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Eleven variants of six widely used open-source spam filters are tested on a chronological sequence
of 49086 email messages received by an individual from August 2003 through March 2004. Our ap-
proach differs from those previously reported in that the test set is large, comprises uncensored raw
messages, and is presented to each filter sequentially with incremental feedback. Misclassification
rates and Receiver Operating Characteristic Curve measurements are reported, with statistical
confidence intervals. Quantitative results indicate that content-based filters can eliminate 98% of
spam while incurring 0.1% legitimate email loss. Qualitative results indicate that the risk of loss
depends on the nature of the message, and that messages likely to be lost may be those that are
less critical. More generally, our methodology has been encapsulated in a free software toolkit,
which may used to conduct similar experiments.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—information filtering; H.4.3 [Information Systems Applications]:
Communications Applications—electronic mail
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1. INTRODUCTION

We report the comparative evaluation, in a realistic controlled environment, of
commonly-deployed spam filters applied to a sequence of all email delivered to an
individual within a specific time interval. Our study advances the methodology,
scale, realism and repeatability of spam filter evaluation. The specific results ob-
tained may be taken as an indicator of the utility of spam filters. As with any
scientific study, generalizability of these results depends on the extent that the
subjects of our study – the filters and the email sequence – are typical. Such gener-
alizability is established by repeated independent but comparable experiments with
different subjects or circumstances. To this end, we have embodied our methods in
a free toolkit [Lynam & Cormack [Lynam and Cormack 2005]] to be used in future
studies. We also maintain an archive of the email corpus used in this study, and
undertake to evaluate, on request, new filters with respect to this corpus.

Our approach is novel in that it closely models real filter usage, presenting to the
filter a large sequence of real email messages, one at a time in chronological order, for
classification. The same sequence of messages, under exactly the same conditions,
is presented to several filters for the purpose of comparative analysis. Measures are
computed which, we argue, reflect a filter’s effectiveness for its intended purpose;
i.e. abating spam while preserving welcome email messages. Statistical confidence
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2 · Cormack and Lynam

intervals, which estimate the extent to which the measured results might be due to
chance, are computed for all measures.

Previous studies have used diverse test methods and evaluation measures, rarely
including statistical analysis. We contrast these studies with ours and, to enhance
inter-study comparability, we recast their results according to our measures, with
confidence intervals.

2. ON-LINE SUPERVISED SPAM FILTERING

Unwelcome email is inconvenient, annoying and wasteful. Its volume threatens to
overwhelm our ability to recognize welcome messages. An automatic spam filter
can mitigate these problems, provided that it acts in a reliable and predictable

Fig. 1. Spam Filter Usage

manner, eliminates a large proportion of unwelcome email, and poses minimal risk
of eliminating welcome email.

Figure 1 models spam filter deployment and use as it relates to an individual
email recipient. Messages from an incoming email stream are presented to the
spam filter, which classifies each as good email (ham) or as indiscriminately sent
unwanted email (spam). Messages classified as ham are placed in the recipient’s
mailbox (ham file) or quarantined or discarded (placed in the spam file). The
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recipient, in the normal course of reading the ham file, may notice spam messages
(which have been misclassified by the filter) and may provide feedback to the filter
noting these errors. From time to time the recipient may search the spam file for
ham messages (which have also been misclassified) and may provide feedback on
these errors as well. The filter may avail itself of external resources such as global
statistics, collaborative judgements, network information, black lists, and so on.

A perfect spam filter would avoid ham misclassification – incorrectly placing a
ham message in the spam file – and spam misclassification – incorrectly placing a
spam message in the ham file. Ham misclassification poses a serious risk; were the
recipient to fail to retrieve the misclassified message from the spam file, it would
be lost. The expected cost to the user is some combination of the probability
of misclassifying a particular ham message, the likelihood of retrieving it from
quarantine, and the value of the message. Spam misclassification, on the other
hand, exposes to the recipient a degree of the original inconvenience, annoyance
and risk associated with spam. An effective filter should mitigate the effects of
spam while maintaining an acceptable risk of loss.

3. STUDY DESIGN

It is difficult to quantify the risks and costs associated with ham and spam misclas-
sification [Fawcett [Fawcett 2003a]; Kolcz & Alspector [Kolcz and Alspector 2001]].
For this reason, we use as our principal effectiveness measures the ham misclassi-
fication rate (hm) and the spam misclassification rate (sm), which are simply the
fraction of ham messages that are misclassified and the fraction of spam messages
that are misclassified. These measures, combined with estimates of the risks and
costs external to the filter, allow us to estimate the degree to which a filter, in a
particular situation, fulfills its intended purpose.

Because the relative risks and costs associated with ham and spam misclassifi-
cation may vary from one situation to another, most spam filters, in addition to
classifying each email message, have a threshold parameter which may be adjusted
to decrease hm at the expense of sm, or vice versa. We use Receiver Operating
Characteristic Curves (ROC) to assess the impact of this tradeoff, and the area
under the curve (AUC) as a summary measure over all possible threshold settings
[cf. Fawcett [Fawcett 2003b]; Flach [Flach 2004]; Park et al. [Park et al. 2004]].

Each filter configuration was tested in a laboratory environment simulating the
usage characterized by our model. In the interest of repeatability, we made two
simplifying assumptions. We assumed1 that no filter used time-varying external
resources, so that email messages captured at one time would be classified the
same way later. We idealized the recipient’s behaviour by assuming that he or she
accurately and immediately reported all misclassified messages to the filter.

We captured all of the email received by one individual over a period of time.
These messages were presented, one at a time, in chronological order, to each filter
for classification. In addition, we extracted from each filter a spamminess score,
indicating the filter’s estimate of the likelihood that the classified message was

1These assumptions apply to this particular study and are not entrenched in our test and evalu-
ation methods, or the toolkit that implements them. The toolkit may therefore be used in other
studies that admit external or time-varying resources or less-than-ideal recipient behavior.
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spam. Immediately thereafter, a gold standard classification for each message was
reported to the filter. The filter’s classification, the filter’s spamminess score, and
the gold standard classification were recorded for later analysis. Summary statistics
were derived from the results, assuming the final gold standard to be ground truth.
Confidence intervals were computed for each measure, under the assumption that
the test email sequence sampled an infinite hypothetical population of materially
similar email2.

Human adjudication is a necessary component of gold standard creation. Exhaus-
tive adjudication is tedious and error-prone; therefore we use a bootstrap method
to improve both efficiency and accuracy [Cormack & Lynam [Cormack and Lynam
2005a]]. The bootstrap method begins with an initial gold standard G0. One or
more filters is run, using the toolkit and G0 for feedback. The evaluation compo-
nent reports all messages for which the filter and G0 disagree. Each such message
is re-adjudicated by the human and, where G0 is found to be wrong, it is corrected.
The result of all corrections is a new standard G1. This process is repeated to form
G2, and so on, until Gn = Gn+1.

4. TEST CORPUS

We captured the email received by one individual (X) from August 2003 through
March 2004. These 49,086 messages were initially classified in real-time by Spa-
mAssassin 2.60 [[SpamAssassin 2005]] and placed in X’s ham and spam files. X
regularly examined both files and reported misclassification errors to SpamAssas-
sin. G0 consisted of the judgements rendered by SpamAssassin, amended to correct
all misclassification errors reported by X.

X has had the same userid and domain name for 20 years; variants of X’s email
address have appeared on the Web, and in newsgroups. X has accounts on sev-
eral machines which are forwarded to a common spool file, where they are stored
permanently in the order received.

X began using a spam filter in 2002 when the proportion of spam in his email
began to exceed 20%, causing X to overlook two important messages which ar-
rived amongst bursts of spam. Since August 2003, X has used SpamAssassin 2.60
in a supervised configuration to classify this incoming mail. It was necessary to
modify SpamAssassin to incorporate this use, as SpamAssassin was designed to be
used primarily in an unsupervised configuration. User feedback was facilitated by
two macros added to X’s mail client. SpamAssassin records every judgement (ren-
dered automatically and amended to reflect user feedback) in its learning database,
so it was possible to recover our preliminary gold standard judgements from this
database.

Each trial run is an idealized3 reproduction of X’s behaviour from August 2003
to March 2004, with a different filter in place of SpamAssassin 2.60. The subject
filter is presented with each message, with original headers, in the same order as
originally delivered. Each filter was encapsulated using three common interface

2The notion of population has been the subject of historical and current philosophical debate
[Lenhard [Lenhard 2006]]. We adopt Fisher’s view [[Fisher 1925]] of an infinite hypothetical
population.
3Idealized in that feedback to the filter is immediate and completely accurate.
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procedures: filterinit, filtereval, and filtertrain. filterinit sets the filter’s memory to
a clean initial state; filtereval is given an email message and returns a pair consisting
of a classification and a spamminess score; filtertrain is given an email message and
the gold standard classification. Some filters require that filtertrain be invoked for
every message (train on everything) while others require that filtertrain be invoked
only for misclassified messages (train on error). We used the method suggested by
each filter’s documentation, as detailed in the next section.

