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ABSTRACT
We introduce and validate bootstrap techniques to compute
confidence intervals that quantify the effect of test-collection
variability on average precision (AP) and mean average pre-
cision (MAP) IR effectiveness measures. We consider the
test collection in IR evaluation to be a representative of
a population of materially similar collections, whose docu-
ments are drawn from an infinite pool with similar character-
istics. Our model accurately predicts the degree of concor-
dance between system results on randomly selected halves
of the TREC-6 ad hoc corpus. We advance a framework for
statistical evaluation that uses the same general framework
to model other sources of chance variation as a source of
input for meta-analysis techniques.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Systems and
Software – performance evaluation

General Terms
Experimentation, Measurement

Keywords
bootstrap, confidence interval, precision

1. INTRODUCTION
The purpose of IR evaluation is to measure the effective-

ness, or relative effectiveness, of information retrieval sys-
tems. Statistical precision1 is the degree to which the mea-
surement is free from random error; validity is the degree
to which the measurement truly reflects retrieval effective-
ness. Validity may be further qualified as internal validity,
the aptness of the measure under test conditions, or external

1Known simply as precision in the statistics literature; de-
noted statistical precision here to distinguish it from the IR
effectiveness measure of the same name.
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validity, the generalizability of the results to other situations
([8], pp. 115-134).

Our primary concern is the statistical precision of infor-
mation retrieval experiments. If an experiment were to be
repeated with different but materially similar data, how sim-
ilar would the results be? Is it possible, when the test is
conducted, to predict accurately this degree of similarity?
While these questions are largely amenable to statistical in-
ference, they may be understood only in the context of a
general investigative framework that includes questions of
validity which are not necessarily statistical. Instead they
are addressed by the tools of scientific inquiry – observation,
induction, deduction and experiment.

We argue here that one source of random error – that
associated with the test corpus – should be considered in
assessing IR evaluation methods. We develop and evaluate
bootstrap methods that estimate this source of statistical
imprecision.

We further argue that another source of random error –
that associated with the topics – is poorly modelled by re-
garding the set of test topics as a random sample of some
“true” population; experiments assuming such a model are
uncompelling to establish either statistical precision or va-
lidity. Instead, we propose, each topic should be regarded
as a separate test, and the results of these tests should be
combined using meta-analysis techniques ([8], pp. 643-673).

2. TREC AD HOC RETRIEVAL
The object of our study is the TREC ad hoc retrieval

evaluation technique[19]. Given a topic T and a set of doc-
uments D, each tested IR system returns an ordered subset
S = s1s2...sn of D, ranked by the system’s estimate of the
likelihood that each document is relevant to T . Several ef-
fectiveness measures are computed, including average preci-
sion (AP ), precision at k returned documents (P@k), and
R-precision (P@R) defined as

AP =

|S|
X

k=1

rel(sk) ∗ P@k/R

P@k =
k
X

i=1

rel(si)/k

R =
X

di∈D

rel(d)



rel(d) =



1 if document d is relevant to T
0 otherwise

ff

.

The test is repeated for several topics; the effectiveness
measures from these tests are reported separately and also
averaged across topics. In particular, mean average precision
(MAP ) is typically used and accepted as a valid effectiveness
measure.

The evaluation measures depend on the truth value of if
document d is relevant to T, which must be adjudicated.
TREC uses the pooling method in which the top-ranked t
documents from a set of systems (perhaps the systems under
test) are combined, eliminating duplicates, and presented in
random order to a human assessor. The assessor records a
judgement of relevant or not relevant for each document in
the pool. Documents not in the pool are assumed to be not
relevant.

TREC evaluations have typically tested about 50 systems
using 50 topics, n = 1000, |D| = 500 000, t = 100, and a
pool size of 40 000 (for all 50 topics).[19]

3. PHILOSOPHICAL FRAMEWORK
The notion of population has been the subject of historical

and current philosophical debate [7]. We adopt Fisher’s view
[4] of an infinite hypothetical population:

If, in a Mendelian experiment, we say that the
probability is one half that a mouse born of a
certain mating shall be white, we must conceive
of our mouse as one of an infinite population of
mice which might have been produced by that
mating. The population must be infinite for in
sampling from a finite population the fact of one
mouse being white would affect the probability of
others being white, and this is not the hypoth-
esis which we wish to consider; moreover, the
probability may not always be a rational num-
ber. Being infinite the population is clearly hy-
pothetical, for not only must the actual number
produced by any parents be finite, but we might
wish to consider the possibility that the proba-
bility should depend on the age of the parents,
or their nutritional conditions. We can, however,
imagine an unlimited number of mice produced
upon the conditions of our experiment, that is,
by similar parents, in the same age, in the same
environment. The proportion of white mice in
this imaginary population appears to be the ac-
tual meaning to be assigned to our statement
of probability. Briefly, the hypothetical popu-
lation is the conceptual resultant of the condi-
tions which we are studying. The probability,
like other statistical parameters, is a numerical
characteristic of that population.

