
Basis Enumeration of Hyperplane

Arrangements up to Symmetries

by

Aaron Moss

Bachelor of Computer Science, UNB, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Computer Science

In the Graduate Academic Unit of Computer Science

Supervisor(s): David Bremner, BSc, MSc, PhD, Computer Science
Examining Board: Bradford Nickerson, BScE, MScE, PhD, PEng, Computer Science, Chair

Eric Aubanel, BSc, PhD, Computer Science
Andrew Gerber, BScE, PhD, BA, PEng, Mechanical Engineering

This thesis, dissertation or report is accepted by the

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

September, 2012

c©Aaron Moss, 2012



Dedication

To Dr. Bremner and my examining committee, who have done me a major
favour by reviewing this so quickly; and to my wife, who has had to attempt to
explain “Basis Enumeration of Hyperplane Arrangements up to Symmetries”
to other people for the last year.

ii



Abstract

This thesis details a method of enumerating bases of hyperplane arrange-

ments up to symmetries. I consider here automorphisms, geometric symme-

tries which leave the set of all points contained in the arrangement setwise

invariant. The algorithm for basis enumeration described in this thesis is

a backtracking search over the adjacency graph implied on the bases by

minimum-ratio simplex pivots, pruning at bases symmetric to those already

seen. This work extends Bremner, Sikirić, and Schürmann’s method for ba-

sis enumeration of polyhedra up to symmetries, including a new pivoting

rule for finding adjacent bases in arrangements, a method of computing au-

tomorphisms of arrangements which extends the method of Bremner et al.

for computing automorphisms of polyhedra, and some associated changes to

optimizations used in the previous work. I include results of tests on ACEnet

clusters showing an order of magnitude speedup from the use of C++ in my

implementation, an up to 3x speedup with a 6-core parallel variant of the

algorithm, and positive results from other optimizations.

iii



Acknowledgements

This research was partially supported by NSERC grants to both myself and

Dr. Bremner; computational resources used in the experimental work were

provided by the ACEnet consortium. I am also indebted to David Avis for

his lrslib linear programming software and Thomas Rehn for his permlib

group theory library, both of which were instrumental in the successful and

swift completion of this project. I would also like to recognize Dr. Tariq

Hasan of the UNB Applied Statistics Centre for his assistance with the sta-

tistical analysis of my data.

iv



Table of Contents

Dedication ii

Abstract iii

Acknowledgments iv

Table of Contents vii

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 3

2.1 Arrangements and Polyhedra . . . . . . . . . . . . . . . . . . 3

2.1.1 Definitions and Properties . . . . . . . . . . . . . . . . 3

2.1.2 Linear Programming and the Simplex Method . . . . . 8

2.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Groups and Permutations . . . . . . . . . . . . . . . . 13

v



2.2.2 Automorphisms and Isometries . . . . . . . . . . . . . 16

2.2.3 Inner Products . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Gram Matrices . . . . . . . . . . . . . . . . . . . . . . 17

2.2.5 Fundamental Domain . . . . . . . . . . . . . . . . . . . 23

3 Algorithms 26

3.1 Pivoting Search Algorithm . . . . . . . . . . . . . . . . . . . . 26

3.2 Parallel Variant . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Assigning Cobases to Threads . . . . . . . . . . . . . . 35

3.2.2 Sharing Results . . . . . . . . . . . . . . . . . . . . . . 39

4 Implementation and Results 41

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Test Data and Results . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Comparison with Symbal . . . . . . . . . . . . . . . . . 42

4.2.2 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Results and Analysis . . . . . . . . . . . . . . . . . . . 44

4.2.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4.1 Memory-less Reverse Search . . . . . . . . . . 50

4.2.4.2 Simple Invariants . . . . . . . . . . . . . . . . 51

4.2.4.3 Gram Submatrix . . . . . . . . . . . . . . . . 51

4.2.4.4 Fundamental Domain . . . . . . . . . . . . . 52

4.2.5 Parallelization . . . . . . . . . . . . . . . . . . . . . . . 53

vi



5 Conclusion 58

References 60

A Software Distribution 64

Glossary 65

Vita

List of Tables

4.1 Comparison of Basil & Symbal . . . . . . . . . . . . . . . . . . 43

4.2 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Basil Test Results . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Non-Symmetric Test Results . . . . . . . . . . . . . . . . . . . 45

4.5 Fundamental Domain Results . . . . . . . . . . . . . . . . . . 54

4.6 Parallel Basil Results . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Parallel Memory Usage . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Parallel Speedup Results . . . . . . . . . . . . . . . . . . . . . 56

vii



List of Figures

2.1 Cobases and Vertices . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Adjacent Cobases . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Simplex Pivot . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Example Arrangement . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Timing results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Timing results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Speedup from using Gram matrix . . . . . . . . . . . . . . . . 52

4.4 Parallel timing results . . . . . . . . . . . . . . . . . . . . . . 57

viii



Chapter 1

Introduction

Though hyperplane arrangements are fundamental geometric structures with

applications in many fields, in moderate to high dimensions they do not lend

themselves easily to efficient programmatic manipulation. One potential ap-

plication for software which can quickly find bases of hyperplane arrange-

ments is computation of the vector partition function of a matrix, a fun-

damental operation in parametric integer programming and representation

theory. Bases of hyperplane arrangements are equivalent to bases of systems

of linear equations (minimal subsystems defining zero dimensional solutions).

Basis enumeration of systems of linear equations is necessary for dual-type

generating function approaches to computing the vector partition function,

which research by Brion, Szenes, and Vergne [7, 22] suggests may be quicker

than current approaches.

This thesis describes the design, implementation, and analysis of a program

1



for basis enumeration of hyperplane arrangements up to symmetries, as well

as the results of applying various programmatic and mathematical optimiza-

tions to this program. This program, called Basil (for “Basis list”) adapts

the pivoting method of Bremner, Sikirić, and Schürmann [6] for basis enumer-

ation of polyhedra (a closely related geometrical structure) up to symmetries,

using a new pivot selection method to traverse hyperplane arrangements in-

stead of polyhedra. The work of Bremner et al. is in turn related to the

reverse-search method for basis enumeration of Avis and Fukuda [4] and

earlier pivoting methods e.g. [9].

Sikirić’s Polyhedral [21] and Rehn’s Sympol [19] implement other solutions

to the related problem of vertex enumeration up to symmetries of polyhedra;

the approaches taken by both Sikirić and Rehn involve recursively decompos-

ing the polyhedron into less complex polyhedra, and are quite different from

the pivoting approach which is used in Basil. For a survey of approaches for

vertex enumeration up to symmetries of polyhedra and the dual problem of

facet enumeration up to symmetries, see [6], which covers both the recursive

decomposition and pivoting approaches.

2



Chapter 2

Background

2.1 Arrangements and Polyhedra

2.1.1 Definitions and Properties

The structures considered in this thesis exist in d-dimensional real space, Rd.

A point x in Rd is the ordered list of coordinates x = [x1 x2 · · · xd], where

each of the xi is a real number. In this thesis, however, all explicitly defined

vectors have rational coordinates, as it is not possible to exactly represent

the real numbers in a computer system, but the rationals are closed under

all operations used, and can be efficiently and easily represented in a digital

computer. A hyperplane H is the set of points x ∈ Rd which satisfy a linear

equation a>x = b,a ∈ Rd, b ∈ R, while a hyperplane arrangement A is the

union of the points contained in a set of hyperplanes; the hyperplanes in the

arrangement are typically indexed as A1, A2, · · · , An. A polyhedron P is a

3



closely related structure, the intersection of a set of halfspaces indexed as

P1, P2, · · · , Pn; a halfspace is the set of points x ∈ Rd that satisfy a linear

inequality a>x ≥ b, a and b defined as above. The hyperplane for which this

inequality is satisfied with equality is known as the bounding hyperplane of

the halfspace, while the set of bounding hyperplanes of the halfspaces defining

a polyhedron is called its bounding hyperplane arrangement. Complementing

the concept of the bounding arrangement is the interior int(P) of a polyhe-

dron P , the set of points in P which are not on the bounding arrangement

of P . The size of an arrangement is the number of hyperplanes n, while the

dimension of an arrangement is the dimension of the smallest affine subspace

containing the arrangement. Most arrangements discussed here are full rank

and thus have dimension d, the dimension of the underlying space, and n is

used throughout this thesis to denote the number of hyperplanes comprising

the arrangement under consideration. Size and dimension of polyhedra are

defined analogously.

A cobasis B of a hyperplane arrangement is a set of indices of d hyperplanes

which intersect at a single point, a vertex of the arrangement. I use here the

name cobasis from linear programming for what is typically called a basis in

geometry for consistency with the terminology of my linear programming-

based implementation. Figure 2.1 shows the cobases and vertices of an ex-

ample arrangement. It should be noted that d hyperplanes meet in a single

point if and only if the equations defining those hyperplanes are linearly in-

dependent. Hyperplanes which contain a vertex are said to be incident to

4



H
1

H
2

H
3

H
4

{2,3}

{3,4}

{1,3}

{1,2}
{1,4}
{2,4}

Figure 2.1: An arrangement in R2; dots denote vertices, cobases correspond-
ing to each vertex are shown in set notation.

that vertex. Vertices of polyhedra may be defined as those vertices of the

polyhedron’s bounding hyperplane arrangement which are contained within

the polyhedron, and cobases of a polyhedron as the cobases of the bounding

arrangement which correspond to those vertices. A vertex of an arrangement

or polyhedron may be defined by more than one cobasis in the case where

more than d hyperplanes of the (bounding) arrangement meet at that point;

such a vertex is called degenerate. Polyhedra and arrangements with no de-

generate vertices are called simple; non-simple polyhedra and arrangements

are degenerate.

Polyhedra, by virtue of being intersections of halfspaces, have the property of

being convex ; that is, for any two points p and q contained in a polyhedron

P , every point on the line segment pq is also contained in P . This property

5



of convexity yields an alternate representation of a polyhedron P as the set of

points x whose coordinates are linear combinations of the coordinates of the

vertices v1,v2, · · · ,vk and extreme rays vk+1,vk+2, · · · ,vm of P that satisfy

x ∈ {
∑m

i=1 λivi :
∑k

i=1 λi = 1, λi ≥ 0∀i}. If k = m, then P is bounded, and

is called a polytope. This representation is called the vertex representation or

V-representation of a polyhedron, while the previously described representa-

tion as an intersection of halfspaces is called the halfspace representation or

H-representation.

A useful representation for arrangements is homogeneous coordinates, where

an arrangement A in Rd is represented as a set of vectors in Rd+1. To

convert an arrangement to homogeneous coordinates, take each hyperplane

a>i x = bi in the arrangement, and produce a vector vi = [bi ai,1 ai,2 · · · ai,d].

The vi are the normal vectors to an arrangement A′ in Rd+1, and the original

arrangement A is the intersection of A′ with the x0 = 1 hyperplane (bi = 1 in

the original coordinates). The arrangement A′ in homogeneous coordinates

has only one vertex, the origin, which is sometimes a useful property.