All the filters were used in the bootstrap construction of G5, the final gold stan-
dard. The net effect is that every message reported as a ham or spam misclassifi-
cation for any filter has been adjudicated by X.

To facilitate further analysis, we categorized messages – both ham and spam
– into genres which may predict risk or cost of misclassification. For example,
we suggest that individually addressed messages and news digest messages, while
both ham, may present different levels of challenge to the filter and also different
costs to the recipient, were they to be lost. After the filter tests were complete,
each misclassified ham message was examined and assigned one of seven genres
that we believed might be associated with the likelihood of misclassification and
the importance of the email to the recipient. We also assigned a genre to each of
a random sample (n = 352) of all incoming ham. Similarly, we assigned one of
five different genres to each spam message misclassified by one or more of the four
best-performing systems, and also to a random sample of spam messages (n = 100)
misclassified by each of the other systems. We also assigned a genre to each of a
random sample (n = 142) of all incoming spam.

5. SUBJECT FILTERS

In February 2004, we selected the current versions of six open-source filters whose
deployment had been widely reported on the internet and in the popular press.
Although a large number of classification techniques potentially relevant to spam
filtering have been reported in the literature, an extensive search of available prac-
tical email filters yielded filters that used only a limited number of techniques,
which we characterize as hand-coded rule bases, internal or external black lists and
white lists, and content-based ‘statistical’ or ‘Bayesian’ filters owing their heritage
to Graham’s A Plan for Spam [[Graham 2002; 2004]] with improvements due to
Robinson [[Robinson 2004; 2003]].

Other machine learning methods have not, to our knowledge, been deployed in
any practical filter amenable to our evaluation [cf. Cormack and Bratko [Cormack
and Bratko 2006]]. Studies of machine learning methods typically model spam
filtering as an off-line (batch) supervised learning task in which a hard binary
classifier is induced on a set of labeled training messages and then used to predict
the class (ham or spam) of each of a set of unlabeled test messages. Many of these
studies further abstract the messages to feature vectors, eliminating patterns and
other information that real filters may use to distinguish ham from spam. Although
a number of techniques, such Support Vector Machines, fare very well in these off-
line evaluations, we were simply unable to find them deployed in any real filters
available for testing.

Of the filters we selected, SpamAssassin [[SpamAssassin 2005]] is a hybrid system
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which includes hand-coded spam-detection rules and a statistical learning com-
ponent. The other filters – Bogofilter [Raymond et al. [Raymond et al. 2004]],
CRM114 [Yerazunis [Yerazunis 2004b]], DSPAM [Zdziarski [Zdziarski 2004]], Spam-
Bayes [Peters [Peters 2004]], and SpamProbe [Burton [Burton 2002]] – are all ‘pure’
statistical learning systems, with only a few tacit rules such as those for tokeniza-
tion.

Five different configurations of SpamAssassin were tested, in order to evaluate
the roles and interactions of its various components. These five configurations were
compared with one another, and with the in situ performance of SpamAssassin,
which was deployed when the email for the test corpus was collected. The five
statistical learning systems were tested and compared as a separate group. One
configuration of SpamAssassin – its learning component in isolation – was also
included in this group.

In effect, the two groupings constitute separate experiments with separate goals;
to evaluate combinations of rule-based and statistical filtering, and to evaluate
statistical filters with similar heritage. The only filter in common between the two
groups is SpamAssassin’s learning component.

5.1 The SpamAssassin Runs

SpamAssassin contains two principal components: a set of static ad hoc rules that
identify patterns associated with spam, and a Bayes filter fashioned from Gra-
ham’s and Robinson’s proposals. Each ad hoc rule has a predetermined weight;
the weights of features observed in a particular message are summed to yield a
combined spamminess score. The Bayes filter, on the other hand, is adaptive – it
uses statistics from previously-classified messages to estimate the likelihood that
a particular message is spam. This likelihood estimate is converted to a (possibly
negative) weight which is added to the ad hoc spamminess score. The overall score
is compared to a fixed threshold; the message is classified as spam if the score
exceeds the threshold.

We tested several configurations of SpamAssassin 2.63 so as to evaluate the rel-
ative contributions of the ad hoc and Bayes components, and to evaluate various
training regimens for the Bayes filter.

SA-Supervised. SpamAssassin 2.63 (both components) with the default threshold
value of 5.0.

SA-Nolearn. SpamAssassin 2.63 (ad hoc component only) with the default
threshold of 5.0.

SA-Bayes. SpamAssassin 2.63 (Bayes component only) with a threshold of 0.0.
SA-Standard. SpamAssassin 2.63 (Standard configuration with no user feedback)

with a threshold of 5.0. SpamAssassin is configured by default to be used in a
situation, such as a mail server, where misclassification errors go unreported. To this
end, it includes an internal mechanism to train the Bayes component automatically,
based on the spamminess score rendered by the ad hoc component alone. filtertrain
is never invoked.

SA-Unsupervised. SpamAssassin 2.63 (Unsupervised automated feedback.) filter-
train is invoked after every message, but with SpamAssassin’s output classification
rather than the gold standard; that is, its own judgement is fed back to itself as if
it were the gold standard.
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SA-Human. Real-world baseline. These are the initial classification results that
we captured from the memory of X’s SpamAssassin 2.60 configuration. As such,
they represent the classifications rendered in situ by the spam filter, as amended in
real time in response to misclassification errors reported by X. These results show
the combined effectiveness of spam filter and recipient under real-world conditions.

5.2 Pure Learning Filter Runs

Except as noted, the learning filters were installed using default threshold and
tuning parameters. Prior training was not used; filterinit initialized the filter’s
memory to the empty state.

CRM114 (version 20040328-Blame St. Patrick-auto.1). We trained the system
only after misclassifications, as suggested in the documentation. We did not use
the whitelist or blacklist facilities supplied with CRM114. Filter memory size was
set at 10000001 buckets for both ham and spam.

DSPAM (version 2.8.3). DSPAM 2.8.3 self-trains on every message it classifies,
and annotates the message with a signature that contains information necessary for
it to reverse this self-training. We altered our test setup to supply this annotated
message, rather than the original, to filtertrain. We did not use the purge facility,
which reduces the size of the statistical table maintained by DSPAM.

Bogofilter (version 0.17.5). Bogofilter is a Bayes filter, like SpamAssassin’s, mod-
eled after the proposals by Graham and Robinson. Bogofilter emphasizes simplicity
and speed.

SpamProbe (version 0.9h). A C++ Bayes filter inspired by Graham’s proposal.
SpamBayes (version 1.061). A Python Bayes filter inspired by the proposals of

Graham and Robinson.
SA-Bayes. SpamAssassin 2.63 (Bayes component only). From the SpamAssassin

comparison group.

6. ANALYSIS

A contingency table (table I) enumerates the possible outcomes of applying a filter
to a mail stream. The primary measures of interest are the ham misclassification
fraction, hm = c

a+c
, and the spam misclassification fraction sm = b

b+d
. We also

report the (overall) misclassification fraction, m = b+c
a+b+c+d

, because it is equivalent

Gold Standard

F
il
te

r

ham spam

ham a b

spam c d

Table I. Contingency Table

to accuracy (m = 1 − accuracy)4, which is commonly reported.

4We quantify misclassifications rather than accuracy so as to avoid presenting nearly equal num-
bers that represent large differences in performance. Graphical results are displayed using the
logistic transformation, logit(p) = log( p

1−p
), which maps the range [0 : 1]symmetrically to the

range −∞ : ∞.
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The result of applying a filter to a spam message is a dichotomous variable
result taking on the value ham or spam. In our primary analysis, we estimate the
probability of each outcome as a function of true, the true classification, also a
dichotomous value taking on the value ham or spam. In particular, hm estimates
Pr(result = spam | true = ham) and sm estimates Pr(result = ham | true =
spam). m, on the other hand, estimates Pr(result 6= true). These estimates are
the result of three sets of Bernoulli trials; one for ham messages (true = ham), one
for spam messages (true = spam), and one for all messages.

Each set of trials consists of n observations, x of which exhibit the truth value
whose probability P is to be estimated. Given P and n, the probability of any
particular value of x is determined exactly by the binomial distribution. The cu-
mulative probability over all t ≤ x is the sum of x+1 discrete binomial probabilities.
Since x ≤ n < 50, 000 for each of the three sets, we were able to calculate cumulative
probabilities with minimal computational cost.

Given n and x, the maximum likelihood estimate for P is simply x
n
. 95% confi-

dence limits are computed as follows. When x = 0, the lower confidence limit is 0
and the upper confidence limit is the smallest P such that the cumulative binomial
probability over all t ≤ x (i.e. the probability of t = x = 0) is less than 0.05.
When x > 0, the lower confidence limit is the largest P such that the cumulative
binomial probability over all t ≥ x is less than 0.025; the upper confidence limit is
the smallest P such that the cumulative binomial probability over all t ≤ x is less
than 0.025. Each P was computed using binary search.

