Spam Track Past, Present and Future

Gordon V. Cormack

15 November 2006

Academic evaluations

vector-space, batch test/training sets, machine learning methods, accuracy as evaluation measure In-house evaluations (& testimonials) MrX Corpus (Cormack & Lynam) capture real user's email July '03 – Feb '04 careful construction of gold standard on-line testing open-source 'Bayesian' and rule-based filters ROC analysis

Tension between privacy and archival corpus standardized filter interface and toolkit Private corpora (MrX, SB, TM) MrX runs available on request Public corpus 90,000 messages (Enron + seeded spam) download: (google for TREC spam corpus) amusement: spamorham.org (J. Graham-Cumming) Online classification task

idealized user gives immediate, accurate feedback TREC 2005 Spam Track, Cormack 15 November, 2006

Spam Misclassification (logit scale)

50.00

Logistics of preparing/submitting/evaluating Public & private corpora yield comparable results Compression models worked very well (Bratko) Why no (strong) machine learning methods? Is ideal user realistic? Effect of delay/error? Are spammers defeating these methods faster than we can evaluate them? What about other real-time aspects? Blacklists,

greylists, spam warehouses?

TREC vs ML-style evaluation DMC – bit-wise compression-based method Stacking (fusion) of the TREC 2005 filters ECML Discovery Challenge Design of TREC 2006 TREC 2005 + delayed feedback + active learning **TREC 2006 TREC 2007** Other evaluations?

Misclassified Hams (of 39399)

Ling Spam Corpus

Spam Filter Usage

Filter Classifies Email Human addressee Triage on ham File Reads ham Occasionally searches for misclassified ham Report misclassified email to filter

2006 Tasks

Immediate Feedback

reprise TREC 2005 idealized user

Delayed Feedback

lazy user reports classification later, in batches batch size random, avg 500 -- 1000 messages Active Learning

sequence of unclassified messages filter requests true classification for some predict future sequence of messages

Immediate and delayed feedback tasks

Filter is invoked through standard commands: initialize

create necessary files & servers (cold start)

classify filename

read *filename* which contains exactly 1 email message write one line of output:

classification score auxiliary_file

train judgement filename classification

take note of gold-standard judgement

finalize

clean up: kill servers, remove files

Filter implements a shell program:

for n = 100, 200, 400, ...

read training data (1st 90% of corpus)

for i from 1 to n

request classification for 1 message for each message in test data (last 10% of corpus) output classification erase memory

2006 Data

Newer versions of private corpora $MrX (2003-04) \implies MrX II (2005-06)$ SB (2004-05) ==> SB II (2005-06) (Mostly) English public corpus Web retrieval of mbox-format files (1993-2006) Augmented by spam-trap spam (2006) spoofed to simulate delivery to (paired) web message Chinese public corpus (Courtesy CCERT) Mailing list ham Spam trap spam

	Private Corpora						
	Ham	Spam	Total				
MrX2	9039	40135	49174				
SB2	9274	2695	11969				
Total	18313	42830	61143				

Public Corpora						
	Ham	Spam	Total			
trec06p	12910	24912	37822			
trec06c	21766	42854	64620			
Total	34677	67766	102442			

Run Tag Suffixes

Corpus / Task	Filter Suffix
trec06p / immediate feedback	pei
trec 06p / delayed feedback	ped
trec06c / immediate feedback	pci
trec 06c / delayed feedback	pcd
MrX2 / immediate feedback	$\mathbf{x}2$
MrX2 / delayed feedback	x2d
SB2 / immediate feedback	b2
SB2 / delayed feedback	b2d

pei.*nnn* – Public English, *nnn* training examples
cei.*nnn* – Public Chinese, *nnn* training examples
x2.*nnn* – MrX II, *nnn* training examples
b2.*nnn* – Mrx II, *nnn* training examples

Participant Filters

Group	Filter Prefix
Beijing University of Posts and Telecommunications	bpt
Harbin Institute of Technology	hit
Humboldt University Berlin & Strato AG	hub
Tufts University	tuf
Dalhousie University	dal
Jozef Stefan Institute	ijs
Tony Meyer	am
Mitsubishi Electric Research Labs (CRM114)	CRM
Fidelis Assis	ofl

