
A Document-Centric Approach to
Static Index Pruning in Text Retrieval Systems

Stefan Büttcher Charles L. A. Clarke

School of Computer Science
University of Waterloo, Canada

{sbuettch,claclark}@plg.uwaterloo.ca

ABSTRACT
We present a static index pruning method, to be used in
ad-hoc document retrieval tasks, that follows a document-
centric approach to decide whether a posting for a given
term should remain in the index or not. The decision is
made based on the term’s contribution to the document’s
Kullback-Leibler divergence from the text collection’s global
language model. Our technique can be used to decrease the
size of the index by over 90%, at only a minor decrease in
retrieval effectiveness. It thus allows us to make the index
small enough to fit entirely into the main memory of a sin-
gle PC, even for large text collections containing millions of
documents. This results in great efficiency gains, superior to
those of earlier pruning methods, and an average response
time around 20 ms on the GOV2 document collection.

Categories and Subject Descriptors
H.2.4 [Systems]: Textual databases; H.3.1 [Content
Analysis and Indexing]: Indexing methods

General Terms
Experimentation, Performance

Keywords
Information Retrieval, Index Pruning, KL Divergence

1. INTRODUCTION
Fagin et al. [6] introduced the concept of static index prun-

ing to information retrieval. In their paper, they describe a
term-centric pruning method that, for each term T in the
index, only retains its top kT postings, according to the in-
dividual score impact that each posting would have if T ap-
peared in an ad-hoc search query (kT may be term-specific,
not necessarily constant). By applying this method to an
inverted index, its size can be reduced greatly. At query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011 ...$5.00.

time, this reduction results in improved query processing
performance at the cost of a minor decrease in retrieval ef-
fectiveness. Their method is static, as it is applied during
index construction and is independent of any search queries.

In contrast to Fagin’s method, we present a document-
centric pruning technique that, for each document D in the
text collection, only keeps the postings for the top kD terms
in that document (in general, kD will not be constant, but
will depend on the document D). We use D’s Kullback-
Leibler divergence from the rest of the collection, and in
particular each term’s contribution to the document’s KL
divergence, as a pruning criterion. Conceptually, for every
document D in the collection, we perform a pseudo-relevance
feedback step, based on Kullback-Leibler divergence scores
(described by Carpineto et al. [7]) at indexing time and only
keep postings for the top kD feedback terms extracted from
that document in the index, discarding everything else. Be-
cause pseudo-relevance feedback techniques are very good at
finding the set of query terms, given the top search results,
this method can be used to very accurately predict the set
of queries for which D can make it into the top documents.
Only terms appearing in those queries need to be kept in
the index.

The resulting pruned index can then either be used stand-
alone or in conjunction with the original, unpruned index.
In the latter case, the pruned index acts as the primary
index; the unpruned index is used as a secondary index and
is only consulted when a query term cannot be found in the
pruned index.

By using KLD-based document-centric index pruning to
build a pruned index for the 106 most frequent terms in
the GOV2 [8] text collection, it is possible to construct an
index whose size is less than 10% of the size of the original
index for the collection, but that still contains most of the
information necessary to produce high-quality search results
for most search queries. The pruned index is small enough
to be loaded into memory and can be used to process the
vast majority of all search queries. The original unpruned
index, stored on disk because it is too large to fit into main
memory, only needs to be accessed for queries involving very
rare terms.

Following this general scheme, the average response time
of the search engine can be decreased substantially, by about
87% in our experiments (from 190 ms down to 24 ms, when
run on a single PC). At the same time, precision at 10 doc-
uments only drops by 2.5% (from 0.6400 to 0.6240), and
precision at 20 documents by 3.4% (from 0.5660 to 0.5470).

In the next section, we give a brief overview of related
work. This is followed by a general description of the search
engine and the baseline retrieval method used in our ex-
periments. In section 4, we present our document-centric
approach to index pruning, along with two possible instan-
tiations. Our experimental results are presented in section
5. They include a comparison with existing, term-centric
pruning methods and with efficiency figures gathered from
a wide range of retrieval systems in the TREC 2005 Terabyte
track [8], showing the potential of our new method. Section
6 discusses possible ways to build the global language model
needed to compute term scores during index pruning.

Throughout this paper, we use the term index to refer
to a document-level inverted file (also known as frequency
index), not containing any positional information. Conse-
quently, posting refers to a document-level posting, i.e., a
pair of the form (document identifier, term frequency). In-
dices containing positional information are different in na-
ture and not easily accessible to the pruning techniques de-
scribed here (de Moura et al. [9] present a possible ap-
proach). Our method is not suitable for phrase queries and
other query forms that require the existence of positional in-
formation in the index. However, it can be used to perform
bag-of-words search operations, in conjunction with scoring
functions such as Okapi BM25 [13] and certain implemen-
tations of language-model-based retrieval functions [2]. If a
search query requires access to positional index information,
a separate index, containing this information, can be used
to process the query. Unless such queries are very frequent,
the overall savings achieved by our pruning method can still
be substantial. Bahle et al. [3], for instance, report, that
only 8.3% of the queries they found in an Excite query log
were phrase queries.