The basis enumeration problem for a polyhedron or arrangement X is to

list all unique cobases of X . If X is simple, the vertex enumeration problem,

reporting each unique vertex, is equivalent to the basis enumeration problem.

If X is degenerate, the vertex enumeration problem can be also solved by basis

enumeration, though some method must be employed to filter out duplicate

vertices. Solving the vertex enumeration problem for a polyhedron converts

that polyhedron from H-representation to V-representation.

6



H
1

H
2

H
3

H
4

{2,3}

{3,4}

{1,3}

{2,4}

{1,4}

Figure 2.2: The arrows point to the cobases adjacent to {3, 4}.

The cobases of a polyhedron or hyperplane arrangement can be considered

as the nodes of an implicit graph, where two cobases B1 and B2 are adjacent

if they differ only by one element, that is, letting B = B1∩B2, B1 = B∪{p}

and B2 = B ∪ {q}; here the d − 1 hyperplanes defining B intersect in a 1-

dimensional line, an edge of the arrangement. Figure 2.2 illustrates adjacent

cobases.

One further property of hyperplanes worth noting is that, being defined by

an equation of the form a>x = b, the coefficients a1, a2, · · · , ad and con-

stant term b can be multiplied by any nonzero value k without changing the

set of points included in the hyperplane. Halfspaces may be similarly scaled,

with the added condition that the scale factor k be positive, as a negative k

would reverse the inequality, producing the complement of the original half-

space (the union of the set of points not in the halfspace with the bounding

7



hyperplane of that halfspace). To normalize the representation of halfspaces

and hyperplanes in this thesis, either b or the first non-zero coefficient ai is

scaled to equal one. This scaling aids representation of the arrangement in

homogeneous coordinates, as the coordinates of the intersections with the

x0 = 1 hyperplane may be derived without rescaling.

2.1.2 Linear Programming and the Simplex Method

A certain class of optimization problem involves finding a vertex v of a

polyhedron which maximizes a linear objective function defined by a vec-

tor c = [c1 c2 · · · cd] ∈ Rd as c(x) = c>x. The field of linear programming

has developed to solve this and related problems, with some of these re-

lated problems being defined on hyperplane arrangements. One of the oldest

and most studied approaches to linear programming, the simplex method

pioneered by Dantzig [10], is to find an initial cobasis and then repeatedly

move (or pivot) to some adjacent cobasis corresponding to a vertex v′ with

an objective value c(v′) at least as good as the objective value of the cur-

rent vertex. This process is repeated, proceeding until either a cobasis of an

optimal vertex is reached or it can be seen that no such optimal vertex exists.

The fundamental data structure of the simplex method is the simplex tableau,

T(P ,B), which re-expresses the linear inequalities defining a polyhedron P

in terms of a cobasis B. The tableau data structure is quite easily gener-

alized to represent a hyperplane arrangement A, so the discussion here will

describe tableaux for arrangements. The first step to convert an arrangement

8



to tableau form is to arbitrarily choose an “interior” side for each hyperplane

(for polyhedra, the interior side of the bounding hyperplane of each halfspace

is the side contained in the halfspace). After an interior side has been chosen

for each of the n hyperplanes, n new slack variables {xd+1, xd+2, · · · , xd+n}

are added to the existing decision variables {x1, x2, · · · , xd} which define

points in Rd. The slack variables represent the “distance” from each hy-

perplane in the arrangement to the point represented by the tableau; these

distances have different values depending on the scaling of the input, but

are always zero when the point is on the hyperplane, more positive the far-

ther on the interior side of the hyperplane the point is, and more negative

the farther on the opposite (“exterior”) side of the hyperplane the point

is. The slack variables are therefore always kept non-negative by the sim-

plex algorithm when dealing with polyhedra, though when simplex tableaux

are used to represent hyperplane arrangements the slack variables may be

either positive or negative, as points in an arrangement may be on either

side of any hyperplane in the arrangement. To add the slack variables, the

equation a>i x = bi defining each of the n hyperplanes Ai in A is rewritten

as xd+i = −bi + a>i x, defining a matrix An×d = (ai,j) (ai,j being the j-th

element of ai) and a vector b = [b1 b2 · · · bn]>. These components are com-

bined with the vector c defining the objective function in a matrix as follows,

9



defining the initial simplex tableau1:

M =

 0 c>

−b An×d


The row variables for a simplex tableau M are called basic variables, and are

stored in a vector xB initially valued [z xd+1 xd+2 · · · xd+n], where z is a

dummy variable for the objective row. The column variables are called coba-

sic variables2, and are stored in a vector xN initially valued [x0 x1 x2 · · · xd];

x0 represents the constant terms bi, as in the discussion of homogenized co-

ordinates in Section 2.1.1. With these two vectors defined, the initial system

of equations defining the arrangement A can be written as x>B = MxN .

The values of the cobasic variables of a simplex tableau are assumed to be

zero, so that the value of any basic variable (or the objective function in the

first row) can be read off from the constant term in the first column of M .

After the initial setup of the tableau is complete, the decision variables are

moved into the basis xB, with slack variables replacing them in the cobasis

xN . When this process is completed, the tableau represents a basis of the

arrangement, and the current vertex can be read off from the values of the

decision variables in the first column.

In the context of linear programming, a pivot from a cobasis B1 to another

1The objective row [0 c>], though integral to the simplex method of linear program-
ming, is largely ignored for the solution to the basis enumeration problem described in
this thesis, and c is set to a value of 1, a vector of all ones.

2Note that the cobasic variables of a simplex tableau, not the basic, correspond to a
basis of the represented polyhedron or arrangement in the usual geometric definition.

10



H
1

H
2

H
3

H
4

{2,3} {1,2}

Figure 2.3: A pivot from cobasis {1, 2} to {2, 3}.

adjacent cobasis B2 (B1 = B2 ∪ {xe}\{xl}) exchanges the entering slack

variable, xe for the leaving slack variable3, xl, traversing an edge of the

arrangement or polyhedron. This pivot is accomplished by rewriting the

equation xl = −bl + a>l xN to isolate xe (one of the elements of xN) on the

left hand side, then substituting this modified equation into each other row

of M to replace the xe terms in those equations with new xl terms.

As an example, consider the simplex tableau T(H, {1, 2}), which represents

the cobasis {1, 2} of the arrangementH pictured in Figure 2.3. The equations

3The variables are “entering” and “leaving” the linear programming basis, the com-
plement of the cobasis.

11



for T are as follows:

x1 = 1 + x3

x2 = 1 + x4

x5 = 2 + x3 + x4

x6 = 0 + x3 − x4

If x5 is chosen as leaving slack variable, and x3 is chosen as the entering slack

variable, the pivot performed will be from the cobasis {1, 2} to the adjacent

cobasis {2, 3}. To perform this pivot, the third equation is re-written with

x3 on the left hand side as x3 = −2 + x5 − x4, and this modified equation

is substituted into the remaining rows, resulting in the following tableau

equations after the pivot:

x1 = −1 + x5 − x4

x2 = 1 + x4

x5 = −2 + x5 − x4

x6 = −2 + x5 − 2x4

Many pivot rules used in the simplex method are based on the idea of the

minimum ratio test. Geometrically, this test can be thought of as leaving

one basis and sliding along an edge of a polyhedron or hyperplane arrange-

ment until the first new (bounding) hyperplane is reached, forming a new

basis. In a simplex tableau, distance from each hyperplane is represented

by its associated slack variable, and moving from one hyperplane to another

(equivalently, moving to an adjacent cobasis) is accomplished by allowing

12



one cobasic variable to become non-zero while forcing some basic variable

to zero. For a given pair xe and xl of cobasic and basic variables, the ratio

between the value bl of the leaving variable xl and the coefficient al,e of the

entering variable xe in the leaving variable’s equation determines how much

the entering variable can be increased or decreased while not changing the

sign of xl, which would move the current point across the hyperplane Al in

the arrangement. Since the cobasic variables in a simplex tableau are as-

sumed to be zero, xl = −bl + al,exe; by setting xe to r = bl/al,e, xl is then

forced to zero. In polyhedra leaving and entering variables must be chosen

such that r ≥ 0, as slack variables cannot be negative, but this restriction

does not hold for arrangements. Selecting xl such that the absolute value of

r is minimized (the “minimum ratio”) finds the nearest adjacent cobasis to

pivot to; if r = 0 (due to bl = 0), the pivot is degenerate, and represents a

move to another cobasis of the same vertex (a degenerate vertex, as it has at

least two distinct cobases).

2.2 Symmetries

2.2.1 Groups and Permutations

Mathematically, a group (G, •) is a set G of elements augmented with an

action • which is a function of two elements of G which returns a group

element; typical notation would be α • β = γ, for α, β, γ ∈ G. Often, where

the group action is clear from context, the group will be written as G and

13



the • omitted in expressions (e.g. αβ = γ). Group elements are typically

written in the opposite order to which they are applied, much like function

composition. There is no requirement that the group action be commutative

(αβ is not necessarily equal to βα), though it must be associative (∀α, β, γ ∈

G, (αβ)γ = α(βγ)). The set of elements G must also be closed under the

group action (∀α, β ∈ G,αβ ∈ G). All groups have an identity element ε

such that ∀α ∈ G,αε = α = εα; each element α ∈ G also has a unique

inverse α−1 such that αα−1 = ε = α−1α. A subgroup (H, •) of a group (G, •)

is a group consisting of a set H ⊆ G which is closed under the group action •.

It is often useful to represent a group G more compactly than by enumerating

all its elements; in this case a generating set S may be found for G. S is

a generating set for G (the elements of S are referred to as generators) if

all the elements of G may be represented as combinations of elements of

S or inverses of elements of S under the group action4. G generates itself

trivially, but smaller generating sets are possible (e.g. {1} generates (Z,+),

the integers under addition, as does {2, 3}).

The groups dealt with most extensively in this thesis are symmetry groups.

The elements of these groups are transformations such as rotations and re-

flections which may be applied to a given geometric structure while leaving

it unchanged as a whole. As an example, consider the square in R2: rotating

it about its center by any multiple of 90◦ will leave it unchanged, as will

4For a finite group (G, •), a group where G is a finite set, ∀α ∈ G∃n, αn = α−1, so
we can say more concisely that all elements of G may be represented as combinations of
elements of S. The groups dealt with in this thesis are all finite.

14



reflection about its horizontal, vertical, or diagonal axes. Furthermore, if the

vertices of the square are labelled, then it can be seen that, for instance, two

90◦ rotations combine to form a 180◦ rotation, as does a vertical reflection

followed by a horizontal reflection. The image of a vertex x under a sym-

metry α is the vertex to which x is mapped by α. In this setting, the orbit

of a given vertex v under the symmetry group (denoted OrbG(v)) is the set

of images of v under each element of the group. Orbits under a group G

are an equivalence relation, partitioning the set X they act on, as shown in

Theorem 2.2.1. For the square under its full symmetry group, the orbit of

any vertex is all vertices of the square (by 0, 90, 180 and 270◦ rotations), but

if the symmetry group containing only the identity symmetry and reflection

about the square’s vertical axis is considered, the top two vertices form one

orbit, and the bottom two another.

