
Generalizing Database Access Methods

by

Ming Zhou

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 1999

c
�

Ming Zhou 1999

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

ii

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii

Abstract

Efficient implementation of access methods is crucial for many database systems. Today, database

systems are increasingly being employed to support new applications involving multi-dimensional

data. A large variety of specialized access methods have been developed to solve specific prob-

lems. These specialized access methods are usually hand-coded from scratch. The effort required

to implement and maintain such data structures is high. As an alternative to developing new data

structures from scratch, some researchers have tried to simplify search tree technology by general-

ization.

This thesis generalizes access methods at multiple levels, starting with hierarchical search-tree

access methods. The basic logic and commonalities among different database search trees are

explored. A generalized search tree is built and a generalized class library is created including

a small set of specialized components. Specific search trees can be built significantly faster than

using the traditional approach, using the generalized model and selecting components from the

library. This work attempts to start a taxonomy for secondary-memory data structures, which is

used both to classify functionality and reuse implementation. It is similar to the taxonomy provided

by Leda/STL in C++ for primary-memory data structures. Example tree file structures are also

developed and performance experiments on these file structures demonstrate the feasibility of the

generalization approach to achieve efficient implementation of search-tree access methods.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Peter Buhr, for his valuable guidance, encouragement,

mentoring, patience and hard work throughout my study and thesis work. His sense of humor

always made my work enjoyable.

I also extend my gratitude to Dr. Naomi Nishimura and Dr. Frank Tompa who carefully read

the final draft of the thesis and gave valuable suggestions.

I thank Anil Goel for providing information on � Database and taking time to attend our meet-

ings and give good suggestions.

Furthermore, thanks to my friends and lab-mates Oliver Schuster, Ashif Harji, Dorota Zak

and Tom Legrady for their help. Working in the Programming Language Lab with them is al-

ways pleasant and enjoyable. Thanks also extend to my officemate Curtis Cartmill, friends Tayfun

Umman, Zhe Liu, Haihong and many other friends at Waterloo.

I thank my husband, Zhongbin Zhang, and my parents for their tremendous encouragement

and unfailing support throughout my studies.

v

Contents

1 Introduction 1

1.1 Problem . 4

1.2 Solution . 5

1.3 Implementation . 6

1.4 Overview . 6

2 Related Work 8

2.1 Specialized database search trees . 8

2.1.1 One-Dimensional Access Methods . 8

2.1.2 Point Access Methods . 12

2.1.3 Spatial Access Methods . 16

2.2 Search trees with extensible data types . 21

2.3 GiST . 22

2.4 Summary . 26

3 Generalizing Techniques and � Database 27

3.1 Language Abstraction Mechanism . 27

vi

3.1.1 Inheritance . 27

3.1.2 Polymorphism and Template . 29

3.1.3 Inheritance vs. Containment . 33

3.2 � Database . 34

3.2.1 � Database Storage . 35

3.3 Summary . 39

4 Generalizing Persistent Search Trees 40

4.1 Generalization of Search Trees . 40

4.1.1 Search Trees and Search keys . 40

4.1.2 Tree Functionality . 45

4.1.3 Structure . 48

4.1.4 Tree Behavior . 51

4.1.5 Generator . 54

4.1.6 Index . 57

4.1.7 Nested Storage Management . 58

4.2 Hierarchy of Persistent Search Tree Classes . 59

4.2.1 PTree . 60

4.2.2 GTree . 63

4.2.3 STree . 66

4.3 Tree Class Library . 69

4.3.1 Key . 70

4.3.2 Node � Key � and Node � Key,Data � . 70

vii

4.3.3 Container � Node � . 72

4.3.4 Data . 74

4.3.5 Storage Management . 75

4.3.6 GIST � Key, Node, Container � . 75

4.4 Tree Generators . 77

4.5 Summary . 78

5 Example File Structures and Experiments 80

5.1 B+-tree Example . 80

5.2 R-tree Example . 83

5.3 R*-tree Example . 85

5.4 Experiments . 86

5.4.1 B+-trees . 86

5.4.2 R-trees and R*-tree . 88

5.5 Summary . 88

6 Conclusion 90

6.1 Future Work . 91

Bibliography 92

viii

List of Figures

2.1 B-tree node with n-1 search values . 9

2.2 B+-tree with separate index and key parts. 11

2.3 B+-tree Node . 11

2.4 Example 2-D-B-tree . 14

2.5 Holey brick represented via a K-D-tree . 15

2.6 Example hB-tree . 16

2.7 Rectangles organized into an R-tree . 18

2.8 Rectangles organized into an R+-tree . 20

3.1 Multiple Segments of a File Structure . 36

3.2 Accessing Multiple File Structures . 38

4.1 Sketch of a Database Search Tree . 41

4.2 Typical Structure of Leaf Node . 41

4.3 Simple B+-tree . 43

4.4 Pairing key and pointer for B+-tree . 43

4.5 Simple R-tree . 44

ix

4.6 Structures of an array and a list container . 49

4.7 Different Indices . 57

4.8 Nested Storage Managers . 59

4.9 PTreeAccess definition . 62

4.10 PTreeWrapper definition . 62

4.11 GTree definition . 64

4.12 GTreeAdmin definition . 65

4.13 GTreeAccess definition . 66

4.14 B+-tree definition . 67

4.15 Components of Generalization Library . 69

4.16 Array Node Example . 71

4.17 List Node Example . 71

4.18 Array Node with Data . 72

4.19 List Node with Data . 72

4.20 Array Container Example . 73

4.21 List Container Example . 74

4.22 GTree Generator . 79

5.1 BTree Range Generator Example . 82

x

List of Tables

5.1 Experiment Results of Exact Matching Queries on B+-trees 87

5.2 Experiment Results of Multi-response Queries on B+-trees 88

5.3 Experiment Results on R-trees and R*-tree . 89

xi

Chapter 1

Introduction

Efficient data access is one of the properties provided by a database management system. The most

common mechanism to achieve this goal is to associate an index with a large, randomly accessed

data file on secondary storage. The index is an auxiliary data structure intended to help speed up

the retrieval of records in response to certain search conditions. An index, like the labels on the

drawers and folders in a filing cabinet, speeds up retrieval by directing the searcher to the small part

of the file containing the desired item. For disk files, an index allows the number of disk accesses

to be reduced. An index may be physically integrated with the file, like the labels on employee

folders, or physically separate, like the labels on the drawers. Usually the index itself is a file. If

the index file is large, another index may be built on top of it to speed retrieval further, and so on.

Organization techniques, or data structures, for index files are called access methods.

Many techniques for organizing database access methods have been proposed. Some of the

most common one-dimensional structures include hashing and its variants, such as linear hashing

[Lit80, Lar80] and extendible hashing [FNPS79], and the B-tree [BM72] and its variants [Com79].

1

CHAPTER 1. INTRODUCTION 2

Hierarchical access methods such as the B+-tree are scalable and behave well in the case of skewed

input; they are nearly independent of the distribution of the input data. This property is not nec-

essarily true for hashing techniques, where performance may degenerate depending on the given

input data. This problem is aggravated by the use of order-preserving hash functions that try to pre-

serve neighborhood relationships among data items, in order to support range queries. As a result,

highly skewed data causes accumulation at a few selected locations in the hash table. For most

data, on the other hand, hashing techniques usually outperform hierarchical methods on average.

In traditional relational systems, one-dimensional access methods such as the B+-tree and ex-

tendible hashing are sufficient for the sorts of queries posed on the usual set of alphanumeric data

types. However, they are not suitable for indexing multi-dimensional data. A query such as , “Find

all employees who are between 30 and 35 years old and earn a salary between 40k and 60k,” is an

example of a two-dimensional range query. One way of answering such a query is by maintaining

one-dimensional indexes on age and salary, and using one or both indexes to narrow down the set

of relevant employee records. Another way is to maintain a composite index on age and salary. But

neither of these solutions is efficient, and therefore, specialized structures are required to handle

multi-dimensional range queries.

Today, database systems are increasingly being employed to support new applications such as

geographic information systems, multimedia systems, CAD tools, document libraries, DNA se-

quence databases, fingerprint identification systems, biochemical databases, and so on. These data

management applications rely heavily on multi-dimensional data. For example, in a geographic

information system, points, lines, line groups and polygons are used as basic data types. Retrieval

and update of spatial data is usually based not only on the value of certain alphanumeric attributes,

CHAPTER 1. INTRODUCTION 3

but also on the spatial location of a data object. A retrieval query against a spatial database often

requires the fast execution of a geometric search operation such as a point query (find all objects

that contain a given search point) or a region query (find all objects that overlap a given search

region). To support such search operations, special multi-dimensional access methods are needed.

Volker Gaede and Oliver Gunther [GG98] list the following requirements that multi-dimensional

access methods should meet based on the properties of spatial data and their applications. These

requirements are applicable to one-dimensional access methods, too.

(1) Dynamics. As data objects are inserted and deleted from a database in any given order, access

methods should continuously keep track of the changes.

(2) Secondary/tertiary storage management. Despite growing main memories, it is often impos-

sible to hold a complete database in main memory. Access methods, therefore, need to

integrate secondary and tertiary storage in a seamless manner.

(3) Broad range of supported operations. Access methods should not support just one particular

type of operation (such as retrieval) at the expense of other tasks (such as deletion).

(4) Independence of the input data and insertion order. Access methods should maintain their

efficiency even when the input data is highly skewed. This point is especially important for

data that is distributed differently along the various dimensions. Related to this point is a

good average storage utilization.

(5) Simplicity. Intricate access methods with special cases are often error-prone to implement,

and thus not sufficiently robust.

(6) Scalability. Access methods should adapt well to growth in the underlying database.

CHAPTER 1. INTRODUCTION 4

(7) Time efficiency. Because spatial searches are usually CPU- and I/O-intensive, an access

method should try to minimize both the CPU utilization and the number of disk accesses.

(8) Space efficiency. An index should be small in size compared to the data to be addressed, and

therefore, guarantee a certain storage utilization.

1.1 Problem

A large variety of specialized access methods have been developed to solve specific problems.

Among them are those based on the hierarchical approach such as B-tree [BM72], B*-tree [Knu73],

K-D-B-tree [SRF87], LSD-tree [HSW89], hB-tree [LS89, LS90], R-tree [Gut84], R+-tree [SSH86,

SRF87], Cell-tree [Gun88, Gun89], GBD-tree [OS90], and so on, those based on hashing tech-

niques such as Grid file [NHS84], BANG file [Fre87], R-file [HSW90], Z-hashing [HSW88], and

so on, and those based on heuristic solutions such as Space-Filling Curves [OM84]. While some

of this work has had significant impact in particular domains, the approach of developing domain-

specific access methods is problematic. These specialized access methods are usually hand-coded

from scratch, normally requiring substantial knowledge of the underlying file system to build cor-

rectly and efficiently. As a result, the effort required to implement and maintain such data structures

is high. Furthermore, there is every reason to assume this trend will continue. As new database

applications need to be supported, new access methods will be developed to deal with them effi-

ciently.

CHAPTER 1. INTRODUCTION 5

1.2 Solution

As an alternative to developing new data structures from scratch, Stonebraker [Sto86] proposed

to generalize existing data structures such as B+-trees and R-trees to support user-defined data

types by revising procedures of these access methods to work on new data types. Hellerstein et

al. [HNP95] proposed a way to further generalize search trees at the tree functionality level by

introducing a generalized search tree called GiST. The GiST provides abstraction of common tree

operations, such as search, insertion and deletion. Other tree structures, such as B+-trees and R-

trees, can be built as extensions of the GiST. These do not add generalization covering alternatives

such as the internal structure of a B-tree’s node, nor several other aspects of search tree design.

