
Journal of Machine Learning Research ? (2006) ??-?? Submitted 03/06; Published ??/??

Spam Filtering Using Statistical Data Compression Models

Andrej Bratko andrej.bratko@ijs.si
Bogdan Filipič bogdan.filipic@ijs.si
Department of Intelligent Systems
Jozef Stefan Institute
Jamova 39, Ljubljana, Slovenia SI-1000

Gordon V. Cormack gvcormack@uwaterloo.ca
Thomas R. Lynam trlynam@plg.uwaterloo.ca
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

Blaž Zupan blaz.zupan@fri.uni-lj.si

Faculty of Computer and Information Science
University of Ljubljana
Tržaška 25, Ljubljana, Slovenia SI-1000

Editor: Philip Chan, Richard Lippmann

Abstract

Spam filtering poses a special problem in text categorization, of which the defining charac-
teristic is that filters face an active adversary, which constantly attempts to evade filtering.
Since spam evolves continuously and most practical applications are based on online user
feedback, the task calls for fast, incremental and robust learning algorithms. In this pa-
per, we investigate a novel approach to spam filtering based on adaptive statistical data
compression models. The nature of these models allows them to be employed as probabilis-
tic text classifiers based on character-level or binary sequences. By modeling messages as
sequences, tokenization and other error-prone preprocessing steps are omitted altogether,
resulting in a method that is very robust. The models are also fast to construct and incre-
mentally updateable. We evaluate the filtering performance of two different compression
algorithms; dynamic Markov compression and prediction by partial matching. The re-
sults of our extensive empirical evaluation indicate that compression models outperform
currently established spam filters, as well as a number of methods proposed in previous
studies.

Keywords: text categorization, spam filtering, Markov models, dynamic Markov com-
pression, prediction by partial matching

1. Introduction

Electronic mail is arguably the “killer app” of the internet. It is used daily by millions
of people to communicate around the globe and is a mission-critical application for many
businesses. Over the last decade, unsolicited bulk email has become a major problem for
email users. An overwhelming amount of spam is flowing into users’ mailboxes daily. In
2004, an estimated 62% of all email was attributed to spam, according to the anti-spam

©2006 Andrej Bratko, Gordon V. Cormack, Bogdan Filipič, Thomas R. Lynam and Blaž Zupan.

Bratko, Cormack, Filipič, Lynam and Zupan

outfit Brightmail1. Not only is spam frustrating for most email users, it strains the IT
infrastructure of organizations and costs businesses billions of dollars in lost productivity.
In recent years, spam has evolved from an annoyance into a serious security threat, and is
now a prime medium for phishing of sensitive information, as well the spread of malicious
software.

Many different approaches for fighting spam have been proposed, ranging from various
sender authentication protocols to charging senders indiscriminately, in money or computa-
tional resources (Goodman et al., 2005). A promising approach is the use of content-based
filters, capable of discerning spam and legitimate email messages automatically. Machine
learning methods are particularly attractive for this task, since they are capable of adapting
to the evolving characteristics of spam, and data is often available for training such models.
Nevertheless, spam filtering poses a special problem for automated text categorization, of
which the defining characteristic is that filters face an active adversary, which constantly
attempts to evade filtering. Unlike most text categorization tasks, the cost of misclassifica-
tion is heavily skewed: Labeling a legitimate email as spam, usually referred to as a false
positive, carries a much greater penalty than vice-versa. Since spam evolves continuously
and most practical applications are based on online user feedback, the task calls for fast,
incremental and robust learning algorithms.

In this paper, we consider the use of adaptive data compression models for spam filtering.
Specifically, we employ the dynamic Markov compression (Cormack and Horspool, 1987)
and prediction by partial matching (Cleary and Witten, 1984) algorithms. Classification
is done by first building two compression models from the training corpus, one for spam
and one for legitimate email. The compression rate achieved using these two models on
the target message determines the classification outcome. Two variants of the method with
different theoretical underpinnings are evaluated. The first variant (Frank et al., 2000;
Teahan, 2000) estimates the probability of a document using compression models derived
from the training data, and assigns the class label based on the model that deems the target
document most probable. The second variant, which is introduced in this paper, selects the
class for which the addition of the target document effectively results in a minimal increase
in the description length of the entire dataset.

While the idea of using data compression algorithms for text categorization is not new,
we are aware of no existing research that considers such methods for spam filtering. In the
present paper, we demonstrate that compression models are extremely well suited to the
spam filtering problem. We find that compression models consistently outperform estab-
lished spam filters, as well as a variety of methods considered in other studies, over a large
number of datasets. We propose a simple, yet effective modification of the original method,
which substantially improves filtering performance in our experiments. We generalize the
results to compression algorithms not considered in other studies, showing that they exhibit
similar, strong performance. Finally, we show that compression models are robust to the
type of noise introduced in text by typical obfuscation tactics used by spammers in order
to evade filtering, which should make them difficult to defeat.

1. http://brightmail.com/, 2004-03-12

2

Spam Filtering Using Statistical Data Compression Models

2. Related Work

Most relevant to our work is the work of Frank et al. (2000), who first proposed the use
of compression models for automated text categorization. They investigate using the pre-
diction by partial matching algorithm as a Bayesian text classifier. They find that the
compression-based method is inferior to support vector machines (SVM) and roughly on
par with naive Bayes on the classical Reuters-21578 dataset. The same method was inves-
tigated by Teahan (2000), and later applied to a number of text categorization problems,
such as authorship attribution, dialect identification and genre classification (Teahan and
Harper, 2003). They find the compression-based method particularly suitable for dialect
identification and authorship attribution, and report fair performance for genre classification
and topic detection.

Peng et al. (2004) propose augmenting a word-based naive Bayes classifier with statistical
language models to account for word dependencies. They also consider training the language
models on characters instead of words, which is similar in spirit to the compression-based
method of Frank et al. (2000). In experiments on a number of categorization tasks, they
find that the character-based method often outperforms the word-based approach. They
also find that character-level language models reach or improve previously published results
on four of the six classification tasks considered in the study.

In most spam filtering work, text is modeled with the bag-of-words (BOW) representa-
tion, even though it is widely accepted that tokenization is a vulnerability of keyword-based
spam filters. Some filters use character n-grams instead of word tokens and apply classical
machine learning algorithms on the resulting feature vector (Goodman et al., 2005).

Two particular approaches (that we are aware of) go a step further towards operating
directly on character sequences. IBM’s Chung-Kwei system (Rigoutsos and Huynh, 2004)
uses pattern matching techniques originally developed for DNA sequences. Messages are
filtered based on the number of occurrences of patterns associated with spam and the extent
to which they cover the target document. Recently, Pampapathi et al. (2005) proposed a
filtering technique based on the suffix tree data structure. They investigate a number of
ad hoc scoring functions on matches found in the target document against suffix trees
constructed from spam and legitimate email. However, the techniques proposed in these
studies are different to the statistical data compression models that are evaluated here. In
particular, while these systems use character-based features in combination with some ad
hoc scoring functions, compression models were designed from the ground up for the specific
purpose of probabilistic modeling of sequential data. This property of data compression
models allows them to be employed in an intuitively appealing and principled way.

The methods presented in this paper were first evaluated on a number of real-world
email collections in the framework of the 2005 Text REtrieval Conference (TREC). The re-
sults of this evaluation showed promise in the use of statistical data compression models for
spam filtering (Bratko and Filipič, 2005). In this paper, we describe a modification to the
original text classification method of Frank et al. (2000) and give insight into its theoretical
background. We show that this modification substantially improves spam filtering perfor-
mance and largely contributed to the success of our approach in the TREC evaluation. We
further extend our analysis to other compression algorithms and compare the performance
of compression models with results published in previous studies.

3

Bratko, Cormack, Filipič, Lynam and Zupan

3. Statistical Data Compression

Probability plays a central role in data compression: Knowing the exact probability distri-
bution governing an information source allows us to construct optimal or near-optimal codes
for messages produced by the source. A statistical data compression algorithm exploits this
relationship by building a statistical model of the information source, which can be used to
estimate the probability of each possible message. This model is coupled with an encoder
that uses these probability estimates to construct the final binary representation. For our
purposes, the encoding problem is irrelevant. We therefore focus on the source modeling
task.