Theorem 2.2.1. Given a group G and a set X of objects acted on by that

group, the orbit membership relation ≡G = {(x, y) : x, y ∈ X, y ∈ OrbG(x)}

is an equivalence relation.

Proof. By definition, an equivalence relation is reflexive, symmetric, and

transitive. Any element x of X is in its own orbit by the identity element

of G (x = ε(x) ∈ OrbG(x)), therefore ≡G is reflexive. For any y ∈ OrbG(x),

y = α(x) for some α ∈ G; it follows by inverses that x = α−1(y) ∈ OrbG(y),

thus ≡G is symmetric. For any z = β(y) ∈ OrbG(y), β ∈ G, z = (βα)(x).

Since βα ∈ G by group closure, z ∈ OrbG(x), showing ≡G to be transitive

as well.

15



Another sort of group that is used in this thesis is the permutation group. A

permutation is a function which takes a list of n elements, typically rep-

resented by the numbers 1 through n, and reorders them. The typical

notation for a permutation σ is cycle notation, which lists the orbits of

the numbers under the permutation as (x1 σ(x1) σ
2(x1) · · · σ−1(x1)) · · ·

(xm σ(xm) σ2(xm) · · · σ−1(xm)), omitting those orbits with only one ele-

ment. As an example, the permutation (1 2 3)(5 6) maps 1 to 2, 2 to 3, and

3 to 1 and switches (transposes) 5 and 6, leaving 4 unmoved.

2.2.2 Automorphisms and Isometries

Many interesting hyperplane arrangements have a significant number of auto-

morphisms : geometric symmetries which leave the points in the arrangement

setwise invariant. These symmetries can also be considered as permutations

of the list of hyperplanes included in the arrangement; automorphisms of

polyhedra can be considered analogously, as either geometric transforma-

tions leaving the polyhedron setwise invariant, or permutations of the list of

halfspaces defining the polyhedron. Given a group G of some set of these

symmetries acting on a hyperplane arrangement, the problem of basis enu-

meration up to symmetries is listing exactly one cobasis from each orbit

under the action of G. The symmetries this thesis is particularly concerned

with are isometries, distance preserving symmetries.

16



2.2.3 Inner Products

Distance in Rd is defined by an inner product ; an inner product on Rd is

a map 〈·, ·〉 : Rd × Rd → R which satisfies the following conditions for all

x,y, z ∈ Rd, a ∈ R:

1. Symmetry : 〈x,y〉 = 〈y,x〉

2. Linearity : 〈ax,y〉 = a〈x,y〉 and 〈x + z,y〉 = 〈x,y〉+ 〈z,y〉

3. Positive-definiteness : 〈x,x〉 ≥ 0, 〈x,x〉 = 0 iff x = 0

Given an inner product, the norm of a vector x is defined as ‖x‖ =
√
〈x,x〉;

the norm can be thought of intuitively as the “length” of the vector, as it

is zero only for the zero vector, and positive otherwise. In this sense, the

distance d(p, q) between two points p and q is ‖p− q‖, defining a distance

metric, and the angle θ between two vectors x and y is defined by the well-

known formula cos θ = 〈x,y〉
‖x‖ ‖y‖ .

2.2.4 Gram Matrices

One property of isometric cobases is that, given some distance metric, the

multiset of angles according to that metric between each hyperplane in the

cobasis and all of the other hyperplanes in that cobasis is invariant under

the action of any isometry. To use this property, the angles between all

pairs of hyperplanes can be precomputed, and then each distinct angle can

17



be represented by a unique integer. The Gram matrix G = (gi,j) is con-

structed such that gi,j is the value corresponding to the angle between the

hyperplanes indexed i and j. Gram matrices for polyhedra can be similarly

constructed with respect to the angles between the bounding hyperplanes of

the polyhedron. A submatrix of a Gram matrix uniquely representing the

angles between pairs of hyperplanes in a given cobasis can be constructed

by selecting only the elements in the rows and columns of the Gram matrix

corresponding to the indices of the cobasic hyperplanes. If each row of this

submatrix is sorted, and then the rows of the submatrix are lexicographi-

cally sorted, the resulting submatrix represents the angles between each pair

of hyperplanes in the cobasis such that a test for matrix equality suffices to

check equality of the multisets of angles for each hyperplane in the cobasis.

Though inequality of Gram submatrices shows that the corresponding cobases

are not symmetric, equality of Gram submatrices is not sufficient to show

that the cobases are symmetric. As an example, consider the cube under the

subgroup of its full symmetry group generated by the reflections about the

cube’s vertical and horizontal axes; the cobases on the front and back faces

will be in separate orbits, and thus not symmetric, but the angles between

each pair of planes in any cobasis are all right angles, so all the multisets will

be equal.

An automorphism α of the Gram matrix G = (gi,j) of a polyhedron may

be defined by a permutation σ of the row and column indices of the matrix

as α(G) = (gσ(i),σ(j)) such that G = α(G). Such an automorphism of the

18



Gram matrix corresponds to an automorphism of the polyhedron produced

by permuting by σ the indices of the halfspaces defining the polyhedron. A

proof of this can be found in [6], but intuitively the rows and columns of the

Gram matrix correspond to the halfspaces defining the polyhedron. As the

Gram matrix encodes the angles between each pair of bounding hyperplanes,

any transformation which leaves the Gram matrix invariant will also not

change the polyhedron, because the relative positions of each of the halfspaces

have remained constant. If the Gram matrix is interpreted as the adjacency

matrix of a graph, with the elements of the matrix representing colors of the

edges, these automorphisms can also be expressed as edge-color preserving

graph automorphisms, as shown in Proposition 3.1 of [6].

One problem I encountered in generating Gram matrices for hyperplane ar-

rangements that does not arise in the polyhedral case is that any hyperplane

A = {x : a>x = b} can be replaced by its negation Ã = {x : −a>x = −b}

without changing the arrangement, a special case of the scaling described

in Section 2.1.1. However, the angle between the normal vectors of Ã and

another hyperplane B is the supplement of the angle between the normal

vectors of A and B, in general a different angle. When using the Gram

matrix to eliminate non-symmetric cobases, this problem can be solved by

simply using a unique up to supplements representation for each angle. This

approach does not work when using the Gram matrix to determine the au-

tomorphisms of the arrangement, as spurious automorphisms are generated;

essentially, these false automorphisms consider a hyperplane to be both itself

19



 1  1  0
 1  0  1
 0  1  1
 0  1 1

H
1

H
2

H
3

H
4

Figure 2.4: An example arrangement, along with its constraint matrix. The
small rays denote the interior side of each hyperplane.

and its negation simultaneously, causing the arrangement to be warped by

some angles between pairs of hyperplanes being replaced by their supple-

ments. If the arrangement is doubled such that each hyperplane is paired

with its negation, then matrix automorphisms may replace a hyperplane by

its negation by transposing the two in the permutation σ but this warping is

prevented from occurring, and correct automorphisms may be derived after

reversing the doubling process on the generated permutations. This does,

however, quadruple the size of the Gram matrix used for automorphism gen-

eration.

As an example, Figure 2.4 shows a 2-dimensional arrangement, along with its

constraint matrix. The Gram matrix for this arrangement is below, where

the integer representation for angles is the angle in degrees in the range

20



(−90, 90]: 

0 90 45 45

90 0 45 −45

45 45 0 90

45 −45 90 0


As can be seen from the figure, the only true automorphism of this arrange-

ment is (1 2), switching H1 and H2; this corresponds to a reflection across

H4, negating that hyperplane. Yet (1 2) does not correspond to an auto-

morphism of the Gram matrix, as swapping rows (resp. columns) 1 and 2 of

the Gram matrix changes the sign of the first and second values of the last

column (row) of the matrix. However, constructing a unique up to supple-

ments representation of this Gram matrix by ignoring the signs is also not a

feasible option, as that introduces (3 4) as an automorphism of the matrix,

even though (3 4) is not an automorphism of the arrangement. The doubling

process described above solves both these issues because the pairing of each

hyperplane H with its negation H̃ is effectively a unique up to supplements

representation of H which preserves information about the signs of the angles

between H and the other hyperplanes.

To generate the Gram matrix I represent a hyperplane Ai = {x : a>i x = bi}

of an arrangement A in homogeneous coordinates by the vector vi = [−bi ai].

I then construct a map from angles in the range [0, π) to the integers,

such that supplementary angles have representations that are negations of

each other; for this purpose cos θ is a good starting point, as it has the

21



desired negation property, and avoids the inverse cosine operation needed

to calculate θ from cos θ = 〈x,y〉
‖x‖ ‖y‖ . As the square root operation in

‖x‖ ‖y‖ =
√
〈x,x〉〈y,y〉 is expensive to calculate exactly, I wish to avoid

computing it as well. If all the vectors vi in the arrangement have the

same norm k then the square root operation may simply be omitted, as

k cos θ = 〈vi,vj〉 is a suitable unique representation for the angle θ between

vi and vj, while if the norms are not the same then the function

f(θ) =
〈x,y〉 · |〈x,y〉|

(‖x‖ ‖y‖)2

uniquely represents θ, but does not require evaluation of a square root to

compute. To see this, note that f(θ) = ±(cos θ)2, the square cancels out the

radical in ‖x‖ ‖y‖, and keeping the sign on the numerator by multiplying by

|〈x,y〉| rather than 〈x,y〉 distinguishes between the positive and negative

square roots of (cos θ)2.

Given rational input, applying one of the above functions for any vi and vj

generates a rational value ri,j which uniquely represents the angle between vi

and vj and which satisfies the negation condition for supplementary angles.

Since my algorithm only requires a test for equality on these angles, and

it performs that test quite frequently, I then construct a map taking each

distinct |r| so constructed to a unique nonnegative integer z(r), and store

gi,j = sgn(ri,j) · z(ri,j) in the Gram matrix.

The most obvious inner product to use is the Euclidean inner product

22



〈x,y〉 =
∑d

i=1 xiyi, though it is not the only inner product which may be

used; one inner product that has functioned well on related problems [6]

is based on a transformation defined as gi,j = v>i Q
−1vj, where the matrix

Q for an arrangement A is defined as Q =
∑n

i=1 viv
>
i . For a polyhedron

P , any automorphism α of G = (gi,j) corresponds to a permutation σ of

the halfspaces of P , where σ is an automorphism of P . A rigorous proof

is provided in Proposition 3.1 of [6], but essentially the multiplication by

Q−1 maps each vector vi of the polytope to an equivalent wi = Rvi, where

RR = Q−1. This is well-defined because Q, being the sum of outer products

of the rows of a full-rank matrix, is positive definite, and thus has a posi-

tive definite inverse with a unique square root R. The wi are normalized

to the Euclidean norm, as they have the same inner product k = 〈wi,wi〉,

as shown in [6]. We saw earlier that this property eliminates the need to

normalize the wi, as k cos θ = 〈wi,wj〉 is a suitable unique representation

for θ, and thus 〈wi,wj〉 can be used to find automorphisms. For hyperplane

arrangements the doubling process discussed above can be applied to G to

yield valid automorphisms.