A model is a characterization with a few parameters that
abstracts the hypothetical population, removing irrelevant
information while preserving that which reflects measures
of interest; in this instance, measures of retrieval effective-
ness. As such a model is a scientific theory that is posed to
explain known facts; its worth is judged by its simplicity, its
ability to explain existing observations and its ability to pre-
dict new ones. A theory is never “proved” as it is simply a

model, but our confidence in it builds as these criteria (de-
gree of abstraction, explanatory ability, predictive ability)
are demonstrated.

With respect to IR evaluation, it is possible to identify
several hypothetical target populations: the topics that might
be presented to a system, the corpora from which the sys-
tem may be expected to retrieve documents relevant to the
topic, the set of relevance assessments for the topics; even
the set of systems that might be subject to test may be con-
sidered to be a hypothetical population of interest. How-
ever, these populations are exceedingly difficult to specify,
let alone model with a small number of parameters. And
sampling them would be a hopeless task as many members
of the population exist only in the future. Instead, we select
readily available data and observations, and treat them as
representing the hypothetical population of all data like that
which we collected – the source population. The meaning
of the word “like” must be considered carefully in modelling
such a population; a narrow definition may improve sta-
tistical precision while a broad one may improve external
validity.

External validity – the applicability of the model to the
target population – is established, not by statistical infer-
ence, but by scientific inquiry in which (a) predictions about
other data are made and tested by experiment, and (b)
sources of possible systematic or random error are identi-
fied and tested by experiment.

4. STATISTICS IN IR EVALUATION
Tague-Sutcliffe [12] argues that of validity, reliability and

efficiency should be considered in a qualitative assessment
of various design issues. Validity is used to mean internal
validity; reliability2 subsumes (statistical) precision and ex-
ternal validity; efficiency relates to the resources that are
expended in achieving validity and reliability.

Tague-Sutcliffe [13] performed a statistical analysis of the
TREC-3 results, under the assumption that the set of topics
was a random sample of “all possible queries that might be
asked of the database.” Paired testing was rejected so as
to avoid the fallacy of multiple hypothesis testing (cherry-
picking); analysis of variance (ANOVA) was used to com-
pute significant differences among systems according to a
number of performance measures. Very large differences in
performance – spanning approximately three-quarters of the
tested systems – were necessary to distinguish systems with
95% confidence (i.e. p < .05). Neither the choice of measure
nor an arcsine transformation had substantial impact on the
results.

Savoy [11], under the assumption that topics are a random
sample, examines the use of classical and bootstrap methods
[3] to test the relative performance of pairs of systems. The
bootstrap builds a concrete model for a hypothetical pop-
ulation in which each element of the sample is replicated
an equal and infinite number of times; this population may,
in effect, be sampled any number of times by drawing el-
ements from the original sample, with replacement. Savoy
performs significance tests to support the proposition that

2In testing, reliability is the degree to which the same test,
administered to the same subject, will yield a consistent
score ([8], p. 507). Assuming one interprets “the same” lit-
erally, IR tests are 100% reliable. Figurative interpretations
are captured by Fisher’s hypothetical population.



the bootstrap yields higher statistical precision than para-
metric approaches, and that median, as opposed to mean,
is a better summary statistic.

Voorhees and Buckley [17] explore the effect of topic set
size, also assuming the topics to be a random sample. Rather
than building a statistical model, they measure the propor-
tion of discordant results between evaluations performed us-
ing disjoint sample subsets. Results are stratified by the dif-
ference in evaluation measure between each pair of systems.
For each stratum an exponential curve on two parameters is
used to estimate the proportion of discordant pairs.

Sanderson and Zobel [10] measure discordance propor-
tion stratified by p-value of a significance test and at the
same time by the magnitude of the difference between MAP
scores, and observe that a large difference coupled with a
small p-value predicts low discordance.