3.1 Preliminaries

We denote by X the random variable associated with the source, which may take the value
of any message the source is capable of producing, and by P the probability distribution
over the values of X. We are particularly interested in modeling of text generating sources.
Each message x produced by such a source is naturally represented as a sequence xn

1 =
x1 . . . xn ∈ Σ∗ of symbols over the source alphabet Σ. Such sequences can be arbitrarily
long. For text generating sources, it is common to interpret a symbol as a single character,
but other schemes are possible, such as binary (bitwise) or word-level models.

The entropy H(X) of a source X gives a lower bound on the average per-symbol code
length required to encode a message without loss of information:

H(X) = Ex∼P

(
− 1

n
log P (x)

)
This bound is achievable only when the true probability distribution P governing the

source is known. In this case, an average message could be encoded using no less than H(X)
bits per symbol. However, the true distribution over all possible messages is typically un-
known. The goal of any statistical data compression algorithm is then to infer a probability
mass function over sequences f : Σ∗ → [0, 1], which matches the true distribution of the
source as accurately as possible. Ideally2, a sequence x is then encoded with L(x) bits,
where

L(x) = − log f(x)

The algorithm must learn an approximation of P in order to encode messages effi-
ciently. A better approximation will, on average, lead to shorter code lengths. This simple
observation alone gives compelling motivation for the use of compression algorithms in text
categorization, but we defer this discussion until Section 5.

3.2 Finite Memory Markov Sources

To make the inference problem over all (possibly infinite) sequences tractable, sources are
usually modeled as stationary and ergodic Markov sources3 with limited memory k. Each

2. The “ideal” code length ignores the practical requirement that codes have an integer length.
3. The stationarity and ergodicity properties are necessary preconditions for learning to stabilize arbitrarily

close to (the best approximation of) the data generating process asymptotically, that is, as the sequence
length increases without bound. They are stated here for completeness and are usually taken for granted
in a typical machine learning setting, where we expect to learn from past observations.

4

Spam Filtering Using Statistical Data Compression Models

symbol in a message x is therefore assumed to be independent of all but the preceding k
symbols (the context):

p(x) =
n∏

i=1

p(xi|xi−1
1) ≈

n∏
i=1

p(xi|xi−1
i−k)

We assume that a string of k leading symbols that otherwise cannot occur in any se-
quence is prepended to x to overcome the technical difficulty in estimating the first k
symbols. In practice, a compression algorithm would normally use a shorter context for
prediction here.

The number of context symbols k is referred to as the order of the Markov model. Higher
order models have the potential to better approximate the characteristics of a complex
source. However, since the number of possible contexts increases exponentially with context
length, accurate parameter estimates are hard to obtain. For example, an order-k model
requires Σk(Σ − 1) parameters. To tackle this problem, different strategies are employed
by different algorithms. The common ground to all such algorithms is that the complexity
of the model is increased only after the amount of training data is sufficient to support
a more complex model. We describe two particular algorithms that were also used in our
experiments later in this section. Both of these algorithms consider the class of tree sources,
a slight generalization of Markov sources that accommodates for conditioning on shorter
contexts than the full order k.

3.3 Two-part vs. Adaptive Coding

Two-part data compression methods first transmit the model which is used for encoding,
followed by the encoded data. The decoder reads the model first and then uses this infor-
mation to decode the remaining part of the message. Such methods require two passes over
the data. The first pass is required to train the model and the second pass is required for
the encoding.

Adaptive methods do not explicitly include the model in the encoded message. Rather,
they start encoding the message using an empty model, for example, a uniform distribution
over all symbols. The model is incrementally updated after each symbol, gradually adapting
to an ever closer approximation of the data generating process. The probability assigned
to a sequence x by an order-k adaptive algorithm is then

f(x) =
n∏

i=1

f(xi|xi−1
i−k,M(xi−1

1)) (1)

where M(xi−1
1) denotes the current model at time i, constructed from the input sequence

xi−1
1 . The decoder repeats the learning process, building its own version of the model as the

message is decoded. It is important to note that adaptive methods require only a single pass
over the data, a property that we will turn to our advantage in subsequent developments.

3.4 Algorithms

In this section, we describe the dynamic Markov compression and prediction by partial
matching compression algorithms with which we obtain our main results. Both of the

5

Bratko, Cormack, Filipič, Lynam and Zupan

algorithms are adaptive, that is, the model used for prediction may be updated efficiently
after each symbol is observed.

3.4.1 Dynamic Markov Compression

The dynamic Markov compression (DMC) algorithm (Cormack and Horspool, 1987) mod-
els an information source with a finite state machine (FSM). The algorithm begins in a
predefined initial state. The next state of the source is determined by the actually emitted
symbol. A probability distribution over symbols is associated with each state and is used to
predict the next symbol in the sequence. After the symbol is encoded, the statistics of the
current state are updated and the algorithm proceeds to the next state, which is uniquely
determined by the state machine.

The structure of the state machine used by the DMC algorithm is built incrementally
using a special state cloning operation. Specifically, as soon as the algorithm finds that a
transition from some state A to some other state B in the FSM is used often, the target
state of the transition is considered for cloning. If the target state B has also been visited
by an alternate path often enough, a new state B′ is spawned, as depicted in Figure 1. This
new state has a single inbound transition, corresponding to the former transition from A
to B. This transition is removed from state B after cloning. The statistics associated with
the cloned state B are distributed among B and B′ in proportion to the number of times
state B was reached from state A, relative to the number of times state B was reached from
other states (again, refer to Figure 1).

1/f=41/f=4

A B

0/f=4

0/f=2 1/f=12 A

B’

0/f=3

1/f=5

0/f=2 1/f=3

B

0/f=1

1/f=9cloning of state B

a) b)

Figure 1: An example of DMC’s state cloning operation. The active state and transition at time
a) and b) are colored red. The left hand side shows the model when state A is active and
the observed symbol is ‘1’. This triggers the cloning of state B and a state transition to
the new state B′, as shown on the right hand side of the figure. The transition statistics
(visit counts) before and after the cloning operation are also shown.

The rationale behind the state cloning mechanism is that it allows the algorithm to
incorporate richer context information when predicting the next symbol. The context used
for prediction is implicitly determined by the longest common string of symbols on all paths
leading to the current state of the FSM. Note that at each position in the sequence only
one state needs to be considered for cloning: The target state of the transition in the FSM
that is triggered by the current symbol.

In the most basic version, the initial model contains a single state, corresponding to
a memoryless source. When dealing with byte-aligned data, it is customary to start with

6

Spam Filtering Using Statistical Data Compression Models

a slightly more complex initial state machine which is capable of expressing within-byte
dependencies. This initial FSM structure corresponds to an order-7 binary Markov model.
All transitions in the initial FSM are primed with a small initial visit count to avoid sin-
gular probabilities. We note that although DMC restricts the source alphabet to binary
symbols, it nevertheless achieves state-of-the-art performance on typical ASCII encoded
text sequences (Cormack and Horspool, 1987).

3.4.2 Prediction by Partial Matching

The prediction by partial matching (PPM) algorithm (Cleary and Witten, 1984) has set the
standard for lossless text compression since its introduction over two decades ago (Cleary
and Teahan, 1997). An order-k PPM model works as follows: The source alphabet is ex-
tended with a special escape symbol. When predicting the next symbol in a sequence, the
longest context found in the training data is used (up to length k). If the symbol has
appeared in this context in the training text, its relative frequency within the context is
used for prediction. These probabilities are discounted to reserve some probability mass
for the escape symbol. The accumulated escape probability is effectively distributed among
characters not seen in the current context, according to a lower-order model. The pro-
cedure is applied recursively until all characters receive a non-zero probability, ultimately
terminating in a default model of order −1, which always predicts a uniform distribution
among all possible characters.

An adaptive compression algorithm based on the PPM model starts with an empty
model which always defaults to the uniform distribution among all symbols. After each
symbol is encoded, the algorithm updates the statistics of all contexts (up to order k) of
the current symbol. The algorithm will begin to exploit this information to predict the next
symbol as soon as statistics are available for the current context.

Many versions of the PPM algorithm exist, differing mainly in the way the escape
probability is estimated. In our implementation, we used escape method D (Howard, 1993),
which simply discounts the frequency of each observed character by 1/2 occurrence and uses
the gained probability mass for the escape probability.