Because all filters are applied to the same messages, we are able to use exact
paired tests to evaluate differences that might not be apparent from comparing
misclassification proportions. For a pair of filters, A and B, we count each of
the four possible pairs of results when A and B are applied to the same message.
Table II illustrates the four possible outcomes: a is the number of times that the
filters both return the correct classification; d is the number of times they are both
incorrect; b is the number of times B is correct but A is incorrect; c is the number
of times A is correct but B is incorrect. a and d, the cases of agreement, do not
differentiate the systems and may be ignored. b and c, the cases of disagreement,
are the cases of interest. The disagreement cases constitute a set of Bernoulli trials

Filter A

F
il
te

r
B correct incorrect

correct a b

incorrect c d

Table II. Matched-Pair Result Table

with n = b + c, x = b. Under the null hypothesis (that A and B exhibit the
same performance), P = 0.5, and E(x) = n

2 . Any non-zero difference |x − n
2 | > 0

must be due either to chance or to the falsity of the null hypothesis. p, the chance
probability, is computed as the sum of binomial probabilities for all t such that
|t − n

2 | ≥ |x − n
2 |.

In this study, we test several hypotheses. For those that are amenable to statisti-
cal inference we state confidence intervals and declare significant differences based
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on the error probability α = 0.05. As for any set of statistical inferences, whether
from the same or separate studies, we must be aware that some results reported as
significant will in fact be due to chance. According to Streiner [[Streiner 1986]]:

Of course, most statistical analysis uses an α-level of 0.05, which means
that there is one chance in 20 that they will conclude there is some
difference when there isn’t. This also means that of every 20 “significant”
differences reported in the literature, one is wrong. Wonder which one
it is!

That said, we shall avoid a discussion of the philosophy of statistics and defer to
common practice.

A fallacy not admitted by common practice is to perform several hypothesis tests
and to report only those yielding a “significant” result. If we perform n tests, we
expect about αn of them to show p < α, even if the null hypothesis holds in every
case. On the other hand, only α of the tests would show n · p < α under the
null hypothesis; in other words, the chance of some test showing n · p < α is α.
Bonferroni correction captures this effect: when selected from a set of n tests, any
test showing n · p < α is significant with (Bonferroni corrected) p < α. Bonferroni
correction may be applied repeatedly using Holm’s stepdown method [[Holm 1979]]:
the result with smallest p is selected from the set; if it is significant after Bonferroni
correction, the test is removed from the set and the process repeated with the
remaining n − 1 tests. If the result with the smallest p is not significant, none
of the remaining results is considered significant. When we rank the results of

n tests, we are in effect performing n(n−1)
2 paired tests, which we correct using

Holm-Bonferroni stepdown method.
Receiver operating characteristic (ROC) analysis [cf. Fawcett [Fawcett 2003b];

Flach [Flach 2004]; Park et al. [Park et al. 2004]] is used to evaluate the trade-off
between ham and spam misclassification probabilities. Using each of the numeri-
cal scores returned by a given filter, we conduct a hypothetical run to determine
the ham and spam misclassification fractions that would have resulted had that
score been used as a threshold. The set of pairs (hm, 1-sm) resulting from the
hypothetical runs define a monotone non-decreasing function that is plotted as an
ROC curve. As a summary measure of the relationship between ham and spam
misclassification fractions over all possible thresholds, we present 1 − AUC, where
AUC is the area under the ROC curve. 1 − AUC estimates the probability that
a random spam message is (incorrectly) given a lower score than a random ham
message. AUC estimates and 95% confidence intervals were computed using SPSS
12.

Logistic regression [cf. Agresti [Agresti 1996]] is used to evaluate the effect of the
number n of messages processed on the probability P of ham or spam misclassifi-
cation (i.e. the learning curve). P and n are assumed to be related by the formula
logit(P ) =def log( P

1−P
) = α + nβ (alternatively, P

1−P
= eαenβ) for some α and

β. Maximum likelihood estimates for α and β, 95% confidence limits, and p-values
(for the null hypothesis that β = 0) were computed using SPSS 12. P

1−P
is the

odds (as opposed to the probability) of misclassification; i.e. the ratio of incorrect
to correct classifications. eα is the initial odds when n = 0, and enβ is the odds
ratio; for every n messages the odds increase (or decrease) by a factor of enβ . For
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small P, odds and probability are nearly equal, so we may consider enβ also to be
the risk ratio; for every n messages the probability of misclassification changes by
this same constant factor.

A piecewise graphical estimate of logit(P ) vs. n is juxtaposed with the logistic
regression curve as a visual indicator of the appropriateness of the logistic model.
Estimates of initial and final misclassification rates, as well as the odds ratio, are
tabulated with 95% confidence limits.

Within each genre of ham identified in our post-hoc classification, we estimated
the proportion of incoming ham messages and, for each filter, the proportion mes-
sages misclassified by that filter. The ratio of these proportions provides an estimate
of the relative difficulty that each filter has in classifying messages of different gen-
res, and an estimate of the maximum likely confounding effect due to each particular
genre.

7. RESULTS

The test sequence contained 49,086 messages. Our gold standard classified 9,038
(18.4%) as ham and 40,048 (81.6%) as spam. The gold standard was derived from
X’s initial judgements, amended to correct errors that were observed as the result
of disagreements between these judgements and the various runs.

7.1 Classification Performance - SpamAssassin Variants

Table III and figure 2 report the performance of our SpamAssassin runs. SA-
Supervised, our baseline run, misclassifies 6 of 9,038 ham messages (0.07%) and
605 of 40,048 spam messages (1.51%). Overall, SA-Supervised misclassifies 611 of
49,086 messages (1.24%). The area under the ROC curve, AUC, is 0.9994 which
we report as 1-AUC (%) or 0.06.

Filter Ham Misc. (%) Spam Misc. (%) Overall Misc. (%) 1-AUC (%)

SA-Supervised 0.07 (0.02-0.14) 1.51 (1.39-1.63) 1.24 (1.15-1.35) 0.06 (0.04-0.07)
SA-Bayes 0.17 (0.09-0.27) 2.10 (1.96-2.24) 1.74 (1.63-1.86) 0.15 (0.11-0.18)

SA-Nolearn 0.19 (0.11-0.30) 9.49 (9.21-9.78) 7.78 (7.54-8.02) 0.80 (0.74-0.86)

SA-Standard 0.07 (0.02-0.14) 7.49 (7.23-7.75) 6.12 (5.91-6.34) 1.00 (0.93-1.06)

SA-Unsupervised 0.11 (0.05-0.20) 8.11 (7.84-8.38) 6.63 (6.41-6.86) 0.82 (0.76-0.88)

SA-Human 0.09 (0.04-0.18) 1.06 (0.97-1.17) 0.88 (0.80-0.97) -

Table III. Filter Misclassification - SpamAssassin Variants

The SA-Supervised filter is a committee of two distinct components: SA-Nolearn,
a static rule-based filter, and SA-Bayes, a pure learning filter. Taken separately,
each component shows inferior performance to the baseline according to all four
measures. We note in particular that SA-Supervised shows 2.5 times fewer ham
misclassifications than either SA-Bayes (p < .004) or SA-Nolearn (p < .035), two-
thirds as many spam misclassifications as SA-Bayes (p ≈ 0.000) and 6 times fewer
spam misclassifications than SA-Nolearn (p ≈ 0.000).

SA-Standard uses SpamAssassin’s default configuration: the same static and
learning filter, but with the filter trained only on errors, as adjudicated by the
difference in results between the learning filter and a separate (more conservative)
internal invocation of the static filter. In contrast, SA-Unsupervised trains on every
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Fig. 2. ROC Curves - SpamAssassin Variants

judgement returned by filtereval. Both runs are unsupervised in that they operate
autonomously with no human intervention. As with SA-Supervised, both runs show
fewer ham and spam misclassifications than either SA-Bayes or SA-Nolearn taken
separately. Of the differences in ham misclassifications only the difference between
SA-Standard and SA-Nolearn may be interpreted as significant (p < .035). All
differences in spam misclassification are significant (p ≈ 0.000).

SA-Human uses essentially the same configuration as SA-Supervised, but the sys-
tem was supervised by X in real-time. That is, for every misclassification observed
by X, the system was retrained and the human-corrected classification was recorded
as the result for SA-Human. While SA-Human resulted in two more ham misclassi-
fications than SA-Supervised (i.e. 8 vs. 6) no significant difference can be inferred.
SA-Human resulted in two-thirds as many spam misclassifications (p ≈ 0.000).