2.2.5 Fundamental Domain

A fundamental domain F of an isometry group G is a convex region which

contains one representative point from each orbit of points in Rd under the

action of G; for points in the interior of F there will be exactly one represen-

tative, though there may be more representatives of points on the boundary.

23



A vertex enumeration of a polytope or arrangement X to the vertices con-

tained in a fundamental domain F will result in a vertex enumeration up to

symmetries of X , assuming F is constructed so that no vertices of X fall on

the boundaries of the fundamental domain.

A fundamental domain for a group G can be constructed iteratively by start-

ing with the whole of Rd, choosing a generic point x (a point that is not

its own image under any element of G but the identity element), and tak-

ing the intersection of the generated fundamental domain with the halfspace

containing x whose bounding hyperplane is the normal bisector of the line

segment xy between x and each element y 6= x of OrbG(x). This structure

is shown to be a fundamental domain by Theorem 2.2.2, below.

Lemma 2.2.1. Given a point x and a polyhedron P such that P contains x

and the bounding hyperplane arrangment of P is the set of normal bisectors

of xy for each y ∈ Y ⊂ Rd,x /∈ Y , a point z is in the interior of P if and

only if z is closer to x than to any point in Y .

Proof. The normal bisector B of a line segment xy can also be expressed as

the set of points equidistant from x and y (B = {b : d(x, b) = d(y, b)}); by

this definition any point on the side of B containing x is closer to x then y.

Therefore, any point z in int(P) is closer to x than it is to any point y ∈ Y

(d(x, z) < d(y, z)). The converse is true as well; that is, if a point z is closer

to x than to any point in Y , than it must be in int(P), as it must be on the

side containing x of each of the bounding hyperplanes of P .

24



Theorem 2.2.2. Given a point x and an isometry group G, and construct-

ing a polyhedron F containing x with a bounding hyperplane arrangement

consisting of the normal bisectors of the line segments xy for all y 6= x ∈

OrbG(x), F is a fundamental domain.

Proof. Take any point u in Rd, and consider the pairs of points {(u′,x′) :

u′ ∈ OrbG(u),x′ ∈ OrbG(x)}; let (u∗,x∗) be a pair with minimal dis-

tance between them, where s = d(u∗,x∗). There exists an isometry α which

transforms x∗ to x, by definition of orbit. Applying α to u∗ yields a point

u† ∈ OrbG(u) which is distance s from x, as isometries preserve distances.

Since s is the shortest distance between a member of OrbG(x) and OrbG(u),

u† is at least as close to x than to any other point in OrbG(x). If u† is

strictly closer to x than every other point in OrbG(x) then it is in the inte-

rior of F by Lemma 2.2.1, but no other member u‡ = β(u†) of OrbG(u) is in

int(F), as u‡ is distance s from x‡ = β(x), a shorter distance than d(x,u‡)

by the distance preserving property of isometries, so u‡ is not in int(F) by

Lemma 2.2.1. In the other case, where u† is equidistant between x and some

other x† ∈ OrbG(x) then u† is on the bisector of xx†, part of the bounding

hyperplane arrangement of F by construction; as there is no requirement for

points on the boundary of a fundamental domain to be uniquely represented,

it suffices to show that u† ∈ F , as done here. Finally, F is convex because

it is a polyhedron.

25



Chapter 3

Algorithms

3.1 Pivoting Search Algorithm

The essential idea of the algorithm presented here for basis enumeration up

to symmetries is to recursively explore the hyperplane arrangement outward

from an initial cobasis to its adjacent cobases, pruning this search tree when

a cobasis symmetric to one already found is reached; the algorithm will be

discussed in more detail below. For proof that this algorithm will report

representatives from each orbit of cobases, so long as the adjacency graph of

those cobases is connected, see Theorem 3.1.1.

Lemma 3.1.1. Given an automorphism group G of a hyperplane arrang-

ment A, the set S of cobases adjacent to a cobasis B of A on the adjacency

graph of cobases of A is equivalent up to symmetries to the set of cobases

adjacent to any cobasis B′ ∈ OrbG(B)

26



Proof. Consider some cobasis C adjacent to B; let b be the vertex corre-

sponding to B and c be the vertex corresponding to C. The d − 1 hyper-

planes in B ∩ C meet on the edge bc of the arrangement. Since all α in

G are automorphisms, they preserve hyperplane incidence, so that for each

hyperplane H incident to a point v, α(H) will be incident to α(v). There-

fore, all hyperplanes in B′ = α(B) are incident to vertex b′ = α(b) and

all hyperplanes in C′ = α(C) are incident to c′ = α(c), so all the hyper-

planes in B′ ∩C′ also meet in an edge b′c′ of the arrangement, and B′ and

C′ are therefore adjacent. This shows that the adjacency structure of the

graph of cobases is preserved under the automorphism group, and thus the

set S ′ = {α(C) : C ∈ S} is equivalent to S up to symmetries.

Theorem 3.1.1. Given an initial cobasis B of a hyperplane arrangement A

with a connected adjacency graph of cobases, if all neighbours of B are visited

and this visitation is repeated recursively for one previously visited member of

each orbit of cobases under some automorphism group G of A, then at least

one member of each of the orbits of cobases of A under G will be visited.

Proof. Assume no cobasis in some orbit X is visited. This implies that none

of the cobases adjacent to cobases in X were chosen as representatives of

their orbits to recurse from, since a representative of X would have been

found adjacent to the chosen cobasis. However, this implies by Lemma 3.1.1

that for any orbit Y containing a cobasis adjacent to a member of X, no

representative of Y has been visited, as any such representative R would be

adjacent to a cobasis M ∈ X by symmetry and M would have been visited

27



from R. Applying this inductively, if the graph of cobases is connected then

no representative of any orbit has been visited. However, it is given that

an initial cobasis B (which is an orbit representative) has been visited, a

contradiction, therefore some cobasis in every orbit must have been visited.

Algorithm 1 Basis orbit enumeration algorithm

function SymmetricBasisSearch(void)
B← InitialCobasis() . find a cobasis of the arrangement
S ← a stack of cobases, initially empty
Report(B)
PushCobasis(S,B)
repeat . explore outward from this cobasis

B← PopCobasis(S)
for all Bi ∈ Adjacent(B) do . search adjacent cobases

if InNewOrbit(Bi) then
Report(Bi)
PushCobasis(S,Bi)

end if
end for

until Empty(S)
end function

Having shown that representatives of each orbit will be discovered by this

basis enumeration method, Algorithm 1 describes it in more detail. In the

listing the subroutine InitialCobasis() returns an arbitrary cobasis of the

arrangment; Adjacent(B) returns a list of all cobases Bi which are adja-

cent to a cobasis B. InNewOrbit(B) tests whether a cobasis B is in an

orbit already discovered, while Report(B) is used to output a newly dis-

covered cobasis B as well as adding B to the list of orbit representatives

28



InNewOrbit(B′) requires to work. The subroutines PushCobasis(S,B)

and PopCobasis(S), which push and pop a cobasis to or from a stack S,

updating internal structures to be consistent with that cobasis, complete the

high level description of the algorithm.

To asymptotically analyze this algorithm, let n be the number of hyper-

planes in the arrangement, d be the dimension of the underlying space, and

k be the number of basis orbits. The outer loop of Algorithm 1 will be re-

peated k times. For each of the d elements of these k representative cobases,

Adjacent may find up to (n− d) adjacent cobases, one for every other hy-

perplane in the arrangement, while for simple arrangements, only 2 adjacent

cobases may be found for each of the d elements, as there are no degenerate

pivots. For each of these adjacent cobases, InNewOrbit must check if it

is in the same orbit as any of the O(k) previously discovered orbit repre-

sentatives; as the complexity of the group theoretic calculations is outside

the scope of this thesis, I will consider this check to be a call to an ora-

cle that takes time S(n, d). Combining these results, this algorithm has a

runtime in O(k2dnS(n, d)); for simple arrangements this can be improved

to O(k2dS(n, d)). To express these results in terms of input size only, note

that there can be no more than
(
n
d

)
cobases of an arrangement; this is O(nd).

Since each of these cobases is an orbit representative under the trivial auto-

morphism group containing only the identity transformation, k ∈ O(nd), and

the previous results can be re-expressed as O(n2d+1dS(n, d)) for the general

case, and O(n2ddS(n, d)) for simple arrangements. Fortunately, the results

29



in Chapter 4 show practical performance well below these uninspiring worst-

case bounds.

Practical pivoting algorithms for vertex enumeration use some form of per-

turbation or equivalent pivot rule (e.g. [3]) to reduce the number of bases

reported per vertex. In this thesis the goal is to find all orbits of bases,

so standard symbolic perturbation schemes that ignore the symmetry group

are unlikely to work well. In [6] Bremner et al. describe an explicit orbitwise

perturbation scheme that preserves the orbits of bases of the original input,

possibly shattered into several orbits. Since this can be implemented as a

preprocessor, it is not discussed here; some of the experimental data (the

E7-j examples) in Table 4.1 is of this preprocessed type.

All the required subroutines for Algorithm 1 can be defined to act on a

simplex tableau. Most of these subroutines have been known since Dantzig’s

original formulation of the simplex algorithm, and can be found in most linear

programming textbooks, though some simple modifications may be needed to

convert processes intended for use on polyhedra to work with arrangements.

For PushCobasis(S,B) and PopCobasis(S), my implementation keeps

an internal stack of pivots performed, reversing those pivots as necessary to

return to an earlier cobasis.

The reverse search algorithm of Avis and Fukuda [4] which this approach is

based on differs in that it does not keep an internal stack of pivots. Instead,

the reverse search algorithm applies an objective function to the vertices of

the arrangement, as in the simplex method, and evaluates a pivoting rule such

30



as the minimum ratio test at each cobasis to determine a “parent” cobasis

on the path from the optimal cobasis, which the reverse search algorithm is

started at1. Where my algorithm would pivot up its stored stack of cobases,

reverse search pivots to this parent cobasis, and where my algorithm would

move to a sibling of its current cobasis, reverse search pivots to the parent, re-

calculates the parent cobasis’ children, and pivots to the next cobasis on that

list. The advantage of the approach taken by the reverse search algorithm

is that it requires only a constant amount of memory, but this advantage

is offset by the extra computational burden of repeatedly recalculating the

parent and sibling cobases. Furthermore, the traversal order used by reverse

search is not compatible with the pruning process described above, as Theo-

rem 3.1.1 depends on all neighbours of a reported cobasis being visited from

there, while reverse search visits only the neighbours that are children of the

reported cobasis according to the pivoting rule.

My implementation of Adjacent(B), detailed in Algorithm 2, is based on

the minimum ratio test. The pivoting rule included tries all the variables

xj in the cobasis B as entering variables, attempting to find valid leaving

variables for each. Given an entering variable xe, this method reports all the

basic variables that are already zero as possible leaving variables as these

represent degenerate pivots, in addition to all the basic variables xi which

have a ratio bi/ai,e which has minimal absolute value in either the positive

1If there is more than one optimal cobasis, the reverse search algorithm is repeated by
choosing each in turn as the initial cobasis.