This thesis intends to generalize access methods starting with database search trees. By gener-

alizing the parts that search-tree developers possibly need to specialize, a developer is not required

to write all the components from scratch so that new search trees can be built more easily. By

discovering the core, reusable components of search trees along a number of different dimensions,

a generalized search tree can be built and different search trees can be developed from the gen-

eralized components significantly faster than working from scratch. This generalization can be

done by taking advantage of reuse capabilities in modern programming languages such as inheri-

tance and generic programming; for example, by deriving a new object’s implementation from an

existing object, it is possible to take advantage of previously written and tested code, which can

substantially reduce the time to compose and debug a new object and increase its robustness.

The goal of this work parallels that for primary-memory data structure libraries such as the

Standard Template Library [SL95] and Leda [Nah90] for data structures in C++. These libraries

attempt to provide a taxonomy among primary-memory data structures, which is used both to

CHAPTER 1. INTRODUCTION 6

classify functionality and reuse implementation. This work attempts to start a similar taxonomy

but for access methods manipulating data on secondary storage. The difference in performance and

capability of secondary storage from primary storage requires a separate solution. This thesis does

not intend to construct new access methods, but is an engineering exercise, combining a number of

well known ideas in a way that provides a new and interesting solution to this important problem.

1.3 Implementation

The generalization and resulting taxonomy are largely system independent. Yet, a further goal of

this work is to demonstrate a partial implementation. The system chosen for the implementation is

� Database. � Database is a toolkit for constructing memory mapped databases [BGW92]. The gen-

eralization approach should apply equally well in traditional non-memory mapped environments.

1.4 Overview

The next chapter is an overview of related work. Three categories of specialized search trees

and their basic properties are discussed. Then two generalization attempts for search trees are

presented.

Chapter 3 gives background in design and implementation of a new generalization of search

trees. First, the generalizing techniques provided by C++ are introduced. The search-tree gener-

alization depends on these language abstraction facilities. Second, the background of � Database

and the � Database view of storage are discussed.

Chapter 4 discusses the multiple levels of generalization in detail. Then, the hierarchy of

persistent tree classes and components of the generalization library are presented.

CHAPTER 1. INTRODUCTION 7

Chapter 5 gives some example search tree structures developed from the generalized tree and

shows some experimental results on the measurement of the cost for generalization.

Chapter 6 is the conclusion and suggests some future work.

Chapter 2

Related Work

To understand how to generalize search tree access methods, it is necessary to understand various

access methods sufficiently to find the common aspects. This chapter reviews database search

trees, identifies points of commonality, and looks at prior attempts to generalize search trees.

2.1 Specialized database search trees

A large variety of search trees have been developed to solve specific problems. They can be viewed

in three categories, one-dimensional search trees, point search trees and spatial search trees. The

basic structure and representative search trees of each category are discussed in the next three

subsections.

2.1.1 One-Dimensional Access Methods

Classical one-dimensional access methods are an important foundation for the design of multi-

dimensional access methods. Hierarchical access methods, e.g., the B-tree and its variants are

8

CHAPTER 2. RELATED WORK 9

efficient data structures for indexing one-dimensional data.

B-tree

The B-tree [BM72] is a balanced tree corresponding to a nesting of intervals. Each node � corre-

sponds to a disk page
��� ��� and an interval � � �). If � is an interior node, then the intervals � � ���	� ,

corresponding to the immediate descendants of � , are mutually disjoint subsets of � � ��� . Figure 2.1

shows an example node in a B-tree with
��� search values. Leaf nodes contain pointers to data

items; depending on the type of the B-tree, interior nodes may do so as well.

.

Data pointer
tree pointertree pointer tree pointer

Data pointer Data pointer Data pointer

��� ��� ���

��� ���

���������

���! "� �"� ���

���# ��������$�%���

��&' �� �"&

��&(����)�*�
Figure 2.1: B-tree node with n-1 search values

Formally, a B-tree, when used as an access method on a key field to search for records in a data

file, can be defined as follows (+ is the order of the B-tree):

(1) In each interior node as shown in Figure 2.1 where
�,-+ , . � is a tree pointer — a pointer

to another node in the B-tree. With each key / � , there is a data pointer — a pointer to the

record whose search key field value is equal to / � .

(2) Within each node, keys are ordered, such that /10 � /32 �546474 � /98;:<0 .

(3) For all search key field values X in the subtree pointed at by . � , / � :<0 �>= � / � for

 �@? �
 ; = � / � for ?BA ; and / � :<0 �@= for ?CA
 .

(4) Each node has at most + tree pointers.

CHAPTER 2. RELATED WORK 10

(5) Each node, except the root and leaf nodes, has at least + ��� tree pointers. So each node is at

least 1/2 full. The root node has at least two tree pointers unless it is the only node in the

tree.

(6) All leaf nodes are at the same level. Leaf nodes have the same structure as internal nodes

except they have no tree pointers.

B*-tree

Knuth [Knu73] defines a B*-tree to be a B-tree in which each node is at least 2/3 full (instead

of just 1/2 full). B*-tree insertion uses a local redistribution scheme to delay splitting until two

sibling nodes are full. Then the two nodes are divided into three with each 2/3 full. This scheme

guarantees that storage utilization is at least 66%, while requiring only moderate adjustment of the

maintenance algorithms. Increasing storage utilization can speed up the search since the height of

the resulting tree is smaller.

B+-tree

For a B+-tree, proposed by D. Comer [Com79], all keys reside in the leaves. The upper levels,

which are organized as a B-tree, consist only of an index, a road map to enable rapid location of

the index and leaves. Figure 2.2 shows the logical separation of the index and leaves, which allows

interior nodes (also called index nodes) and leaf nodes (also called data nodes) to have different

formats or even different sizes. In particular, leaf nodes are usually linked together left-to-right, as

shown in Figure 2.2. The linked list of leaves is referred to as the sequence set. Sequence set links

allow easy sequential processing.

CHAPTER 2. RELATED WORK 11

random
search

sequential
search

(sequence set)
keys

index

Figure 2.2: B+-tree with separate index and key parts.

Insertion and search operations in a B+-tree are processed in a way similar to insertion and

search operations in a B-tree. When a leaf splits in two, instead of promoting the middle key, the

algorithm promotes a copy of the key, retaining the actual key in the right or left leaf. The resulting

node structure, as shown in Figure 2.3, is different from that in a B-tree. Search operations differ

from those in a B-tree in that searching does not stop if a key in the index equals the query value.

Instead, the nearest right or left pointer is followed, and the search proceeds all the way to a leaf.

.

tree pointertree pointer tree pointer

��� ��� ���

� � ��� ���
	�� � � ��� ���	�� � �

������� � � � ��	������������ � � � ��	��������

Figure 2.3: B+-tree Node

During deletion in a B+-tree, the ability to leave non-key values in the index part as separators

simplifies the operation. The key to be deleted must always reside in a leaf so its removal is simple.

As long as the leaf remains at least half full, the index need not be changed, even if a copy of a

deleted key is propagated up into it.

CHAPTER 2. RELATED WORK 12

2.1.2 Point Access Methods

A point is defined to be an element of
� ������� ?
 0�� �����	� ?
 2
� 46464 � �����	� ?
�� � , and a rectilinear

region is defined to be the set of all points
�� 0�� 2�� 46464 � � � satisfying

� ?
 � � � � ��� � , �

? ��� , for some collection of
� ?
 � , ��� � of

�����	� ?
 � . Points can be represented most simply by

storing the
 � ’s, and regions by storing the

� ?
 � ’s and
��� � ’s.

Point access methods (PAMs) have been designed primarily to perform spatial searches on

point databases. The points may have two or more dimensions, but they do not have a spatial

extension. Usually, the points in the database are organized in a number of buckets, each of which

corresponds to a disk page and a subspace of the universe. The subspaces (often referred to as

bucket regions or simply regions, even though their dimension may be greater than two) need not

be rectilinear, although they often are.

Tree-based PAMs are usually a generalization of the B+-tree to higher dimensions. A leaf

node of the tree contains those points that are located in the corresponding bucket region. The

index nodes of the tree are used to guide the search; each of them typically corresponds to a larger

subspace of the universe that contains all bucket regions in the subtree below. A search operation

is then performed by a top-down tree traversal.

Differences among PAM tree structures are mainly based on the characteristics of the regions.

In most PAMs, the regions at the same tree level form a partitioning of the universe, i.e., they are

mutually disjoint, with their union being the complete space. Examples of tree-based point access

methods are K-D-B-trees [Rob81], LSD-trees [HSW89], hB-trees [LS89, LS90], and so on. In the

following, the K-D-B-tree and the hB-tree are introduced as representatives of this category.

CHAPTER 2. RELATED WORK 13

K-D-B-tree

The K-D-B-tree [Rob81] combines the properties of the adaptive K-D-tree [Ben75] and the B+-

tree [Com79] to handle multidimensional points. Like the B+-tree, the K-D-B-tree consists of a

collection of nodes. There are two types of nodes:

1. Region nodes: region nodes contain a collection of (region, child) pairs, where child is a

pointer to a node.

2. Point nodes: point nodes contain a collection of (point, location) pairs, where location gives

the location of a database record.

A K-D-B-tree structure has to satisfy the following properties. The algorithm for range queries

depends only on these properties, and the algorithms for insertions and deletions are designed to

preserve these properties.

(1) No region node contains a null pointer, and no region page is empty, so point nodes are the

leaves of the tree.

(2) Leaf nodes are on the same level from the root (have the same depth).

(3) In every region node, the regions in the node are disjoint, and their union is a region.

(4) If the root node is a region node, the union of its regions is the universe.

(5) If (region, child) occurs in a region node r, and the child points to another region node, then

the union of the regions in the child node is the region in r.

(6) If (region, child) occurs in a region node r, and the child points to a point node, then all the

points in the point node must be in the region in node r.

CHAPTER 2. RELATED WORK 14

The K-D-B-tree is a perfectly balanced tree that adapts well to the distribution of data. Un-

like B-trees, the K-D-B-tree does not have a minimum space utilization requirement. Figure 2.4

illustrates an example 2-D-B-tree where p’s are points and c’s represent central points of spatial

objects.

c5 p2 p3 p6 c8 p4 p5 c9 p8 c7 c6 c7

c5 p2

c5 p2

p3

p6

c8

p6

p3 c8

p4 p5

p4 p5

c9
p8

c7

c6

c7

c9

p8

c7
c6

c7

x1

x1

x1 x1

y1

y1

y2 y2

y2

x2

x2

x4

x4

p10 c1 c2

c1

p10 c2

c1

p10 c2

p1

p1 c4 c3

c4

c3

p1
c4

c3

c10 p9

c10
p9

c10
p9

Figure 2.4: Example 2-D-B-tree

To insert a new data point, a point search is performed to locate the correct bucket. If this point

node is not full, the entry is inserted. Otherwise, it is split and about half of the entries are shifted

to the new point node. In order to find a good split, various heuristics are available [Rob81]. If

the parent region node does not have enough space left to accommodate the new entries, a new

region node is allocated and the region node is split by a hyperplane. The entries are distributed

between the two nodes, depending on their position relative to the splitting hyperplane, and the

split is propagated up the tree. The split of the index node may also affect regions at lower levels

of the tree, which have to be split by this hyperplane as well. Because of this forced split effect, it

CHAPTER 2. RELATED WORK 15

is impossible to guarantee a minimum storage utilization.