Several studies [15, 2, 20, 9, 18, 10] have considered the
effect of variations in relevance judgments and judging pools
on retrieval evaluation. Buckley and Voorhees [1] consider
the effect of using differently formed queries to represent the
same information need.

Reports on IR evaluations often3 include standard tests
such as paired t-tests, Wilcoxon signed-ranked tests, sign
tests, or analysis of variance, notwithstanding questions as
to their applicability [6]. Reports typically include signifi-
cance judgements based on a fixed α threshold; p-values are
less common and confidence intervals are rarer still. The
vast majority, if not all, assume that topic variation is the
only source of random error.

Statistical hypothesis testing in general, particularly that
based on a fixed α threshold, has come under criticism lately
([8], pp. 183-199). H0 – the null hypothesis that two pop-
ulations are the same – is a strawman that is too easy to
refute. In the real world, no two distinct things are the
same[5], and a large enough sample will show this. Such a
hypothesis should be replaced by an estimate of the magni-
tude of the difference and an argument as to whether or not
that difference is important.

5. COLLECTION VARIABILITY
To measure statistical imprecision due to collection vari-

ability, we use the hypothetical population of all collections
that are materially similar to the test collection. We for-
mulated a simple characterization of this population and
conducted a pilot experiment in which we constructed confi-
dence intervals for AP using a bootstrap estimation of model
parameters, and predicted the number of AP values in a
second test that should fall in this interval, according to the
model. The results show good precision but for some out-
liers which led us to examine the special cases which they
represent, and to adapt the model to account for them.

Our initial model assumes that D, the set of documents
in the test collection, is an independent and identically dis-
tributed (i.i.d.) sample of a population of similar docu-
ments. By similar, we mean having the same relevance
value, and yielding a comparable score (or at least a compa-
rable ranking relative to other documents) when retrieved
by the IR system under test. The hypothetical population
to which D belongs is the set of all such samples.

3Not often enough, according to Sanderson and Zobel [10],
who surveyed published SIGIR papers and found that 14 of
28 claiming retrieval results reported no statistical tests.

Let D′ be some other collection of the same size from
the same population as D, and AP ′ be the average preci-
sion from applying the same IR system to D′. We wish to
compute a 95% confidence interval – a range of possible val-
ues such that, with 95% probability, contains the expected
value E(AP ′). We are not aware of any direct paramet-
ric method of estimating this confidence interval; therefore
we use the bootstrap to sample the population to which D
and D′ belong. By repeated sampling, we may estimate
the variance of AP ′ and compute parametric confidence in-
tervals assuming a normal (Gaussian) distribution. Or we
may estimate the variance of a monotonic transform t(AP ′)
which is better distributed, in effect computing confidence
limits for E(t(AP ′)) which may be more accurate. Or we
may compute confidence intervals nonparametrically by se-
lecting the 2.5th through 97.5th percentile of the bootstrap
samples. A bias-corrected variant of percentile method is
known as BCa[3]. We used three methods for our pilot:
variance of AP ′ values; variance of logit(AP ′)4; BCa.

The bootstrap constructs repeated examples of D′ by re-
sampling D. That is, the elements of each example of D′

are selected from D, with replacement. For this applica-
tion we assume that |D′| is large compared to n, the size
of the ranked list of documents to be retrieved (typically
|D′| > 100n). This assumption allows us to use the Pois-
son distribution to generate S′, the list of documents re-
trieved from D′, without considering the irrelevant elements
of D′. Specifically, each document of S (the retrieved set of
documents) is assumed to be replicated k times in S′ with
probability 1

e·k!
.

So to construct S′ we take each si ∈ S in rank order, gen-
erate a random k according to the Poisson distribution, and
replicate the element k times. We assume that the repli-
cated elements all receive comparable scores from the IR
system and thus are consecutively ranked in S′. Using this
construction, |S′| ≈ |S|. The difference in sizes is inconse-
quential to the AP ′ calculation.

It is also necessary to compute R′ for the bootstrap sam-
ple. To do this we partition R:

R = Rret + Rnot

Rret = |{d ∈ S | rel(d)}|

Rnot = |{d /∈ S | rel(d)}|
R′

ret is determined directly from S′; R′
not is computed

post-hoc as:

R′
not =

|R−Rret|
X

i=1

ki

where each ki is randomly generated according to the Pois-
son distribution.