4. Minimum Description Length Principle

The minimum description length (MDL) principle (Rissanen, 1978; Barron et al., 1998;
Grünwald, 2005) favors models that yield compact representations of the data. The tra-
ditional two-part MDL principle states that the preferred model results in the shortest
description of the model and the data, given this model. In other words, the model that
best compresses the data is selected. This model selection criterion naturally balances the
complexity of the model and the degree to which this model fits the data.

A problem of the two-part MDL principle is that it gives no guidelines as to how the
model should be encoded. The refined MDL principle which is described later in this section
aims to remedy this problem.

7

Bratko, Cormack, Filipič, Lynam and Zupan

4.1 Universal Codes

A universal code relative to a class of source models has the property that it compresses data
“almost” as well as the best model in the model class. More precisely, the difference in code
length between a universal code and the best model in the model class increases sublinearly
with the length of the sequence. Rissanen gives a precise non-asymptotic lower bound on
this difference in the worst case (Rissanen, 1986), which turns out to be linearly related to
the complexity of the data generating process (in terms of the number of parameters). He
also shows that codes exist that achieve this bound.

Two-part codes are universal, since only a finite code length is required to specify the
model. It turns out that adaptive codes are also universal codes (Rissanen, 1984). In fact,
adaptive compression algorithms exist that are proven to achieve Rissanen’s lower bound
relative to the class of all finite-memory binary tree sources (e.g. Willems et al., 1995). The
redundancy incurred due to the fact that adaptive methods start with an empty, uninformed
model, can be compared to the cost of separately encoding the model in two-part codes.

4.2 Predictive MDL

The limitations of the original two-part MDL principle were largely overcome with the
modern version of the principle (Rissanen, 1996), which advocates the use of one-part
universal codes for measuring description length relative to a chosen model class. The use
of adaptive codes for this task is sometimes denoted predictive MDL and is encouraged
when the data is sequential in nature (Grünwald, 2005), as is certainly the case for the
textual data in our spam filtering domain.

We aim to measure the description length of a set of documents relative to the class
of Markov models of a certain order using adaptive universal data compression algorithms,
and to employ this measure as a criterion for classification. It is necessary to mention here
that while PPM is universal in this sense, the same cannot be said for DMC. This is due
to its “greedy” strategy of adapting its model without bound, that is, increasing the order
of the model as soon as possible. On the other hand, this strategy might well lead to a
better approximation of the source and thus more accurate prediction. In terms of data
compression performance, DMC is competitive to PPM on the types of sequences that are
of practical interest to us, particularly for natural language text and binary computer files
(Cormack and Horspool, 1987)4.

5. Text Classification Using Compression Models

In essence, compression algorithms can be applied to text categorization by building one
compression model from the training documents of each class and using these models to
evaluate the target document.

4. As a side-note, we mention here that the techniques presented in this paper were also evaluated in
combination with the Context Tree Weighting (CTW) universal compression algorithm (Willems et al.,
1995) in the framework of the TREC 2005 spam track (Bratko and Filipič, 2005). Although the CTW
algorithm provably achieves Rissanen’s optimal minimax regret for the class of sources it considers, its
performance for spam filtering in the TREC evaluation was comparable, although slightly inferior, to
PPM. Since the CTW algorithm is also computationally less efficient, we omit the CTW algorithm from
the present paper.

8

Spam Filtering Using Statistical Data Compression Models

In the following subsections, we describe two approaches to classification. Both ap-
proaches model a class as an information source, and consider the training data for each
class a sample of the type of data generated by the source. They differ in the way classifi-
cation is performed. We first describe the minimum cross-entropy (MCE) approach (Frank
et al., 2000; Teahan, 2000). This method chooses the class for which the associated com-
pression model assigns the highest probability to the target document. We then propose
a simple modification to this method, in which the model is adapted while evaluating the
target document in the sense of Equation 1. Unlike the former approach, this method
measures the increase of the description length of the dataset as a result of the addition
of the target document. It chooses the class for which the description length increase is
minimal, which is why we consider this a minimum description length (MDL) approach. In
subsequent sections, we also refer to this approach as using adaptive models and the MCE
approach as using static models for obvious reasons.

We denote by C the set of classes and by c : Σ∗ → C the (partially specified) function
mapping documents to class labels. Given a set of pre-classified training documents D, the
task is to assign a target document d with an unknown label to one of the classes c ∈ C.

5.1 Classification by Minimum Cross–entropy

The cross-entropy H(X, M) determines the average number of bits per symbol required to
encode messages produced by a source X when using a model M for compression:

H(X, M) = Ex∼P

(
1
n

L(x|M)
)

Note that H(X, M) ≥ H(X) always holds, that is, the best possible model achieves a
compression rate equal to the entropy. The exact cross-entropy is hard to compute, since
it would require knowing the source distribution P . It can, however, be approximated by
applying the model M to sufficiently long sequences of symbols, with the expectation that
these sequences are representative samples of all possible sequences generated by the source
(Brown et al., 1992; Teahan, 2000):

H(X, M) ≈ − 1
n

L(xn
1 |M) (2)

As n becomes large, this estimate will approach the actual cross-entropy in the limit
almost surely if the source is ergodic (Algoet and Cover, 1988). Recall that if M is a Markov
model with limited memory k, then

L(xn
1 |M) = − log

n∏
i=1

f(xi|xi−1
i−k,M)

where f(xi|xi−1
i−k,M) is the probability assigned to xi given xi−1

i−k by M .
Following Teahan (2000), we refer to the cross entropy estimated on the target document

d as the document cross-entropy H(X, M,d). This is simply a substitution of x with d
in Equation 2. We expect that a model that achieves a low cross-entropy on the target

9

Bratko, Cormack, Filipič, Lynam and Zupan

document approximates the information source that actually generated the document well.
This is therefore our measure for classification:

c(d) = arg min
c∈C

H(X, Mc,d)

= arg min
c∈C

− 1
n

log
|d|∏
i=1

f(di|di−1
i−k,Mc) (3)

In the above equation, Mc denotes the compression model built from all examples of class
c in the training data.

5.2 Classification by Minimum Description Length

The MCE criterion assumes that the test document d was generated by some unknown
information source. The document is considered a sample of the type of data generated
by the unknown source. Classification is based on the distance between each class and the
source that generated the document. This distance is measured with the document cross-
entropy, which serves as an estimate of the cross-entropy between the unknown source and
each of the class information sources.

However, we know that the document did not originate from some unknown source and
that it ultimately must be attributed to one of the classes. The MDL classification criterion
tests, for each class c ∈ C, the hypothesis that c(d) = c, by adding the document to the
training data of the class and estimating how much this addition increases the description
length of the dataset:

∆L(D, c,d) = L({x ;x ∈ D, c(x) = c)} ∪ {d})− L({x ;x ∈ D, c(x) = c)})

Since we are interested in classification, we are not searching for a model of the data
generating process. Rather, we use existing data compression models that were designed
for this very purpose as a tool. We are, however, searching for the classification hypothesis
that results in the most compact description of the observed data. The resulting description
length is measured with adaptive compression algorithms which allow efficient estimation of
this quantity, although other universal codes could also be used to measure the description
length increase. This is in line with the approach suggested by (Kontkanen et al., 2005) in
their MDL framework for clustering, in which the cluster assignment should be such that
it results in a minimal description length of the data relative to a suitable reference model
class.

Adaptive models are particularly suitable for this type of classification, since they can be
used to estimate the increase in description length without re-evaluating the entire dataset:

∆L(D, c,d) = − log
|d|∏
i=1

f(di|di−1
i−k,Mc(di−1

1))

In the above equation, Mc(di−1
1) denotes the current model at position i, constructed from

the training examples for class c and the input sequence di−1
1 .

10

Spam Filtering Using Statistical Data Compression Models

Typically, the description length increase ∆L(D, c,d) will be larger for longer docu-
ments. To compensate for this fact, the following class selection rule is used:

c(d) = arg min
c∈C

1
n

∆L(D, c,d)

= arg min
c∈C

− 1
n

log
|d|∏
i=1

f(di|di−1
i−k,Mc(di−1

1)) (4)

The additional 1/n factor does not affect the classification outcome for any target document,
but it does help to produce scores that are comparable across documents of different length.
This is crucial when thresholding is used to reach a desirable tradeoff in misclassification
rates, which is also the basis of the receiver operating characteristic (ROC) curve analysis
that was our primary measure of classifier performance.