Deletion is straightforward. After performing an exact match query, the entry is removed. If

the number of entries drops below a given threshold, the point node may be merged with a sibling

point node as long as the union remains a d-dimensional interval.

hB-tree

The hB-tree [LS89] is a relative of the K-D-B-tree. One of the distinguishing features of hB-trees

is that the index nodes are organized as K-D-trees.

In hB-trees, the nodes represent regions from which smaller regions have been removed. These

regions are called holey bricks and the hB-tree is also called a holey brick tree. Each index node

represents a holey brick and refers to smaller holey bricks on a lower level of the index. The K-D-

tree [Ben75] is used to organize the internal structure of index nodes of the hB-tree. The K-D-tree

is a binary search tree that represents the recursive subdivision of the universe into subspaces by

means of
� � dimensional hyperplanes. Figure 2.5 illustrates a holey brick represented via a

K-D-tree. The region is first divided into two parts, left of
 and right of

 . The right part is

subdivided into two regions, above � which is � and below � which is part of � .

B
A

x1

y1y1

x1

y1B

B A

Figure 2.5: Holey brick represented via a K-D-tree

Figure 2.6 shows a hB-tree with the root node containing two pointers to its child � . The region

� is the union of two rectangles: the one to the left of
 and the one above � . The remaining

CHAPTER 2. RELATED WORK 16

space (
�

,
�

and �) is excluded from � , which is made explicit by the entry � �� in the K-D-tree

representing region � .

x1
u y1

y2

A B ext y3

x3 G

E G

y4

x2 D

C y5

F D
A C

D

E

F

G

B
y2

x3

y1

y3

y4

y5

u wx1
y1

x1 x2

w u

Figure 2.6: Example hB-tree

2.1.3 Spatial Access Methods

Spatial access methods are applicable to databases containing objects with a spatial extension.

Typical examples include geographic databases, containing mostly polygons, or mechanical CAD

data, consisting of three-dimensional polyhedra. In order to handle such extended objects, point

access methods have been modified using one of the following three techniques [SK88]:

� Transformation (Object Mapping) : The basic idea of transformation schemes is to repre-

sent minimal bounding rectangles of multidimensional spatial objects by higher dimensional

points.

� Overlapping Regions (Object Bounding) : The key idea of the overlapping regions technique

is to allow different data buckets in an access method to correspond to mutually overlapping

subspaces. A well-known example is the R-tree [Guttman84, Greene89].

CHAPTER 2. RELATED WORK 17

� Clipping (Object Duplication) : Clipping-based schemes do not allow any overlaps among

bucket regions; they have to be mutually disjoint. A typical example is the R+-tree [SSH86,

SRF87], a variant of the R-tree that allows no overlap among regions corresponding to nodes

at the same tree level.

R-tree

An R-tree [Gut84] is a height-balanced tree similar to a B+-tree with index records in its leaf nodes.

Nodes correspond to disk pages and the structure is designed so that a spatial search requires

visiting only a small number of nodes.

A spatial database consists of a collection of tuples representing spatial objects, and each tu-

ple has a unique identifier, which can be used to retrieve it. Leaf nodes in an R-tree contain

entries of the form (I, tuple-identifier) where tuple-identifier refers to a tuple in the database

and � is an n-dimensional rectangle which is the bounding box of the spatial object indexed:

� A � � � � �60 � 47464 � � 8 :<0 � where
 is the number of dimensions and � � is a closed bounded inter-

val
� �
����� describing the extent of the object along dimension ? . Non-leaf nodes contain entries of

the form (I, child-pointer) where child-pointer is the address of a lower node in the R-tree and �
covers all rectangles in the lower node’s entries. Figure 2.7 shows some rectangles organized into

an R-tree.

An R-tree satisfies the following properties:

(1) Every node except the root contains between
� ?
 and

���
entries where

� ?
 , �	� ���
.

(2) For each leaf entry, key � is the smallest rectangle, also called minimum bounding box, that

spatially contains the n-dimensional data object represented by the indicated tuple.

CHAPTER 2. RELATED WORK 18

B

C

A

D
E

F G

H
J

I

K

M

LN

A B C

D E F G H J KI L M N

Figure 2.7: Rectangles organized into an R-tree

(3) For each non-leaf entry, key � is the smallest rectangle that spatially contains the rectangles

in the child node. (For example in Figure 2.7, the actual scope of the X-dimension in the

rectangle labeled B extends from the minimum value in H to the maximum value in I.)

(4) The root node has at least two children unless it is a leaf.

(5) All leaves appear on the same level.

The search algorithm descends the tree from the root in a manner similar to a B+-tree. However,

more than one subtree under a visited node may need to be searched because the bounding boxes

at the same tree level may overlap. Even for point queries, there may be several intervals that

intersect the search point.

To insert a new object, the minimum bounding box and the object reference are inserted into

the tree. In contrast to searching, only a single path from the root to the leaf is traversed. At each

level, a child node is chosen so that its corresponding bounding box needs the least enlargement to

enclose the data object’s bounding box. If several intervals satisfy this criterion, one descendant

is chosen at random. This guarantees that the object is inserted only once, i.e., the object is not

dispersed over several buckets. Once the leaf level is reached, the object is ready to be inserted. If

CHAPTER 2. RELATED WORK 19

this requires an enlargement of the corresponding bucket region, adjustment is done appropriately

and the change is propagated upwards. If there is not enough space left in the leaf, the leaf is split

and the entries are distributed between the old and the new page. Then each of the new bounding

box needs to be adjusted accordingly and the split is propagated up the tree.

Similarly for deletion, first, an exact match query is performed for the object to be deleted. If

the object is found, it is deleted. If the deletion causes no underflow, a check is performed whether

the bounding box can be reduced in size. If so, this adjustment is made and the change is propa-

gated upwards. On the other hand, if the deletion causes the node capacity to drop below 50%, the

node contents are copied into a temporary node and the original node is removed from the tree. All

bounding boxes have to be adjusted. Afterwards all orphaned entries of the temporary node are

reinserted into the tree. In his original paper, Guttman [Guttman84] discussed various policies to

minimize the overlap during insertion. For node splitting, for example, Guttman suggests several

algorithms, including a simpler one with linear time complexity and a more elaborate one with

quadratic complexity. More sophisticated policies can be seen in the packed R-tree [RL85], the

sphere tree [Oo90] and the Hilbert R-tree [KF94].

R+-tree

To overcome the problems associated with overlapping regions, Sellis et al. introduced a close

relative of the R-tree, called an R+-tree [SRF87]. The R+-tree uses clipping, i.e., there is no

overlap among index intervals on the same tree level. Figure 2.8 shows how the rectangles in

Figure 2.7 are grouped into an R+-tree. Objects that intersect more than one index interval have

to be stored on several different pages, such as the rectangle
�

in Figure 2.8. As a result of this

CHAPTER 2. RELATED WORK 20

policy, point searches in a R+-tree correspond to single-path tree traversals from the root to one of

the leaves. Therefore, they tend to be faster than the corresponding R-tree operation. An important

difference for node splitting is that splits may propagate not only up the tree, but also down the

tree. The resulting forced split of the nodes below may lead to several complications, including a

further fragmentation of the data intervals.

B

C

A

D
E

F

H
J

I

K

M

LN D E F G

A B C P

G
P

I J K L M N G H

Figure 2.8: Rectangles organized into an R+-tree

R*-tree

The R*-tree is another variant of the R-tree. Based on a careful study of the R-tree behaviour

under different data distributions, Beckmann et al. [BKSS90] identified several weaknesses of the

original algorithms. In particular, the insertion phase is claimed to be critical for search perfor-

mance. The design of the R*-tree introduces a policy called forced reinsert: if a node overflows,

it does not split right away. Instead, about 30% of the maximal number of entries are removed

from the node first and then reinserted into the tree. In addition, to solve the problem of choosing

an appropriate insertion path, the R*-tree not only takes the area parameter into consideration, but

tests the parameters’ area, margin and overlap in different combinations. The R*-tree differs from

the R-tree mainly in the insertion algorithms; deletion and searching are essentially unchanged.

CHAPTER 2. RELATED WORK 21

2.2 Search trees with extensible data types

Instead of developing new access methods for new data types, for example, polygons, Stonebraker

[Sto86] proposes that existing data structures such as B+-trees and R-trees can be made extensible

in the data types they support.

In general, an access method is a collection of procedures that retrieve and update records. A

generic abstraction for an access method could be the following:

open (file-name) : returns a descriptor for the file representing the relation

close (descriptor) : terminates access

get-first (descriptor, OPR, value) : returns the first record with key satisfying “key OPR value”

get-next (descriptor, OPR, value) : returns the next record

insert (descriptor, value) : insert a record into indicated relation

delete (descriptor, value) : delete a record from the indicated relation

search (descriptor, value) : search for the indicated record

update (descriptor, value, new-value) : replace the indicated record with the new one

The basic idea of this approach is to replace these procedures by others, which operate on a

different data type and allow the access method to work for the new type. For example, consider

a B+-tree and the generic query: select . . . from . . . where key OPR value, and OPR is one of

A � � � , � �
� � . A B+-tree includes appropriate procedures to support these operators for a data

type. For example, to search for a record matching a specific key value, one need only descend the

CHAPTER 2. RELATED WORK 22

B+-tree at each level searching for the minimum key whose value exceeds or equals the indicated

key. Only calls on the operator “ , ” are required with a final call or calls to the operator “=”. These

comparison operators can be overloaded for user defined types. The procedures implementing

these operators can be replaced by any collection of procedures for overloaded operators and the

B+-tree “works” correctly. For example, Stonebraker shows three operators on a box data type can

be added to the B+-tree. They are � �
(two box areas equal), ��� (one box area less than the other

box area) and �
�

(one box area greater than the other box area).

This approach provides generalization in the data that can be indexed. For example, B+-trees

can be used to index any data with a linear ordering. However, this generalization is rather simple

and limited. Regardless of the type of data stored in a B+-tree, the only queries which can benefit

from the tree are those containing equality and linear range predicates. Similar in an R-tree, the

only queries that can use the tree are those containing equality, overlap or containment predicates.

No unified view of different search trees is achieved by this approach.

2.3 GiST

Hellerstein et al. [HNP95] introduce an index structure, called a Generalized Search Tree (GiST),

which is a generalized form of an R-tree [Gut84]. The GiST allows new data types to be indexed

and supports an extensible set of queries. In addition, the authors claim that the GiST unifies

previously disparate structures used for currently common data types. For example, both B-trees

and R-trees can be implemented as extensions of the GiST.

In detail, a GiST is a balanced tree structure with tree nodes containing
���
�
����� � pairs, where

�
is a predicate that is used as a search key, and

�����
is the identifier of some tuple in the database

CHAPTER 2. RELATED WORK 23

for a leaf node and a pointer to another tree node for a non-leaf node. A GiST has the following

properties:

(1) Every node contains between
� ?
 and

���
index entries unless it is the root.

(2) For each index entry
���
�
����� � in a leaf node,

�
is true when instantiated with the values from

the indicated tuple (i.e.,
�

holds for the tuple).

(3) For each index entry
���
�
����� � in a non-leaf node,

�
is true when instantiated with the values of

any tuple reachable from
�����

.