The net effect is that we may compute as many exam-
ples of AP ′ as necessary to compute model parameters for
our hypothetical population. For our untransformed para-
metric confidence interval estimate, we compute the stan-
dard deviation σ of the AP ′ values. The 95% confidence
interval is AP ± 1.96σ. For the logit-transformed paramet-
ric estimate, we first replace AP values of 0 and 1 by ε
4logit(x) = log( x

1−x
)



and 1 − ε respectively, and compute the standard devia-
tion σlogit of logit(AP ′). The 95% confidence interval is
logit−1(logit(AP ) ± 1.96σlogit). BCa confidence intervals
were computed directly using the System R implementation
of Efron’s S-Plus code ([3], pp. 402-403).

6. PILOT EXPERIMENT
We used the raw results from the 74 IR system runs eval-

uated over 50 topics in the the TREC 6 ad hoc task[14]
– 3652 non-empty ranked-result lists in total. The corpus
documents were split into two subsets, A and B, of roughly
equal size using an MD5 hash on the document identifier.
Similarly, each result list was split into two – one repre-
senting the documents retrieved from A; the other from B.
These two sets of result lists were assumed to represent the
retrieval results on two independent corpora drawn from a
common source population. We used 2000 bootstrap sam-
ples of the A corpus and the three bootstrap techniques to
compute 95% confidence intervals.

6.1 Prediction
Recall that the confidence interval is defined to be an in-

terval within which contains the true value E(AP ′) with
95% probability. If we knew the value of E(AP ′) we could
simply count the proportion of times E(AP ′) fell within the
computed confidence interval, expecting this proportion to
be about 95% if the intervals were accurate. Similarly, if the
intervals were unbiased, we would expect an equal propor-
tion (about 2.5%) to fall above as below the interval.

All Runs (n=3652) Only R > 5 (n=3068)
below in above below in above

linear 3.7% 77.8% 11.1% 2.8% 82.0% 15.1%
logit 11.1% 76.5% 12.5% 9.4% 81.4% 9.1%
BCa 7.4% 77.1% 15.5% 6.7% 80.8% 12.5%
model 8.25% 83.5% 8.25% 8.25% 83.5% 8.25%

Table 1: Proportion of APB within interval
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Figure 1: Distribution of Normalized APB − APA

But we don’t know E(AP ′); therefore, we validate the
model by using it to predict how many times APB (AP
computed on the B corpus) should fall within the confi-
dence interval created by bootstrapping the A corpus. Note
that this frequency is not 95%, as commonly assumed, but
considerably lower.

For the parametric models, recall that the interval is APA±
1.96σ. We wish to predict how likely APB is to fall in this
interval; more precisely

APA − 1.96σ ≤ APB ≤ APA + 1.96σ ,

or

−1.96σ ≤ APB − APA ≤ 1.96σ .

Our model predicts that APA and APB both have stan-
dard deviation σ, so σAB , the standard deviation of APB −
APA is given by σAB =

√
2σ. Substituting, we have

−1.39σAB ≤ APB − APA ≤ 1.39σAB .

This range bounds 83.5% of the area under the normal
curve for APB−APA and hence we expect the inequalities to
be satisfied, i.e. APB to fall within the confidence interval,
83.5% of the time. Furthermore, APB should fall about
equally to the left and to the right of the interval.

The same argument holds for the logit-transformed para-
metric model. There is no similar mechanism for making
direct prediction from the non-parametric confidence inter-
vals. However, we may still generally compare the results to
those of the parametric methods.

6.2 Pilot Results
Confidence intervals were computed using the A subset of

the results for each topic within each run (n = 3652). APB

was computed for the corresponding B subset and compared
to the confidence interval. Table 1 reports the proportion of
APB values above, within, and below the intervals. Figure 1
shows (for the BCa method only) the distribution of APB −
APA, normalized so that the confidence interval occupies
the range −1 .. 1.

Figure 1 makes it apparent that there are a large number
of outliers at the high end of the distribution. Further inves-
tigation reveals that these extreme values are almost entirely
accounted for by small-sample effects. Most of these arise
when R ≤ 5 (R ≤ 1 in particular). Selecting only those top-
ics for which R > 5 gives the proportions listed in second half
of Table 1. The number of APB values within the predicted
interval approaches, but does not quite reach, the predicted
83.5%. Furthermore, the linear and BCa estimates show
evidence of bias.