2. RELATED WORK
Traditionally, pruning techniques in information retrieval

systems have been dynamic, which means that they were
applied at query time in order to reduce the computational
cost required to find the set of top documents, given a search
query. Moffat and Zobel [10], for example, increase their sys-
tem’s query processing performance by restricting the num-
ber of document score accumulators maintained in memory
in a term-at-a-time query processing framework. Persin et
al. [11] describe a dynamic pruning technique that is based
on within-document term frequencies. They also show how
the inverted index can be reorganized (frequency-sorted in-
dex) in order to better support this kind of pruning.

Fagin et al. [6] broke away from the dynamic pruning
paradigm and introduced the concept of static index pruning
to information retrieval. In static index pruning, informa-
tion that is not likely to be needed during query processing is
discarded during index construction (or immediately follow-
ing it), resulting in an inverted file that can be much smaller
than the original index for the given text collection. The dis-
advantage of static pruning is that the pruning decision has
to be made at indexing time, without any knowledge of the
queries that are going to be processed. Its advantage is its
ability to substantially reduce the size of the index, promis-
ing great efficiency gains due to decreased disk acitivity. In
their paper, Fagin et al. describe a global, uniform strategy
and several local, term-dependent pruning strategies. They
assume that search results are ranked by the search engine
based on some TF/IDF method and, during pruning, rank

each term’s postings according to their hypothetical con-
tribution to a document’s TF/IDF score. In their global
strategy, every posting whose contribution to the score of
the document it belongs to is smaller than a fixed thresh-
old τ is removed from the index. In their term-dependent
strategy, τ = τ (T) is a function of the term T . Their recom-

mended method lets τ (T) = δ · P
(k)
T , δ ∈ [0, 1], where P

(k)
T

is the score of the kth-best posting for the term T .
Based on Fagin’s method, de Moura et al. [9] propose a

locality-based pruning technique that, instead of only tak-
ing the highest-scoring postings into the pruned index, se-
lects all postings corresponding to terms that appear in
the same sentence as one of the postings selected by Fa-
gin’s method. Their experimental results indicate that this
locality-enhanced version of the pruning algorithm outper-
forms the original version. They also discuss how pruning
techniques can be applied to positional indices in addition
to pure frequency indices.

Büttcher and Clarke [5] present a variation of Fagin’s
method that is motivated by the goal to reduce the size
of the index so far that it fits into memory. For very large
text collections containing tens of millions of terms (GOV2:
around 50 million different terms), this is only possible if
the number of terms taken into the pruned index is limited.
Therefore, in their pruning strategy, two parameters n and k
can be chosen. The pruning process takes an existing index
and creates a pruned index that contains the top k postings
(using Fagin’s technique to sort each term’s posting list)
for each of the n most frequent terms in the original index.
The original index is kept on disk, while the pruned index
is loaded into memory. At query time, the search engine
fetches postings from the in-memory index whenever possi-
ble, accessing the on-disk index only if a query term cannot
be found in the pruned in-memory index. Throughout this
paper, we refer to this variant of term-centric index pruning
as TCPk

n (or simply TCP).
In contrast to the term-centric pruning methods described

above, we propose a document-centric strategy, where the
decision whether a posting is taken into the pruned index
does not depend on the posting’s rank within its term’s post-
ing list, but on its rank within the document it refers to. In
some sense, our technique is similar to the feedback mech-
anism based on document surrogates that was proposed by
Billerbeck and Zobel [4]. The difference is that they use
the surrogates for query expansion, while we use them to
build the index, and that our term selection method (KL
divergence) is different from theirs.

Anh and Moffat [1] have recently presented a very effective
pruning technique that is non-static, but requires the index
to be in impact-order instead of the traditional document-
order. Their technique allows to change the amount of prun-
ing dynamically, after the index has been created, and rep-
resents an interesting alternative to our pruning method.

3. INDEX STRUCTURE AND BASELINE
RETRIEVAL METHOD

The retrieval system used for the experiments described
in this paper is based on a compressed inverted file con-
taining a document-level posting list for each term found
in the text collection. Postings are stored as simple integer
values, where the 5 least significant bits represent the term
frequency (after applying an exponential transformation for

k = 1 k = 5 k = 10 k = 20
f = 5 30.0% 22.4% 18.0% 15.2%
f = 10 44.0% 35.2% 28.0% 23.6%
f = 20 64.0% 53.6% 47.2% 39.9%
f = 40 80.0% 69.6% 64.0% 58.2%

Table 1: Probability that all query terms are among
the top f feedback terms of a document randomly
chosen from the top k documents retrieved by the
BM25 baseline, for various values of f and k.

k = 1 k = 5 k = 10 k = 20
f = 5 94.0% 92.0% 87.6% 79.4%
f = 10 98.0% 97.6% 96.8% 92.0%
f = 20 100.0% 99.6% 99.4% 97.8%
f = 40 100.0% 99.6% 99.8% 99.5%

Table 2: Probability that at least one query term is
among the top f feedback terms of a document ran-
domly chosen from the top k documents retrieved
by the BM25 baseline, for various values of f and k.