The only difference in implementation in comparison to the MCE criterion in Equation 3
is that the model is adapted while evaluating the target. It is clear, however, that Equation
4 no longer amounts to measuring the document cross entropy H(X, MC ,d) with respect
to model MC , since a different model is used at each position of the sequence d. The
intuition behind adapting the model is that the classifier continues to learn from the target
document. New insight learned from the initial part of the document is used for evaluating
the remaining portion. It is interesting to note that Benedetto et al. (2002), who consider
the use of the LZ77 compression algorithm (zip) for language identification and authorship
attribution, notice that LZ77 adapts to the target text and take measures to prevent this
behavior. We, on the other hand, believe this effect is beneficial, which is supported in the
results of our experiments.

Let us conclude this section with an illustrative example as to why the MDL classification
criterion might be preferable to the MCE approach. Consider a hypothetical spam filtering
problem in which a machine learning researcher uses a compression-based classifier to filter
spam from his email. In addition to research-related email, our researcher also receives an
abundant amount of spam that advertises prescription drugs. At some point, he receives
an email on machine learning methods for drug discovery. This is a legitimate email, but
it contains many occurrences of two particular terms that the filter strongly associates
with spam: “medicine” and “drugs”. In this scenario, the prevalence of these two terms
might cause the MCE criterion to label the email as spam, but the MDL criterion would
probably consider the email legitimate. This is because while the first occurrence of the
terms “medicine” and “drugs” are surprising under the hypothesis “document is legitimate”,
subsequent occurrences are less surprising. They are, in a sense, redundant. The classifier
will learn this as a direct consequence of allowing the model to adapt to the target.

6. Experimental Setup and Evaluation Methodology

Our primary concern is the use of compression models in spam filtering. This problem
differs from classical text categorization tasks in a number of ways.

• The cost of misclassification is highly unbalanced. Although the exact tradeoff will
vary in different deployment environments, it tends to be biased toward minimizing
false positives (i.e. misclassified legitimate messages).

11

Bratko, Cormack, Filipič, Lynam and Zupan

• Messages in an email stream arrive in chronological order and must be classified upon
delivery. It is also common to deploy a filter without any training data. Although
previous studies typically use cross validation experiments, the appropriateness of
cross validation is questionable in this setting.

• Many useful features may be gleaned from various message headers, formats and
encodings, punctuation patterns and structural features. It is therefore desirable to
use raw, unobfuscated messages with accompanying meta data intact for evaluation.

These unique characteristics of the spam filtering problem are reflected in the design of
our experiments and the choice of measures that were used for classifier evaluation. This
section gives an overview of the test corpora and evaluation methodology used to obtain
our results.

6.1 Online Spam Filter Evaluation

An online learning scheme that lends itself well to typical usage of spam filters was adopted
as the primary means of classifier evaluation. In this setup, messages are presented to the
classifier in chronological order. For each message, the classifier must produce a score as to
how likely it is that the message is spam, after which it is communicated the gold standard
judgment. This allows the classifier to update its model before assessing the next message.

The setup aims to simulate a typical setting in personal email filtering, which is usually
based on online user feedback, with the additional assumption that the user promptly
corrects the classifier after every misclassification. The same evaluation method was used
in the large-scale spam filter evaluation at TREC 2005, an overview of which can be found
in the TREC proceedings (Cormack and Lynam, 2005).

The performance of different compression models and classification criteria were eval-
uated using the described scheme. We also compare compression models to a selection of
established spam filters in this manner. Standard cross validation experiments on prede-
fined splits were performed to compare compression models to previously published results,
which were also obtained with cross validation.

6.2 Evaluation Measures

Special care must be taken in the choice of evaluation measures in spam filtering. Classifica-
tion accuracy, that is, the total proportion of misclassified messages, is a poor performance
measure in this application domain, since all errors are treated on equal footing (Androut-
sopoulos et al., 2000).

In the binary spam filtering problem, spam messages are usually associated with the
positive class, since these are the messages filtered by the system. Legitimate messages are
thus designated to the negative class. If p is the total number of positive examples in the test
set and n is the total number of negative examples, four classification outcomes are defined
by the standard binary contingency table. Legitimate message may be incorrectly labeled
as spam (fp – false positives) or correctly identified as legitimate (tn – true negatives).
Similarly, spam messages may be incorrectly labeled as legitimate (fn – false negatives) or
correctly identified as spam (tp – true positives). The spam misclassification rate (SMR)

12

Spam Filtering Using Statistical Data Compression Models

and false positive rate (FPR) are then defined as follows:

SMR =
fn

p
FPR =

fp

n

FPR and SMR measures are intuitive and appealing, however, it is difficult to compare
systems based on these measures alone, since one of them can always be improved at the
expense of the other.

It is assumed that the scores produced by a learning system are comparable across
messages, so that a fixed filtering threshold can be used to balance between spam misclas-
sification and false positive rates. Such scores lend themselves well to Receiver Operating
Characteristic (ROC) curve analysis, which was the primary means of classifier evaluation
in the study. The ROC curve is a plot of spam accuracy (1 − SMR) on the Y axis, as a
function of the false positive rate on the X axis5. Each point on the curve corresponds
to an actual (SMR, FPR) pair achieved by the classifier at a certain threshold value. The
curve thus captures the behavior of the system at all possible filtering thresholds.

A good performance is characterized by a concave curve in the upper left quadrant of the
graph. The area under the ROC curve (AUC) is then a meaningful statistic for comparing
filters. If we assume that high score values are associated with the positive class, the area
under the curve equals the probability that a random positive example receives a higher
score than a random negative example:

AUC = P (score(x) > score(y) | c(x) = positive, c(y) = negative)

Typical spam filters achieve very high values in the AUC statistic. For this reason, we
report on the complement of the AUC value, that is, the area above the curve (1-AUC).
Bootstrap resampling was used to compute confidence intervals for logit-transformed AUC
values and to test for significance in paired comparisons.

Where suitable, we also report SMR at filtering thresholds that result in “acceptable”
false positives rates (0.01%, 0.1% and 1%). This measure is easier to interpret and gives
valuable insight in the kind of performance one can expect from a spam filter.

6.3 Datasets

We report experimental results on five publicly available datasets and a private collection
of email received by one of the authors. The basic statistics for all six corpora are given in
Table 1.

The TREC public6 corpus contains messages received by employees of the Enron cor-
poration over a one year period. The original Enron data was carefully augmented with
the addition of approximately 50,000 spam messages, so that they appear to be delivered
to the Enron employees in the same time period as the legitimate email.

The MrX dataset contains email messages received by a single email user over a period
of 8 months. This dataset and the TREC corpus were recently used for the spam filter

5. It is traditional to name the axes of an ROC plot 1-specificity (X axis) and sensitivity (Y axis). Sensitivity
is the proportion of correctly identified positive examples and specificity is the proportion of correctly
identified negative examples.

6. The TREC corpus is available for download at http://plg.uwaterloo.ca/~gvcormac/treccorpus/

13

Bratko, Cormack, Filipič, Lynam and Zupan

Dataset Messages Spam Legitimate Spam proportion
TREC public 92189 52790 39399 57.3%
MrX 49086 40048 9038 81.6%
SpamAssassin 6033 4149 1884 68.8%
Ling-Spam 2893 481 2412 16.6%
PU1 1090 480 610 44.0%
PU3 4130 1820 2310 44.1%

Table 1: Basic statistics for the evaluation datasets.

evaluation track in TREC 2005. Results from the TREC evaluation that are most relevant
to our study are reproduced in this paper.

The SpamAssassin7 dataset contains legitimate and spam email collected from the Spa-
mAssassin developer mailing list. This dataset is arguably the most widely used resource
in popular evaluations of publicly available spam filters, which are often conducted by en-
thusiasts or system authors.

Ling-Spam8 is a collection of email messages posted to a linguistics newsgroup, which
were augmented with spam received by the authors of the dataset. The messages are
stripped of all attachments and headers, except for the subject field. A fair number of
research studies report results on the Ling-Spam corpus. We used the “bare” version of this
dataset in our evaluation.

