On-line Spam Filter Fusion

Thomas Lynam & Gordon Cormack

originally presented at SIGIR 2006

On-line vs Batch Classification

- Batch Hard Classifier
 - separate training and test data sets
 - Given ham/spam classification of training set
 - Compute ham/spam class for each message
- On-line Soft Classifier
 - Chronological sequence
 - Compute *spamminess* for each in sequence
 - ham/spam class by comparing to fixed threshold
 - Given ham/spam classifcation afterwards
 - Immediate, correct feedback (idealized user)

Measures of Success & Failure

- ROC Curve
- ROC Area *above* the curve (as percentage)
- Ham & spam misclassification rates
 Sm(%) when threshold set for Hm(%) = .1
- 95% confidence intervals
 - For ROC area (logit transformed)
 - For difference between ROC areas (logit trans)
 - Significant result: difference interval excludes 0

Pilot Test ROC (Mr X corpus)

Pilot Tests K Subsets (Mr X corpus)

TREC 2005 SPAM TRACK

- 4 corpora
 - 1 public, 3 private
- submit runs on public corpus
- submit filter to be run on private corpora
- 53 runs (different filters)
- 17 different organizations represented

TREC Spam Track Corpora

	Ham	Spam	Total
Mr X	9038	40048	49086
S B	6231	775	7006
ТМ	150685	19516	170201
Full	39399	52790	92189
Aggregate	205253	113129	318482

TREC Filter Performance Distribution

Fusion Methods

- Best System (Baseline)
- Voting
- SumScore
- Log-odds Averaging
- SVM
- Logistic Regression

Log-odds Averaging

- 53 unknown systems
 - unknown min/max scores.
 - linear/nonlinear scoring
- How to normalize scores?

$$L_n = \log\left(\frac{\left|\{i < n \mid s_i \le s_n \text{ and ith message is spam}\}\right| + \epsilon}{\left|\{i < n \mid s_i \ge s_n \text{ and ith message is ham }\}\right| + \epsilon}\right)$$

SVM Fusion

- SVM^{light}
 - default kernel and parameters
 - log-odds averaging used as features
- training set sizes of
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000
- output used as spamminess score

Logistic Regression

- LR-TRIRLS logistic regression package
 - weights predict prior classification
 - Negative weights considered over-fitting
 - initial weight equal 1/number of filters
 - training set sizes of
 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 2100, 4100, 9100, 19100, 39100, 69100, 99100, 129100, 159100.
 - weighted average uses as spamminess score

ROC (Full Corpus)

Full Results

S B Results

Aggregate Results

Subset Experiment

- logistic regression subset selection
 - eliminate smallest filter weight
 - recompute logistic-regression weight
 - repeat
- train on Mr X and S B corpora
- subset size of
- 2, 3, 4, 8, 16 ..., largest subset with only postive weights

Training on Mr X Corpus Results on Full Corpus

MrX-derived subsets on trec05p-1

Subset	(1-ROCA)%	sm%@hm%=.1	
mrx23	.007*** (.006009)	.79*** (.6299)	
mrx16	.007*** (.006009)	.84*** (.69-1.02)	
mrx8	.009*** (.007011)	.88*** (.71-1.08)	
mrx4	.012*** (.009015)	1.07*** (.82-1.39)	
mrx3	.012*** (.010016)	1.15*** (.92-1.44)	
mrx2	.016 (.012021)	1.31** (1.01-1.68)	
best	.019 (.015023)	1.78 (1.42-2.22)	

University of

Base Filter Participation in Subsets (by Separate Performance)

TREC 06 MrX II Corpus

1-ROCA(%) on Mrx II

- Logodds: 0.196 (.007 .05)
- Vote: 0.224 (.009 .05)
- Ofl: 0.363 (.02 .06)
- Significance
 - Logodds Ofl p < .04 (96% confidence)
 - Vote Ofl p < .06 (94% confidence)

Analysis

- All fusion methods substantially outperformed the best system
- On small corpus SVM and Logistic regression are less effective
- Voting seems more stable
- log-odds essential for other methods
- negative LR weights not always overfitting

Conclusions

- Voting works surprisingly well
- Log-odds averaging works a little better
- Logistic Regression is slightly better
- SVM is the best for large corpus
- 53 filters not feasible
- predicting good small subsets possible

Future Work

- explore meta analysis
- different methods of score normalization
- apply fusion to other areas

Questions?

Subset	(1-ROCA)%			
mrx23	.007***	.006009	.79***	.6299
mrx16	.007***	.006009	.84***	.69-1.02
mrx8	.009***	.007011	.88***	.71-1.08
mrx4	.012***	.009015	1.07***	.82-1.39
mrx3	.012***	.010016	1.15***	.92-1.44
mrx2	0.02	.012021	1.31**	1.01-1.68
best	0.02	.015023	1.78	1.42-2.22

SpamAssassin Corpus ROC curves

Mr X Corpus ROC Curves