TF values greater than 24), while all other bits represent
the document number the posting refers to. Postings are
grouped into blocks and compressed using a byte-aligned en-
coding method [14]. Each compressed block contains around
216 postings. After compression, the average size of a post-
ing is 13.6 bits.

Baseline Retrieval Method

Our basic retrieval method relies on the Okapi BM25 for-
mula [13]. Given a search query Q = {Q1, . . . , Qn}, con-
taining n terms, the score of a document D is:

SBM25(D,Q) =
n

X

i=1

wQi
·

fD,Qi
· (k1 + 1)

fD,Qi
+ k1 · ((1 − b) + b · dl

avgdl
)
,

where fD,Qi
is Qi’s frequency within D, dl is D’s length

(number of tokens), and avgdl is the average document
length in the collection. wQi

is Qi’s IDF weight: wQi
=

log(N/NQi
), where N is the number of documents in the

collection and NQi
is the number of documents containing

the term Qi. For the free parameters, we chose k1 = 1.2 and
b = 0.5 – a configuration that was shown to be appropriate
for the GOV2 collection used in our experiments [12].

Within this general framework, document scores are com-
puted in a document-at-a-time fashion. For each query term,
the corresponding posting list is fetched from the index, de-
compressed, and the information from all n lists is combined
in a multiway merge process, using a heap data structure,
resulting in a stream of document scores. Document descrip-
tors for the top documents encountered so far are kept in
memory, again using a heap. Standard optimizations, such
as MaxScore [15], are applied to reduce the computational
cost of processing a query. Additional data structures, not
described here, allow us to efficiently look up the score im-
pact of a posting, based on the document number and the
term frequency, and to quickly produce official TREC doc-
ument IDs (e.g., “GX255-91-2697243”) from internal docu-
ment numbers. As a result, queries can be processed with
high throughput, at a rate of 5.25 queries per second (190.5
ms per query) for the 50,000 queries used in the TREC 2005
Terabyte efficiency task (with GOV2 as the underlying doc-
ument collection).

4. DOCUMENT-CENTRIC STATIC INDEX
PRUNING

The general goal of our pruning technique is the same
as that in [5]: Reducing the size of the index so far that
it completely fits into main memory. The difference is
that we follow a document-centric approach instead of a
term-centric. Our method is similar to the pseudo-relevance
feedback mechanism described by Carpineto et al. [7].
Carpineto’s method is based on the Kullback-Leibler diver-
gence between the unigram language model defined by an
individual document and that defined by the whole text
collection. It uses each term’s contribution to a document’s
KL divergence to assign feedback scores to potential expan-
sion terms. Given unigram term distributions P and Q,
their KL divergence is:

KLD(P, Q) =
X

T∈T

P (T) · log

„

P (T)

Q(T)

«

, (1)

where T is the set of all terms in the vocabulary, and P (T)
and Q(T) denote T ’s probability of occurrence under the
distribution P and Q, respectively. In their feedback mech-
anism, Carpineto et al. select a set R of pseudo-relevant
documents, build a language model MR for each document
R ∈ R, and compute the feedback score of each term T
appearing in R according to the rule

ScoreFB(T) =
X

R∈R

MR(T) · log

„

MR(T)

M∗(T)

«

, (2)

where M∗ is the global language model of the entire text
collection.

When conducting some initial experiments with this feed-
back method, we noticed that it is very good at finding the
original query terms, given a set R of pseudo-relevant doc-
uments, even if the set is very small (|R| = 1 or |R| = 2).
For example, if we pick a random topic from the 50 topics
used in the ad-hoc retrieval task of the TREC 2005 Terabyte
track and select a single random pseudo-relevant document
from the top k = 20 documents returned by BM25, then the
probability of at least one query term being among the top
f = 20 feedback terms is 97.8%; the probability of all query
terms being among the top f = 20 feedback terms is 39.9%
(for details, see Tables 1 and 2).

Thus, by performing pseudo-relevance feedback on indi-
vidual documents in a static fashion at indexing time, with-
out taking an actual search query into account, it is possible
to predict the set of query terms for which a given document
will end up in the top documents returned the BM25 base-
line method. Hence, in our document-centric index pruning
strategy, a language model MD is built for every document
D being indexed. Each term T in D is assigned a score:

ScoreDCP(T) = MD(T) · log

„

MD(T)

M∗(T)

«

. (3)

Only the top-scoring terms are kept in the index; the rest
are discarded. The size of the resulting index depends on
how many postings for a given document are allowed into
the index and how many are rejected. The final goal is
to reduce the size of the index enough so that it can be
completely loaded into main memory. Since, for a collection
with 50 million different terms (GOV2), this is only feasible

 80

 70

 60

 50

 40

 30

 20

 10

 80000 40000 20000 10000 5000 2500 1250

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

Terms in in-memory index

(a) Term-centric pruning: Query processing performance

Term-centric pruning (1536 MB)
Term-centric pruning (1024 MB)

Term-centric pruning (512 MB)