The PU1 and PU39 datasets are relatively small personal email collections. In order
to preserve privacy, the words in the messages are replaced with numerical identifiers and
punctuation is discarded. Non-textual message headers, sender and recipient fields, at-
tachments and HTML tags are not included in these datasets. Duplicate spam messages
received on the same day are also removed.

We used the online evaluation scheme described in the previous subsection to evaluate
performance on the TREC public, MrX and SpamAssassin corpora. We performed cross
validation experiments on the remaining three datasets, as was done in previous studies.
The Ling-Spam, PU1 and PU3 datasets contain predefined 10-fold cross validation splits,
which we used in our experiments. These datasets do not contain message headers, so the
original chronological ordering required for online evaluation could not be recovered.

6.4 Implementation and parameters of DMC and PPM models

All results reported in the study were achieved using our own implementations of DMC and
PPM compression models. Classifiers based on the DMC and PPM compression models
were developed independently by the authors and differ in preprocessing strategies and
certain implementation details.

The DMC model was primed with an initial braid structure (Cormack and Horspool,
1987), corresponding to an order-7 binary Markov model. DMC uses two parameters that
control its state cloning mechanism. These parameters were set somewhat arbitrarily to

7. The SpamAssassin dataset is available at http://spamassassin.org/publiccorpus/

8. The Ling-Spam dataset is available at http://www.aueb.gr/users/ion/data/

9. The PU1 and PU3 datasets are available for download at http://www.iit.demokritos.gr/skel/

i-config/downloads/PU123ACorpora.tar.gz

14

Spam Filtering Using Statistical Data Compression Models

(2, 2), since such values were known by the authors to perform well for data compression.
The initial transition counts were set to 0.2, following a similar argument. The DMC
implementation does not include MIME decoding. It also truncates all messages to 2500
bytes.

The PPM implementation used an order-6 PPM-D model in all trials. Order-4 and
order-8 models were also tested in the TREC evaluation, from which it was concluded
that performance is robust to the choice of this parameter (Bratko and Filipič, 2005). In
data compression, an order-6 model would also be considered suitable for compression of
English text. The source alphabet for PPM was restricted to 72 ASCII characters including
alphanumerical symbols and commonly used punctuation. This alphabet was complemented
with an additional symbol that was used for all other ASCII codes found in the text.
Our PPM-based classifier decodes base64-encoded message parts and discards all non-text
attachments before evaluation.

The PPM-based classifier used a memory buffer of approximately 800MB, substantially
less than the DMC implementation which was limited to 2GB of RAM. Both algorithms
used the same retraining strategy when this memory limit was reached in online evaluation
experiments. Specifically, half of the training data was discarded and models were retrained
from the more recent part of the email stream. This mechanism was invoked up to twice
during online evaluation on the two larger datasets (MrX and the TREC public corpus),
but was not used in any of the other trials.

We realize that this setup does not facilitate a fair comparison between the two compres-
sion algorithms in the online experiments (on raw email data), as the different preprocessing
schemes were found to have an effect on performance in some of these experiments. How-
ever, the aim of this paper is the evaluation of compression models against existing spam
filtering techniques, as well as a comparison of the two classification criteria discussed in
Section 5. We are satisfied with the general observation that both algorithms exhibit similar
performance, which strengthens our confidence in the applicability of the proposed methods
for the spam filtering problem.

6.5 Reference Systems used for Comparative Evaluation

A number of freely available open source spam filters have been introduced in recent years,
motivated mainly by the influential essays of Graham (2004) and Robinson (2003). A
wide variety of learning algorithms, training strategies, preprocessing schemes and recipes
for feature engineering are employed in these systems. It is interesting to note that most
publications that address spam filtering do not compare their proposed methods to these
established alternatives. We believe this is wrong if we expect our research findings to be
adopted in the field.

We evaluate the performance of compression models against six popular open source
filters. We also summarize results obtained in other studies that use the Ling-Spam, PU1
and PU3 corpora, and from which it is possible to determine misclassification rates from the
published results. Table 2 lists all systems that were included in any of the comparisons.

15

Bratko, Cormack, Filipič, Lynam and Zupan

Label Description
Bogofiltera ? Version 0.94.0, default parameters (http://www.bogofilter.org).
Bogofilterb • Bogofilter version 0.95.2 as configured for TREC 2005 by the track orga-

nizers.
CRM114a ? Version 20041231, default parameters (http://crm114.sourceforge.net).
CRM114b • CRM114 specially configured by Assis et al. (2005) for TREC. Labeled

“CRMSPAM2” at TREC 2005.
dbacla ? Version 1.91, default parameters (http://dbacl.sourceforge.net).
dbaclb • A custom version of dbacl prepared by the author for evaluation at TREC

(Breyer, 2005). Labeled “lbSPAM2” at TREC 2005.
SpamAssassina ? Version 3.0.2, combination of rule-based and learning components (http:

//spamassassin.apache.org).
SpamAssassinb • Version 3.0.2, learning component only, as configured for TREC 2005 by

the track organizers.
SpamBayesa ? Version 1.03, default parameters (http://spambayes.sourceforge.net).
SpamBayesb • SpamBayes specially configured by Meyer (2005) for TREC. Labeled

“tamSPAM1” at TREC 2005.
SpamProbe •? Version 1.0a, default parameters (http://spamprobe.sourceforge.net).
a-Bayes � Naive Bayes, multi-variate Bernoulli model on binary features (Androut-

sopoulos et al., 2000).
a-FlexBayes � Flexible naive Bayes – uses kernel density estimation for estimating class-

conditional probabilities of continuous valued attributes (Androutsopoulos
et al., 2004).

a-LogitBoost � LogitBoost (variant of boosting) with decision stumps as base classifiers
(Androutsopoulos et al., 2004).

a-SVM � Linear kernel support vector machines (Androutsopoulos et al., 2004).
b-Stack � Stacking of linear support vector machine classifiers built from different

message fields (Bratko and Filipič, 2006).
c-AdaBoost � Boosting of decision trees with real-valued predictions (Carreras and

Márquez, 2001).
gh-Bayes � Naive Bayes (exact model unknown) with weighting of training instances

according to misclassification cost ratio (Hidalgo, 2002).
gh-SVM � Linear support vector machine with weighting of training instances ac-

cording to misclassification cost ratio (Hidalgo, 2002).
h-Bayes � Multinomial naive Bayes (Hovold, 2005).
ks-Bayes � Multinomial naive Bayes (Schneider, 2003).
p-Suffix � Pattern matching of character sequences based on the suffix tree data

structure and various heuristic scoring functions (Pampapathi et al., 2005).
m-Filtron � Support vector machines with linear kernels (Michelakis et al., 2004).
s-Stack � Stacking of naive Bayes and k-nearest neighbors (Sakkis et al., 2001).
s-kNN � k-nearest neighbors with attribute and distance weighting (Sakkis et al.,

2003).
SVM ? An adaptation of the SVMlight package (Joachims, 1998) for the PU1

dataset due to Tretyakov (2004), linear kernel with C = 1.
Perceptron ? Implementation of the perceptron algorithm due to Tretyakov (2004).

Table 2: Reference systems and results of previous studies reproduced for comparison. Entries are
delimited by primary authors. Symbols indicate the source of reported results:
? – this study • – TREC 2005 evaluation � – reproduced from other studies

16

Spam Filtering Using Statistical Data Compression Models

7. Results

In this section, we report the main results of our evaluation. We first evaluate the perfor-
mance of the MCE and MDL classification criteria, that is, the effect of adapting the model
to the target, for both compression algorithms. This is followed by an extensive evalua-
tion of compression-based classifiers in comparison to established spam filters and results
published in other studies. We conclude the section with experiments that study the effect
of noise introduced in data by typical obfuscation tactics employed by spammers to evade
filtering. Additional results from our evaluation are available in Online Appendix 110.

7.1 Performance of MCE vs. MDL Classification Criteria

We evaluated the effect of adapting the compression model to the target document on
the TREC public, MrX and SpamAssassin datasets. AUC scores achieved by the static
and adaptive DMC and PPM models are listed in Table 3. The adaptive models clearly
outperform their static counterparts on all datasets, sometimes strikingly so. The area
above the ROC curve is more than halved in two of the six experiments and substantially
improved in three of the remaining four trials. The improvement is smallest for the DMC
model tested on the TREC public dataset. As we shall see, even the baseline performance
achieved by the static model is exceptionally good in this experiment, and thus hard to
improve.

