the actions of the lower level modules

x some complex tests are hard to perform because many lovedr lev
modules are missing and can’t be simulated adequately bg stu

x until the 1/O modules are present, it is difficult to read testa and
print results (I/O modules are typically low level)

* encourages implementation to proceed in parallel withghe@f
both are top-down) which will inhibit high level design clugs

x encourages deferred testing since one is tempted to wdhdaeal
subordinate modules to be written rather than writing stubs

—advantages
x pbetter at testing the high level control logic of the system

CS 246 290

* boosts morale since parts of the system are working earkef (
overall system using stubs is running early)

e Bottom-up

—disadvantages

+ need to write driver modules

x program as an entity does not work until the last (top) modile
produced

—advantages

x better for testing low level logic
x test conditions are easier to create
* observation of results is easier (since I/O routines ardemearly)

e In practice, a combination of top-down and bottom-up tesisusually
used.

4.8.4 Higher-Order Testing

e Testing methods discussed so far only test the program fnertester’s
point of view.

CS 246 291

e That is, the tests check that the program behaves as theliebaves it
should.

e The end user, who is paying for the program, may have a diftedea
of what the program should do.

e To test the program from this point of view the following ®are
performed:

—Functional testing : test program against its specifications to
determine If it actually performs the desired functions.

— System testing: compare the program against the original objectives
to test the specifications and determine if the program carséd to
solve the original problem

— Performance testing: test if the program lives up to its speed and
throughput requirements.

—\Volume testing: test program with large volumes of test data,
possibly over long period of time.

— Stress testing test program with extreme volumes of data over a
short period of time, e.qg., can air traffic control systemdiar250
planes at same time?

CS 246 292

—Usabillity testing : test whether users have the skill necessary to
operate the system

— Security testing: test whether programs and data are secure, I.e., C¢
unauthorized people gain access to programs, files, etc.

4.8.5 Tester

e A program should not be tested by its writer, but in practigs dften
OCcCurs.

e Remember, the tester only tests what they thinks it should do

e Any misunderstandings the writer had while coding the parogare
carried over into testing.

e Any system written for an end user must be tested by the endase
determine if it Is acceptable.

e |.e., Is the system what the user ordered?
e This process is known asceptance testing

e Points to the need for a written specification to protect hloghend user
and the supplier.

CS 246 293

4.8.6 Debugging

e This is the process of first determining the cause of an ersaotered
by testing and then fixing the problem.

e While it is undesirable to test your own programs, it is galigmore
productive.

e Debugging can be very hard on the ego because you have t& sedrc
your own faults.

e |t can be taxing mentally as some problems can be very diffand
time consuming to track down.

e (I.e., Is the error in the algorithm or is it in the coding oétalgorithm.)

4.8.7 Techniques

e Brute Force

—throw in random print statements to display execution behuav
—use debugger after program fails

— By far the most common method of debugging and by far the least
efficient.

CS 246 294

—While it requires the least effort, provides the least foonsvhere and
what the problem is.

—Using these basic techniques with more sophisticated tggbs can
be very useful.

e Induction

—Involves reasoning from the particular (clues, symptomkeferror)

to the general (the cause of the error).

x locate all pertinent data : categorize output data as doorec
Incorrect

x organize data: look for contradictions

x devise a hypothesis for the cause of the problem

x prove the hypothesis is consistent with both correct andrnect
data, and does it account for all errors

e Deductive
—Involves starting with a set of theories and, using the s

elimination, working towards the cause of the error.

x list all possible causes of the problem
x use data to find contradictions to eliminate as many hypethas
possible

CS 246 295

x refine any remaining hypotheses
x prove the hypothesis

e Backtracking

—Working backwards through the program logic (from the pofrthe
Incorrect result) to determine where the program went wrong
e Debugging by Testing
—Once a problem has been discovered, make up additionabis=s$ ¢to
zero in on this particular error.
e Debugging Principles
—THINK
—If you reach an impasse, sleep on it or describe it to somesee e

— Avoid blind experimentation; it is unproductive and ofteamplicates
the problem by introducing new errors or spurious informmati

—Use debugging tools only as aids, not as the primary teclkeniqu