 0.65

0.60

 0.55

0.50

 0.45

0.40

 0.35

0.30

 80000 40000 20000 10000 5000 2500 1250

P
re

ci
si

on
 a

t 2
0

do
cu

m
en

ts

Terms in in-memory index

(b) Term-centric pruning: Retrieval effectiveness

Term-centric pruning (1536 MB)
Term-centric pruning (1024 MB)
Term-centric pruning (512 MB)

Figure 1: Term-centric pruning (TCP) with 0.5, 1.0, and 1.5 GB of RAM for the pruned in-memory index.
Performance gains compared to the retrieval baseline (190 ms) are substantial, but for response times below
20 ms, P@20 decreases considerably in all cases (1536 MB: 12%; 1024 MB: 15%; 512 MB: 17%).

if the number of candidate terms is limited, only the 106

most frequent terms in the collection are allowed to enter the
pruned index, while the less frequent terms are disregarded
completely.

We implemented two different instantiations of the general
pruning strategy:

Method 1: DCP
(k)
Const

In our first method, for each document in the collection,
the top k terms from the document are put into the index;
all other terms in the document are discarded. k is a user-
defined constant. Smaller k results in a smaller index, while
greater k produces higher-quality search results.

Method 2: DCP
(λ)
Rel

Our second method is similar to the first. Now, however, the
number of terms taken from a document D is not constant,
but depends on the number of distinct terms in the docu-
ment, denoted by |D|, and a user-defined pruning parame-
ter λ. From each document D, the top d|D| · λe terms are
taken into the index; all other terms are discarded. Smaller
λ results in a smaller index and lower response times. The
rationale behind this method is that longer documents usu-
ally cover a greater variety of topics than shorter documents.
Thus, the set of possible query terms for longer documents
is larger than for shorter ones.

5. EXPERIMENTAL RESULTS
For all our experiments, we used the GOV2 text collection,

the result of a webcrawl conducted in 2003/2004, also known
as the TREC Terabyte collection [8]. All efficiency figures
were obtained by sending the 50,000 efficiency queries used
in the TREC 2005 Terabyte track [8] to our search engine
and processing all queries in a sequential manner, report-
ing the top 20 documents for each search query. Since no
relevance judgements are available for this query set, all ef-
fectiveness numbers were computed for the title-only queries
derived from the 50 ad-hoc topics used in the TREC 2005
TB track (topics 751-800). These 50 queries form a subset of
the 50,000 efficiency queries. Our evaluation methodology
is the same as that used in the Terabyte track: Precision vs.
mean time per query. Like in TREC, P@20 (precision af-
ter 20 doc’s) serves as our main precision measure. In some
places, we also look at other measures, such as P@10 and
mean average precision (MAP).

All experiments were conducted on a PC based on an
AMD Athlon64 3500+ processor (2.2 GHz) with 2 GB of
RAM and a 7,200-rpm SATA hard drive. The search engine
used in our experiments was a modified version of Wumpus1.
For the TREC 2005 Terabyte ad-hoc topics, the baseline
retrieval method presented in section 3 achieves a P@20
of 0.5660 (P@10: 0.6400; MAP: 0.3346) at an average
response time of 190.5 ms. Unless explicitly stated oth-
erwise, we always used the pruned in-memory index and the
unpruned on-disk index in parallel, fetching postings from
the in-memory index whenever possible and only accessing
the on-disk index when a query term could not be found in
main memory.

In our first series of experiments, we repeated the prun-
ing experiments reported by Büttcher and Clarke [5]. The
results shown in Figure 1 are roughly in line with their find-
ings. A slight difference is that, in our experiments, retrieval
effectiveness does not drop as quickly as in theirs. This is
mainly due to better index compression, which allows us to
keep more postings in the in-memory index (Büttcher and
Clarke report 19.3 GB for their unpruned index, whereas the
unpruned index used in our experiments is only 12.9 GB).
This also explains why our baseline (190 ms) is faster than
their baseline (326 ms). Despite these improvements, for
average reponse times below 20 ms, the difference between
TCP and the BM25 baseline is still quite large (for an in-
memory index of size 1024 MB, decreasing the response time
to under 20 ms requires P@20 to drop below 0.4800 – a 15%
decrease compared to the baseline).

We then examined the DCPConst pruning strategy. We
conducted experiments for various values of the pruning pa-
rameter k. Query processing performance is promising, with
response times below 25 ms in all cases. Retrieval effective-
ness, however, is not even close to that of the BM25 base-
line. For k = 18, for instance, DCPConst achieves an average
time per query close to 16.5 ms, but P@20 is 23% below the
baseline (0.4370 vs. 0.5660), and MAP, even worse, is 45%
below the baseline (0.1835 vs. 0.3346). These numbers are
similar to those of term-centric pruning for equivalent query
response times (details in Figure 2).

Our experiments with the DCPRel strategy (results
shown in Figure 3) had a more reassuring outcome. Like
for DCPConst, query times are very low, less than 25 ms
for all values of the pruning parameter λ that we tested.