We note that ham, spam, and overall misclassification rates rank the six runs in
the same order. AUC inverts SA-Standard and SA-Unsupervised, and is inapplica-
ble to SA-Human. Nevertheless, AUC ranking is consistent with the overall effect:
that all tested combinations of static and learning filters outperform these individ-
ual components in isolation. The ROC curves show that SA-Supervised dominates
the other runs, performing better than SA-Bayes when ham misclassification is
minimized and as well when spam misclassification is minimized. SA-Supervised
and SA-Bayes both dominate the remaining runs. These runs, SA-Nolearn, SA-
Standard, and SA-Unsupervised, show ROC curves that intersect many times, in-
dicating that their relative AUC scores are likely to be uninformative.

7.2 Classification Performance - Pure Learning Filters

Table IV and figure 3 show the classification performance of six pure learning fil-
ters (including SA-Bayes, the learning component of SpamAssassin, also reported
above). For this group of runs we have no baseline, and wish instead to evaluate
their relative performance. The columns labeled ham misclassification and spam
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Fig. 3. ROC Curves – Pure Learning Filters

misclassification show nearly opposite effects. Bogofilter offers the least number

Filter Ham Misc. (%) Spam Misc. (%) Overall Misc. (%) 1-AUC (%)

Bogofilter 0.08 (0.03-0.16) 6.63 (6.39-6.88) 5.43 (5.23-5.63) 0.08 (0.05-0.10)
SpamBayes 0.17 (0.09-0.27) 5.86 (5.63-6.10) 4.81 (4.63-5.01) 0.16 (0.12-0.20)
SA-Bayes 0.17 (0.09-0.27) 2.10 (1.96-2.24) 1.74 (1.63-1.86) 0.15 (0.11-0.18)

SpamProbe 0.34 (0.23-0.49) 1.03 (0.93-1.14) 0.90 (0.82-0.99) 0.09 (0.05-0.13)
DSPAM 1.28 (1.06-1.54) 1.98 (1.84-2.12) 1.85 (1.73-1.97) 1.03 (0.90-1.17)
CRM114 3.26 (2.91-3.65) 0.99 (0.90-1.09) 1.41 (1.31-1.52) 1.10 (0.94-1.27)

Table IV. Filter Misclassification - Pure Learning Filters

Bogofilter
SpamBayes
SA-Bayes

SpamProbe

DSPAM

CRM114

CRM114
SpamProbe

DSPAM
SA-Bayes

SpamBayes

Bogofilter

Bogofilter
SpamProbe
SA-Bayes

SpamBayes

DSPAM
CRM114

Ham Misc. Spam Misc. AUC

Table V. Significant divisions (p < .05, Bonferroni-Holm corrected)

of ham misclassifications and the greatest number of spam misclassifications, while
CRM114 shows the opposite.

To divide the filters into groups separated by significant differences classification
performance, we considered ham and spam separately; for each we performed a
paired test between every pair of runs. The first two columns in table V summa-
rizes the results of these 30 tests, corrected using Holm’s stepdown method. Every
pair of runs from different boxes shows a significant different difference (p < 0.05),
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while every pair in the same box does not. We see that the runs are divided into four
groups with respect to ham classification performance, and four (different) groups
with respect to spam classification performance. Although ham and spam mis-
classification performance yields nearly opposite rankings, we note that Bogofilter,
SpamBayes, and SA-Bayes are distinguished by their spam performance but not
by their ham performance. Similarly, CRM114 and SpamProbe; and also DSPAM
and SA-Bayes, are distinguished by their ham performance but not by their spam
performance.

Overall Misclassification results are largely reflective of spam misclassification
results, and are not analyzed further. The ROC curves show that the curves
for Bogofilter, SpamProbe, and SA-Bayes intersect one another in many places
throughout the operating range, but SA-Bayes and Bogofilter appear to have a
lower spam misclassification proportion when the ham misclassification proportion
is low (i.e. less than 0.3%). All three dominate SpamBayes by a narrow margin
and dominate DSPAM and CRM114 by substantial margins. AUC scores largely
reflect the major differences observable in the curves, but fail to provide a mean-
ingful distinction among Bogofilter, SpamProbe, SA-Bayes, and SpamBayes. The
last column of table V shows that the filters may be separated into two groups such
that every member of the upper group shows significantly better AUC than every
member of the lower group (p < .05).

7.3 Effects of Learning on Classification Performance

Table VI summarizes the fraction of spam received by X as a function of the number
of messages received. Although the overall spam fraction is 81.6%, logistic regres-
sion indicates that this fraction increased from 75.7% to 86.6% (an odds ratio of
2.07, p < .001) over the eight months during which our email stream was collected.

Initial Spam % Final Spam % Odds Ratio p

75.7 (75.0, 76.6) 86.6 (86.0, 87.1) 2.07 (2.04, 2.10) 0.00

Table VI. Spam as a fraction of incoming messages

Figure 4 shows a piece-wise approximation of this function juxtaposed with the
regression line.

Tables VII and VIII summarize the ham and spam misclassification fractions
as functions of the number of messages processed. Each row estimates the initial
misclassification proportion, the final misclassification proportion, and the odds
ratio between the two. 95% confidence limits and p-values are given for each.
Figures 5 and 6 provide graphical representations of these functions.

Of particular interest is the “learning” performance of SA-Nolearn; as this system
has no learning component, its performance may be used to gauge any change in
‘difficulty’ of the spam messages over the eight months. Table VIII shows that SA-
Nolearn’s spam misclassification fraction increases from 7.73% to 11.37% (p < .001),
indicating that the nature of spam has changed so as to make it ‘more difficult.’
Figure 5 confirms this trend, but also shows anomalous spikes in misclassifications
centered at about 6,000 and 17,000 messages. SA-Nolearn’s ham misclassification
fraction shows no significant slope over the eight-month interval.
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Fig. 4. Spam Growth

In contrast, the learning filters show no apparent degradation in performance
over the eight-month interval. All learning filters show a reduction in both ham
and spam misclassification fractions as more messages are processed, though not
all reductions are large or significant. In particular, confidence intervals for the
ham misclassification odds ratio are very large, due to the fact that the curve is
fitted to few points – of the order of ten for the better-performing runs. Subject
to this caveat, The plotted curves show a good fit between piecewise approxima-
tion and logistic regression. Possible exceptions are DSPAM, SA-Standard, and
SA-Unsupervised. DSPAM’s spam misclassification curve, shown in figure 6, has
a piecewise approximation that appears to be more concave than the regression
curve. SA-Standard and SA-Unsupervised (figure 5) both indicate substantially
lower spam misclassification rates prior to the virus-induced anomaly at message
6,000, followed by consistent improvement notwithstanding the anomaly5 at mes-
sage 17,000. We observe that the initial misclassification fraction of a number of
systems is substantially better than the final misclassification fraction of others.

We included SA-Human in our analysis, as a real-world foil to our laboratory
results. SA-Human’s ham misclassification fraction shows a large significant in-
crease with a huge confidence interval [odds ratio 54 (2, 1222)], indicating that this
measurement is unstable, rather than that X suffered some degeneration in discrim-
inatory ability. Further investigation reveals that the positive odds ratio may be
accounted for entirely by three automated (but legitimate) messages received the
same day from the same source. SA-Human’s apparent decrease in spam misclas-
sification may also be accounted for by the anomalous spike at 17,000 messages.

7.4 Misclassification by Genre

In the course of examining the misclassified messages, we identified several message
genres that we suspect might be associated with the filters’ performance. Ham

5Due to backscatter, as defined in section 7.4.
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Fig. 5. Learning Curves – SpamAssassin Configurations
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Fig. 6. Learning Curves – Pure Statistical Filters
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Filter Initial Misc. (%) Final Misc. (%) Odds Ratio p

Bogofilter 0.19 (0.06, 0.62) 0.02 (0.00, 0.17) 0.08 (0.00, 1.98) 0.12
CRM114 4.53 (3.71, 5.52) 2.08 (1.56, 2.75) 0.45 (0.29, 0.69) 0.00
DSPAM 1.52 (1.09, 2.12) 1.03 (0.67, 1.58) 0.68 (0.35, 1.33) 0.26
SA-Bayes 0.31 (0.13, 0.72) 0.06 (0.02, 0.26) 0.21 (0.03, 1.52) 0.12

SA-Human 0.01 (0.00, 0.09) 0.45 (0.15, 1.38) 54 (2, 1222) 0.01
SA-Nolearn 0.32 (0.14, 0.71) 0.09 (0.02, 0.31) 0.27 (0.04, 1.72) 0.17
SA-Standard 0.38 (0.12, 1.19) 0.00 (0.00, 0.07) 0.00 (0.00, 0.40) 0.02

SA-Supervised 0.19 (0.06, 0.66) 0.01 (0.00, 0.15) 0.05 (0.00, 1.80) 0.10
SA-Unsupervised 0.39 (0.15, 0.98) 0.01 (0.00, 0.10) 0.02 (0.00, 0.47) 0.01