Even when we restrict our attention to the situation in
which R > 5, a handful of outliers remain. These consist
mainly of cases with APA = 0 or APA = 1, where the Boot-
strap erroneously reports σ = 0. In this situation, APB falls
within the interval only if it is exactly equal to APA, which
occurs in substantially less than 95% of the cases. Further
investigation revealed that the high error rate among the
cases with R ≤ 5 was also largely due to cases with APA = 0
or APA = 1.

6.3 Pilot Conclusions
From the pilot we conclude that the model works well for

the majority of the situations, but special attention needs
to be paid to situations in which R is small, or in which
APA = 0 or APA = 1.
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Figure 2: Normalized Small-R Corrected Distribution (c.l. = [−1, 1])

It is well known that many statistical methods are inappli-
cable to small samples. One way to deal with this problem is
to design studies and experiments that yield sufficient num-
bers. In studying the prevalence of disease, for example,
an epidemiologist would ensure that the sample population
would be expected to contain a sufficient number of positive
examples to be amenable to statistical inference. TREC’s
corpus design process pays careful attention to this consid-
eration, rejecting topics expected to yield very low or very
high values of R. The case of R = 0 is avoided in particu-
lar, because AP is undefined in this situation. The TREC-6
corpus that we used had 5 of its fifty topics with R ≤ 5 (3
with R = 5; 1 with R = 4; 1 with R = 3; none with R ≤ 2.
Our split-sample technique created A and B corpora which
effectively halved R, giving rise to substantially more (9 and
8 resp.) with R ≤ 5 and also to several (3 and 4 resp.) with
R ≤ 2, smaller than any in the TREC-6 corpus. Therefore
we would expect that the estimation techniques used in our
pilot would be considerably more accurate were they applied
to the full corpus.

Experimental design issues notwithstanding, the results
of our pilot prompted us to investigate ways to augment our
model to handle cases with small R.

7. SMALL-R CORRECTION
We modelled cases with small R (and some cases with

larger R) by considering AP = 0 and AP = 1 as special
cases. AP = 0 means that, among the R relevant doc-
uments in the collection, the retrieval system found none.
But it may be that in the source population – the set of
materially similar collections – there exist silver bullets –
relevant documents that the system could retrieve but did
not happen to be among the R sampled for this particular
test. Using exact binomial probabilities, we establish con-
fidence limits for the proportion of such silver bullets that
may exist in the source population. The lower confidence
limit is 0 and the upper confidence limit is the smallest u
such that the probability (1−u)R of having no silver bullets
in our sample does not exceed the significance threshold,

under the assumption that u is the true proportion. For ex-
ample, if R = 4, the 95% confidence limit for the proportion
of silver bullets is [0, 0.53]. That is, we cannot statistically
reject the hypothesis that 53% of all relevant documents are
silver bullets!

We take 53% (or whatever the appropriate fraction is for
a given R) to represent the extreme case that results in our
upper confidence limit. But the confidence limit must be
expressed as an AP ′ value, not a proportion of silver bul-
lets. To compute AP ′, we assume that the retrieved rank of
a silver bullet is uniformly distributed between 1 and n (i.e.
could appear anywhere in the retrieved list) and, using dy-
namic programming, compute by enumeration the resulting
E(AP ′). This value is chosen as the upper confidence limit
in place of 0.

APB w.r.t. A APA w.r.t. B
below in above below in above

linear 2.1% 82.8% 15.0% 2.4% 83.9% 13.6%
logit 8.5% 83.6% 7.9% 8.7% 82.7% 8.7%

Table 2: Small-R corrected within interval

A similar model was used for the cases of AP = 1. We use
binomial probabilities to establish bounds for the the pro-
portion of lead balloons – relevant documents that the sys-
tem is unable to retrieve, but are not represented in the R
relevant documents sampled for this particular test. A sim-
ilar dynamic approach converts the worst-case lead-balloon
proportion to a lower confidence limit.

The same corrections were applied to cases with AP ≈ 0
and AP ≈ 1; for such values, we use the larger of the original
confidence interval and the interval under the assumption
that AP = 0 (AP = 1, resp.).

Table 2 shows the result of applying small-R correction
to the results of the two bootstrap methods.5 The left

5We did not use the computationally intensive BCa method
as it showed poor results in the pilot and was not amenable



half shows the fraction of APB values that fall within the
confidence intervals computed from A; the right half shows
the the fraction of APA values that fall with intervals com-
puted from B. In both cases, both methods yield in-interval
fractions that are extremely close to those predicted by the
model. However, the linear model exhibits considerable bias,
as evidenced by the fact that the fraction above is roughly
six times larger than the fraction below in both tests. The
logit model demonstrates no apparent bias.