1http://www.wumpus-search.org/

 25

 20

 15

 10

 5

 30 25 20 15 10 5 0

 1500

 1200

 900

 600

 300

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

S
iz

e
of

 p
ru

ne
d

in
de

x
(M

B
)

Postings in in-memory index (per document)

(a) DCP-const: Index size and query processing performance

Query response time
Size of in-memory index

0.60

0.50

0.40

0.30

0.20

0.10

 30 25 20 15 10 5 0

R
et

rie
va

l e
ffe

ct
iv

en
es

s

Postings in in-memory index (per document)

(b) DCP-const: Retrieval effectiveness

Precision at 10 documents
Precision at 20 documents

Average precision

Figure 2: Document-centric pruning with a constant number of postings per document in the in-memory
index (DCPConst). For response times between 10 ms and 21 ms, P@20 varies between 0.2440 (k = 2) and
0.4710 (k = 28).

 25

 20

 15

 10

 5

10%9%8%7%6%5%4%3%2%1%

 1500

 1200

 900

 600

 300

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

S
iz

e
of

 p
ru

ne
d

in
de

x
(M

B
)

Relative number of postings in in-memory index

(a) DCP-rel: Index size and query processing performance

Query response time
Size of in-memory index

0.60

0.50

0.40

0.30

0.20

0.10

10%9%8%7%6%5%4%3%2%1%

R
et

rie
va

l e
ffe

ct
iv

en
es

s

Relative number of postings in in-memory index

(b) DCP-rel: Retrieval effectiveness

Precision at 10 documents
Precision at 20 documents

Average precision

Figure 3: Document-centric pruning with a relative number of postings in the in-memory index (DCPRel).
For response times between 11 ms and 24 ms, P@20 varies between 0.3630 (λ = 0.01) and 0.5470 (λ = 0.10).

Pruning level Postings decompr. Postings inspected
λ = 0.04 242380 (7.5%) 71981 (8.0%)
λ = 0.06 318273 (9.9%) 94671 (10.6%)
λ = 0.08 381075 (11.8%) 115862 (13.0%)
λ = 0.10 442592 (13.7%) 135102 (15.1%)
λ = 1.00 3219483 (100%) 892145 (100%)

Table 3: Average number of postings touched per
query, for DCPRel. MaxScore is responsible that the
number of postings inspected is not decreasing pro-
portionally to λ.

However, DCPRel’s retrieval effectiveness is far superior to
that of DCPConst. With λ = 0.05 (size of pruned index: 848
MB), DCPRel processes queries at a rate of 61 queries per
second (16.3 ms per query). With 0.5340, precision at 20
documents is only 6% below the baseline. Average precision
is still rather low (0.2323; 31% below the baseline), but
more competitive than that produced by DCPConst. By
increasing λ to 0.08 (resulting in a pruned index of size 1284
MB, 10% the size of the unpruned index), it is possible to
improve the situation. Average precision rises to 0.2569,
or 23% below the baseline; the average time per query
increases to 20 ms.

For λ = 0.1 (index size: 1570 MB, 12% of unpruned in-
dex), the search produced from the pruned index are virtu-
ally indistinguishable from those generated from the orig-
inal, unpruned index. P@20 is 3.4% below the baseline
(0.5470 instead of 0.5660) and P@10 only 2.5% (0.6240 in-
stead of 0.6400). With 24 ms per query on average (87%

below the baseline), response time is still very low.
The performance gains achieved by DCPRel and docu-

mented by our experimental results have two different ori-
gins. Firstly, by keeping the primary index in main memory
and only accessing the secondary on-disk index when a query
term cannot be found in the primary index, disk I/O is de-
creased dramatically. Secondly, the reduced length of the
posting lists in the primary index leads to a smaller num-
ber of postings that need to be inspected and thus a smaller
number of document scores that need to be computed during
query processing.

Table 3 covers this second aspect. It shows that the num-
ber of postings inspected during query processing is de-
creased by up to 92% for λ = 0.04. The reason why the
number of postings that are inspected during query pro-
cessing is not proportional to the pruning level λ is that
the query processor employs the MaxScore [15] heuristic
to ignore postings that cannot change the ranking of the
top search results (here for the top 20). Thus, many of the
postings removed by the pruning process would not have
been considered by the query processor anyway. The dis-
crepancy between the number of postings read from the in-
dex and decompressed and the number of postings actually
used for query processing purposes (a factor-3.5 difference)
stems from the fact that our search engine stores postings in
compressed blocks of around 216 postings each. Thus, even
if only a single posting from a block is needed, the entire
block needs to be decompressed. Decreasing the block size
might help, but would have other disadvantages, which is
why we decided to leave it at 216 postings.

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

 200 400 600 800 1000 1200 1400 1600

R
et

rie
va

l e
ffe

ct
iv

en
es

s

Size of the in-memory index (MB)

(a) Document-centric pruning: Impact of index size on effectiveness

Precision at 20 for DCP-relative
Precision at 20 for DCP-constant

Average precision for DCP-relative
Average precision for DCP-constant

0.60

0.50

0.40

0.30

0.20

0.10
 80 56 40 28 20 14 10

R
et

rie
va

l e
ffe

ct
iv

en
es

s

Average time per query (ms)

(b) DCP and TCP: Efficiency vs. effectiveness

Precision at 20 for DCP-relative
Precision at 20 for TCP (1024 MB)

Precision at 20 for DCP-constant

Figure 4: Trade-offs: (a) Space vs. effectiveness and (b) efficiency vs. effectiveness. Even with small amounts
of main memory, DCPRel produces good search results and clearly outperforms TCPk

n.