MrX II – Immediate Feedback

TREC 2005 Spam Track, Cormack 15 November, 2006

MrX II immediate learning curve

MrX II delay – learning curves

Mrx II – Active Learning

ROC

Run	X2	X2d	100	200	400	800	1600	3200	6400
Ofl	0.04	0.07	2.11	0.60	0.49	0.28	0.17	0.27	0.18
DMC	0.05	0.09	1.80	0.14	0.08	0.08	0.13	0.08	0.08
Tuf	0.06	0.13							
ljs	0.08	0.06	1.17	0.51	0.33	0.07	0.05	0.06	0.05
Bogo	0.09								
Hub	0.12	0.14	0.59	0.60	0.37	0.50	0.36	0.42	0.28
Tam	0.13	0.18							
Crm	0.14	0.11							
Hit	0.14	0.52	2.66						
Bpt	2.35	3.08	9.10	3.40	2.90	3.27	3.91	2.12	1.77
Dal	2.50	4.34							

1-ROCA (%) Multi-corpus results

	Aggreg	ate	trec0	6p	trec0	6c	MrX	2	SB2	2
Filter Feedback	immediate	delay	immediate	delay	immediate	delay	$\operatorname{immediate}$	delay	immediate	delay
oflS1	0.0295	0.1914	0.0540	0.1668	0.0035	0.0666	0.0363	0.0651	0.1300	0.3692
oflS3	0.0327	0.1908	0.0562	0.1702	0.0035	0.0601	0.0523	0.0824	0.1249	0.3174
offS2	0.0365	0.2018	0.0597	0.2045	0.0104	0.1297	0.0525	0.0931	0.1479	0.3659
tufS2	0.0370	0.1079	0.0602	0.2038	0.0031	0.0104	0.0691	0.1449	0.3379	0.6923
oflS4	0.0381	0.1828	0.0583	0.1965	0.0077	0.0855	0.0718	0.1155	0.1407	0.2941
tufS1	0.0445	0.1262	0.0602	0.2110	0.0023	0.0081	0.0953	0.1991	0.3899	0.8361
ijsS1	0.0488	0.2119	0.0605	0.2457	0.0083	0.1117	0.0809	0.0633	0.1633	0.4276
tufS3	0.0705	0.1497	-	-	-	-	0.0633	0.1263	0.3350	0.6137
tufS4	0.0749	0.1452	-	-	-	-	0.0750	0.1314	0.3199	0.5696
CRMS3	0.0978	0.1743	0.1136	0.2762	0.0105	0.0888	0.1393	0.1129	0.2983	0.4584
CRMS2	0.1011	0.1667	0.1153	0.2325	0.0094	0.0975	0.1592	0.1143	0.4196	0.6006
CRMS1	0.1081	0.2165	0.1135	0.2447	0.0218	0.0784	0.1498	0.1341	0.3852	0.6346
hubS3	0.1674	0.2170	0.1564	0.1958	0.0353	0.0495	0.2102	0.2294	0.6225	0.8104
hubS4	0.1717	0.2400	0.1329	0.2006	0.0233	0.0330	0.1385	0.1763	0.5777	0.6784
hubS1	0.1731	0.2013	0.1310	0.1418	0.0238	0.0319	0.1180	0.1359	0.5295	0.5779
hubS2	0.1945	0.2716	0.1694	0.2952	0.0273	0.0369	0.1450	0.1827	0.4276	0.5306
hitS1	0.2112	0.8846	0.2884	0.5783	0.2054	1.3803	0.1412	0.5184	0.5806	1.2829
CRMS4	0.2375	1.5324	0.4675	2.1950	0.0579	1.7675	0.3056	0.4898	0.9653	2.0009
tamS4	0.2493	0.4480	0.2326	0.4129	0.1173	0.2705	0.1328	0.1755	0.4813	0.9653
tamS1	0.3008	1.0910	0.4103	0.8367	0.0473	0.1726	0.4011	0.6714	0.5912	4.5170
tamS2	0.9374	3.2366	1.2414	3.9352	0.4464	1.5370	-	-	6.5258	23.8125
tamS3	1.5309	2.2236	1.0602	1.8279	0.2899	1.0860	0.9514	1.5965	1.8462	6.0056

Orthogonal sparse bigrams with threshold training for headers (Assis, p 461 of notebook)

- Perceptron with margin (Tufts) incremental classical machine learning
- Uncertainty sampling & pre-training (Humboltd U.)
- Train on most recent examples (IJS)
- Short message prefixes (Tufts, also DMC)

Are Spammers Winning?

	MrX	MrX II
Ijs	.08 (.0410)	.08 (.0512)
Ofl	.07 (.0411)	.05 (.0310)
Tuf	.04 (.0305)	.06 (.0409)
DMC	.04 (.0305)	.05 (.0309)
Bogofilter	.05 (.0306)	.09 (.0711)

What's Next?