(4) The root has at least two children unless it is a leaf.

(5) All leaves appear on the same level.

In principle, the keys of a GiST may be any arbitrary predicates that hold for each datum below

the key. In practice, the keys come from a user-defined object class, which provides a particular

set of methods required by the GiST. To adapt the GiST for different uses, users are required to

register the following set of six methods:

� Consistent(
�

, +): given an entry
� A ���

�
����� � , and a query predicate + , returns false if

� � +
can be guaranteed unsatisfiable, and true otherwise.

� Union(.): given a set . of entries (
� 0 ,����� 0), ... (

� 8 ,� � � 8), returns some predicate
�

that

holds for all tuples stored below
����� 0 through

����� 8 .

� Compress(
�

): given an entry
� A � �

�
� ��� � , returns an entry

� � �
�
����� � where

� �
is a com-

pressed representation of
�

.

CHAPTER 2. RELATED WORK 24

� Decompress(
�

): given a compressed representation
� A ��� �

�
����� � , returns an entry

� �
�
� ��� �

where
�

is a decompressed representation of
� �

.

� Penalty(
� , � �

): given two entries
� A � � 0 � � � � 0 � , � � A ��� 2�� ����� 2 � , returns a domain-

specific penalty for inserting
� �

into the subtree rooted at
� , which is used to aid the

splitting process of the insertion operation.

� PickSplit(.): given a set . of
� � entries

���
�
����� � , splits . into two sets of entries .

and . � , each of size �
�

, where � is the minimum fill factor.

The tree methods of GiST provide algorithms for search, insertion and deletion operations:

� The search algorithm can be used to search any dataset with any query predicate by travers-

ing as much of the tree as necessary to satisfy the query. This approach is the most general

search technique, analogous to that of the R-tree. But it is not efficient in all situations, for

example, in a linear ordered domain of a B+-tree. So GiST provides another set of meth-

ods to perform search operation when the domain to be indexed has a linear ordering, and

queries are typically equality or range-containment predicates. The general search algorithm

depends on the user-specified Consistent method to check if the predicate is satisfiable or

not. The same Consistent method applies to both index node and leaf node. But usually the

satisfiable conditions are different for the index node and leaf node, no matter if it is an exact

matching search or a range/window query. So further checking is needed after leaf entries

are fetched according to the algorithm. Another restriction is that only one type of query can

be conducted in one program because function Consistent is used in the search instead of a

pointer to a function.

CHAPTER 2. RELATED WORK 25

� The insertion routine guarantees that the GiST remains balanced. It is very similar to the

insertion routine of R-trees, which generalizes the simpler insertion routine for B+-trees.

User defined key method Penalty is used for choosing a subtree to insert; method PickSplit is

used for the node splitting algorithm; method Union is used for propagating changes upward

to maintain the tree properties.

� The deletion algorithm attempts to keep keys as specific as possible and also maintain the

balance of the tree. For underflow, it uses the B+-tree “borrow or coalesce” technique if

there is a linear order, otherwise it uses the R-tree reinsertion technique.

Hellerstein et al. [HNP95] also describe implementations of key classes used to make the

GiST behave like a B+-tree, an R-tree and an RD-tree, a new R-tree-like index over set-valued

data. However, each GiST key class for a B+-tree is a pair of integers instead of one integer value

as in a traditional B+-tree. The pair represents the interval contained below the key; particularly, a

key
� �
��� � represents the predicate Contains

� � �
������� ��� with variable � . Because more space is used

for keys, the Compress method is applied before each key is placed in a node and the Decompres-

sion method is used when a key is read from a node. The Penalty method is used to choose an

appropriate subtree for insertion:

Penalty(E = ([x1, y1), ptr1), F = ([x2, y2), ptr2))
if E is the leftmost pointer of its node

return MAX(y2 - y1, 0)
else if E is the rightmost pointer of its node

return MAX(x1 - x2, 0)
else

return MAX(y2 - y1, 0) + MAX(x1 - x2, 0)

Penalty is calculated for every entry in the node and the entry with minimum penalty is chosen. But

keys in a B+-tree are in order, so only comparisons to find the correct range are needed. Therefore,

CHAPTER 2. RELATED WORK 26

the Penalty method should be unnecessary for a B+-tree.

While the GiST attempts to generalize all tree access methods, the approach is skewed towards

spatial access methods. As a result, simpler access methods require more complex implementa-

tions than would otherwise be expected and the complexity and cost of these implementations is

questionable.

2.4 Summary

A large variety of domain-specific search trees have been developed. The representative structures

and their properties in each category, one-dimensional, point and spatial, are presented in detail as

background material for the design of the generalization of search trees. These search trees have

many points of commonality in their structure, such as one or more indices; the structure of the

index and data; the kinds, number and location of keys. As well, the operations on these search

trees is a strong common point. Two attempts at extending search tree technology by generalization

have been discussed. Both approaches provide some ideas for this thesis work.

Chapter 3

Generalizing Techniques and � Database

The C++ reuse facilities used in the design and implementation of the generalized persistent

search tree are discussed first in this chapter, followed by the system chosen for implementation,

� Database, and facilities in � Database for managing storage.

3.1 Language Abstraction Mechanism

The inheritance and polymorphism capabilities of C++ can be applied to abstract commonalities

from many different search tree file structures and provide a generalized structure that can be easily

adapted to a specific tree access method.

3.1.1 Inheritance

Inheritance is a form of software reusability in which new classes are created from

existing classes by absorbing their attributes and behaviours and embellishing these

with capabilities the new classes require. Polymorphism enables us to write programs

27

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 28

in a general fashion to process a wide variety of existing and yet-to-be-specified related

classes. [DD94, p.730]

Inheritance provides a powerful way of representing hierarchical relationships among classes,

that is, expressing commonality among classes. A base class specifies common properties and de-

rived classes inherit these properties from their base and add data members and member functions

of their own. For example, the concepts of a faculty member and a staff member are related in

that they are both university employees; that is, they have the concept of an employee in common.

Therefore a base class Employee can be used to capture common information for all employees

such as name, age and salary. Class Faculty and class Staff can include this information by in-

heriting from class Employee and add more specific information for a faculty member and a staff

member respectively:

class Employee {
public:

int age; // common information for all employees
char *name;
float salary;
. . .

};
class Faculty : public Employee {

public:
char *research_ area; // additional information for faculty members
. . . .

};
class Staff : public Employee {

public:
char *position; // additional information for staff members
. . .

};

The strength of inheritance comes from the abilities to abstract commonality in the base class and

to define in the derived class additions, replacements, or refinements to the features inherited from

the base class. Each derived class itself can be a base class so a set of related classes forms a class

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 29

hierarchy.

Inheritance contains two concepts: implementation and type sharing. Implementation inher-

itance allows one object to reuse existing declarations and code to build another object, whereas

type inheritance means that objects of the derived type can behave just like objects of the base type.

C++ supports these two concepts when deriving a class from a base class; the base class may be

inherited as either public, protected, or private:

class derived1 : public base { . . . };
class derived2 : protected base { . . . };
class derived3 : private base { . . . };

Public inheritance provides both implementation and type sharing. The “public” can be read as

“is derived from” and “is a subtype of”. This notion is the most common form of derivation.

Protected and private inheritance are used to represent implementation details that are not reflected

in the type of the derived class. The “protected” and “private” can be read as “is derived from” or

“implements”. Protected inheritance is useful in class hierarchies in which further derivation is the

norm. Private inheritance is used when defining a class by restricting the interface to a base so that

stronger guarantees can be provided [Str97]. Finally, C++ provides no direct mechanism to inherit

just type without implementation, but this can be accomplished indirectly through an empty base

class called an abstract class.

3.1.2 Polymorphism and Template

Polymorphism allows an algorithm to be expressed once and applied to a variety of types. C++

provides two mechanisms to accomplish this: virtual functions provide run-time polymorphism,

whereas templates offer compile-time polymorphism.

Through virtual functions, objects of different classes related by inheritance respond differently

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 30

to the same member function call depending on the type of the object. For example, an earnings

function call applies generically to all employees. But the way each person’s earnings are calcu-

lated depends on the type of the employee, e.g., a salaried or an hourly-paid employee. Hence the

earnings function is declared virtual in base class Employee, and appropriate implementations of

earnings are provided for each of the derived classes, Salaried or HourlyWorker:

class Employee { // abstract class
public:

virtual float earnings() = 0; // pure virtual
};
class Salaried : public Employee {

private:
float weeklySalary;

public:
virtual float earnings() { return weeklySalary; }
// other methods;

};
class HourlyWorker : public Employee {

private:
float wagePerHour;
float hours;

public:
virtual float earnings() { return wagePerHour * hours; }

};

Templates provide direct support for generic programming, that is, programming using types as

parameters. The C++ template mechanism allows a type to be a parameter in the definition of

a function or a class. A template depends only on the properties that it actually uses from its

parameter types and does not require different types used as arguments to be explicitly related. In

particular, the argument types used for a template need not be from an inheritance hierarchy. Code

implementing the templates is identical for all parameter types. As mentioned, both functions and

classes can be generalized with templates.

The following template function declares a single formal parameter T as the type of two vari-

ables being compared and the type of the return value:

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 31

template<class T> T max(T x, T y) {
return (x > y ? x : y);

}

It can be used to compare two variables of any type, such as integers, floating point numbers or

user-defined types that define the operator “ � ”. Based on the argument types provided in calls to

this function, C++ automatically generates separate object-code functions to handle each type of

call appropriately. Function templates provide a compact solution like macros in C, but enable full

type-checking.

The following is an example template for a stack class:

template<class T> class stack {
T elems[10];
int size;

public:
stack();
void push(T e) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems[size]; }

};

On the basis of the template stack class, many stack classes can be created, such as:

stack<float> floatStack; // stack of float
stack<int> intStack; // stack of int
stack< stack<int> > intStackStack; // stack of stack of int

Besides generic programming, templates serve another need, that is policy parameterization. Con-

sider sorting an array of elements. The element can be a structure like:

struct {
char *firstname;
char *lastname;
int age;

} Employee;

Three concepts are involved: the element type, the container holding the elements (e.g., an array)

and the criteria used by the sort algorithm for comparing array elements. The sorting criteria can

not be hard-coded as part of the container because the container should not (in general) impose its

needs on the element type. The sorting criteria can not be hard-coded as part of the element type,

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 32

because there are many different ways of sorting elements. Consequently, the sorting criteria is not

built into the container nor into the element type, instead, it must be supplied on a specific need

basis. For example, to sort an array of structures like Employee defined above, the criteria used for

a comparison depends on different needs. The employees can be sorted by lastname/firstname or

by age. Neither a general element type nor a general sort algorithm should know about the con-

ventions for sorting such an array. Therefore, any general solution requires the sorting algorithm

be expressed in general terms that can be defined not just for a specific type but also for a specific

use of a specific type.

For example, the template parameter class C in the following sorting function represents the

possible comparison criteria:

template<class T, class C>
void sort(const T t[], int arraysize) {

. . .
if(C::eq(t[i], t[j]))
. . .
if(C::lt(t[i], t[j]))
. . .