31



or negative direction. Taking both positive and negative ratios ensures that

new adjacent cobases are found on either side of the hyperplane corresponding

to xe.

Algorithm 2 Adjacent Cobasis Algorithm

function Adjacent(B)
S ← a set of cobases, initially empty . try all entering indices
for all e ∈ B do

. track positive, negative, and zero pivots
P,N,Z ← sets of cobases, initially empty
rP ←∞, rN ← −∞
for all l /∈ B, al,e 6= 0 do . try all leaving indices

r ← bl/al,e . check minimum ratio
B′ ← B ∪ {l}\{e}
if r = 0 then

Z ← Z ∪ {B′}
else if 0 < r < rP then

P ← {B′}
rP ← bl/al,e

else if r = rP then
P ← P ∪ {B′}

else if rN < r < 0 then
N ← {B′}
rN ← bl/al,e

else if r = rN then
N ← N ∪ {B′}

end if
end for
S ← S ∪ P ∪N ∪ Z

end for
return S

end function

For the InNewOrbit(B) method, the algorithm must determine whether

or not B is in an orbit that has already been discovered or not. The simplest

32



way to do this is to check if B is in the same orbit as each of the known

orbit representatives individually. However, the group theoretic calculations

to perform this check are computationally expensive, so it is best to avoid

performing them where possible. Toward this end, the Basil software dis-

cussed in this thesis can utilize various invariant checks to swiftly rule out

orbit representatives that cannot possibly be symmetric. The simplest such

invariant is to check that the vertices represented by B and the orbit rep-

resentative to check have the same number of incident hyperplanes, as no

symmetric cobasis will have a different hyperplane incidence. A related but

more powerful invariant is that the sets of angles between the hyperplanes

meeting in a given cobasis will remain the same under isometries; Basil rep-

resents these sets of angles by the Gram submatrix described in Chapter 2,

storing the discovered orbit representatives in a hash table indexed by Gram

submatrix. This optimization allows Basil to only compare orbit represen-

tatives that have similar local structure, rather than the entire set of orbit

representatives. Basil also provides an option to construct a subset of the

constraints of the fundamental domain, and only investigate cobases which

correspond to a vertex satisfying these constraints.

3.2 Parallel Variant

As this algorithm is essentially a depth-first search across the adjacency graph

of cobases, and both traversal of an edge of this graph and determining the

33



neighbours of a given cobasis are quite computationally expensive, a natural

way to attempt to speed up the process is to have multiple threads searching

different parts of the graph simultaneously. I chose a shared memory model

for parallelism over a message passing model since the threads needed to

share a relatively large amount of information regarding the cobases and

vertices they had already found to prevent duplication of work, and must

share a significant amount of internal state to share work with each other,

namely the stack of pivots performed to reach their current basis. Using a

shared memory model with one thread per physical processor core also has

the benefit of lowering synchronization overhead by enforcing a fixed small

number of cooperating threads.

Having chosen a shared memory model of parallelism with one thread per

processor core, two modifications needed to be made to Algorithm 1. Firstly,

the algorithm required a method to divide work among threads, discussed

in Section 3.2.1; desirable qualities for this method include high processor

utilization, limited duplication of work, and low synchronization overhead.

Secondly, the threads needed a way to share results among themselves with

minimal overhead, discussed in Section 3.2.2; this required careful construc-

tion of critical sections to synchronize access to global data structures without

unnecessarily blocking other work.

34



3.2.1 Assigning Cobases to Threads

The simplest way to solve the problem of splitting work between threads

would be to simply modify the PushCobasis(S,B) and PopCobasis(S)

methods from Algorithm 1 to store the path of pivots used to reach the basis

B of the stack S as well, synchronize access to S between threads, and have

all threads perform the outer loop in parallel. This approach is functional,

but has some disadvantages, as I explain next, namely that it squanders

the advantage in minimizing costly pivot operations between cobases that is

conferred by depth first search and requires an unnecessarily high amount of

synchronization between threads.

In a single-threaded depth first search, often only one or two pivots are

needed to move from the current cobasis to the next one; one if the next

cobasis is a child of the current cobasis, two if it is a sibling. In multi-

threaded depth-first search, the next cobasis may have been placed on the

stack by a different thread in a more distant part of the graph, requiring a

greater number of pivots to reach. Furthermore, having all the threads work

directly off a common stack will tend to cluster their current cobases in a

relatively small portion of the graph, leading to significant duplicated work

as multiple threads find the same cobasis from different edges frequently,

though the fact that the adjacency graph of cobasis orbits is often much

smaller than the adjacency graph of cobases reduces the negative effect of

such clustering.

To mitigate the factors discussed above, I have chosen to give each thread t

35



Algorithm 3 Load-balancing algorithm

function GetCobasis(S, St, nWaiting, waitingt, B)
if Empty(St) then . Get cobasis from global stack

begin critical section
if Empty(S) then

if waitingt = false then
waitingt ← true
nWaiting ← nWaiting + 1

end if
else

B← PopCobasis(S)
if waitingt = true then

waitingt ← false
nWaiting ← nWaiting − 1

end if
end if

end critical section
else . Get cobasis from local stack

B← PopCobasis(St)
if Empty(St) = false then

begin critical section
if nWaiting > 0 then . Unload local stack to global

S ← Tail(St)
St ← Head(St)

end if
end critical section

end if
end if

end function

36



its own local work stack St. Threads always push new cobases to St, instead

of the global stack S, and so long as there are cobases left to explore in St,

the thread t pops new cobases from St rather than the global stack S. If some

thread has no work (i.e. St is empty), a thread with extra work will donate

some cobases to the global stack for redistribution; I have chosen to move

all but one of the cobases in St to S in this case, but other approaches could

be taken. Threads with no cobases to explore poll the global stack S until

they can pop a new cobasis from it and restart their search; the algorithm

terminates when no thread has any cobases left to explore. Algorithm 3

explains the management of the local and global stacks in more detail, while

Algorithm 4 shows the modifications which must be made to Algorithm 1 to

incorporate these changes.

This approach to work distribution is quite similar to the parallel depth-

first search for shared memory architectures proposed by Rao and Kumar

in [17, 13], with the difference that their approach involves a rotating “donor”

thread, while my approach uses the global work stack for this purpose. This

approach also bears similarities to the dynamic load balancing implementa-

tion employed by Brüngger et al. [8] in ZRAM, their framework for parallel

search algorithms, though ZRAM is based on a message passing architecture,

and thus cannot use a global work stack. Instead of a global work stack,

threads in ZRAM that exhaust their local work stack request new work units

from a randomly chosen peer. If this peer lacks work to share, the work

request is passed on to a third peer thread, chosen in a round-robin fashion.

37



Algorithm 4 Parallel basis orbit enumeration algorithm

function ParallelBasisSearch(void)
nThreads← the number of threads
nWaiting ← 0
B← InitialCobasis()
S ← a stack of cobases, initially empty
Report(B) . Start at initial cobasis
PushCobasis(S,B)
begin parallel block

St ← a stack of cobases, initially empty
waitingt ← false
repeat

GetCobasis(S, St, nWaiting, waitingt,B)
if waitingt = true then continue . Skip iteration if no work
for all Bi ∈ Adjacent(B) do . Search adjacent cobases

if InNewOrbit(Bi) then
Report(Bi)
PushCobasis(St,Bi)

end if
end for

until nWaiting = nThreads
end parallel block

end function

38



Weibel [24] has presented another similar scheme for parallelizing a reverse-

search based algorithm, but his message passing based architecture includes

a complex protocol to assign a “boss” thread to provide work and propagate

knowledge of the current boss thread to the other threads, as opposed to the

the simpler global work stack for the shared memory system described here.

3.2.2 Sharing Results

InNewOrbit(B) requires knowledge of all the basis orbits already discov-

ered to determine if the cobasis B is in fact in a new orbit. However, the

group theoretic calculations to check the symmetry of B with the existing

orbit representatives are very expensive, dominating the runtime of the al-

gorithm in my experiments, so it is infeasible to block the other threads

from reporting new orbit representatives while one thread tests a new basis.

However, if other threads are allowed to report new orbit representatives,

InNewOrbit(B) must be adjusted to account for these new representatives

as they are seen.

The approach I took to solve this problem was to have each thread keep a

local copy L of the global list G of basis orbit representatives, and lazily

update L from G as needed. Algorithm 5 shows how the body of the inner

loop of Algorithm 1 is rewritten to check if a basis Bi is new, and report it

if so. In this description InNewOrbit(B, L) is a boolean function which

checks if B is in a new orbit with respect to the orbit representatives in L,

After(L, i) returns a list containing the elements of L with index at least

39



i, L being zero-indexed, and AddAll(L,C) adds all the elements of a list

C into a list L.

Algorithm 5 Parallel algorithm to find and report new cobases

isNew = InNewOrbit(Bi, L) . check the local list
while isNew do

begin critical section . check if the local list up to date
if Size(L) = Size(G) then

Append Bi to G
Report(Bi)
C ← an empty list

else
C ← After(G,Size(L))

end if
end critical section
if Empty(C) then return
else . update local list

isNew = InNewOrbit(Bi, C)
AddAll(L,C)

end if
end while

40



Chapter 4

Implementation and Results

4.1 Implementation

In order to achieve good performance, Algorithm 1 needs an efficient pivot

implementation. Previous experiments by Avis [3] suggest a significant ad-

vantage for the integer pivoting method of Edmonds [11]. The program de-

scribed in this thesis, Basil, was built using David Avis’ lrslib [2], which

uses Edmonds’ integer pivoting.

The design of Basil is quite closely based on the Symbal software of Bremner

et al. [6], which performs basis enumeration up to symmetries on polyhedra.

However, where Symbal is implemented in the GAP [23] computer algebra

system with calls to C libraries wrapping lrslib for simplex operations and

McKay’s Nauty [14] for graph automorphism calculations, Basil has been

re-implemented in C++, using Rehn’s permlib [18] library to replace both

41



the group theoretic capabilities of GAP used by Symbal and the automorphism

code in Nauty with matrix automorphism routines. Basil, like Symbal, uses

lrslib for its simplex tableau implementation.

4.2 Test Data and Results

4.2.1 Comparison with Symbal

As Basil is designed as an extension of Symbal, it is also capable of per-

forming basis enumeration of polyhedra up to symmetries. Though this

functionality is not the focus of this thesis, the experimental results shown

in Table 4.1 compare the relative performance of Basil and Symbal for basis

enumeration up to symmetries on a set of polyhedra. The Ey instances dis-

cussed are the Dirchlet-Voronoi-cells (DV-cells) of the root lattices Ey, while

the Dx instances are the DV-cells of the root lattices Dx, as described in sec-

tion 7.2 of [6]; the E7-j instances are E7, perturbed as described in section

7.2.3 of [6]. These polyhedra come from group theory, and have been studied

by Schürmann [20] in the contexts of sphere packing and the Kepler con-

jecture; they are also used as test data for Symbal, and are available in the

source distributions of both Symbal and Basil. As can be seen from these

results, Basil is generally about two orders of magnitude faster than Symbal,

attributable to the lower overhead of C++ execution than the GAP interpreter

and the more sophisticated data structures available in C++ compared to

GAP. These numbers represent only the CPU time of both programs; this

42



Table 4.1: Comparison of Basil & Symbal (bases & vertices count orbits)

time(s)
Problem n:d |G| bases:vertices Basil Symbal
E7 126:8 2903040 32:2 1.82 282.16
E7-3 126:8 336 82:58 0.59 12.41
E7-7 126:8 720 1195:106 19.88 1507.72
E7-65 126:8 23040 356:14 7.88 1308.07
E7-102 126:8 103680 41:7 1.27 223.97
E8 240:8 696729600 2:2 0.41 2.13

is a fairly accurate representation of Basil’s runtime, but underestimates

Symbal’s by about half due to overhead from the interprocess communica-

tion needed by GAP to interact with the external C libraries used.