[TREC 2004 Terabyte queries (topics 701-750)]

BM25 Baseline DCP
(λ=0.062)
Rel DCP

(k=21)
Const TCP

(k=24500)

(n=16000)

P@5 0.5224 0.5020 0.4735 0.4490*
P@10 0.5347 0.4837 0.4755 0.4347*
P@20 0.4959 0.4490 0.4224 0.4163
MAP 0.2575 0.1963 0.1621** 0.1808

[TREC 2005 Terabyte queries (topics 751-800)]

BM25 Baseline DCP
(λ=0.062)
Rel DCP

(k=21)
Const TCP

(k=24500)

(n=16000)

P@5 0.6840 0.6760 0.6000** 0.5640**
P@10 0.6400 0.5980 0.5300* 0.5380**
P@20 0.5660 0.5310 0.4560** 0.4630**
MAP 0.3346 0.2465 0.1923** 0.2364

Table 4: Comparing DCPRel, DCPConst, and TCP(1024MB) for the title-only queries derived from the TREC
ad-hoc topics 701-800. For the same response time (18 ms), DCPRel outperforms the other two strategies at
most recall levels.

Figure 4 combines the results we obtained for the 3 differ-
ent pruning methods and compares their retrieval effective-
ness at different efficiency levels. While DCPConst performs
slightly worse than TCP, the DCPRel pruning strategy out-
performs the two other strategies at every efficiency level we
tested. At an average response time of 13.5 ms (λ = 0.05),
for example, its P@20 (0.4790) is 14% higher than that
of TCP (0.4190) and 27% higher than that of DCPConst

(0.3780). In addition, Figure 4(a) shows that even for a
relatively small in-memory index (about 700 MB), DCPRel

achieves respectable precision (P@20 = 0.5130).

Statistical Significance

We fixed the amount of main memory available for the in-
memory index to 1024 MB. With an in-memory index of this
size, DCPConst (k = 21) and DCPRel (λ = 0.062) both lead
to an average query response time of 18 ms for the TREC
2005 Terabyte efficiency queries. With TCP, the same re-
sponse time can be achieved by building an index containing
the k = 24500 best postings for each of the n = 16000 most
frequent terms (TCP24500

16000). We analyzed all three prun-
ing techniques at this efficiency level, using the ad-hoc top-
ics from the 2004 and 2005 TREC Terabyte tracks as test
queries. Table 4 provides precision values at several retrieval
points for each pruning method. It shows that DCPRel de-
classes DCPConst and TCP at virtually every recall level.
Stars indicate significantly worse retrieval effectiveness for
DCPConst and TCP, compared with DCPRel, according to

a paired t-test (one star: 95% confidence; two stars: 99%
confidence).

Similarity to Original Search Results

Another interesting question is how close the search results
produced by DCPRel are to those produced by the BM25
baseline – in other words, to find out whether DCPRel

achieves such high precision because it actually produces
the similar search results as the baseline, or because it re-
turns different documents which, however, also turn out to
be relevant. To evaluate the similarity between the baseline
results and the DCPRel results, we employ the methodol-
ogy also used by Fagin et al. [6]. Table 5 shows that, for
the TREC 2005 Terabyte ad-hoc topics, the search results
produced from the pruned indices are in fact very similar to
those produced from the unpruned index. For λ = 0.1, the
similarity level, as measured by the symmetrical difference
between the search results, i.e., the ratio of the intersection
and the union of the top 20 documents produced from the
pruned and from the unpruned index, is 67%. On average,
77% of the top 20 doc’s produced from the unpruned index
appear in the top 20 doc’s produced from the pruned index.

TREC Terabyte

We compared the performance of our pruning method to
other retrieval systems that participated in the efficiency
task of the TREC 2005 Terabyte track (as reported by
Clarke et al. [8]). Figure 5 shows that document-centric

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 3200 1600 800 400 200 100 50 25 12.5

P
re

ci
si

on
 a

t 2
0

do
cu

m
en

ts

Average time per query (ms)

TREC 2005 Terabyte track: Query processing performance

TREC 2005 Terabyte participants
Term-centric pruning (1024 MB)

DCP-rel (lambda=0.05)
DCP-rel (lambda=0.05, on-disk index disabled)

Figure 5: Comparing term-centric and document-
centric index pruning with the official runs submit-
ted for the TREC 2005 Terabyte track. All query
times are CPU-normalized – simulating search en-
gines running on a single-CPU system.

pruning allows us to protrude into the previously undiscov-
ered area in the top-left corner of the graph, demonstrating
the potential of DCP. The fastest run submitted for the
efficiency task of the Terabyte track had a mean time per
query of 55 ms (normalized by #CPUs) and P@20 = 0.3900.
At that precision level, DCPRel needs less that 12 ms per
query. However, the evaluation methodology employed in
the Terabyte track (response times normalized by #CPUs)
is questionable, and the inter-system comparison should be
taken with a grain of salt.