}

Different criteria for sort() can be achieved by defining suitable C::eq() and C::lt() routines. This

technique allows any sorting or other algorithms that can be described in terms of the operations

supplied by the “C-operations”. Different element comparison pairs are needed for the differ-

ent kinds of comparison. For example, name comparison is more complex than age comparison,

requiring different comparison templates for each:

template<class T> class Cmp1 {
public:

static bool eq(T a, T b) { . . . } // compare on lastname/firstname
static bool lt(T a, T b) { . . . } // compare on lastname/firstname

};

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 33

template<class T> class Cmp2 {
public:

static bool eq(T a, T b) { . . . } // compare on age
static bool lt(T a, T b) { . . . } // compare on age

};

The rules for comparison can be chosen by explicit specification of the template arguments:

void f(Employee e[], int size) {
sort< Employee, Cmp1<Employee> >(e, size); // sort by name
sort< Employee, Cmp2<Employee> >(e, size); // sort by age

}

Passing the comparison operations as a template parameter has significant benefits compared to

alternatives such as passing pointers to functions. Several operations can be passed as a single

argument with no run-time cost [Str97]. The technique of supplying a policy through a template

argument is widely used in the C++ standard library.

3.1.3 Inheritance vs. Containment

To examine the design choices involving template and inheritance, it is necessary to look at the

difference between inheritance and containment. When a class D is derived from another class B,

it is said that a D is a B:

class B { . . . };
class D : public B { . . . }; // D is a kind of B

which means inheritance is an is-a relationship. On the other hand, a class D that has a member of

another class B is often said to have a B or contain a B:

class D { // D contains a B
B b;

};

which means containment is a has-a relationship. For given classes B and D, to choose between

inheritance and containment depends on what kind of relationship is necessary between the two

classes. For example, the relationship between a Car and an Engine should be containment instead

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 34

of inheritance. A Car is not an Engine; it has an Engine. In general, inheritance is used to provide

an is-a relationship and a template a has-a relationship.

3.2 � Database

A database programmer is faced with the problem of dealing with two different views of structured

data: transient data and persistent data. Transient data is in primary storage and ceases to exist

after the creating process terminates, whereas persistent data is stored in secondary storage and

outlives the programs that create and manipulate it. Traditional programming languages provide

facilities for the manipulation of transient data. If data is required to be persistent, explicit use of

a file system or a database management system is needed. Data structures in primary storage are

usually organized using pointers, which are used directly by the processor’s instructions. However,

it is generally impossible to store and retrieve data structures containing pointers to/from disk

without converting at least the pointers and at worst the entire data structure into a different format.

Atkinson et al. [ABC � 83] claim that typical programs devote significant amounts of code (up to

30%) transferring data to and from the file system or DBMS as a result. Therefore, significant

time and space is taken up by code to perform translations between the structured data in primary

storage and the data stored on secondary storage, especially for complex data structures. Hence,

the powerful and flexible data structuring capabilities of modern programming languages are not

directly available for building data structures on secondary storage.

� Database is a toolkit that provides a uniform view of data between primary and secondary

storage and a methodology for efficiently constructing low-level database tools, such as access

methods. The uniform view of data gives the illusion that data on secondary storage is accessible

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 35

in the same way as data in primary storage so that the need for complex and expensive execution-

time conversions of structured data between primary and secondary storage can be eliminated. The

software provided by � Database allows normal programming pointers to be stored directly onto

secondary storage, and subsequently retrieved and manipulated by other programs without having

to modify the pointers or the code that manipulates them. File structures for a database, such as

a B-tree, built in � Database are significantly simpler to build, test, and maintain than traditional

file structures. All access to the file structures is statically type-safe. In addition, multiple file

structures may be simultaneously accessible by an application. Finally, � Database allows all the

generalization facilities of C++ (templates, inheritance, overloading) to be applied directly in this

project.

3.2.1 � Database Storage

In � Database, memory is divided into three major levels for storage management [Goe96] (see

Figure 3.1):

address space is a set of addresses from 0 to N used to refer to bytes or words of memory. This

memory is conceptually contiguous from the address-space user’s perspective, although it

might be implemented with non-contiguous pages. The address space is supported by the

hardware and managed by the operating system.

segment is a contiguous portion of memory. There may be a one-to-one correspondence between

an address space and a segment, or an address space may be subdivided into multiple seg-

ments. In � Database, a segment or group of segments is mapped onto a portion of the sec-

ondary storage. The segment is supported by the hardware and managed by an address-space

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 36

storage manager.

heap is a contiguous portion of a segment whose internal management is independent of the stor-

age management of other heaps in a segment, but heaps at a particular storage level do in-

teract. The heap is not supported by the hardware and is managed by its containing segment

storage manager.

heap 2

File 1 Disk 1

Segment 0

Segment 2

Segment �

heap 0

heap 0
heap 2

heap 0

MAP

File 2
Disk 2

MAP

Segment Base
Address Space

Address

Figure 3.1: Multiple Segments of a File Structure

The difference between a segment and a heap is that only segments provide the units for map-

ping primary storage to secondary storage.

There are two major differences between the heap area provided by the language runtime sys-

tem for dynamically allocating variables (i.e., the area where new allocates storage) and a heap

associated with a � Database segment:

1. If there is only one heap, any space allocated must come from that heap. When multiple

heaps can be present at the same time, a particular heap must be specified each time a mem-

ory management request occurs.

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 37

2. The language heap is a general purpose storage area. On the other hand, a segment heap

is almost always dedicated to a particular data structure, e.g., a B-Tree. Therefore, there is

an opportunity for optimizing the storage management scheme based on the contained data

structure. In addition, many data structures require special actions to be taken when over-

flow and underflow occur. The storage management facility has to be able to accommodate

application specific actions for these cases.

� Database provides tools to create, manage and destroy segments and heaps in an address space.

Furthermore, flexible capabilities are provided for mapping different segments onto different disks.

For example, a file structure can be partitioned into a list of segments mapped into a single UNIX

file or separate UNIX files which may reside on different disks as depicted in Figure 3.1. The

drawback of this scheme is that the size of each segment is restricted. In Section 4.1.7, a new

scheme is introduced so that a file structure composed of multiple segments can still allow each

segment to grow separately.

It is also possible for an application in � Database to have multiple file structures accessible

simultaneously because each file structure is mapped into its own private address space. Figure

3.2 [BGW92] shows the memory organization of an application using three file structures simul-

taneously. The addresses in each address-space’s segments are reused so only one segment can

be active at a time. The shared memory is used to communicate data from one address-space’s

segment to another, but addresses are not shared, since they are specific to each segment.

Finally, memory manager classes are used to manage memory allocation and deallocation for a

segment and its heaps. Memory manager objects instantiated from these classes are self-contained

units capable of managing a contiguous piece of storage of arbitrary size, starting at an arbitrary

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 38

segment 2

segment 1 segment 3 MAPMAP

private shared private
memory memory memory

application
process

private
memory

file 0 file �

MAP

file 2

Figure 3.2: Accessing Multiple File Structures

address. If a segment is managed by a given memory manager object, invoking member routines

within that object implicitly performs the desired operation on that segment/heap. The following

storage management schemes are provided in � Database.

uniform has fixed allocation size. The size is specified during the creation of the memory manager

object and cannot be changed afterwards. Uniform memory management is often used to

divide a segment into fixed sized heaps or a heap into fixed sized nodes (e.g., B-Tree fixed-

sized nodes).

variable has variable allocation size. The size is specified on a per allocation basis but once

allocated, cannot be changed. Variable memory management is a general purpose scheme

very similar to C’s malloc and free routines.

dynamic has variable allocation size. The size is specified on a per allocation basis and can be

expanded and contracted any time as long as the area remains allocated. Because of this

CHAPTER 3. GENERALIZING TECHNIQUES AND � DATABASE 39

property, the location of allocated blocks are not guaranteed to be fixed. Therefore, an allo-

cation returns an object descriptor instead of an absolute address. An allocated block does

not have an absolute address and must be accessed indirectly through its descriptor. Because

of this indirection, it is possible to perform compaction on the managed space (i.e., garbage

collection). Therefore, fragmentation can be dealt with in an application independent man-

ner.

3.3 Summary

This chapter presents the main forms of reuse available in C++: inheritance and templates. Inheri-

tance defines a class hierarchy, establishing implementation and/or type sharing. Templates define

a powerful macro-like facility for constructing new types based on other types.

As well, the implementation vehicle, � Database, is introduced. � Database unifies primary

and secondary storage using memory mapping, allowing normal primary memory capabilities to

be used on secondary storage; in particular, the reuse capabilities of C++. � Database provides

complex storage management facilities to organize access-method data and distribute the data ap-

propriately onto secondary storage.

Chapter 4

Generalizing Persistent Search Trees

This chapter discusses the design methodology to achieve generalization at multiple levels and

presents the structure and components of the generalized persistent search tree in detail.

4.1 Generalization of Search Trees

The language abstraction mechanisms discussed in Section 3.1 and the storage management mech-

anisms discussed in Section 3.2.1 are used to develop a generalized search tree that provides the

basis for common tree access methods used in database systems. The commonalities of different

tree file structures are explored to achieve generalization at multiple levels, including search tree

functionality, behaviour, structure, index and storage management.

4.1.1 Search Trees and Search keys

The generalization of database search trees is based on the general notion of search keys and the

essential nature of tree structures as observed in the GiST paper [HNP95].

40

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 41

A database search tree is a balanced tree with high fanout. Figure 4.1 shows the basic structure

of such a tree. There are two major components: Index and Leaf. Both Index and Leaf are further

composed of tree nodes, which usually have a fixed size (usually the page size). Within each tree

node is a series of entries and empty space if the node is not full. The interior nodes, also called

index nodes, are used as a directory to guide the search down the tree. The leaf nodes, also called

data nodes, contain data entries or pointers to the actual data. The leaves may be further connected

via a linked list to allow for partial or complete scanning. Figure 4.2 shows the typical structure of

leaf nodes.

key1 key2

leafs

index

Figure 4.1: Sketch of a Database Search Tree

K1 P1 Ki Pi Kq Pq

Data pointer Data pointer Data pointer

.

Figure 4.2: Typical Structure of Leaf Node

From the review of tree access methods, it is possible to deduce that tree nodes of most database

search trees, from one-dimensional B+-tree to multi-dimensional point and spatial search trees,

satisfy the following common properties:

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 42

(1) Each index node contains between
� ?
 and

���
entries unless it is the root.

(2) Each entry in a leaf node contains a data object or a pointer to a data object and a key uniquely

identifying the object.

(3) Each entry in an index node contains a key and a pointer to a child node.

(4) The root has at least two children unless it is a leaf.

(5) All leaves appear on the same level.

Different search trees are used to solve specific problems in different domains, and therefore,

have different structures for the keys in properties (2) and (3). Leaf keys are used to uniquely

identify the data objects in the database. Examples of key structures include integer values for

data in a B-tree, coordinate values for points in a K-D-B-tree and rectangles for regions in an R-

tree. Index key structures may be different from the leaf key depending on the kind of tree. For

example, in a K-D-B-tree, leaf keys represent points and index keys represent regions. Behind all

these different structures, there is a common notion for search keys. Basically, a tree structure is

used to classify information by breaking a whole into parts, and repeatedly breaking the parts into

subparts. In this sense, an index key logically matches all data stored in its subparts.

For example, keys in the B+-tree logically delineate a range in which the data below a pointer

is contained. Figure 4.3 shows a simple B+-tree with integer key values. The key values in the tree

are from 2 to 16. This range is divided into two parts by the key in the root, 10. Every key value in

the left subtree, including its left children and subtrees rooted at them, is less than or equal to 10.