DMC PPM
Dataset MCE MDL MCE MDL
TREC 0.014 (0.010–0.020) 0.013 (0.010–0.018) 0.038 (0.027–0.052) 0.019† (0.015–0.023)

MrX 0.065 (0.040–0.11) 0.037† (0.026–0.053) 0.11 (0.073–0.16) 0.069† (0.044–0.11)

SpmAssn 0.31 (0.21–0.47) 0.20† (0.14–0.30) 0.35 (0.20–0.60) 0.15† (0.086–0.26)

Table 3: Performance of DMC and PPM algorithms in combination with the MCE and MDL classi-
fication criteria on the TREC public, MrX and SpamAssassin datasets. Results are in the
area above the ROC curve 1-AUC(%) statistic and include 95% confidence intervals for
this measure. The best results for each algorithm/dataset pair are in bold. Statistically
significant differences are marked with a ‘†’ sign (p < 0.01, one-tailed).

The ROC curves and 1-AUC learning curves of adaptive and static DMC and PPM
models are depicted in Figure 2. Let us first comment on the ROC curves, which reveal
an interesting and remarkably consistent pattern. Note that the ROC graphs are plotted
in logarithmic scale for clarity, so a convex curve is not necessarily unexpected. Although
adaptive models dominate throughout the curve in most experiments, the gain in the 1-
AUC statistic can mostly be attributed to the fact that the adaptive models perform better
at the extreme ends of the curves. Performance is comparable when SMR and FPR are
balanced. The logarithmic scale should again be taken into consideration when examining
the magnitude of this effect. This suggests that the adaptive model makes less gross mis-
takes, which are costly in terms of the AUC measure. Performance at the extreme ends of

10. Available at http://ai.ijs.si/andrej/papers/jmlr2006/

17

Bratko, Cormack, Filipič, Lynam and Zupan

TREC public corpus

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n
(lo

gi
t s

ca
le

)

False positive rate (%) (logit scale)

MDL
MCE

MDL
MCE

dmc

ppm

50.00

10.00

1.00

0.10

0.01
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

(1
-A

U
C

)%
 (

lo
gi

t s
ca

le
)

Messages

MDL
MCE

MDL
MCE

dmc

ppm

MrX corpus

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n
(lo

gi
t s

ca
le

)

False positive rate (%) (logit scale)

MDL
MCE

MDL
MCE

dmc

ppm

50.00

10.00

1.00

0.10

0.01
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

(1
-A

U
C

)%
 (

lo
gi

t s
ca

le
)

Messages

MDL
MCE

MDL
MCE

dmc

ppm

SpamAssassin corpus

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n
(lo

gi
t s

ca
le

)

False positive rate (%) (logit scale)

MDL
MCE

MDL
MCE

dmc

ppm

50.00

10.00

1.00

0.10

0.01
0 1000 2000 3000 4000 5000 6000 7000

(1
-A

U
C

)%
 (

lo
gi

t s
ca

le
)

Messages

MDL
MCE

MDL
MCE

dmc

ppm

Figure 2: ROC curves (left) and 1-AUC learning curves (right) on the MrX, SpamAssassin and
TREC public corpora. MCE and MDL classification criteria estimated with the DMC
and PPM algorithms are compared.

18

Spam Filtering Using Statistical Data Compression Models

the curve is especially important when the cost of misclassification is unbalanced, so this is
certainly a desirable property for spam filtering.

The learning curves in Figure 2 depict accumulated 1-AUC scores sampled at 1000 mes-
sage intervals during the online learning experiments. They are again plotted in logarithmic
scale to facilitate evaluation of the asymptotic performance of classifiers. The main observa-
tion offered by the learning curves is that the adaptive models do not achieve better overall
performance at the price of slower learning rates. Their performance is superior throughout
the runs. The difference in 1-AUC scores is in fact greater in the earlier stages of learning
for two of the three datasets. This is intuitive, since the effect of adapting the models will
be greater for simpler models built from limited training data. In Online Appendix 211,
we address an apparent anomaly which occurs in the learning curve of the static version of
the PPM classifier at around 12,000 messages on the TREC public corpus. The analysis
presented in the appendix gives valuable insight into the differences of the MCE and MDL
classification criteria, but is beyond the scope of the current discussion.

7.2 Comparison to Open Source Spam Filters

The results of our experiments comparing compression models to established open source
filters are summarized in Table 4. Adaptive versions of the PPM and DMC classifiers are
used for this comparison. In terms of the 1-AUC score, both compression models uniformly
outperform all of the competing filters, with the exception of the PPM classifier on the
MrX corpus. The performance of DMC and PPM models on the TREC public corpus is
particularly notable. Spam misclassification rates at hypothetical filtering thresholds that
result in a low proportion of false positives are also shown. Although definitive conclusions
are harder to draw from these measures, we find that both DMC and PPM feature promi-
nently, outperforming other methods in two of the tree tradeoff points on every dataset.
ROC curves and learning curves comparing compression models to open source filters on
the TREC public corpus are shown in Figure 3.

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

DMC
PPM
dbacl

Bogofilter
SpamAssassin

SpamProbe
CRM114

SpamBayes%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n
(lo

gi
t s

ca
le

)

False positive rate (%) (logit scale)

50.00

10.00

1.00

0.10

0.01
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

(1
-A

U
C

)%
 (

lo
gi

t s
ca

le
)

Messages

DMC
PPM
dbacl

Bogofilter
SpamAssassin

SpamProbe
CRM114

SpamBayes

Figure 3: ROC curves (left) and 1-AUC learning curves (right) for compression models and a
selection of established spam filters on the TREC public corpus.

11. Available at http://ai.ijs.si/andrej/papers/jmlr2006/

19

Bratko, Cormack, Filipič, Lynam and Zupan

TREC public corpus
Filter 1-AUC (%) SMR at 1% FP SMR at 0.1% FP SMR at 0.01% FP

DMC †0.013 (0.010 – 0.018) 0.22% 1.17% 14.47%
PPM †0.019 (0.015 – 0.023) 0.36% 1.78% 9.89%
dbaclb 0.037 (0.031 – 0.045) 0.45% 5.19% 19.77%
Bogofilterb 0.048 (0.038 – 0.062) 0.33% 3.41% 10.39%
SpamAssassinb 0.059 (0.044 – 0.081) 0.37% 2.56% 7.81%
SpamProbe 0.059 (0.049 – 0.071) 0.65% 2.77% 15.30%
CRM114b 0.122 (0.102 – 0.145) 0.68% 4.52% 17.17%
SpamBayesb 0.164 (0.142 – 0.189) 1.63% 6.92% 12.55%

MrX corpus
Filter 1-AUC (%) SMR at 1% FP SMR at 0.1% FP SMR at 0.01% FP

DMC †0.037 (0.026 – 0.053) 0.32% 5.08% 36.16%
Bogofilterb 0.045 (0.032 – 0.063) 0.57% 3.90% 31.04%
CRM114b 0.051 (0.035 – 0.075) 0.43% 9.65% 47.76%
PPM 0.069 (0.044 – 0.107) 0.56% 9.72% 94.42%
dbaclb 0.083 (0.054 – 0.130) 0.43% 10.24% 99.09%
SpamAssassinb 0.097 (0.070 – 0.135) 0.77% 6.19% 83.06%
SpamProbe 0.097 (0.063 – 0.150) 0.35% 15.54% 95.08%
SpamBayesb 0.138 (0.111 – 0.171) 1.10% 6.51% 45.65%

SpamAssassin corpus
Filter 1-AUC (%) SMR at 1% FP SMR at 0.1% FP SMR at 0.01% FP

PPM 0.148 (0.086 – 0.256) 1.06% 38.67% 66.42%
DMC 0.202 (0.136 – 0.301) 2.39% 48.86% 64.93%
Bogofiltera 0.209 (0.140 – 0.312) 3.08% 57.67% 99.10%
SpamAssassina 0.254 (0.173 – 0.373) 4.93% 24.77% 100.00%
dbacla 0.262 (0.169 – 0.404) 2.65% 58.36% 79.26%
SpamProbe 0.296 (0.195 – 0.450) 2.18% 74.43% 99.47%
CRM114a 1.143 (0.902 – 1.446) 6.26% 57.82% 83.02%
SpamBayesa 1.391 (1.036 – 1.867) 11.35% 92.73% 99.26%

Table 4: Performance of DMC, PPM and a selection of established spam filters on the TREC public,
MrX and SpamAssassin datasets. Filters are ordered by decreasing performance in the
1-AUC statistic. Significant differences between AUC scores achieved by the compression
models and the best competing filter are marked with a ‘†’ sign (p < 0.05, one-tailed).