Additional Experiments

For all experiments described so far, the pruned in-memory
index and the unpruned on-disk index were used in par-
allel. The unpruned index served as a backup that could
be accessed whenever no postings for a given query term
were found in the pruned index. In experiments not re-
ported on in detail here, we examined how turning off the
on-disk index affects both efficiency and effectiveness. For a
DCPRel-pruned index with λ = 0.05, average response time
can be decreased from 16.3 ms to 12.8 ms by disabling the
on-disk index. On the other hand, this makes P@20 drop
from 0.5340 to 0.5290 because “mersenne” (topic 784) and
“geechee” (topic 791) have no posting list in the pruned in-
dex. This confirms our initial assumption that a backup
index might be needed to cover the case of query terms with
very low collection frequency.

By looking at the pruned index created by DCP
(λ=0.03)
Rel ,

we noticed that, although it was only 544 MB large (4.1% of
the unpruned index), the posting list for the term “the” had
3.0 million entries (15% of its length in the unpruned index).
Our KLD-based pruning techniques seems to favor frequent
terms over unfrequent terms. By changing the term score
formula from equation 3 to

(MD(T))1−δ ·

„

max



0, log

„

MD(T)

M∗(T)

«ff«1+δ

, (4)

with δ ∈ [0, 1), it is possible to counter this effect. Choosing
δ = 0.10, for example, cuts the list for “the” down to 2.37
million entries. It increases P@10 from 0.5520 to 0.5580 and
P@20 from 0.4790 to 0.4890, without harming performance.
We did not further investigate in this direction.

Pruning level 1 - symm.diff. Kendall’s τ (top-20)
λ = 0.04 0.4403 0.6915
λ = 0.06 0.5421 0.7753
λ = 0.08 0.6090 0.8197
λ = 0.10 0.6716 0.8557

Table 5: Similarity of top 20 search results produced
from pruned index to top 20 search results from un-
pruned index, for DCPRel and various pruning levels
λ. Topics: TREC Terabyte 2005.

Finally, we compared our KLD-based term selection func-
tion to the formula proposed by Billerbeck and Zobel [4].
Although Billerbeck’s objective (query expansion) is differ-
ent from ours (index pruning), the techniques are similar,
raising the question how their method performs compared

to ours. We modified the DCP
(λ)
Rel strategy so that it uses

the selection function

ScoreDCP(T) = log(N/NT) · log(fD,T + 1) (5)

instead of equation 3. Here, N is the total number of docu-
ments in the collection, NT the number of documents con-
taining T , and fD,T the frequency of the term T within the
document in question. For equivalent query processing per-
formance (17.5 ms per query), Billerbeck’s selection function
produces a P@20 of 0.4820 — 9.4% lower than the original
KLD-based selection function (0.5320). A paired t-test re-
ports statistical significance with confidence level 94.3%.

6. BUILDING THE LANGUAGE MODEL
The pruning method described in section 4 demands the

knowledge of the global language model of the text collec-
tion for which an index is being constructed. This seems
to require a two-pass index construction process, where the
language model is built during the first phase and the actual
index is constructed during the second phase, approximately
doubling the total index construction time. Fortunately, if
the text collection is very large, it is not necessary to analyze
the entire collection during the first phase. A representative
subcollection, consisting of randomly selected documents,
can be used to build the language model in phase 1, and the
whole collection does not need to be read twice.

For all experiments described in the previous section, we
used a language model built from a random subcollection
comprising 5% of the documents in the GOV2 corpus. Al-
tering the size of the subcollection does not substantially

change the effectiveness of our technique. For DCP
(0.062)
Rel

(index size: 1024 MB), lowering the size of the subcollection
from 5% to 1% results in a mild decrease of P@20 (from
0.5310 to 0.5250). Increasing it to 10%, improves P@20 to
0.5340. We also conducted experiments in which we used a
completely different text collection to build the background
language model. If TREC disk 5 is used to build the back-
ground model, P@20 decreases to 0.5270. If the Medline
corpus from the TREC Genomics track is used, P@20 drops
to 0.5070. Since the TREC Medline corpus is as far away
from GOV2 as it can get, without changing the language of
the collection from English to something else, we conclude
that our method is very robust with respect to noisy data
in the language model.

Another aspect of our approach is data sparseness. We
decided to build the language model according to the max-

imum likelihood estimate. MLE is very amenable to in-
accuracies resulting from data sparseness. We addressed
this problem by restricting the language to the X most fre-
quent terms seen in the subcollection (in our experiments:
X = 106). This requires us to build an unpruned index in
addition to the pruned index so that, at query time, post-
ing lists for infrequent terms, which did not make it into
the pruned index, can be fetched from the unpruned index.
However, this does not imply the necessity of a two-phase
index construction process. Instead, two indices can be built
in a single pass – the full index for the collection, containing
all postings, and a smaller, pruned index that may be loaded
into memory for query processing.