4.2.2 Test Data

Table 4.2 provides some information about the named problem instances

which results are discussed for here, including the number n of hyperplanes

in the arrangement, dimension d of the underlying space, order |G| of the

symmetry group, and the number of basis and vertex orbits of the problem

instance, as calculated by Basil. The column labelled “TRD” is a measure

of problem size I have called “total representative degree”, the sum of the

degree (number of adjacent bases) of one representative basis from each orbit;

this value is well defined, as each orbit representative will have the same

number of neighbours by symmetry. The TRD value for these problems is also

calculated by Basil. In this table, Problems DxA and EyA are the bounding

hyperplane arrangements for the DV-cells of the root lattices Dx and Ey

43



Table 4.2: Test Data (bases & vertices count orbits)

Problem n:d |G| bases:vertices TRD
D4A 24:4 1152 12:7 206
D5A 40:5 3840 104:25 3296
C5-6-3a 16:5 120 51:16 926
C5-6-3b 25:5 120 291:36 7890
C6-6-3a 36:6 720 1394:91 74057
C6-6-3b 50:6 1440 5342:157 302294
C7-6-3a 48:7 2304 18720:140 1508673
C7-6-3b 50:7 1440 41735:1 8568000
E7A 126:8 2903040 12399:227 1213622

discussed above in the description of the Symbal test data, while the Cx-y-z

instances are generated by choosing z vertices of the x-cube and acting on

them with a subgroup of the hyperoctohedral group (the full automorphism

group of the x-cube) with at least y orbits. The construction method for the

Cx-y-z instances was employed because it was able to generate arrangements

with a wide variety of distinct structures that still had a significant number

of automorphisms; the Cx-y-z instances discussed here are included in the

Basil source distribution, along with a script to generate such instances.

All timing results reported in this thesis are from the Fundy and Placentia

ACEnet clusters [1], which have 2.6–3.2 GHz AMD Opteron processors.

4.2.3 Results and Analysis

Table 4.3 shows some performance results for Basil on the above mentioned

problem instances. Basil was run 9 times for each of these instances and the

median time reported. The maximum time for each instance was less than

44



Table 4.3: Basil Timing Results (bases count orbits)

Problem n:d bases time(s)
D4A 24:4 12 0.02
D5A 40:5 104 0.49
C5-6-3a 16:5 51 0.06
C5-6-3b 25:5 291 0.69
C6-6-3a 36:6 1394 11.38
C6-6-3b 50:6 5342 63.08
C7-6-3a 48:7 18720 456.59
C7-6-3b 50:7 41735 4262.75
E7A 126:8 12399 1603.56

Table 4.4: Non-Symmetric Timing Results (all bases & vertices counted,
slowdown is factor relative to symmetric calculations)

Problem n:d bases:vertices time(s) slowdown
D4A 24:4 5028:863 24.30 1620.0
C5-6-3a 16:5 3005:234 4.39 79.8
C5-6-3b 25:5 24444:852 123.27 179.4

7.3% higher, and the minimum time no more than 1.9% lower, so this is a

fair representation of Basil’s runtime.

Table 4.4 shows the benefits of considering symmetries for basis enumeration;

the values in this table are the results of using Basil to enumerate all the

cobases of the given test cases. The test cases used for this example are all

very small, since, due to the large increase in runtime incurred by ignoring

symmetries, none of the larger table instances completed in the five hours

allotted. The timing results shown here are also medians of 9 runs, with the

maximum time being no more than 17.2% higher.

To perform a more rigorous analysis of the parameters which affect the Basil

45



runtime, I generated 100 C6-6-3 instances and 100 C7-6-3 instances and

ran them with a 5 hour runtime limit and a 2GB virtual memory limit on

the Fundy cluster, as earlier testing proved C6-6-3 and C7-6-3 to be good

parameter values for generating many distinct problem instances and 5 hours

and 2GB virtual memory reasonable limits on the resources needed to solve

such instances. 165 of these 200 problem instances ran to completion in more

than the resolution of the system timer, but less than the 5 hour cap; these

runs are discussed in the analysis below.

To analyze these timing results, I attempted to fit a curve for runtime t in

milliseconds in terms of n×d, the size of the input matrix; |G|, the order of the

symmetry group; the number of basis orbits b; and the total representative

degree (TRD) of the problem. While n×d and |G| may be swiftly calculated

from the problem input, the number of basis orbits and the TRD are part

of the output of Basil, and cannot be known before running the program.

Since the total number of orbits of cobases may in general be exponential in

the input size, the typical algorithm analysis approach of measuring runtime

in terms of input size is not very useful here. A reasonable approach instead

is to use the output size to measure the difficulty of a given problem instance.

Since TRD is closely correlated with the number of basis orbits, I attempted

to fit curves depending on TRD separately from curves depending on the

number of basis orbits.

Attempts to fit a linear curve to this data showed variance increasing with

problem size, violating the assumption of the regression model that the vari-

46



ance be roughly constant. To fix this issue I employed a Box-Cox transforma-

tion [5] to normalize the time data - this transformation fits a linear curve to

tλ for some λ rather than fitting to t. This transformation resulted in a much

more consistent variance across the range of runtimes in the sample, though

at the cost of a direct fit for runtime. As the runtimes in this sample varied

over four orders of magnitude, the λ values fit by the Box-Cox regression

are necessarily very small to collapse the variances of the data points down

to a constant range, so the fits produced are not useful for approximating

the asymptotic properties of the problem, as they have extremely small (or

large) constant factors when expressed in terms of t rather than tλ.

t0.176 = 0.494 + 3.14× 10−5b+ 43.9
1

|G|
+ 0.0219(n× d) (4.1)

t0.160 = 0.736 + 2.35× 10−7TRD + 36.8
1

|G|
+ 0.0175(n× d) (4.2)

t0.0694 = 1.04 + 7.83
1

|G|
+ 0.00386(n× d) (4.3)

Equation 4.1 fits the input parameters and the number of basis orbits under

the Box-Cox transformation with correlation coefficient R2 of 85.9%, while

Equation 4.2 fits TRD similarly (R2 = 84.0%); Equation 4.3 fits the data

in terms of only the input parameters, but it has a much lower correlation

coefficient (R2 = 76.1%). All parameter coefficients of each of these curves are

significant with 99.9% probability, thus each of the parameters is statistically

significant. These fits demonstrate that larger symmetry groups decrease the

47



basis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbits

cp
u

 t
im

e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)

500005000050000500005000050000500005000050000 1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵ 150000150000150000150000150000150000150000150000150000 2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵ 250000250000250000250000250000250000250000250000250000
000000000

500050005000500050005000500050005000

100001000010000100001000010000100001000010000

150001500015000150001500015000150001500015000

0.002111x^1.2640.002111x^1.2640.002111x^1.2640.002111x^1.2640.002111x^1.2640.002111x^1.2640.002111x^1.2640.002111x^1.2640.002111x^1.264

Figure 4.1: Time for Cd-6-3 instances by # basis orbits.

runtime (the curves were fit to 1
|G| to get positive coefficients), while larger

input matrices, more basis orbits, and higher TRD all increase runtime. This

is reasonable, as larger input matrices should lead to larger problems, and

the number of basis orbits and the TRD are both measures of problem size

from the output, so one would expect that all of these factors would increase

runtime. On the other hand, a larger symmetry group will have larger orbits

of cobases, and therefore fewer orbits with the same number of cobases, so

the runtime is likely to decrease with a larger symmetry group.

Given the effectiveness of the Box-Cox power transformation for normalizing

the runtime values to get a linear fit, I attempted to fit power functions of

basis orbits and TRD to runtime as well. I was not able to achieve a sta-

48



total representative degreetotal representative degreetotal representative degreetotal representative degreetotal representative degreetotal representative degreetotal representative degreetotal representative degreetotal representative degree

cp
u

 t
im

e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)

5×10⁶5×10⁶5×10⁶5×10⁶5×10⁶5×10⁶5×10⁶5×10⁶5×10⁶ 1×10⁷1×10⁷1×10⁷1×10⁷1×10⁷1×10⁷1×10⁷1×10⁷1×10⁷ 1.5×10⁷1.5×10⁷1.5×10⁷1.5×10⁷1.5×10⁷1.5×10⁷1.5×10⁷1.5×10⁷1.5×10⁷ 2×10⁷2×10⁷2×10⁷2×10⁷2×10⁷2×10⁷2×10⁷2×10⁷2×10⁷ 2.5×10⁷2.5×10⁷2.5×10⁷2.5×10⁷2.5×10⁷2.5×10⁷2.5×10⁷2.5×10⁷2.5×10⁷
000000000

500050005000500050005000500050005000

100001000010000100001000010000100001000010000

150001500015000150001500015000150001500015000

4.877e-05x^1.1514.877e-05x^1.1514.877e-05x^1.1514.877e-05x^1.1514.877e-05x^1.1514.877e-05x^1.1514.877e-05x^1.1514.877e-05x^1.1514.877e-05x^1.151

Figure 4.2: Time for Cd-6-3 instances by total representative degree.

tistically valid fit, as the variances again increased with runtime, but for the

range of times tested (10 milliseconds to 5 hours), the curves fit reasonably

well, seeming to approximate the average runtime, and thus should provide

some indication of the real-world performance of Basil. Figure 4.1 shows a

super-linear but sub-quadratic fit in the number of basis orbits, consistent

with a depth-first traversal of a moderately dense connected graph. Fig-

ure 4.2 provides some support to this hypothesis with a near-linear fit in the

total representative degree, which is the number of graph nodes visited in

the traversal.

49



4.2.4 Optimizations

4.2.4.1 Memory-less Reverse Search

As discussed in Chapter 3, the pivoting approach implemented in Basil

and Symbal differs from the reverse search algorithm proposed by Avis and

Fukuda [4] for the non-symmetric vertex enumeration problem in that the

reverse search algorithm does not maintain state describing cobases already

found or the path from the initial cobasis to the cobasis currently under

consideration. That approach has the benefit of requiring a relatively small

constant amount of memory, but also requires more simplex computations,

increasing running time. Because it is unclear how to prune cobases symmet-

ric to those already seen from the search without storing the cobases already

seen, I have not yet investigated a memory-less reverse search for this prob-

lem. However, there are usually few orbits of cobases relative to the total

number of cobases, allowing Basil to keep representatives of each in a feasible

amount of memory. Additionally, the limiting factor on the size of instances

Basil can currently solve is the computational expense of the group theoretic

calculations required to check symmetry (encapsulated in InNewOrbit in

Algorithm 1), which dominate the running time of Basil to a significant de-

gree. Profiling results show that tests for orbit membership take about 60%

of the runtime of Basil, while the only other individual operation which

significantly contributes to runtime is simplex pivoting, contributing about

20% of the execution time.