SpamBayes 0.23 (0.10, 0.58) 0.10 (0.03, 0.37) 0.44 (0.07, 2.96) 0.40
SpamProbe 0.96 (0.56, 1.65) 0.05 (0.01, 0.17) 0.05 (0.01, 0.26) 0.00

Table VII. Ham Learning Performance

Filter Initial Misc. (%) Final Misc. (%) Odds Ratio p

Bogofilter 7.95 (7.41, 8.53) 5.50 (5.10, 5.94) 0.68 (0.59, 0.77) 0.00
CRM114 1.90 (1.61, 2.24) 0.45 (0.35, 0.57) 0.23 (0.16, 0.33) 0.00
DSPAM 7.02 (6.33, 7.77) 0.23 (0.18, 0.30) 0.03 (0.02, 0.04) 0.00
SA-Bayes 2.51 (2.21, 2.85) 1.74 (1.52, 2.00) 0.69 (0.55, 0.87) 0.00

SA-Human 1.67 (1.40, 1.98) 0.64 (0.52, 0.79) 0.38 (0.27, 0.53) 0.00
SA-Nolearn 7.73 (7.25, 8.25) 11.37 (10.76, 12.02) 1.53 (1.37, 1.72) 0.00
SA-Standard 16.07 (15.22, 16.96) 2.67 (2.43, 2.92) 0.14 (0.13, 0.16) 0.00

SA-Supervised 1.68 (1.44, 1.96) 1.36 (1.16, 1.59) 0.81 (0.61, 1.07) 0.13
SA-Unsupervised 18.03 (17.13, 18.98) 2.67 (2.44, 2.92) 0.12 (0.11, 0.14) 0.00

SpamBayes 5.91 (5.46, 6.39) 5.82 (5.38, 6.29) 0.99 (0.85, 1.14) 0.82
SpamProbe 1.29 (1.08, 1.56) 0.81 (0.67, 1.00) 0.63 (0.45, 0.88) 0.01

Table VIII. Spam Learning Performance

messages were classified into seven genres:

(1) Advertising. Messages from companies or organizations having a relationship
with the recipient.

(2) Cold Call. Messages from individuals with whom X had no prior correspon-
dence or relationship.

(3) Delivery. Messages from an email server pertaining to the delivery of an email
message.

(4) List. Mailing list messages, broadly defined. This genre includes automated
mailing lists, service messages from mailing lists, and ad hoc messages consisting
of general information copied to a large number of recipients.

(5) News. News clipping and digest services to which X is subscribed.

(6) Personal. Mail specifically addressed to X by an individual; the equivalent of
first class mail.

(7) Transaction. Responses to electronic internet transactions, such as receipts,
travel itineraries, shipping information, passwords, acknowledgements, or sta-
tus information.

Spam messages were classified into five genres:

(1) Advertising. Messages sent indiscriminately to X aimed at acquiring some or
all of X’s wealth.
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(2) Backscatter. Delivery messages from a third-party server, rejecting a message
not sent by X, but forged to appear to have been sent by X. These messages
are deemed to be spam (as opposed to Delivery ham messages) because they
are a direct consequence of spam.

(3) Demographic. Advertising messages for goods and services of marginal value
sent to a specific demographic group to which X belongs.

(4) Targeted. Messages addressed to X for no reason other than X’s membership
in a broad identifiable group (profession, geographic location, appearance on a
subject-related web-page, etc.).

(5) Virus. Messages that contain malware.

Table IX shows the number of misclassified ham messages, by genre, for each filter.
Also shown is an estimate of the proportion of all ham represented by each genre.
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SA-Standard 4 2 0 0 0 0 0 6
SA-Super 1 0 0 1 1 0 3 6
Bogofilter 1 0 0 2 1 0 3 7
SA-Human 0 0 0 3 4 0 1 8
SA-Unsuper 5 0 0 1 0 1 3 10
SA-Bayes 1 0 0 4 1 1 8 15

SpamBayes 1 0 2 5 1 3 3 15
SA-Nolearn 1 0 4 0 3 9 0 17
SpamProbe 3 2 4 5 1 8 8 31

DSPAM 15 5 9 28 6 35 18 116
CRM114 7 15 13 78 10 135 37 295

Incoming Ham 0% 1% 17% 13% 14% 51% 4% 9038

Table IX. Ham Misclassification by Genre

Four of the runs have no personal misclassifications, a much lower fraction than
would be suggested by the fact that this genre comprises 51% of all ham. At the
other end of the spectrum, CRM114 misclassifies 135 personal ham messages, or
about 3% of all such messages. DSPAM also misclassifies a high number of personal
messages: 35, or about 0.75% of the total.

In general, advertising, cold call, and delivery messages each represent a small
proportion of overall ham and a disproportionately large number of misclassifica-
tions. Personal messages represent disproportionately few misclassifications, while
transaction, list, and news fall in between.

Table X shows the estimated fraction of misclassified spam messages, by genre,
for each filter, as well as the fraction of all spam represented by each genre. The vast
majority of spam messages are advertising, with backscatter representing a mere
1%. Yet nearly as many backscatter messages are misclassified. In particular, we
note that SA-Human and SA-Super misclassify a fraction of backscatter messages
approaching or exceeding 50%. Three-fifths of all of SA-Human’s misclassifications
are attributable to misclassified backscatter. The reason for this is that X was
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CRM114 72% 8% 12% 4% 4% 397
SA-Human 14% 66% 10% 7% 4% 413
Spamprobe 48% 17% 17% 7% 12% 421
SA-Super 28% 36% 22% 5% 9% 605
DSPAM 58% 8% 17% 3% 14% 791
SA-Bayes 45% 19% 17% 8% 11% 840

SpamBayes 50% 16% 25% 7% 2% 2348
Bogofilter 68% 14% 10% 2% 6% 2656

SA-Standard 17% 29% 5% 0% 49% 2999
SA-Unsupervised 9% 31% 7% 1% 52% 3246

SA-Nolearn 51% 24% 5% 0% 20% 3802

Incoming Spam 92% 1% 0% 0% 8% 40048

Table X. Spam Misclassification by Genre

overwhelmed by the burst of backscatter occurring at 17,000, and skipped over
many of these messages without recording a judgement6.

8. OTHER EVALUATION MEASURES

Although widely reported, accuracy has little value in evaluating and comparing
spam filters[Provost et al. [Provost et al. 1998]]. The consequences of ham and
spam misclassification are materially different, while measurements of accuracy
conflate them. The computation of accuracy depends directly on the ratio of ham
to spam messages in the incoming email, and also on the threshold parameter used
by the filter to transform scores into judgements. For a given filter, the problem of
optimizing accuracy reduces to the decision-theoretic problem of picking the best
threshold [Lewis [Lewis 1995]] for the anticipated ham-to-spam ratio (hs = a+c

b+d
;

a, b, c, d from table I). Tables III and IV include overall misclassification fraction
(1-accuracy) which reflect influence of the systems’ default threshold parameters.
Every system in this study, had its threshold been set to optimize accuracy7, would
have yielded an unacceptably high level of ham misclassification (see table XI).

Androutsopolous et al. [[Androutsopoulos et al. 2004]] argue that the relative im-
portance of ham over spam misclassification errors be quantified by a parameter λ

used as input to the filter in cost-sensitive classification and to the evaluation mea-
sure in cost-sensitive evaluation. Weighted accuracy is defined as w= λa+d

λa+b+λc+d
.

Further, they suggest total cost ratio TCR = b+d
b+λc

, as a measure to distinguish the
weighted accuracy of a filter from that of a simplistic approach that classifies every
message as ham. In contrast, our test methods and evaluation measures are ag-
nostic as to the relative importance of ham over spam, and leave the cost-sensitive

6X subsequently deployed an ad-hoc filter to identify backscatter messages and to record a judge-
ment automatically.
7The results presented here are the result of a hypothetical run for which the optimal threshold
was known in advance. Lewis discusses automatic methods of adjusting the threshold so as to
optimize error rate (i.e. 1 − accuracy) and other measures.
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Filter Ham Misc. Spam Misc. Overall Misc.

SpamProbe 0.94 0.44 0.54
SA-Super 1.62 0.49 0.69
SA-Bayes 1.97 0.40 0.69
Bogofilter 1.25 0.59 0.71

SpamBayes 1.60 0.61 0.79
DSPAM 1.90 1.03 1.19
CRM114 3.95 0.75 1.34

SA-Nolearn 5.53 2.77 3.28
SA-Standard 2.98 3.88 3.71
SA-Unsuper 10.64 1.67 3.32

Table XI. Effect of Optimizing Accuracy

interpretation of these results to the reader.
Hidalgo [[Hidalgo 2002]] discusses the use of cost-sensitive evaluation to mitigate

these difficulties:

The main problem in the literature on [spam] cost-sensitive categoriza-
tion is that the [ham-spam cost ratios] used do not correspond to real
world conditions, unknown and highly variable. No evidence supports
that classifying a legitimate message as [spam] is 9 nor 999 times worse
than the opposite mistake.