7.3 Comparison with Published Results

We conducted standard cross validation experiments to evaluate classification performance
of PPM and DMC (adaptive versions) on the Ling-Spam, PU1 and PU3 datasets. An im-
plementation of the perceptron and SVM classifiers, as well as Bogofilter, a well-performing
open source filter from previous experiments, were also tested in this manner. Results of
these experiments are presented in Figures 4 and 5, in which we also reproduce results of
previous studies on the same data. The simplified ROC-style graphs plot the number of

20

Spam Filtering Using Statistical Data Compression Models

misclassified spam messages against the number of false positives. In the following, we focus
on observations that are most relevant to the present study.

On the Ling-Spam dataset, both compression models are comparable to the suffix tree
approach of (Pampapathi et al., 2005). These three classifiers dominate the other meth-
ods at all filtering thresholds. Both the suffix tree classifier and the compression models
considered in this paper operate on character-level or binary sequences. All other methods
use the standard bag-of-words representation for modeling text. These results suggest that
sequence-based methods are more suitable for the Ling-Spam dataset, and we believe this
to be the case for spam filtering in general. However, experimental results on the PU1
and PU3 corpora show that such modeling of text is not the only advantage offered by the
compression models.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180
 0 2 4 6 8 10 12

M
is

cl
as

si
fie

d
sp

am
 m

es
sa

ge
s

(o
f 4

81
)

Misclassified legitimate messages (of 2412)

DMC
PPM

Bogofilter
Perceptron

SVM
a-Bayes

s-kNN

gh-SVM

p-Suffix
ks-Bayes

s-Stack

b-Stack

gh-Bayes

Figure 4: Performance of compression models in comparison to the perceptron and SVM classifiers,
Bogofilter and previously published results on the Ling-Spam dataset.

The PU1 and PU3 datasets contain pre-tokenized messages in which the original words
are replaced with numeric identifiers. We converted these messages to binary format by
replacing token identifiers with their 16 bit binary equivalents. This representation was
used to evaluate the performance of the DMC classifier on the two datasets. We believe
this is fair, since DMC uses a binary alphabet and is hurt by the artificial tokenization of
these datasets. The PPM classifier was tested on the unprocessed original version of the
datasets. Digits in numeric identifiers were converted to alphabetical characters for testing
with Bogofilter, since the filter handles digits differently from alphabetical character strings.

The graphs in Figure 5 depict classification performance on the PU1 and PU3 datasets
and are perhaps the most surprising result reported in this paper. Both compression mod-
els outperform other classifiers across the entire range of ‘interesting’ filtering thresholds,
despite the fact that the datasets were produced for tokenization-based filters. The SVM
is also competitive on the PU1 dataset. Other methods are further behind the SVM in
both trials. We attribute the good performance of compression models in these tests to the
fact that tokens are not considered independently. Their probability is always evaluated
with respect to the local context, which was already found to be beneficial for word-level
models in previous studies (Peng et al., 2004). Compression models offer the additional

21

Bratko, Cormack, Filipič, Lynam and Zupan

advantage over language models considered by Peng et al. (2004) in their effective strategy
for adapting the model structure incrementally. By design, the compression models can
discover phrase-level patterns just as naturally as sub-word patterns.

 0

 5

 10

 15

 20

 25

 30

 35
 0 5 10 15 20 25 30

M
is

cl
as

si
fie

d
sp

am
 m

es
sa

ge
s

(o
f 4

80
)

Misclassified legitimate messages (of 610)

DMC
PPM

Bogofilter
Perceptron

SVM
a-FlexBayes

a-LogitBoost
a-SVM

c-AdaBoost
h-Bayes

ks-Bayes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70

M
is

cl
as

si
fie

d
Sp

am
 m

es
sa

ge
s

(o
f 1

82
0)

Misclassified legitimate messages (of 2310)

DMC
PPM

Bogofilter
Perceptron

SVM
a-FlexBayes

m-Filtron
a-LogitBoost

a-SVM
h-Bayes

Figure 5: Performance of compression models in comparison to the perceptron and SVM classifiers,
Bogofilter and previously published results on the PU1 (left) and PU3 (right) datasets.

7.4 Sensitivity to Noise in the Data

One of the perceived advantages of statistical data compression models over standard text
categorization algorithms is that they do not require any preprocessing of the data. Classi-
fication is not based on word tokens or manually constructed features, which is in itself ap-
pealing from the implementation standpoint. For spam filtering, this property is especially
welcome, since preprocessing steps are error-prone and are often exploited by spammers
in order to evade filtering. A typical strategy is to distort words with common spelling
mistakes or character substitutions, which may confuse an automatic filter. We believe
that compression models are much more robust to such tactics than methods which require
tokenization.

To support this claim, we conducted an experiment in which all messages in the SpamAs-
sassin dataset were distorted by substituting characters in the original text with random
alphanumeric characters and punctuation. The characters in the original message that were
subject to such a substitution were also chosen randomly. By varying the probability of
distorting each character, we evaluated the effect of such noise on classification performance.

For this experiment, all messages were first decoded and stripped of non-textual attach-
ments. Noise was added to the subject and body parts of messages. Adaptive compression
models and Bogofilter, a representative tokenization-based filter, were evaluated on the re-
sulting dataset. We then stripped the messages of all headers except subjects and repeated
the evaluation. The results of these experiments are depicted in Figure 6. They show that
compression models are indeed very robust to noise. Even after 20% of all characters are
distorted, rendering messages practically illegible, they retain a respectable performance.
The advantage of compression models on noisy data is particularly pronounced in the sec-

22

Spam Filtering Using Statistical Data Compression Models

ond experiment, where the classifier must rely solely on the (distorted) textual contents of
the messages. It is interesting to note that the performance of PPM increases slightly at
the 5% noise level if headers are kept intact. We have no definitive explanation for this phe-
nomenon. We suspect that introducing noise in the text implicitly increases the influence
of the non-textual message headers, and that this effect is beneficial.

Non-textual headers removed

0

1

2

3

4

5

6

7

0% 5% 10% 20%

Noise level

BogoFilter
DMC
PPM

Non-textual headers preserved

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0% 5% 10% 20%

Noise level

1-
A

U
C

 (%
)

Figure 6: Effect of noise on classification performance on the SpamAssassin dataset. The graph
shows 1-AUC scores with 95% confidence intervals for PPM, DMC and the tokenization-
based Bogofilter system at different levels of artificial random noise in the data.

8. Conclusion

In comparison to tokenization-based classification methods, compression models offer a
number of advantages that are especially relevant for spam filtering. By operating directly
on sequences, tokenization, stemming and other tedious and error-prone preprocessing steps
are omitted altogether. It is precisely these volatile preprocessing steps that are often ex-
ploited by spammers in order to evade filtering. Also, characteristic sequences of punctua-
tion and other special characters, which are generally thought to be useful in spam filtering,
are naturally included in the model. The algorithms are efficient, with training and classifi-
cation times linear in the amount of data. The models are incrementally updateable, which
is often a requirement for practical spam filters that support online learning based on user
feedback.

The results of our analysis show that compression models perform very well for the
spam filtering task, consistently outperforming established spam filters and other methods
proposed in previous studies. We also demonstrate that compression models are very robust
to the type of noise introduced in the text by typical obfuscation tactics used by spammers.
This should make them difficult for spammers to defeat, but also makes them attractive for
other text categorization problems that contain noisy data, such as classification of scanned
text extracted with optical character recognition.

Finally, we find that updating compression models adaptively to the target document is
beneficial for classification, particularly in improving the AUC measure. This is especially
desirable when the cost of misclassification is uneven, as is the case in spam filtering.