50



4.2.4.2 Simple Invariants

Because the group theoretic computations involved in checking if two cobases

are in the same orbit under the group action are so expensive, Basil utilizes

some cheaper invariants of symmetric cobases to reduce the number of re-

quired symmetry tests. The simplest of these invariants is to check that the

number of hyperplanes incident to the vertices defined by the two cobases is

the same, as an automorphism of the hyperplane arrangement preserves the

number of hyperplanes which meet at any given vertex. Basil also keeps a

cache of the thousand most recently seen cobases to avoid the need to re-

test previous cobases such as the cobasis that was pivoted from to reach the

current cobasis or near neighbours of the current cobasis.

4.2.4.3 Gram Submatrix

Additionally, Basil uses the Gram submatrix to differentiate cobases; rep-

resentatives of known cobasis orbits are stored in a hash table indexed by

the Gram submatrix corresponding to each cobasis. Comparing each newly

discovered cobasis only to the cobases having Gram submatrices which are

equivalent under the sorting procedure described in Chapter 2 greatly reduces

the number of expensive group theoretic tests which must be performed. If

the Gram submatrix invariant is turned off in Basil, execution time on a

given instance increases dramatically, particularly for larger instances, while

when activated the Gram matrix computations consume only about 5% of

the execution time of Basil. The speedup numbers in Figure 4.3 compare

51



D4A

D5A

C5-6-3a

C5-6-3b

C6-6-3a

C6-6-3b

1 5 25 125 625

speedup

1.33x (0.02 s)

3.31x (1.63 s)

2.73x (0.15 s)

7.18x (4.93 s)

47.5x (540.04 s)

151x (9549.86 s)

Figure 4.3: Speedup from using Gram matrix, log-scaled to fit all data
(bar labels are speedup and runtime without Gram matrix)

the median of 9 runs without the Gram matrix optimization to the runtimes

with the optimization reported in Table 4.3; the omitted instances did not

complete within a 5 hour limit without the Gram matrix optimization.

4.2.4.4 Fundamental Domain

I also investigated use of constraints from the fundamental domain to prune

the search space of the search algorithm. As generating the entire funda-

mental domain is computationally expensive, the approach taken in this

experiment was to compute a polyhedron which is a superset of the full

fundamental domain, comprising only some subset of the constraints of the

full fundamental domain described in Theorem 2.2.2. This polyhedron is

constructed as follows: take the initial cobasis of the arrangement, transform

it by each of the generators of the automorphism group, and then find the

52



vertices corresponding to these transformed cobases. For each unique vertex

v so constructed which is distinct from the initial vertex s, generate a con-

straint halfspace which contains s but not v; the bounding hyperplane of this

halfspace bisects the line segment sv as in Lemma 2.2.1. This method gen-

erated relatively few of the constraints of the complete fundamental domain,

as the initial vertex is rarely a generic point, typically being its own image

under multiple automorphisms in the group. This optimization approach

seems to be of less utility than the others I have tried, however, providing

only about 5% speedup for sufficiently large instances, and pruning very few

cobases relative to the number of basis orbits. As each added constraint

should reduce the feasible space by about half its previous size, I would ex-

pect diminishing returns from adding more constraints, and thus that even

if more constraints were generated they would not greatly reduce runtime.

Table 4.5 gives counts of generated constraints and pruned cobases, as well

as speedups relative to Table 4.3, omitting problems C7-6-3b and E7A, for

which no constraints were generated.

4.2.5 Parallelization

I used the OpenMP framework [16] for the parallel version of Basil, prefer-

ring it over MPI [15] for its shared memory architecture, and over

PThreads [12] due to its ease of programming and high-level operations.

Table 4.6 shows the timing results of running this parallel implementation

with 2, 4, 6, and 8 processor cores. It should be noted that these are wall-

53



Table 4.5: Fundamental Domain Timing Results (bases count orbits, pruned
is the number cobases pruned for falling outside the fundamental domain)

Problem n:d bases constraints pruned time(s) speedup
D4A 24:4 12 3 0 0.02 0.75
D5A 40:5 104 1 16 0.51 0.96
C5-6-3a 16:5 51 1 2 0.06 0.92
C5-6-3b 25:5 291 2 7 0.66 1.04
C6-6-3a 36:6 1394 1 14 10.61 1.07
C6-6-3b 50:6 5342 3 63 59.81 1.05
C7-6-3a 48:7 18720 1 22 440.82 1.03

clock times rather than CPU times such as were reported Table 4.3; as Basil

is CPU-bound, the wall times should be comparable to the CPU times. Ta-

ble 4.7 shows how memory usage increases with number of cores and instance

size. Both Table 4.6 and Table 4.7 report the median results of 9 runs. Fig-

ure 4.4 shows the parallel timing results for the Cd-6-3 instances discussed

above; some runs did not complete for some numbers of parallel cores, so

there are different numbers of data points for sequential, 2, 4, and 6 core

runs. I omitted the 8 core runs because the results were basically identical

to the 6-core runs, and overly cluttered the plot.

Table 4.6 and Figure 4.4 show that Basil does derive some runtime benefit

from parallelization up to 6 cores, though synchronization overhead appears

to outweigh the benefits of using 8 cores over 6 for most of the problems

tested. As shown in Table 4.7, memory usage is approximately the same

whether threads are given local work stacks or not, increasing roughly linearly

in the number of cores, though there seems to be an execution time benefit

from use of local stacks. Table 4.8 shows higher efficiency (speedup per

54



Table 4.6: Parallel Basil Timing Results (bases count orbits, p is # cores)

time(s) with local stacks
Problem n:d bases p = 1 p = 2 p = 4 p = 6 p = 8
C6-6-3a 36:6 1394 12 7 5 5 13
C6-6-3b 50:6 5342 65 38 28 27 85
C7-6-3a 48:7 18720 473 352 208 191 800
C7-6-3b 50:7 41735 4247 3395 1941 1512 5864
E7A 126:8 12399 1604 903 573 474 496

time(s) without local stacks
C6-6-3a 36:6 1394 12 13 6 6 7
C6-6-3b 50:6 5342 65 51 32 34 39
C7-6-3a 48:7 18720 473 462 258 250 236
C7-6-3b 50:7 41735 4247 3465 1983 1557 1609
E7A 126:8 12399 1604 1102 651 580 563

Table 4.7: Parallel Basil Memory Usage (bases count orbits, p is # cores)

memory(MB) with local stacks
Problem n:d bases p = 1 p = 2 p = 4 p = 6 p = 8
C6-6-3a 36:6 1394 71 99 208 399 75
C6-6-3b 50:6 5342 82 148 263 472 165
C7-6-3a 48:7 18720 145 499 634 918 675
C7-6-3b 50:7 41735 553 1555 2524 3632 1492
E7A 126:8 12399 119 211 410 700 1079

memory(MB) without local stacks
C6-6-3a 36:6 1394 71 95 210 400 669
C6-6-3b 50:6 5342 82 154 270 477 1238
C7-6-3a 48:7 18720 145 526 640 928 1316
C7-6-3b 50:7 41735 553 1549 2422 3495 4696
E7A 126:8 12399 119 219 420 695 1064

55



Table 4.8: Parallel Basil Speedup & Efficiency Results (bases count orbits, p
is # cores)

speedup[%efficiency] with local stacks
Problem n:d bases p = 2 p = 4 p = 6 p = 8
C6-6-3a 36:6 1394 1.71[86%] 2.40[60%] 2.40[40%] 0.92[12%]
C6-6-3b 50:6 5342 1.71[86%] 2.32[58%] 2.41[40%] 0.76[10%]
C7-6-3a 48:7 18720 1.34[67%] 2.27[57%] 2.48[41%] 0.59[ 7%]
C7-6-3b 50:7 41735 1.25[63%] 2.19[55%] 2.81[47%] 0.72[ 9%]
E7A 126:8 12399 1.78[89%] 2.80[70%] 3.38[56%] 3.23[40%]

speedup[%efficiency] without local stacks
C6-6-3a 36:6 1394 0.92[46%] 2.00[50%] 2.00[33%] 1.71[21%]
C6-6-3b 50:6 5342 1.27[64%] 2.03[51%] 1.91[32%] 1.67[21%]
C7-6-3a 48:7 18720 1.02[51%] 1.83[46%] 1.89[32%] 2.00[25%]
C7-6-3b 50:7 41735 1.23[61%] 2.14[54%] 2.73[45%] 2.64[33%]
E7A 126:8 12399 1.46[73%] 2.46[62%] 2.77[46%] 2.85[36%]

thread) for 4 cores than for 6 cores for all instances, though the speedup

for the 6-core runs is generally slightly higher than the speedup for 4-core

runs. For many problem instances the overhead of syncing threads seems to

outweigh the benefits of parallelization; notably, though 2 threads may give

near-linear speedup on small instances, for larger instances the performance

falls off somewhat, sometimes running more slowly than the sequential code.

56



basis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbits

w
a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)

200020002000200020002000200020002000 400040004000400040004000400040004000 600060006000600060006000600060006000 800080008000800080008000800080008000 100001000010000100001000010000100001000010000

100100100100100100100100100

200200200200200200200200200

300300300300300300300300300

400400400400400400400400400

500500500500500500500500500
0.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.264
sequentialsequentialsequentialsequentialsequentialsequentialsequentialsequentialsequential
2-core2-core2-core2-core2-core2-core2-core2-core2-core
4-core4-core4-core4-core4-core4-core4-core4-core4-core
6-core6-core6-core6-core6-core6-core6-core6-core6-core

basis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbits

w
a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)
w

a
ll

 t
im

e
 (

s)

200002000020000200002000020000200002000020000 400004000040000400004000040000400004000040000 600006000060000600006000060000600006000060000 800008000080000800008000080000800008000080000 1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵

200020002000200020002000200020002000

400040004000400040004000400040004000

600060006000600060006000600060006000

800080008000800080008000800080008000
0.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.2640.002111 x^1.264
sequentialsequentialsequentialsequentialsequentialsequentialsequentialsequentialsequential
2-core2-core2-core2-core2-core2-core2-core2-core2-core
4-core4-core4-core4-core4-core4-core4-core4-core4-core
6-core6-core6-core6-core6-core6-core6-core6-core6-core

Figure 4.4: Plots up to 10,000 and 100,000 basis orbits of parallel times for
Cd-6-3 instances, including sequential, 2, 4, and 6-cores with local stacks.