This criticism – dependence on highly variable external factors, arbitrary filter
parameters, and arbitrary evaluation weights – applies to a large class of combined
evaluation measures [cf. Sebastiani [Sebastiani 2002]]. To this criticism we add
a note of caution with respect to the statistical power of filter evaluations. Ham
misclassification rates for good filters are exceptionally low, amounting to only a
handful of messages in our sample of nearly 50,000. These rates are even lower when
stratified by genre, often yielding 0 occurrences (e.g. four of the runs misclassified no
personal email messages). The statistical uncertainty due to these small numbers
will dominate any weighted score, potentially masking significant differences in
spam misclassification rates for filters with comparable ham misclassification rates.

Hidalgo suggests the use of ROC curves, originally from signal detection theory
and used extensively in medical testing, as better capturing the important aspects
of spam filter performance. In the event that the ROC curve for one filter is uni-
formly above that of another, we may conclude that there is a parameter setting
such that its performance exceeds the other for any combination of external factors
and evaluation weights. The area under the ROC curve serves to quantify this
difference and, perhaps surprisingly, represents a meaningful quantity: the proba-
bility that a random spam message will receive a higher score than a random ham
message. In the event that the ROC curves intersect, one may consider the area
under only a subset, the normal operating region. For a spam filter, this operating
region would likely be the fragment of the curve above the range of acceptable ham
misclassification fraction values.

Tuttle et al. [[Tuttle et al. 2004]] present spam filter effectiveness using a tabular
representation of an ROC curve: hm vs. (1− sm). Further, they choose 1% hm as
a proxy for the normal operating region and report sm at this value. More broadly,
ROC-based evaluation for machine learning and information retrieval is of current
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interest. We found that ROC analysis provided us with valuable insight to our
results, complementing but not obviating distinct ham and spam misclassification
analyses. With one inversion (SA-Standard vs. SA-Unsupervised) AUC values
agreed with our subjective ranking of the systems. The ROC curves for these two
runs intersect; SA-Standard demonstrates superior performance within the normal
operating region (small hm) while SA-Unsupervised overtakes it for large hm.

Like the measures described above, recall, precision, and precision-recall curves
evaluate the tension between ham and spam classification performance. Precision
and recall originate with information retrieval, in which the objective is to discover
relevant documents from a collection. The measures are asymmetric, predicated on
the general assumption that there are many fewer relevant than non-relevant doc-
uments in the collection. Recall is the fraction of all relevant documents retrieved
by the system; precision is the fraction of retrieved documents that are relevant.
Within the context of spam classification, it is necessary to consider either the ham
or the spam messages as relevant, and the others as not relevant. This labelling
is arbitrary, but must be identified. Ham precision (hp = a

a+b
) and ham recall

(hr = a
a+c

), in which ham messages are deemed to be relevant, have perhaps the
more intuitive meaning within the context of spam filtering. The complementary
measures are spam precision (sp = d

c+d
) and spam recall (sr = d

b+d
).

Ham recall is the same thing as ham accuracy (1 − hm). Spam recall is the
same thing as spam accuracy (1 − sm). But these two measures are not used as
a pair in information retrieval evaluation, which assumes a consistent labelling of
relevant and non-relevant documents. Instead, ham precision and ham recall (or
spam precision and spam recall) are used together8. Ham precision depends on sm

but depends also on hr and hs: hp = r
1+r

where r = hs · hr
sm

. r, the ratio of ham
to spam delivered to the mail file, is proportional to the incoming ham-spam ratio.
Ham precision simply recasts r as a fraction as opposed to a ratio. Thus we conclude
that precision and recall, taken as a pair, exhibit the same essential shortcoming as
accuracy. Average precision, the analog of AUC, is similarly influenced by hs.

The medical diagnostic testing literature [cf. Rothman & Greenland [Rothman
and Greenland 1998]] casts the problem as one of testing a population of patients
for a particular disease. The test offers a diagnosis of diseased or disease-free. To
apply diagnostic testing metaphors to spam, we (arbitrarily but with some support
from connotation) label spam to be diseased and ham to be disease-free. The
variables a, b, c, d from table I are known as true negatives, false negatives, false
positives, and true positives respectively. Ham accuracy is specificity, while spam
accuracy is sensitivity 9. The literature also discusses negative predictive value and
positive predictive value. Negative predictive value is the probability that a random
patient, on receiving a negative diagnosis, is really disease-free. Positive predictive
value is the probability that a random patient, on receiving a positive diagnosis, is
really diseased. Predictive values use Bayesian inference to combine two distinct
estimates: specificity (or sensitivity), which is a property of the diagnostic test, and

8The information retrieval literature defines fallout, which in this context would be the same as
sm and therefore equivalent to spam recall. Recent evaluations often report precision and recall;
rarely fallout.
9To our knowledge, no analog of overall accuracy exists in medical diagnostic testing.
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prevalence, which is a property of the population being tested. Negative predictive
value is exactly ham precision as described above, while positive predictive value is
spam precision.

Precision, like predictive value, is very useful in predicting the in situ performance
of a filter. We believe it should, like predictive value, be computed post-hoc by
combining separate measurements of filter performance and incoming ham-spam
ratio, rather than used as a fundamental measure of filter performance.

DET curves [Martin et al. [Martin et al. 1997]] have been used to measure
the performance of filters within the context of document understanding. A DET
curve is exactly an ROC curve, plotted on a normal deviate scale. The normal
deviate scale resembles the logit scale we used; the former will tend to yield a linear
curve when one assumes that the scores of ham and spam messages are normally
distributed; the latter assumes binomial distributions.

9. OTHER STUDIES

Direct comparison of results demands that common data (or at least data sampled
from a similar population) be used to test different filters, or that common filters
be tested on different data, and that common measures be reported. Valid mea-
surements must be based on realistic assumptions and statistically well founded.
With these criteria in mind, we explore the commonality among studies, and, where
possible from the published data, recast their results in terms of common measures
with confidence intervals.

Sahami et al. [[Sahami et al. 1998]] conducted an early study that indicated
the utility of Bayesian classifiers for spam filtering. One experiment used a corpus
of 1789 actual email messages (11.8% ham; 88.2% spam), split chronologically into
1538 training messages and 251 test messages. Both ham and spam precision/recall
curves were calculated. The best-performing system achieved ham recall of 100%
and spam recall of 98.3%. From these values and the test sample size we may com-
pute hm = 0%(0% − 9.5%) and sm = 1.7% (0.4% − 4.6%). A second experiment
classified the spam component of a similar corpus into two genres: pornographic and
non-pornographic. The genres were used in an evaluation of ternary classification,
but not for a stratified evaluation of binary classification. A third experiment most
closely resembles those which we conducted: an individual’s email messages were
captured over one year, classified manually, and used as training data. The filter
was applied to further week’s email received by the same individual. The resulting
classification table, shown in table XII, demonstrates hm = 1.7% (0.3% − 4.9%),
sm = 20% (9.6% − 34.6%). Sahami et al. further examine the three misclassified

Contingency table % Ham Misc. % Spam Misc. % Misc.

ham spam

ham 174 9

spam 3 36

1.7% (0.3%-4.9%) 20% (9.6%-34.6%) 5.41 (2.82-9.25)

Table XII. Sahami et al.

ham messages, observing two to be newsletter messages and one to be a personal

For review only. Please cite http://plg.uwaterloo.ca/˜gvcormac/spamcormack.html, November 3, 2006



On-line Supervised Spam Filter Evaluation · 23

message that includes a spam message as an attachment. The test corpus is un-
available for comparative evaluation.

Several studies [e.g. Androutsopoulos et al. [Androutsopoulos et al. 2000; An-
droutsopoulos et al. 2000]; Drucker et al. [Drucker et al. 1999]; Pampathi et al.
[Pampapathi et al. 2005]; Sakkis et al. [Sakkis et al. 2001a]; Zhang et al. [Zhang
et al. 2004]] investigate the utility of various machine-learning techniques on spam
filtering using a small corpus and ten-fold cross validation [cf. Kohavi [Kohavi
1995]]. The design of their experiments is typical of machine-learning research. A
classifier is trained on a fixed set of labeled data, the training set, and then asked
to classify another set of similar data, the test set. Ten-fold cross validation [cf.
Kohavi [Kohavi 1995]] is used for evaluation. A corpus of size n is divided randomly
into 10 subsets of size n

10 . Each subset is used as the test set with the remaining
nine subsets combined for training. The union of the ten sets of results has the same
statistical precision as one set of n Bernoulli trials. The validity of cross validation
depends on the assumption that the order of messages is unimportant; that the ratio
of ham to spam and the characteristics of the ham and spam messages are invariant
with time. Consider, for example, a burst of five nearly identical spam messages
that arrive in a short time interval. In a real email sequence, the filter might eas-
ily be flummoxed by the first of these messages, but learn its characteristics and
correctly classify the rest. With ten-fold cross-evaluation, it is nearly certain that
each training set will contain several of these messages, so the filter’s ability to
classify the first-of-a-kind is essentially untested. In general, cross-validation tests
the performance of a filter only after a fixed number of training examples; spam
filter users seldom have several hundred or thousand labeled examples available for
training prior to deployment.