Figure 2 shows normalized APB − APA for the linear
and logit models. Logit is clearly more symmetric with
fewer outliers. All of the (few) logit outliers are cases with
APA = 0, for which a nonparametric model was used. Such
a model predicts only the number in-interval, not the dis-
tribution of those outside. The outliers should therefore not
be considered to contradict the model.

8. MEAN AVERAGE PRECISION
Mean Average Precision (MAP) – the average of AP val-

ues over several topics – is commonly reported as an overall
summary measure. We investigated methods to compute
the sensitivity of MAP to corpus variation. We applied the
same methods to a summary measure we call logistic MAP
(L-MAP), which averages logit(AP ) instead of AP . L-MAP
is closely related (and nearly identical for small values) to
geometric MAP (G-MAP) – the average of log(AP ) values
– which has been proposed recently to increase the contri-
bution of low AP values to the overall measure. [16]

(L−)MAPB w.r.t. A (L−)MAPA w.r.t. B
below in above below in above

MAP 27.0% 68.9% 4.0% 21.6% 75.6% 2.7%
L-MAP 1.3% 83.7% 14.8% 16.2% 82.4% 1.3%

Table 3: Bootstrap 50 topic mean within interval

(L−)MAPB w.r.t. A (L−)MAPA w.r.t. B
below in above below in above

MAP 1.3% 78.3% 20.2% 16.2% 81.0% 2.7%
L-MAP 2.7% 74.3% 22.9% 22.9% 74.3% 2.7%

Table 4: Parametric 50 topic mean within interval

The first row of table 3 shows the fraction of the 74 MAPB

(MAPA resp.) fractions falling within the interval computed
by bootstrap sampling A (B resp.). That is, MAP was
computed for each of the 2000 bootstrap samples, and the
variance of these values was used to estimate the standard
error. The second row shows the same method applied to
L-MAP. In the case of MAP, we see that the in-interval frac-
tion falls considerably below that predicted by the model,
suggesting that the model is inappropriate. The L-MAP
in-interval fraction, on the other hand, suggests that in this
case the model is appropriate. The imbalance between above
and below fractions suggests random skew between A and B
rather than a systematic bias in the model. Note that these
fractions are determined from 74 data points, as opposed to
3652 for the AP computations. Therefore these observations

to the further experiments detailed below.

should be taken as indications to be confirmed by a larger
experiment.

Table 4 shows the results of using a parametric approach
to combine the 74 separate AP confidence intervals into a
single MAP (L-MAP) confidence interval. To compute the
MAP confidence interval, we averaged the variances derived
from the logistic model, but weighted them according to
their relative contribution to MAP statistic. We used a mul-
tiplicative weight of AP − AP 2, the derivative of AP with
respect to logit(AP ). To compute the L-MAP confidence
interval, we simply averaged the unweighted variances of
the 74 separate estimates. We observe that the parametric
estimates for MAP are considerably better than the boot-
strap estimates, further validating the logit model. However,
they appear to be slightly optimistic, yielding about 80% in-
interval as opposed to the predicted 83.5%. On the other
hand, the parametric estimate for L-MAP is much worse
than the bootstrap estimate. We attribute this error to the
fact that the estimate weights heavily the small-R-corrected
estimates, which are themselves non-parametric and there-
fore not suitable variance estimates. This error is much less
important for MAP because most of these estimates receive
extremely low weight.

Figure 3 shows the MAP parametric confidence intervals
computed from A, along with the MAPA and MAPB val-
ues, marked x and o respectively. This graphic shows that
the confidence intervals generally do a good job of predicting
the range of possible MAPB values, and the out-of-interval
values are near-misses rather than outliers. Figure 3 also
shows the corresponding L-MAP bootstrap confidence in-
tervals, and reflects the same general observation. Figure 4
shows the MAP and L-MAP values based on the full corpus
(as opposed to the A subset). As expected, the confidence
intervals are smaller, typically with a width of about 0.05.