7. CONCLUSION
We have presented a document-centric index pruning

method that can be used to dramatically increase the
query processing performance of search engines working on
static document collections. Our pruning method employs
Kullback-Leibler divergence to select terms by performing
query-independent pseudo-relevance feedback at index-
ing time. We examined two possible implementations of
our document-centric pruning method. The first imple-
mentation selects a constant number of terms from each
document, while the number of terms selected by the second
implementation is proportional to the number of distinct
terms in the document. Our experimental results show that
the proportional pruning method (DCPRel), outperforms
existing term-centric pruning methods.

Compared to the Okapi BM25 baseline retrieval method
implemented in our search engine, DCPRel can decrease the
average response time by 87% (to 24 ms) for the efficiency
queries used in the TREC Terabyte track. At the same time,
P@20 only decreases by 3.4% (from 0.5660 to 0.5470). Fur-
ther speed-ups are possible, but carry the cost of a larger
decrease of the search engine’s effectiveness: Decreasing the
response time by 92.3% (to 14.7 ms) makes P@20 drop by
9.4%, to 0.5130. Compared to term-centric pruning meth-
ods, document-centric pruning also has the advantage that
the pruning criterion can be chosen independently of the
ranking function employed for query processing; there is no
obvious, close connection between KL divergence and the
incarnation of BM25 we use to rank the search results.

The main part of the savings achieved by our method
stems from the decrease (or elimination) of disk transfer
operations, which represent a major bottleneck for most re-
trieval systems. In distributed search systems that consist
of a number of computers large enough to hold the entire
unpruned index in memory, the efficiency gains will not be
as dramatic as indicated by our experiments. However, even
in such cases, our pruning method can be expected to im-
prove query efficiency by a factor 5 or so, by reducing the
amount of postings that need to be inspected during query
processing.

8. REFERENCES
[1] V. N. Anh and A. Moffat. Pruned Query Evaluation

Using Precomputed Impacts. In Proceedings of the
29th ACM SIGIR Conf. on Research and Development
in Information Retrieval, Seattle, USA, 2006.

[2] L. Azzopardi and D. E. Losada. An Efficient
Computation of the Multiple-Bernoulli Language

Model. In Proceedings of the 28th European
Conference on Information Retrieval (ECIR 2006),
pages 480–483, London, UK, April 2006.

[3] D. Bahle, H. E. Williams, and J. Zobel. Efficient
Phrase Querying with an Auxiliary Index. In
Proceedings of the 25th ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 215–221, Tampere, Finland, 2002.

[4] B. Billerbeck and J. Zobel. Techniques for Efficient
Query Expansion. In Proceedings of the 11th
Symposium on String Processing and Information
Retrieval, pages 30–42, Padova, Italy, September 2004.

[5] S. Büttcher and C. L. A. Clarke. Efficiency vs.
Effectiveness in Terabyte-Scale Information Retrieval.
In Proceedings of the 14th Text REtrieval Conference,
Gaithersburg, USA, November 2005.

[6] D. Carmel, D. Cohen, R. Fagin, E. Farchi,
M. Herscovici, Y. Maarek, and A. Soffer. Static Index
Pruning for Information Retrieval Systems. In
Proceedings of the 24th ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 43–50, 2001.

[7] C. Carpineto, R. de Mori, G. Romano, and B. Bigi.
An Information-Theoretic Approach to Automatic
Query Expansion. ACM Transactions on Information
Systems, 19(1):1–27, 2001.

[8] C. Clarke, F. Scholer, and I. Soboroff. Overview of the
TREC Terabyte Track. In Proceedings of the 14th
Text REtrieval Conference, Gaithersburg, USA,
November 2005.

[9] E. S. de Moura, C. F. dos Santos, D. R. Fernandes,
A. S. Silva, P. Calado, and M. A. Nascimento.
Improving Web Search Efficiency via a Locality Based
Static Pruning Method. In Proceedings of the 14th
International Conference on World Wide Web, pages
235–244, New York, USA, 2005.

[10] A. Moffat and J. Zobel. Self-Indexing Inverted Files
for Fast Text Retrieval. ACM Transactions on
Information Systems, 14(4):349–379, October 1996.

[11] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
Document Retrieval with Frequency-Sorted Indexes.
Journal of the American Society for Information
Science, 47(10):749–764, October 1996.

[12] V. Plachouras, B. He, and I. Ounis. University of
Glasgow at TREC2004: Experiments in Web, Robust
and Terabyte Tracks with Terrier. In Proceedings of
the 13th Text REtrieval Conference, Gaithersburg,
USA, November 2004.

[13] S. E. Robertson, S. Walker, and M. Hancock-Beaulieu.
Okapi at TREC-7. In Proceedings of the Seventh Text
REtrieval Conference, Gaithersburg, USA, November
1998.

[14] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel.
Compression of Inverted Indexes for Fast Query
Evaluation. In Proceedings of the 25th ACM SIGIR
Conference on Research and Development in
Information Retrieval, Tampere, Finland, August
2002.

[15] H. Turtle and J. Flood. Query Evaluation: Strategies
and Optimization. Information Processing &
Management, 31(1):831–850, November 1995.