Key values in the right subtree are greater than 10. The range in the left subtree, 2 to 10, is then

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 43

subdivided by keys 3 and 6. The same happens in the right subtree. Key values in the left subtree

of 3 are less than or equal to 3, while values in the left subtree of 6 are less than or equal to 6.

10

3 6 13

2 3 5 6 9 10 11 13 16

Data Pointers

Figure 4.3: Simple B+-tree

Notice that index nodes of B+-trees have structures � .B0 � /�0 � .$2 � /)2 � ����� / 8 :<0 � .�8 � . In order

to generalize the B+-tree with other tree structures, one more key, / 8 is added at the end to pair a

key and a pointer in each index node without affecting the original structure and property of a tree

node. In this case, each node now has the structure � . 0 � / 0 � . 2�� / 2�� ����� . 8 � / 8 � . If the leaf keys

are in ascending order from left to right, then each key / � is greater than or equal to every key

value in the subtree pointed by . � . That is, every key is the biggest value of its subtree. If the leaf

keys are in descending order from left to right, then each key / � is the smallest value in its subtree.

The simple B+-tree in Figure 4.3 is redrawn in Figure 4.4 with the modified index structure.

1610

1610

3 6 13

2 3 5 6 9 10 11 13 16

Data Pointers

Figure 4.4: Pairing key and pointer for B+-tree

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 44

While the ranges represented by B-tree keys are disjoint, in the R-tree, the regions represented

by rectangle keys may overlap. Figure 4.5 shows a region containing some rectangles and points

that are leaf keys of the corresponding R-tree. Index keys are all rectangles. The region is divided

into two parts represented by keys R1 and R2. R1 is subdivided into R3 and R4, and so on. For

index key R1, its children R3 and R4 are contained in R1. Children of R3 and R4, rectangle A, B,

G, F and point P, are contained in R3 and R4, respectively. R-tree keys delineate the bounding box

in which the data below a pointer is contained.

A

C

F

G

E

P

Q

B

R1

R2

R3

R4

R5

R6

X

Y

R1 R2

R3 R4 R5 R6

A B P G F D Q C

D

E

Figure 4.5: Simple R-tree

To satisfy the search tree properties, the restriction placed on a key is that it must logically

match each datum stored below it. In B-trees, if the leaf keys are in ascending order from left to

right, the matching condition is greater than (or equal to). Key values are greater than (or equal

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 45

to) any value in its subtree. In R-trees, the matching condition is to cover. Starting from the root,

every rectangle covers all rectangles or points in its child.

By generalizing the notion of a search key, it is possible to capture the essential nature of a

database search tree: it is a hierarchy of categorizations, in which each categorization holds for

all data stored under it in the hierarchy. Based on this idea, it is possible to generalize basic tree

operations. Furthermore, in the same search tree, keys in index nodes can be different from those

in leaf nodes. Therefore, to generalize the search key further, two categories of keys, IndexKey and

LeafKey, are used.

4.1.2 Tree Functionality

Different kinds of search trees are related in that they share the common concept of a search tree,

that is, they have certain common operations such as insertion, deletion and search. Other possible

functions include returning the size of the tree, creating an empty tree or clearing the contents of

the tree, and so on. This commonality at the functional level is captured in a generalized search

tree class, GTree:

class GTree {
public:

int Insert(LeafKey &, Data *);
int Delete(LeafKey &);
bool Search(LeafKey &, Data *);
int Size();
bool Empty();
void Clear();
. . .

};

Specific search trees, such as B+-trees and R-trees, inherit publicly from GTree so that more oper-

ations or operations with a revised algorithm can replace existing ones.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 46

class BTree : public GTree {
public:

// add or replace GTree operations
};

class RTree : public GTree {
public:

// add or replace GTree operations
};

A B+-tree may have a different deletion algorithm and an R-tree may use a different node splitting

algorithm. It is now possible to write a general function like print(GTree t) that can print the

contents of either a B-tree or an R-tree. A specific search tree may inherit from specific ones,

forming an inheritance hierarchy, for example:

class R*Tree : public RTree {
public:

// add or replace RTree operations
};

What algorithms should be used for the operations in the GTree? They should be general enough to

apply to most search trees and should be independent of any data types and any implementations of

inner structures. But they cannot be too general. The GTree class is intended to provide common

functionalities of search trees, not just interfaces of these operations (i.e., an implementation class

rather than an abstract class). In addition, the search tree properties must remain unchanged after

the algorithms are applied.

The following algorithms are designed to capture the common parts in search, insertion and

deletion operations and stub routines are used within them so that the specific parts related to a

particular tree structure can be user specified.

Search

Recursively descend all possible paths in the tree whose keys match with the search key.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 47

S1. [Search subtrees] if the root is a leaf, go to step S2, else check possible subtrees that match

the search condition

S2. [Search leaf] check the entries in the leaf for a match with the search key

This search algorithm basically can be used to search any search tree with any query predicate.

The search condition can be an exact match (equality), range query, window query or any possible

query predicate corresponding to the key type. To achieve this, the search condition is provided as

a stub routine in the algorithm, called Consistent. This routine is provided by the user depending

on the individual search tree implementation.

Insertion

An entry for a new key, with or without a new data object, is added to the leaf level. A leaf that

overflows is split, and splits propagate up the tree.

I1. [Find leaf L for the new record] if the root is a leaf, root is L, else choose a subtree where the

record should go until a leaf is reached

I2. [Add record to the leaf L] if the leaf has room for another entry, add the record to the leaf,

else split the old records in L and the new record into both L and a new leaf LL

I3. [Propagate changes upward] adjust the tree according to new L to preserve search tree prop-

erties, passing LL if a split is performed

I4. [Grow tree taller] if split propagation caused the root to split, create a new root

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 48

Choosing a subtree in step I1 and splitting a tree node in step I2 are application dependent. In steps

I3 and I4, where changes propagate upward, to calculate the new parent key according to its new

subtree is also dependent on the specific application.

Deletion

Remove an entry from its leaf node. If this causes underflow, adjust tree accordingly by updating

key in parent nodes to preserve search tree properties.

D1. [Find node containing entry] invoke search to locate the leaf node L containing the entry,

stop if the entry is not found

D2. [Delete entry] remove the entry from leaf L

D3. [Propagate changes] adjust the tree according to new L to preserve search tree properties

D4. [Shorten tree] If the root node has only one child after the tree has been adjusted, make the

child the new root

The above algorithms are used for tree operations in GTree. A user specifies the necessary stub

routines for use within these GTree routines, which depend on the individual search tree and the

specific implementation. Collectively, these stub routines are called tree behaviour routines and

are discussed in the next section.

4.1.3 Structure

The basic structure of a database search tree is a hierarchy of tree nodes, from the root node down

to the leaf nodes. Each node can be divided into a fixed or variable sized block with each holding

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 49

a (key,pointer) pair or data record. These entries can also be linked as a list inside a node. Other

internal node structures are possible, for example, the entries in an index node of an hB-tree are

organized as a K-D-tree. The generalized search tree has to be independent of the implementation

of tree nodes to accommodate all situations. The solution is to generalize tree nodes as containers

and generalize entries inside the containers as another level of containers, which are the nodes of

the previous containers. Therefore, the structure of a search tree is abstracted as a hierarchy of

nested containers.

Generally, a container is an object that holds other objects. Examples are lists, vectors, and

associative arrays. Each container in the generalized search tree is an area corresponding to one

tree node. It contains a storage manager and a number of nodes organized as an array, linked as

a list, or arranged as other types of data structure. Figure 4.6 shows a container with an array of

nodes and a container with a linked list of nodes. Nodes can be inserted into and removed from the

container. The use of containers hides the implementation details of the inner container structure

from the tree classes, for example, what type of fields each node has and how nodes are organized.

Storage Manager

listContainer

Storage Manager

List of Nodes

arrayContainer

Array of Nodes

Figure 4.6: Structures of an array and a list container

A search tree holds containers, and therefore, the container type is a template parameter for

tree class GTree. A container holds nodes, and therefore, the node type is a template parameter

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 50

for the container class. A node becomes the container for the next level of nesting and may hold

a pointer, a key or a data object. Finally, the key type and the data type are template arguments of

the node class. For example:

template<class Container> class GTree { . . . };
template<class Node> class Container { . . . };
template<class key> class IndexNode { . . . };
template<class key, class Data> class LeafNode { . . . };

Container design must meet two criteria: to provide the maximum freedom in the design of an

individual container, while at the same time requiring containers to present a common interface. To

provide a common interface for all containers, an abstract class (type inheritance only) is provided,

which specifies the common operations on containers:

template<class Node> class Container {
protected:

int count; // number of nodes in the container
int level; // level of the container in the tree

public:
Container() : count(0), level(-1) {}
virtual Node &operator[](int i) = 0;
virtual Node *&first() = 0; // first node in the container
virtual Node *&last() = 0; // last node in the container
virtual void AddNode(Node n) = 0;
virtual void DeleteNode(Node n) = 0;
virtual void printContainer();

};

The two data fields are common to all containers: count represents the current number of nodes in

the container; level is the level in the tree for the container, with level = 0 for leaves and increasing

by 1 each level upward in the tree hierarchy. The virtual functions provide an interface for oper-

ations like subscripting, returning the first or the last node of the container, adding a new node to

the container, deleting a node from the container and printing the contents of the container (usually

for debugging).

A specific container implementation, such as an array container, publicly inherits from the

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 51

abstract container class:

template<class Node> class ArrayContainer : public Container<Node> {
// more data fields

public:
// define abstract operations

};

More data fields can be defined in the specific container class. Containers with different imple-

mentation have different data fields. Containers with the same implementation may have slightly

different structures for different search trees. For example, the leaf containers of a B+-tree are

connected together for easy sequential searching while this is not the case for an R-tree.

4.1.4 Tree Behavior

GTree provides the common parts of the tree operation algorithms and requires a user to give

specific tree behaviour routines to complete the operations of individual search trees. The following

tree behaviour routines are defined and are derived from the GiST [HNP95] work, but have been

modified:

� Consistent : A search key matches a certain condition with a key inside a tree node. This

routine is used by the search and deletion algorithms.

� Union : A parent key is updated when changes are made in its subtree. This routine is used

for adjusting the tree in insertion and deletion algorithms to maintain the tree property.

� Choose-Subtree : A subtree is chosen to insert a new record. This routine is used by the

insertion algorithm.

� Split : A tree node is split into two nodes when some criterion is reached. This routine is

used by the insertion algorithm.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 52

These routines specify particular behaviour and implementation of a search tree.

How are these routines accessed by GTree? The first option is that GTree contains four methods

as virtual functions:

class GTree {
public:

. . .
virtual bool Consistent(. . .) = 0;
. . .
virtual void Split(. . .) = 0;

};

A specific search tree inheriting from GTree, for example, R-Tree, gives the implementation of the

four methods:

class RTree : public GTree {
public:

. . .
bool Consistent(. . .) { . . . }
. . .
void Split(. . .) { . . . }

};

But these four routines are only part of the implementation of a tree operation. Tree behaviour rou-

tines cannot be called directly, as can tree operations, only indirectly from within tree operations. A

solution is to include the four virtual functions as protected methods of GTree and the implementa-

tions are protected methods of the specific tree. But more importantly, the actual implementations

of the four methods depend on the implementation of the containers. For one specific search tree,

such as a B+-tree, the four methods associated with array containers are different from those as-

sociated with list containers. Furthermore, different implementations may be chosen for index

containers and leaf containers of the same tree. For example, in a B+-tree, it is good to choose

an array implementation for index containers holding fixed-size key, pointer and a list implemen-

tation for leaf containers holding variable-size data objects. It is impossible to hard-code the four

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 53

methods in a specific tree when the type of containers are decided through template parameters.