9. DISCUSSION
Experimental evidence suggests that our model for corpus

variability aptly predicts confidence intervals for individual
AP values. logit(AP ) has better algebraic properties than
AP and therefore yields a better model from which AP con-
fidence intervals can be derived. AP values close to 0 and
1 are problematic, and arise often when R – the number of
relevant documents – is small. These anomalies may be ad-
dressed by using a non-parametric binomial model to predict
silver bullets and lead balloons – relevant documents whose
properties are not represented at all in the corpus.

MAP exhibits the same algebraic anomalies as AP ; in
this situation, a weighted average of logit(AP ) variances is
used to predict indirectly the effect of averaging non-logit-
transformed AP values. L-MAP, on the other hand, may
be estimated directly using the bootstrap. We expect that
G-MAP would exhibit similar properties to L-MAP, as they
differ substantially only for values close to 1 – values which
occur rarely in IR evaluation.

Our framework and validation technique applies equally
to models for evaluating the relative effectiveness of a pair
of IR systems. One simply has to model the difference d
between the two systems according to some measure of in-
terest; for example d = APx − APy. If we construct sep-
arate models for APx and APy with standard deviations
σxand σy we may estimate σd =

p

σ2
x + σ2

y, and a 95% confi-
dence interval of ±1.96σd. Our results indicate that defining
d = logit(APx) − logit(APy) would yield a better estimate.
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Figure 3: MAPB and L-MAPB with respect to A confidence intervals
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Figure 4: Full corpus Confidence Intervals

Confidence intervals for the difference contain strictly more
information than fixed-threshold hypothesis tests; the dif-
ference between APx and APy is significant (two-tailed test,
α = 0.05) exactly when 0 does not fall within the confidence
interval for d. The same approach may be applied to the
difference between MAP, L-MAP or G-MAP scores.

A more powerful estimate for σd – which takes into ac-
count correlations between the two systems’ results – may
be effected by bootstrapping d. For each bootstrap sample,
directly compute AP ′

x, AP ′
y [logit(APx), logit(APy)] and

hence d′; then estimate σd from the various d′ values.



Our analysis indicates that current methods6 poorly model
random error due to topic variability. By the argument
in section 6.1, if a test concluded from one sample that
APx > APy (p = 0.05) we would expect that for some other
sample AP ′

x > AP ′
y would occur with probability 0.835, (not

0.95). Furthermore, this prediction should be insensitive to
the sample size and the magnitude of the difference between
APx and APy. Experimental results [10] are inconsistent
with these predictions, contradicting the validity of the tests.
We conjecture that using the logit transform would mitigate
but not overcome the shortcomings of the underlying model.

If the logit transform were to yield a reasonable model
for topic variability – a proposition the experimental inves-
tigation of which we leave to future work – it would be a
simple matter to use the bootstrap method developed here
to model it, or to model both topic and collection variability
at once. One must simply compute L-MAP (or the differ-
ence between L-MAPs) using bootstrap resampling to select
both the topic and the corpus for each sample. The under-
lying foundation is the same.

A more promising approach, we argue, is to regard the re-
sults from each topic as separate tests and to combine them
using meta-analysis ([8], pp. 643-673; [5]). For a simple
paired hypothesis test, one may simply combine the values
of di and σi arising from k separate tests to compute an over-
all single-tailed p-value p = 1−Φ

Pk

i=1

di√
kσi

where Φ is the

cumulative normal distribution. More sophisticated meta-
analysis involves identifying a quantitative “effect” and mea-
suring it with confidence intervals. While it is difficult to
argue that d = APx − APy is a meaningful quantity, the
value d = logit(APx) − logit(APy) represents the logarithm
of the ratio of the effectiveness of the two systems, which we
advance as a worthwhile measure.

Meta-analysis may also be used to estimate the perfor-
mance of a single system over several tests. The most ob-
vious measure is simply AP but our results indicate that
logit(AP ) would be more appropriate. Even more appro-
priate would be a measure that compensated for topic diffi-
culty; we suggest d = logit(AP ) − logit(X) where X is the
performance of some baseline system or some other estimate
of “normal” system performance.

Fixed-effect model meta-analysis computes the effect d
and standard error σ as follows:

d =

k
X

i=1

diσ
−2

i

k
X

i=1

σ−2

i

σ =

 

k
X

i=1

σ−2

i

!− 1

2

The overall effect estimate is the average of the individual
estimates, weighted by their statistical precision. Random-
effect model meta-analysis further compensates for hetero-
geneity of tests such as might occur when using diverse top-
ics or corpora.
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