23

Bratko, Cormack, Filipič, Lynam and Zupan

The modification has a natural interpretation in terms of the minimum description length
principle. Although we are aware of no parallel to this in existing text classification research,
the same approach could easily be adopted for the popular multinomial naive Bayes model
(McCallum and Nigam, 1998) and possibly also for other incremental models. We believe
this to be an interesting avenue for future research.

The large memory requirements of compression models are a major disadvantage of
this approach. To this end, effective pruning strategies should be investigated in order
to bring the models within limits that would be suitable for practical applications. Should
compression models actually be employed in practice, the adversarial nature of spam filtering
suggests spammers will react to these techniques. It remains to be seen whether their efforts
could reduce the long-term efficacy of the proposed approach.

References

P. H. Algoet and T. M. Cover. A sandwich proof of the Shannon-McMillan-Breiman theo-
rem. Annals of Probability, 16:899–909, 1988.

I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras, and C. D. Spyropoulos.
An evaluation of naive bayesian anti-spam filtering. In Proc. of the Workshop on Machine
Learning in the New Information Age, 11th European Conference on Machine Learning
(ECML 2000), pages 9–17, 2000.

I. Androutsopoulos, G. Paliouras, and E. Michelakis. Learning to filter unsolicited commer-
cial e-mail. Technical Report 2004/2, NCSR “Demokritos”, October 2004.

F. Assis, W. Yerazunis, C. Siefkes, and S. Chhabra. CRM114 versus Mr. X: CRM114 notes
for the TREC 2005 spam track. In Proc. 14th Text REtrieval Conference (TREC 2005),
Gaithersburg, MD, November 2005.

A. R. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding
and modeling. IEEE Transactions on Information Theory, 44(6):2743–2760, 1998.

D. Benedetto, E. Caglioti, and Loreto V. Language trees and zipping. Physical Review
Letters, 88(4), 2002.

A. Bratko and B. Filipič. Spam filtering using character-level markov models: Experiments
for the TREC 2005 Spam Track. In Proc. 14th Text REtrieval Conference (TREC 2005),
Gaithersburg, MD, November 2005.

A. Bratko and B. Filipič. Exploiting structural information for semi-structured document
categorization. Information Processing & Management, 42(3):679–694, 2006.

L. A. Breyer. DBACL at the TREC 2005. In Proc. 14th Text REtrieval Conference (TREC
2005), Gaithersburg, MD, November 2005.

P. F. Brown, S. Della Pietra, V. J. Della Pietra, J. C. Lai, and R. L. Mercer. An estimate
of an upper bound for the entropy of english. Computational Linguistics, 18(1):31–40,
1992.

X. Carreras and L. Márquez. Boosting trees for anti-spam email filtering. In Proc. of
RANLP-2001, 4th International Conference on Recent Advances in Natural Language

24

Spam Filtering Using Statistical Data Compression Models

Processing, 2001.

J. G. Cleary and W. J. Teahan. Unbounded length contexts for PPM. The Computer
Journal, 40(2/3):67–75, 1997.

J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, COM-32(4):396–402, April 1984.

G. V. Cormack and R. N. S. Horspool. Data compression using dynamic Markov modelling.
The Computer Journal, 30(6):541–550, 1987.

G. V. Cormack and T. R. Lynam. TREC 2005 Spam Track overview. In Proc. 14th Text
REtrieval Conference (TREC 2005), Gaithersburg, MD, November 2005.

E. Frank, C. Chui, and I. H. Witten. Text categorization using compression models. In
Proceedings of DCC-00, IEEE Data Compression Conference, pages 200–209, Snowbird,
US, 2000. IEEE Computer Society Press, Los Alamitos, US.

J. Goodman, D. Heckerman, and R. Rounthwaite. Stopping spam. Scientific American,
292(4):42–88, April 2005.

P. Graham. Hackers and Painters, Big Ideas from the Computer Age, chapter 8, pages
121–130. O’Reilly, 2004.

P. Grünwald. A tutorial introduction to the minimum description length principle. In
P. Grünwald, I. J. Myung, and M. Pitt, editors, Advances in Minimum Description
Length: Theory and Applications, pages 3–81. MIT Press, 2005.

J. M. G. Hidalgo. Evaluating cost-sensitive unsolicited bulk email categorization. In SAC
’02: Proceedings of the 2002 ACM Symposium on Applied Computing, pages 615–620,
Madrid, March 2002. ACM Press.

J. Hovold. Naive bayes spam filtering using word-position-based attributes. In Proc. of the
2nd Conference on Email and Anti-Spam (CEAS 2005), Palo Alto, CA, July 2005.

P. G. Howard. The Design and Analysis of Efficient Lossless Data Compression Systems.
PhD thesis, Brown University, Providence, Rhode Island, 1993.

T. Joachims. Making large-scale support vector machine learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Machines.
MIT Press, 1998.

P. Kontkanen, P. Myllymki, W. Buntine, J. Rissanen, and H. Tirri. An MDL framework for
data clustering. In P. Grünwald, I. J. Myung, and M. Pitt, editors, Advances in Minimum
Description Length: Theory and Applications. MIT Press, 2005.

A. McCallum and K. Nigam. A comparison of event models for naive bayes text classifica-
tion. In AAAI-98 Workshop on Learning for Text Categorization, 1998.

T. A. Meyer. A TREC along the spam track with SpamBayes. In Proc. 14th Text REtrieval
Conference (TREC 2005), Gaithersburg, MD, November 2005.

E. Michelakis, I. Androutsopoulos, G. Paliouras, G. Sakkis, and P. Stamatopoulos. Filtron:
A learning-based anti-spam filter. In Proceedings of the 1st Conference on Email and

25

Bratko, Cormack, Filipič, Lynam and Zupan

Anti-Spam (CEAS 2004), Mountain View, CA, July 2004.

R. M. Pampapathi, B. Mirkin, and M. Levene. A suffix tree approach to email filtering.
Technical report, Birkbeck University of London, 2005.

F. Peng, D. Schuurmans, and S. Wang. Augmenting naive bayes classifiers with statistical
language models. Information Retrieval, 7(3-4):317–345, 2004.

I. Rigoutsos and T. Huynh. Chung-kwei: A pattern-discovery-based system for the au-
tomatic identification of unsolicited e-mail messages (spam). In Proceedings of the 1st
Conference on Email and Anti-Spam (CEAS 2004), Mountain View, CA, July 2004.

J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Transactions
on Information Theory, 30(4):629–636, 1984.

J. Rissanen. Complexity of strings in the class of Markov sources. IEEE Transactions on
Information Theory, 32(4):526–532, 1986.

J. Rissanen. Fisher information and stochastic complexity. IEEE Transactions on Infor-
mation Theory, 42(1):40–47, 1996.

G. Robinson. A statistical approach to the spam problem. Linux Journal, 107:3, March
2003.

G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spyropoulos, and P. Stam-
atopoulos. Stacking classifiers for anti-spam filtering of e-mail. In Proc. 6th Conference on
Empirical Methods in Natural Language Processing (EMNLP 2001), pages 44–50, Pitts-
burgh, PA, 2001.

G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spyropoulos, and P. Stam-
atopoulos. A memory-based approach to anti-spam filtering for mailing lists. Information
Retrieval, 6(1):49–73, 2003.

K. M. Schneider. A comparison of event models for naive bayes anti-spam e-mail filter-
ing. In Proc. of the 10th Conference of the European Chapter of the Association for
Computational Linguistics, 2003.

W. J. Teahan. Text classification and segmentation using minimum cross-entropy. In
Proceeding of RIAO-00, 6th International Conference “Recherche d’Information Assistee
par Ordinateur”, Paris, 2000.

W. J. Teahan and D. J. Harper. Using compression-based language models for text cate-
gorization. In W. B. Croft and J. Lafferty, editors, Language Modeling for Information
Retrieval, pages 141–166. Kluwer Academic Publishers, 2003.

K. Tretyakov. Machine learning techniques in spam filtering. Technical report, Institute of
Computer Science, University of Tartu, 2004.

F. M. J. Willems, Y. M. Shtarkov, and Tj. J. Tjalkens. The context-tree weighting method:
Basic properties. IEEE Transactions on Information Theory, 41(3):653–664, 1995.

26