Ling Spam [Androutsopoulos et al. [Androutsopoulos et al. 2000]] is an ab-
straction of 2412 ham messages from a mailing list and 481 spam messages from
an individual recipient. We say abstraction because the messages are stripped of

λ Contingency table % Ham Misc. % Spam Misc. % Overall Misc.

1
2410 83

2 398
0.08 (0.01-0.30) 17.3 (14.0-20.9) 2.94 (2.35-3.62)

9
2410 104

2 377
0.08 (0.01-0.30) 21.6 (18.0-25.6) 3.67 (3.01-4.41)

999
2412 168

0 313
0 (0-0.12) 34.9 (30.7-39.4) 5.81 (4.98-6.72)

Table XIII. Androutsopoulos et al.

headers and line breaks, converted to lower case, tokenized and stemmed. The
filters tested on the Ling Spam corpus were purpose-built to use it to evaluate spe-
cific machine-learning techniques. Although the results are reported in terms of
spam recall, spam precision and weighted accuracy, it is possible to reconstruct the
contingency table from these results. Table XIII, for example, recasts the results
of Androutsopoulos et al. [[Androutsopoulos et al. 2000]] in terms of hm and sm.
Ling Spam is freely available and has been used in many studies [ Androutsopoulos
et al. [Androutsopoulos et al. 2000], [Androutsopoulos et al. 2000]; Sakkis et al.
[Sakkis et al. 2001b]; Zhang et al. [Zhang et al. 2004]]. We found that real spam
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Filter % Ham Misc. % Spam Misc. % Misc.

SpamAssassin 0 95.4 15.9
Bogofilter 0 59.5 9.9

SpamProbe 0 31.3 5.2
CRM114 54.9 11.2 18.5

Table XIV. Real filter results on Ling Spam corpus

filters were in general unable to classify the Ling Spam messages (see table XIV);
we are unaware of how to modify either the corpus or the filters so as to use them
together in a valid experiment.

Androutsopoulos et al. [[Androutsopoulos et al. 2004]] define four public corpora
– PU1, PU2, PU3 and PUA – with a total of 5957 messages (3508 ham and 2449
spam); each corpus abstracts and also obfuscates email from one recipient, so as
to preserve privacy. In addition, repeated spam messages and spam messages from
regular correspondents – about half the spam and eighty percent of the ham –
are discarded in forming the corpus. As for Ling Spam, experiments using these
corpora depend on purpose-built filters. One such filter – Filtron – was trained on

Corpus Contingency table % Ham Misc. % Spam Misc. % Overall Misc.

PU3
2249 90

64 1736
2.8 (2.1-3.5) 4.9 (4.0-4.9) 3.7 (3.2-4.3)

Real Email
5057 173

52 1450
1.0 (0.8-1.3) 10.7 (9.2-12.3) 3.8 (3.3-4.3)

Table XV. Filtron Results

PU3 and tested on real email received by an individual over seven months. During
this interval, 5109 ham and 1623 spam messages were received and classified. Table
XV summarizes the results. Neither Filtron nor the real email corpus is available
for comparative study.

The public SpamAssassin corpus [[SpamAssassin 2004]] consists of 6034 messages
– 4149 ham and 1885 spam – gathered from various sources at various times. Al-
though it is not a chronological sequence of messages delivered to a single recipient,
the messages contain original headers with minor elision for the sake of privacy.
Holden [2004] used the SpamAssassin corpus and ten-fold cross-validation to test
fourteen open-source filters, including versions of the six tested here. Holden’s
results are summarized in table XVI. Holden further tested the filter on one-
month’s personal email, again using cross-validation; results are shown in table
XVII. Holden provides a qualitative description of the misclassified ham messages,
observing a preponderance of messages like welcome advertising, news clippings,
mailing lists, etc. Many other studies have used the SpamAssassin corpus [Meyer
& Whateley [Meyer and Whateley 2004]; Yerazunis [Yerazunis 2004a]; Zhang et al.
[Zhang et al. 2004]].

Zhang et al. [[Zhang et al. 2004]] evaluate several learning algorithms on four
corpora – Ling Spam, PU1, SpamAssassin, and ZH1. ZH1 is a private corpus of
1633 Chinese messages with headers; 428 ham and 1205 spam. Only the TCR
statistic is reported (λ = 9 and λ = 999) ; from this statistic it is impossible, in
general, to recover sm and hm. In the specific case of λ = 999 we may deduce
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Filter Contingency table % Ham Misc. % Spam Misc. % Overall Misc.

Annoyance
4147 209

3 1688
0.07 (0.01-0.21) 11.0 (9.6-12.5) 3.5 (3.1-4.0)

Antispam
4016 35

133 1863
3.2 (2.7-3.8) 1.8 (1.3-2.6) 2.8 (2.4-3.2)

Bayesspam
4033 77

117 1863
2.9 (2.3-3.4) 4.1 (3.2-5.0) 3.2 (2.8-3.7)

bmf
4137 78

18 1819
0.3 (0.2-0.5) 4.1 (3.3-5.1) 1.5 (1.2-1.8)

Bogofilter
4145 184

5 1713
0.12 (0.04-0.28) 9.7 (8.4-11.1) 3.1 (2.7-3.6)

CRM114
4100 58

50 1839
1.2 (0.9-1.6) 3.1 (2.3-3.9) 1.8 (1.5-2.2)

dbacl
309 22

3841 1875
92.5 (91.7-93.3) 1.2 (.73-1.75) 63.9 (62.7-65.1)

DSPAM
4137 76

13 1821
0.3 (0.17-0.5) 4.0 (3.2-5.0) 1.5 (1.2-1.8)

lfile
4087 129

63 1768
1.5 (1.2-1.9) 6.8 (5.7-8.0) 3.2 (2.7-3.6)

qsf
4134 160

16 1737
0.39 (0.22-0.63) 8.4 (7.2-9.8) 2.9 (2.5-3.4)

SpamAssassin
4144 74

6 1823
0.14 (0.05-0.31) 3.9 (3.1-4.9) 1.3 (1.1-1.6)

SpamBayes
4143 83

7 1814
0.17 (0.07-0.34) 4.4 (3.5-5.4) 1.5 (1.2-1.8)

SpamOracle
4150 309

0 1588
0 (0-0.07) 16.3 (14.6-18.0) 5.1 (4.6-5.7)

SpamProbe
4144 65

6 1832
0.14 (0.05-0.31) 3.4 (2.7-4.3) 1.2 (0.9-1.5)

Table XVI. Holden on SpamAssassin Corpus

that the best-ranked classifiers had no ham misclassifications (i.e. c = 0) and we
may use this deduction combined with corpus statistics to compute hm and sm.
TCR for these filters, on the SpamAssassin corpus, was approximately 12. Suppose
c > 0. Because b and c are whole numbers, we have b ≥ 0 and c ≥ 1. We have
TCR = b+d

λc+b
≤ 1897

999+0 = 1.9, which contradicts the reported value. Therefore
c = 0, b ≈ 158, hm = 0 (0% − 0.07%), sm ≈ 8.3% (7.1% − 9.7%). The confidence
interval for hm should be interpreted with caution because Zhang et al. adjusted
the threshold parameter θ999 so as to optimize TCR, effectively fixing c = 0 for the
corpus data. For λ = 9 we are unable to deduce the values of b and c, so in figure
XVIII we present as TCR these results, and also Holden’s, on the SpamAssassin
corpus. We note that this comparison is not entirely valid, as the filters for which
the threshold and other parameters were not adjusted to optimize the result (i.e.
the filters tested by Holden and, we understand, the Bayes method of Zhang et al.)
are at considerable disadvantage.

Tuttle et al. [[Tuttle et al. 2004]] evaluate three common machine-learning algo-
rithms – naive Bayesian classifiers, support vector machines, and boosted decision
trees – within the context of an enterprise mail system. They deployed a novel
architecture to capture email messages and judgements from several users, keeping
this information private and under the control of the users to whom the messages
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Filter Contingency table % Ham Misc. % Spam Misc. % Overall Misc.