Furthermore, the four methods are not part of a container. One type of container can apply to many

different trees but the four methods are different for different trees.

The second choice is to use template functions for the four methods. For example, different

versions of Union are defined as:

template<class Key> Key Union(. . .) { . . . }

Inside template class GTree, the correct version of Union is chosen according to the correct Key

type by the compiler’s unification algorithm. However, the different implementations of the same

method cannot be included in the same file. To generalize search trees, it must be possible to build

a tree with different structures and implementations for index and leaf parts.

The third approach is to bind the four methods in a class called GIST and let GTree inherit from

GIST so that GTree can use methods of its superclass:

class GTree : public GIST {
. . .

};

But the inheritance relationship between GIST and GTree is inappropriate. GIST is not a GTree;

GTree contains a GIST as an implementation policy. One way of seeing this is to think about the

GTree having different implementations, such as the tree node splitting algorithm. This situation

is like a car that can have different engines. Therefore, containment is appropriate rather than

inheritance.

The approach used is to first make class GIST a template parameter of class GTree to specify

the implementation policy of the specific tree so that the four routines can be passed as a single

argument with no run-time cost, e.g.:

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 54

template<class GIST> class GTree {
. . .

};

and second, to make the different operations static members of the class, for example, the method

Split is called using:

GIST::Split(. . .);

in the Insert method. Static methods are independent of the class’s object, and therefore, the

class acts like a module in this case packaging the GIST routines under a unique name while still

allowing the compiler’s unification algorithm to select the appropriate routine. For example, given

a BTreeGIST class with four static methods:

class BTreeGIST {
public:

static bool Consistent (. . .);
static Key Union (. . .);
static Node ChooseSubtree (. . .);
static void Split (. . .);

};

then a GTree is adapted to a B-tree by registering behaviour methods:

class BTree : public GTree<BTreeGIST>

In this way, the general tree functionality provided by GTree is specialized for each specific search

tree.

4.1.5 Generator

A generator (or iterator) is an abstraction of the notion of a pointer to an element of a sequence,

such as a vector, an array, a linked list or a tree [Str97]. Generators provide access to the elements

of these data structures without having to use or access the particular data structure’s implemen-

tation. Iterating through these data structures by a generator is a very flexible and powerful tech-

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 55

nique. Depending on the data structure, there may be multiple generators that iterate over the data

structure in different ways. For example, a doubly linked list may have two generators with one

iterating over the list in the forward direction and the other one iterating in the reverse direction.

A generator can be used to traverse the entire data structure or just part of it, for example, the first

10 nodes of a tree or until a predicate is satisfied. Moreover, multiple generators can be used at

the same time to iterate over different parts of the same structure. A generator can also be used to

perform any action during iteration and different actions can be performed based on the data in the

current node, especially when the condition for deciding on which action to perform depends on

state information local to the traversal context.

Generators can be used to perform general queries on search tree structures, while providing

a clean interface for these queries. For example, generators providing range queries on data in

an ordered domain, such as a B+-tree, can include the following (where tr represents the tree file

structure):

� retrieve all records (sequential scan)

RangeGen1 gen(tr);

� sequential scan from Key1 to Key2

RangeGen2 gen(tr,Key1,Key2);

� sequential scan from Key for Cnt amount

RangeGen3 gen(tr,Key,Cnt);

� sequential scan for Cnt1 amount before Key and Cnt2 amount after

RangeGen4 gen(tr,Key,Cnt1,Cnt2);

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 56

Examples of generators for window queries, with a similar interface as that for range queries,

include the following:

� Intersection : given an object O, find all objects with at least one point in common with O

IntersectionGen gen(tr, O);

� Enclosure : given an object O, find all objects enclosing O

EnclosureGen gen(tr, O);

� Containment : given an object O, find all objects enclosed by O

ContainmentGen gen(tr, O);

� Adjacency : given an object O, find all objects adjacent to O

AdjacencyGen gen(tr, O);

A file structure designer should be able to easily provide the above generators. These generators

iterate over tree structures in a similar way but perform different query actions. Therefore, a

generalized generator class, GTreeGen, is designed to provide a common interface and a complete

iteration through all possible branches of the tree structure. All specific generators inherit from

GTreeGen providing specific query criteria and possibly overriding member routines of GTreeGen.

For example, all possible branches of the tree need to be checked in a window query, so the specific

window query generators only need to inherit from GTreeGen and pass in different query routines.

A range query generator may need to override member routines of GTreeGen to take advantage of

sequential scan instead of iterating through all branches of the tree. The implementation details of

GTreeGen and specific tree generators are discussed in later sections.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 57

4.1.6 Index

The number of indices, as well as the different organizations between data and the indices, affects

the interface and structure of the GTree and results in different GTree types.

Data records may be stored in leaves of the index tree structure, as shown in Figure 4.7(a).

More commonly, index and data records are stored in separate areas or files, as shown in Figure

4.7(b), with one index tree indexed on the primary key of data records in the database. Besides the

primary index, there may be an index on a non-primary key attribute, called a secondary index, as

shown in Figure 4.7(c). In general, there may be multiple indices, as shown in Figure 4.7(d).

I&D

(a)

D

I�

(b)

D

I �I�

(c)

D

I � I �

(d)

Figure 4.7: Different Indices

To achieve this level of generalization, an address space of a file structure must be able to

be divided into several segments with each segment accommodating one index tree or data part.

Furthermore, these segments can be different sizes and the file structure user can specify the initial

size of each segment. A difficulty occurs when one segment becomes full; expansion should be

possible so that more storage can be allocated to that segment. Often the last segment is used

for data because it can grow downwards in the address space easily, whereas interior segments

cannot expand past their initial sizes. As mentioned in Section 3.2.1, the initial fixed partition of

an address space into multiple segments is not enough and a new memory management scheme is

needed to achieve this goal. This leads to a nested storage management scheme.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 58

4.1.7 Nested Storage Management

One of the most complex parts of any data structure is efficient storage management. Usually a

file structure designer spends significant time in organizing data in primary memory and on sec-

ondary storage. For memory mapped file structures, organizing data in primary memory indirectly

organizes the data on secondary storage.

In order to manage storage for multiple indices, a variable storage manager (VSM) is used

to allocate and free each segment of the address space. The total size this VSM can manage is

the address space size. In each index tree segment, a storage manager, SM, is used to manage

memory for containers. For example, a uniform storage manager (USM) allocates fixed sized

blocks of the container size when a new container is needed and frees the storage when a container

is deleted. The total size this SM can manage is the segment size. Inside each container, a uniform

or variable storage manager is used to manage memory for nodes, depending on whether the nodes

are fixed-sized or variable-sized. The total size this SM can manage is the container size. In the

data segment, a USM or VSM is also used to allocate and free storage for the data objects. Figure

4.8 shows a picture of the nested storage managers for an address space with one primary index

segment and a data segment.

Storage managers are linked to support expansion. An inner storage manager relies on its con-

taining storage manager to expand. Associated with each storage manager, there is a generalized

expansion object which supports expansion. In each container, if the storage manager cannot allo-

cate more space for a new node, the index segment storage manager is used to allocate storage for

a new container to hold more nodes. If there is no space for a new container, the address space stor-

age manager allocates more storage for this index structure if there is free memory in the address

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 59

VSM

SM

SM

Container
SM

Node Node

Data Data

Address Space

Index Segment

Data Segment

Figure 4.8: Nested Storage Managers

space.

4.2 Hierarchy of Persistent Search Tree Classes

Currently, there are three levels in defining a persistent search tree class: persistent, generic and

specialized. A class PTree is used to provide storage management for different segments in an

address space. The generic tree class, GTree, inherits the storage management implementation

from the persistent tree class, PTree, and provides common tree operations:

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 60

class GTree : private PTree {
. . .

};

STree is used to represent any specialized tree, such as a B+-tree or an R-tree. The specialized tree

class, STree, inherits both type and implementation from GTree:

class STree : public GTree {
. . .

};

In parallel with the inheritance hierarchy of tree classes, there is an inheritance hierarchy for three

additional data structures, administration, access and wrapper classes, which are needed for con-

structing a persistent file structure in � Database and discussed in detail in the following sections:

class GTreeAdmin : private PTreeAdmin {
. . .

};
class STreeAdmin : public GTreeAdmin {

. . .
};
class GTreeAccess : private PTreeAccess {

. . .
};
class STreeAccess : public GTreeAccess {

. . .
};
class GTreeWrapper : private PTreeWrapper {

. . .
};
class STreeWrapper : public GTreeWrapper {

. . .
};

4.2.1 PTree

The PTree class and PTreeAdmin, PTreeAccess, PTreeWrapper classes provide a storage manager

for all segments and a cover for � Database implementation details.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 61

class PTree {
public:

PTree();
};

In the prototype implementation, the PTree is empty and only acts to name the address space

containing the segments.

PTreeAdmin

The PTreeAdmin is the first data structure allocated at the start of the address space to administer the

address space storage. PTreeAdmin contains the storage manager for the segments in the address

space. Currently, the storage manager is restricted to be a variable storage manager.

class PTreeAdmin : private RepAdmin {
friend class PTreeExpType;

public:
PTreeExpType exp;
uVariable vsm;
PTreeAdmin(int FileSize);

}; // PTreeAdmin

The constructor parameter is the initial file structure size, FileSize. The address space initializes a

pointer to itself at the beginning of the persistent area. This pointer can be accessed from subclasses

of RepAdmin1 through the protected variable rep and is the reason for the convention requiring the

administrative class to inherit from RepAdmin and for the administrative object to be stored at the

beginning of the persistent area.

1All objects prefixed with Rep are part of the � Database implementation details. To simplify the explanations in
this thesis, the details of these objects are omitted.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 62

class PTreeAccess {
friend class PTreeWrapper;

PTreeAccess(const PTreeAccess &); // prevent copying
PTreeAccess &operator=(const PTreeAccess);

protected:
RepAccess<Rep> repacc; // access class for representative

public:
PTreeAccess(char *name) : repacc(name) {
} // PTreeAccess::PTreeAccess

};

Figure 4.9: PTreeAccess definition
class PTreeWrapper {

RepWrapper wrapper; // migrate to file segment

PTreeWrapper(const PTreeWrapper &); // prevent copying
PTreeWrapper &operator=(const PTreeWrapper);

public:
PTreeWrapper(const PTreeAccess &tr) : wrapper(tr.repacc) {
} // PTreeWrapper::PTreeWrapper

};

Figure 4.10: PTreeWrapper definition

PTreeAccess

An access class defines the duration for which a file-structure address space is accessible. The con-

structor parameter of PTreeAccess in Figure 4.9 is the UNIX file name. A file structure mapping

is established by creating a RepAccess object.

PTreeWrapper

A pointer in the file-structure address space can not be used directly in an application program

because the persistent area is not directly accessible in the application. A wrapper class is used to

make the file-structure’s address space accessible. The PTreeWrapper definition in Figure 4.10 is

a cover for declaring a RepWrapper for the specified persistent area.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 63

4.2.2 GTree

In the tree class hierarchy, GTree is the core component, which is a template class with the follow-

ing parameters:

template<class IndexKey, // key type for index containers
class IndexNode, // node type for index containers
class IndexContainer, // index container type
class Indexgist, // GIST methods for index containers
class LeafKey, // key type for leaf containers
class LeafNode, // node type for leaf containers
class LeafContainer, // leaf container type
class Leafgist, // GIST methods for leaf containers
class Data, // data type
class SM // storage manager type
> class GTree { . . . };

Details of the template parameters are presented in Section 4.3.