57



Chapter 5

Conclusion

This thesis has described a method of performing basis enumeration up to

symmetries of hyperplane arrangements, and also experimentally tested the

usefulness of various optimizations to this method. I have developed a new

program, dubbed Basil, based on the approach of Bremner et al. [6] for

basis enumeration of polyhedra up to symmetries by depth-first search of

the graph of cobases constructed by minimum-ratio simplex pivots. This

adaptation required definition of a new minimum-ratio test that would work

on arrangements instead of polyhedra, and also a new procedure to compute

the automorphism group of an arrangement.

Experimental results from running Basil show a multiple order of magnitude

speedup over the first-generation Symbal software of Bremner et al. for basis

enumeration of polyhedra up to symmetries; this speedup is chiefly due to

the use of compiled C++ code instead of the interpreted GAP scripts used in

58



Symbal. I have also tested the utility of various programmatic optimizations

and mathematical invariants for reducing runtime; use of Gram matrices to

compare the angles between hyperplanes in a cobasis has proved to be very

effective, and a parallel variant gave decent speedup on 4-6 cores, while gains

from using fundamental domain constraints to bound the search space were

more modest.

One open problem relating to this research is whether using more of the

constraints of the fundamental domain to bound the search space would

yield better speedup; elements of the group other than the generators could

be used in the existing method to get some more constraints, but to really

explore the possibilities of fundamental domain based pruning would require

a way to generate a generic point and initial vertex that both fall within the

same fundamental domain, instead of just using the initial vertex to generate

the fundamental domain constraints.

Another interesting avenue of investigation would be to find an adjacency

rule which preserves the neighbourhood adjacency property of Lemma 3.1.1

but returns fewer cobases than the minimum-ratio adjacency presented here;

such a rule, if it exists, could significantly speed up Basil runtime while

decreasing memory usage. If this hypothetical adjacency rule could define the

adjacency graph of cobasis orbits rather than cobases, a memory-less reverse

search following the model of Avis and Fukuda [4] could be implemented for

basis enumeration of hyperplane arrangements up to symmetries.

59



References

[1] ACEnet, http://www.ace-net.ca/wiki/ACEnet, September 2011.

[2] David Avis, lrs home page, http://cgm.cs.mcgill.ca/~avis/C/lrs.

html, accessed 26 January 2012.

[3] , Computational experience with the reverse search vertex enu-

meration algorithm, Optimization Methods and Software 10 (1998),

no. 2, 107–124.

[4] David Avis and Komei Fukuda, A pivoting algorithm for convex hulls

and vertex enumeration of arrangments and polyhedra, Discrete & Com-

putational Geometry 8 (1992), no. 1, 295–313.

[5] G. E. P. Box and D. R. Cox, An analysis of transformations, Journal

of the Royal Statistical Society. Series B (Methodological) 26 (1964),

no. 2, 211–252.

[6] David Bremner, Mathieu Dutour Sikirić, and Achill Schürmann, Poly-

hedral representation conversion up to symmetries, Polyhedral Compu-

60



tation (David Avis, David Bremner, and Antoine Deza, eds.), CRM

Proceedings & Lecture Notes, American Mathematical Society, 2009,

pp. 45–71.

[7] Michel Brion and Michèle Vergne, Residue formulae, vector partition

functions and lattice points in rational polytopes, Journal of the Ameri-

can Mathematical Society 10 (1997), no. 4, 797–833.

[8] Adrian Brüngger, Ambros Marzetta, Komei Fukuda, and Jurg Niev-

ergelt, The parallel search bench ZRAM and its applications, Ann. Oper.

Res. 90 (1999), 45–63. MR 1708017

[9] A. Charnes, The simplex method: optimal set and degeneracy, An intro-

duction to Linear Programming, Wiley, New York, 1953, pp. 62–70.

[10] George B. Dantzig, Maximizing a linear function of variables subject

to linear inequalities, Activity Analysis of Production and Allocation

(1951), 339–347.

[11] Jack Edmonds and J.-F. Maurras, Note sur les Q-matrices d’Edmonds,

RAIRO. Recherche opérationnelle 31 (1997), no. 2, 203–209.

[12] IEEE, POSIX.1c, threads extensions (IEEE std. 1003.1c-1995), 1995.

[13] Vipin Kumar and V. Nageshwara Rao, Parallel depth first search. part

ii. analysis, International Journal of Parallel Programming 16 (1987),

501–519, 10.1007/BF01389001.

61



[14] Brendan McKay, The nauty page, http://cs.anu.edu.au/~bdm/

nauty/, accessed 26 January 2012.

[15] Message Passing Interface Forum, MPI: A message-passing inter-

face standard version 2.2, http://www.mpi-forum.org/docs/mpi-2.

2/mpi22-report.pdf, September 2009.

[16] OpenMP Architecture Review Board, OpenMP, http://openmp.org/

wp/, accessed 16 December 2011.

[17] V. Nageshwara Rao and Vipin Kumar, Parallel depth first search. part

i. implementation, International Journal of Parallel Programming 16

(1987), 479–499, 10.1007/BF01389000.

[18] Thomas Rehn, User’s guide for PermLib, http://www.math.

uni-rostock.de/~rehn/software/permlib.html, October 2011, ac-

cessed 26 January 2012.

[19] , User’s guide for SymPol, http://www.math.uni-rostock.de/

~rehn/software/sympol.html, October 2011, accessed 16 February

2012.

[20] Achill Schürmann, Computational geometry of positive definite quadratic

forms: Polyhedral reduction theories, algorithms, and applications, 2008.

[21] Mathieu Dutour Sikirić, Polyhedral home page, http://drobilica.

irb.hr/~mathieu/Polyhedral/, accessed 10 May 2012.

62



[22] András Szenes and Michèle Vergne, Residue formulae for vector parti-

tions and Euler–Maclaurin sums, Advances in Applied Mathematics 30

(2003), 295–342.

[23] The GAP Group, Gap system for computational discrete algebra, http:

//www.gap-system.org, September 2008, accessed 26 January 2012.

[24] Christophe Weibel, Implementation and parallelization of a reverse-

search algorithm for Minkowski sums, Proceedings of the Twelfth Work-

shop on Algorithm Engineering and Experiments, 2010, pp. 34–42.

63



Appendix A

Software Distribution

Code and test data employed in this thesis are available by request from

Dr. David Bremner at bremner@unb.ca. Basil can be compiled by running

make basil from the main source directory, while the parallel variant can

be compiled with make basilp. Basil depends on the GMP multi-precision

arithmetic library and its C++ bindings, as well as the Boost C++ libraries

(known to work with version 1.42); Basil also packages the lrslib and

permlib libraries it depends on in its source distribution. The test instances

used in the tables in Chapter 4 are stored in the test/table sub-directory

of the source distribution, while the Cd-6-3 instances used for the larger tests

are stored in the test/cube sub-directory.

64



Glossary

Arrangement See hyperplane arrangement.

Automorphism A symmetry which leaves the points in an object setwise

invariant.

Basic variables Variables of a simplex tableau not included in the current

cobasis.

Basil A program by the author for basis enumeration up to symmetries of

hyperplane arrangements.

Basis enumeration Listing all unique cobases of an arrangement.

Bounding hyperplane The hyperplane for which the linear inequality defin-

ing a halfspace is satisfied with equality.

Bounding hyperplane arrangement The set of bounding hyperplanes of

the halfspaces defining a polyhedron.

Cobasic variables Variables of a simplex tableau included in the current

cobasis.

65



Cobasis A set of d distinct hyperplanes in an arrangement which meet at a

single point.

Degenerate arrangement An arrangement that has at least one degener-

ate vertex.

Degenerate vertex A vertex with more than d incident hyperplanes.

Edge A 1-dimensional intersection of d− 1 hyperplanes of an arrangement.

Fundamental domain A convex region of Rd which contains exactly one

representative from each orbit of points under some isometry group.

GAP A freely available computer algebra system including group theoretic

functions.

Generating set A subset of a group that the entire group may be expressed

as combinations of under the group action.

Generic point A point that is not its own image under any non-identity

isometry in a given group.

Gram matrix A matrix encoding the angles between the hyperplanes in an

arrangement.

Group A set of elements closed under some action, including an identity

element and unique inverses under the group action.

66



Group action A function combining two members of a group to produce

another member of the group. A group is closed under its action.

Group generators The elements of a generating set of a group.

Halfspace The set of points in Rd satisfying a linear inequality.

Hyperplane The set of points in Rd satisfying a linear equation.

Hyperplane arrangement The union of a set of hyperplanes.

Identity element The group element which leaves all other group elements

invariant under the group action.

Image The result of applying a group element to an object.

Incident hyperplane A hyperplane which contains a given vertex.

Inverse element The group element which maps a given group element to

the identity under the group action.

Isometry A distance preserving symmetry.

Linear programming A field of computer science concerned with opti-

mization problems with linear constraints.

Lrslib A C library by David Avis for construction and manipulations of

simplex tableax.

Minimum ratio test A test to determine the nearest of multiple cobases

with a simplex tableau.

67



Nauty A program by Brendan McKay for computing graph automorphisms.

Normal vector A vector perpendicular to a hyperplane.

Orbit The set of images of an object under a group action.

Permlib A C++ library by Thomas Rehn for group theoretic computations.

Permutation A one-to-one function of n items onto the same n items.

Permutation group A group consisting of permutations.

Pivot A move between two cobases which share an edge.

Polyhedron The intersection of a set of halfspaces.

Polytope A bounded polyhedron.

Reverse search A memory-less graph traversal algorithm devised by Avis

and Fukuda.

Proper subgroup A subgroup which does not contain all the elements of

the full group.

Simple arrangement An arrangement with no degenerate vertices.

Simplex tableau A representation from linear programming of a polyhe-

dron or arrangement which simultaneously represents a cobasis of the

(bounding) arrangement.

68



Slack variables Variables introduced in a simplex tableau to represent dis-

tance from the hyperplanes of the arrangement.

Subgroup A group S consisting of a subset of the elements of some other

group G where S is closed under the group action of G.

Symbal A program by David Bremner for basis enumeration up to symme-

tries of polyhedra.

Symmetry A geometric transformation leaving the object acted upon in-

variant in some sense.

Symmetry group A group consisting of symmetries.

Total representative degree (TRD) The sum of the degrees of a repre-

sentative of each orbit of cobases.

Vertex The point of intersection of at least d distinct hyperplanes of a

hyperplane arrangement.

69



Vita

Candidate’s full name: Aaron Moss
University attended (with dates and degrees obtained): University of New
Brunswick, Bachelor of Computer Science, 2006-2011
Publications: Aaron Moss and David Bremner. “Basis Enumeration of Hy-
perplane Arrangements Up to Symmetries”. 24th Proceedings of the Cana-
dian Conference on Computational Geometry. 151–156 (2012)
Aaron Moss, Sandy Liu and Rene Richard. “A Unified Authentication
Framework for Accessing Heterogeneous Web Services”. International Jour-
nal of Web Services Practices. 3 : 185–190 (2008) [earlier published in pro-
ceedings of 4th International Conference on Next Generation Web Services
Practices. p. 117–122]
Conference Presentations: Aaron Moss. Basis enumeration of hyperplane ar-
rangements up to symmetries. Science Atlantic Mathematics, Statistics and
Computer Science Conference. (2011)