Annoyance
144 34

2 3523
1.4 (0.17-4.9) 0.96 (0.67-1.3) 0.97 (0.68-1.3)

Antispam
84 2

62 3555
42.5 (34.4-50.9) 0.06 (0.007-0.2) 1.7 (1.3-2.2)

Bayesspam
117 189

29 3668
19.9 (13.7-27.2) 5.3 (4.5-6.1) 5.9 (5.2-6.7)

bmf
138 25

8 3532
5.5 (3.4-10.5) 0.7 (0.5-1.0) 0.9 (0.6-1.2)

Bogofilter
146 169

0 3338
0 (0-2.0) 4.8 (4.1-5.5) 4.6 (3.9-5.3)

CRM114
119 19

27 3538
18.5 (12.6-25.8) 0.5 (0.3-0.8) 1.2 (0.9-1.7)

dbacl
137 2224

9 1333
6.2 (2.9-11.4) 62.5 (60.9-64.1) 60.3 (58.1-61.9)

DSPAM
146 1723

0 1834
0 (0-2.0) 48.4 (46.8-50.1) 46.5 (44.9-48.2)

lfile
144 90

2 3467
1.4 (0.2-4.8) 2.5 (2.0-3.1) 2.5 (2.0-3.0)

qsf
146 149

0 3408
0 (0-2.0) 4.1 (3.6-4.9) 4.0 (3.4-4.7)

SpamAssassin
146 1799

0 1758
0 (0-2.0) 50.6 (48.9-52.2) 48.6 (47.0-50.2)

SpamBayes
145 189

1 3368
0.7 (0.2-3.8) 5.3 (4.6-6.1) 5.1 (4.4-5.9)

SpamOracle
144 406

2 3151
1.4 (0.2-4.8) 11.4 (10.4-12.5) 11.0 (10.0-12.1)

SpamProbe
136 9

10 3548
6.8 (3.3-12.2) 0.25 (0.12-0.48) 0.51 (0.31-0.80)

Table XVII. Holden on Personal Email

Holden Zhang et al.
Filter TCR (λ = 9) Method Best TCR (approx, λ = 9)

Annoyance 8.0 Naive Bayes 1.9
Antispam 1.5 Max. Entropy 15.2
Bayesspam 1.7 Memory Based 7.0

bmf 7.9 SVMlight 12.1
Bogofilter 8.2 Boost Stumps 10.4
CRM114 3.7

dbacl 0.1
DSPAM 9.8

lfile 2.7
qsf 6.2

SpamAssassin 14.7
SpamBayes 12.9
SpamOracle 6.1
SpamProbe 15.8

Table XVIII. Holden and Zhang et al. on SpamAssassin Corpus
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belonged. Test runs were “pushed” to the users’ corpora, and only statistics were
reported back to the central system. Seven users participated in the study, and
corpora consisting of up to 800 messages per user were subject to ten-fold cross-
validation. Results for each of the seven corpora were computed and the mean of
these results was reported. The primary experiment used individual corpora with
400 messages each, approximately 62% spam, and reported piece-wise ROC curves
(see table XIX) for hm ∈ {0.0%, 0.5%, 1.0%, 2.0%, 5.0%}. Other experiments fixed
hm = 1.0% as a proxy for the operating range. The published averages yield insuf-

%Ham Misc. % Spam Misc.
Naive Bayes SVM AdaBoost

0.0 5.9 6.2 10.5
0.5 4.1 4.4 8.1
1.0 2.8 3.5 5.6
2.0 2.0 2.2 2.6
5.0 1.1 0.5 1.3

Table XIX. Tuttle

ficient information to compute confidence intervals, but we note the overall sample
size of 2800 suggests that they would be comparable in magnitude to those for
Sahami et al. and Androutsopoulos et al. Tuttle et al. perform a 2-factor analysis
of variance and conclude that there is a significant difference in results among the
seven corpora, but not among the three filters.

Kolcz and Alspector [[Kolcz and Alspector 2001]] model the cost of misclassifying
various genres of messages. This approach stands in contrast to the cost-sensitive
methods discussed above, which assume the cost to be dependent only on whether
the message is ham or spam. It also stands in contrast to ours, in which the test
method and quantitative evaluation measures assume no particular cost model, and
messages genres are treated qualitatively. Kolcz and Alspector assembled a corpus
of 11408 messages (6043 ham; 5365 spam) which were labeled according to category;
each category was assigned an estimated cost of misclassification. The corpus was
split into training and test sets in a 3:1 ratio. Results are reported in terms of TCR
and ROC analysis. Although Kolcz and Alspector report their intent to publish
the corpus, to our knowledge it is not available.

The methods and tools developed here have been used in at TREC 2005 [Cor-
mack & Lynam [Cormack and Lynam 2005b]] and TREC 2006 [[Cormack 2006]]
to evaluate spam filters developed by some twenty independent groups on eight
independently-sourced corpora. One of the corpora was the “Mr. X” corpus used
in this study. Another was the “Mr. X II” corpus built from email delivered to
X from October 2005 through May 2006. The other corpora – three private and
three public – were developed using the same methodology. The results reported
at TREC for the “Mr X” corpus may be compared directly to those reported here;
those based on public corpora and filters may be reproduced independently.

10. CONCLUSIONS

Supervised spam filters are effective tools for attenuating spam. The best-performing
filters reduced the volume of incoming spam from about 150 messages per day to

For review only. Please cite http://plg.uwaterloo.ca/˜gvcormac/spamcormack.html, November 3, 2006



28 · Cormack and Lynam

about 2 messages per day. The corresponding risk of mail loss, while minimal, is
difficult to quantify. The best-performing filters misclassified a handful of spam
messages early in the test suite; none within the second half (25,000 messages).
A larger study will be necessary to distinguish the asymptotic probability of ham
misclassification from zero.

Most misclassified ham messages are advertising, news digests, mailing list mes-
sages, or the results of electronic transactions. From this observation, and the fact
that such messages represent a small fraction of incoming mail, we may conclude
that the filters find them more difficult to classify. On the other hand, the small
number of misclassifications suggests that the filter rapidly learns the characteris-
tics of each advertiser, news service, mailing list, or on-line service from which the
recipient wishes to receive messages. We might also conjecture that these misclas-
sifications are more likely to occur soon after subscribing to the particular service
(or soon after starting to use the filter), a time at which the user would be more
likely to notice, should the message go astray, and retrieve it from the spam file. In
contrast, the best filters misclassified no personal messages, and no delivery error
messages, which comprise the largest and most critical fraction of ham.

A supervised filter contributes significantly to the effectiveness of SpamAssassin’s
static component, as measured by both ham and spam misclassification probabili-
ties. Two unsupervised configurations also improved the static component, but by
a smaller margin. The supervised filter alone performed better than than the static
rules alone, but not as well as the combination of the two.

The choice of threshold parameters dominates the observed differences in per-
formance among the four filters (Bogofilter, SA-Bayes, SpamProbe, SpamBayes)
implementing methods derived from Graham’s and Robinson’s proposals. Each
shows a different tradeoff between ham accuracy and spam accuracy. ROC anal-
ysis shows that the differences not accountable to threshold setting, if any, are
small and observable only when the ham misclassification probability is low (i.e.
hm < 0.1%). The other filters (DSPAM, CRM114) show lower performance over
all threshold settings.

Ham and spam misclassification proportions should be reported separately. Ac-
curacy, weighted accuracy, and precision should be avoided as primary evaluation
measures as they are excessively influenced by threshold parameter setting and the
ham-spam ratio of incoming mail. ROC curves provide valuable insight into the
tradeoff between ham and spam accuracy. Area under the ROC curve provides a
meaningful overall effectiveness measure, but does not replace separate ham and
spam misclassification estimates. Each case of ham misclassification should be ex-
amined to ascertain its cause and potential impact.

Caution should be exercised in treating ham misclassification as a simple propor-
tion. Extremely large samples would be needed to estimate it with any degree of
statistical confidence, and even so, it is not clear what effect differences in propor-
tion would have on the overall probability of catastrophic loss. The use of a filter
may mitigate rather than exacerbate this risk, owing to the reduction in classifica-
tion effort required of the user. We advance the proposition that, at the misclassifi-
cation rates demonstrated here, the end-to-end risk of loss is dominated by human
factors and exceptional events, and is comparable to that of other communication
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media.
It has been widely suggested [cf. Graham-Cumming [Graham-Cumming 2006]]

that spam senders may be able to adapt so as to defeat statistical spam filters.
We are able to observe this adaptation by its effect on the rule-based filter results
over time. But we see no evidence that the adaptation compromises the efficacy
of on-line statistical filters, either during the eight-month interval of this study, or
the interval between this study and a subsequent study which we conducted using
email delivered to X more than two years later. [Cormack [Cormack 2006]]

The potential contribution of more sophisticated machine learning techniques to
real spam filtering is as-yet unresolved. In artificial environments they appear to
be promising, but this promise is yet to be demonstrated in comparison to existing
filters that use perhaps more primitive techniques [Cormack and Bratko [Cormack
and Bratko 2006]]. The potential contribution of real-time network resources and
collaborative methods to spam filtering also has yet to be established. Spam filter-
ing is an adversarial task – the degree to which spam is able to adapt to counter
advances in filtering has yet to be studied. While constructing controlled experi-
ments to measure these factors presents a significant logistical challenge, our model
and evaluation methods are amenable.
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