As discussed, GTree performs the basic operations of a search tree: insertion, deletion and

search using the methods provided through the GIST. The constructor of GTree takes one parame-

ter, the container size, which is specified by the file structure designer. Figure 4.11 is the definition

of a GTree class where GTreeType and GTreeArgs are macro-identifiers replaced in the program

with the corresponding text defined in the #define statements.

GTreeAdmin

Figure 4.12 shows an example definition of GTreeAdmin, which inherits from PTreeAdmin pri-

vately in order to link with the storage manager for the address space for possible expansion. The

administrative class contains a pointer, Root, to the root node of the persistent search tree. In this

example, the persistent area (address space) is divided into two segments, one for the primary in-

dex tree and the other for data objects. Therefore, two expansion objects and two storage managers

are present. The storage manager for the index tree, which deals with fixed-size containers, is built

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 64

#define GTreeType
class IndexKey, class IndexNode,
class IndexContainer, class Indexgist,
class LeafNode, class LeafKey,
class LeafContainer, class Leafgist,
class Data, class SM

#define GTreeArgs
IndexNode, IndexKey, IndexContainer, Indexgist,
LeafNode, LeafKey, LeafContainer, Leafgist,
Data, SM

template<GTreeType> class GTree : private PTree {
GTree(const GTree &); // prevent copying
GTree &operator=(const GTree);
int sizeOfContainer;

int Insert(LeafKey &r, Data *data, int size);
int Delete(LeafKey &r, Data *data);
LeafNode *Search(LeafKey &r);

protected:
GTreeAdmin<GTreeArgs> *SegZero;

public:
GTree();
GTree(int containerSize);

};

Figure 4.11: GTree definition

in as type uUniform and the storage manager for the data part is passed in as a template parameter

type so that an appropriate type can be chosen for fixed-size or variable-size data objects.

The constructor parameters are the initial file structure size, each segment size and the container

size. The constructor initializes both expansion objects and storage managers, and then sets the

root pointer to NULL, indicating an empty tree.

GTreeAccess

GTreeAccess inherits from PTreeAccess and defines the duration for which GTree is accessible.

The class definition GTreeAccess in Figure 4.13 provides routines to operate on the tree. It is the

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 65

template<GTreeType> class GTreeAdmin : private PTreeAdmin {
public:

IndexContainer *Root;
GTreeExpType<GTreeArgs> expobj;
GTreeDataExpType<GTreeArgs> expobj_ data;
uUniform usm;
SM sm;

GTreeAdmin(int FileSize, int indexSize, int dataSize, int containerSize);
}; // GTreeAdmin<GTreeArgs>

Figure 4.12: GTreeAdmin definition

only way for application code to access the file structure contents. The constructor parameters

are a reference to a GTree class object and the UNIX file name for the file structure, which is

passed to PTreeAccess. The constructor retains the reference for subsequent access to the corre-

sponding tree routines. The member routines Insert, Delete and Search are called by application

programs to perform tree operations. These members cover the corresponding members in the

tree object. Each routine makes the address space accessible by creating a GTreeWrapper object

before performing an operation on the tree. Routines get and set are also needed to directly access

the data segment. Given a pointer to a leaf node in the tree, the purpose of get is to get the data

value from the database and assign it out to the shared memory of the application program. For

example, the Search routine first calls GTree::Search, which returns a pointer to a leaf node, and

then calls get to obtain the data value into a variable record, similar to an embedded SQL state-

ment: exec sql select . . . into : host variables. The routine set performs an update in the database

directly given a pointer to the leaf node and the desired data value, similar to an SQL update

statement: update table set column = . . . where

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 66

template<GTreeType> class GTreeAccess {
GTree<GTreeArgs> &tree;
RepAccess<Rep> repacc; // access class for representative

GTreeAccess(const GTreeAccess &); // prevent copying
GTreeAccess &operator=(const GTreeAccess);

public:
GTreeAccess(GTree<GTreeArgs> &tree, char *name);

int Insert(LeafKey &r, Data *data, int size);
int Delete(Key &r, Data *data);
bool Search(LeafKey &r, Data &record);
void get(const LeafNode *p, Data &value);
void set(LeafNode *p, const Data &value);

};

Figure 4.13: GTreeAccess definition

GTreeWrapper

The GTreeWrapper inherits from PTreeWrapper and makes the GTree directly accessible. The

following is an example definition of GTreeWrapper:

template<GTreeType> class GTreeWrapper : private PTreeWrapper {
GTreeWrapper(const GTreeWrapper &); // prevent copying
GTreeWrapper &operator=(const GTreeWrapper);

public:
GTreeWrapper(const GTreeAccess<GTreeArgs> &tr) : PTreeWrapper(tr) {
} // GTreeWrapper<GTreeArgs>::GTreeWrapper

};

4.2.3 STree

An STree is the highest level class in the tree class hierarchy representing a user specialized per-

sistent search tree. It inherits from GTree and can be a B+-tree, an R-tree or other database search

trees. A file structure designer can choose an appropriate Key type, Data type, storage manager and

the specific implementation and gets a new persistent file structure in a significantly shorter time

than writing from scratch. In addition, insert, delete or search methods of the GTree can always

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 67

template<GTreeType> class BTree : public GTree<GTreeArgs> {
friend class BTreeAccess<GTreeArgs>;

char *fileName;
BTreeAdmin<GTreeArgs> *admin;

public:
BTree(char *Name, int initSize, int indexSize, int dataSize, int containerSize);
~BTree();

};

Figure 4.14: B+-tree definition

be overridden in STree for new versions of tree operations. Figure 4.14 shows an example B+-tree

definition.

Each STree instance generated from a generic STree type has several common parameters: the

name of the UNIX file that contains the persistent file structure, the initial space allocated for the

address space in bytes, as well as the initial size for each segment and the size of the container used

in the index.

The STree contains a pointer to STreeAdmin, which inherits from GTreeAdmin, and encapsu-

lates all persistent administrative information at the beginning of the address space. The construc-

tor of an STree makes a copy of the UNIX file name in shared memory, establishes a mapping

to the file, makes the resulting address space accessible, obtains a pointer to the beginning of the

address space to use as the location of the administrative object, and checks to see if the file is

created on access. If the file has been newly created, the address space is extended to the specified

size and the administrative object is created at the beginning, which initializes itself through its

constructor, creating an empty tree. Otherwise, the file has been created before and the constructor

checks if the file is the correct type by performing a dynamic type-check.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 68

STreeAdmin

STreeAdmin inherits from GTreeAdmin. The constructor parameters are the initial file structure,

segment and container sizes. The constructor passes them to GTreeAdmin, copies the file’s type

into the file as a “magic cookie”, which is a type identifier used for dynamic type checking when

the tree is made accessible. The member routine CheckType performs the dynamic type checking

for the file. The following is an example B+-tree definition:

template<GTreeType> class BTreeAdmin : public GTreeAdmin<GTreeArgs> {
char typeName[0];

public:
BTreeAdmin(int initSize, int indexSize, int dataSize, int containerSize);
int CheckType(char *filename);

};

STreeAccess

STreeAccess inherits from GTreeAccess, and defines the duration for which the STree/GTree is

accessible. If more specific operations are defined in STree, STreeAccess needs to provide corre-

sponding cover routines to operate on the tree. The following is an example B+-tree definition:

template<GTreeType> class BTreeAccess : public GTreeAccess<GTreeArgs> {
friend class RangeGen<GTreeType>;

public:
BTreeAccess(BTree<GTreeArgs> &tree)

: GTreeAccess<GTreeArgs>(tree, tree.fileName) {}
. . . // possible more routines

};

STreeWrapper

STreeWrapper inherits from GTreeWrapper and is used to make STree’s address space accessible.

The following is an example B+-tree definition:

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 69

List implementationArray implementation

Node
�

Key �

Data

SM

Gist
�

Key,Node,Container �

USM, VSM,

Key Key

Key & Data Key & Data

not linked not linked

linked linked

RTree

Btree

KDBTree

RTree

Btree

KDBTree

Node
�

Key,Data �

Container
�

Node �

any data type

Index & Leaf

Key value, interval, rectangle,

Figure 4.15: Components of Generalization Library

template<GTreeType> class BTreeWrapper : public GTreeWrapper<GTreeArgs> {
public:

BTreeWrapper(const BTreeAccess<GTreeArgs> &tr)
: GTreeWrapper<GTreeArgs>(tr) {}

};

4.3 Tree Class Library

Section 4.2.2 lists the template type parameters of the GTree class. This section discusses the

details of each parameter and a small set of specialization components for these types available in

the generalization library, including two common implementations, array and linked list for both

index and leaf container structures and other various implementations. The components of the

generalization library are showed in Figure 4.15.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 70

4.3.1 Key

The Key class provides the type of the key in each tree node and the basic operations on keys.

Examples of key structures include integers for data as in B+-trees and bounding boxes for regions

as in R-trees. The index key type and the leaf key type can be the same, as in B+-trees and R-trees,

but they can be different as in KDB-trees and other point-tree access methods. Therefore, there are

two parameter types for keys: IndexKey and LeafKey. The key type is provided by the file structure

designer.

4.3.2 Node � Key � and Node � Key,Data �

The Node class provides all fields needed for an entry in a container. It is a template class itself

with Key type and possible Data type as parameters depending on where data is stored. In the

GTree definition, the IndexNode is the type used for index nodes and LeafNode is the type used

for leaf nodes in the tree. For different organizations of nodes inside each container, a node has

different fields. For a container with array of nodes, an index node contains a (key, child pointer)

pair. Figure 4.16 shows such a node class named arrayNode. The variable keyValue is the key of

type Key. The variable child is the pointer to its child. In the general node class, child is a void

pointer. The reason for this untyped pointer is that depending on the level in which the node is in

the search tree, child can point to an index container, a leaf container or a data object. If a union

type is used to define child pointer, the container types must be passed to arrayNode class, which

is impossible because the node type is a template parameter for container classes, as discussed in

Section 4.3.3. The arrayNode class provides an overloaded assignment operator and a print routine

for easy manipulation of the container and for debugging.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 71

template<class Key> class arrayNode {
public:

Key keyValue;
void *child;

arrayNode() : child(NULL) {}
arrayNode(Key &r, void *ptr) : keyValue(r), child(ptr) {}
arrayNode &operator=(const arrayNode &e);
void print();

};

Figure 4.16: Array Node Example
template<class Key> class listNode {

public:
Key keyValue;
void *child;
listNode *next;

listNode() : child(NULL), next(NULL) {}
listNode(Key &r, void *ptr) : keyValue(r), child(ptr) {}
listNode &operator=(const listNode &e);
void print();

};

Figure 4.17: List Node Example

Figure 4.17 shows a possible implementation of a node in a container with linked list nodes.

In addition to the key value and child pointer, each node has a link field, a pointer *next, used to

construct the linked list.

A leaf node can contain data objects or a pointer to data objects. Figure 4.18 and 4.19 are

example definitions of such nodes with array and linked list implementations, respectively.

The above commonly used node class implementations are provided in the library so that pos-

sible combinations can be chosen for the index and leaf nodes. File structure designers can always

implement their own node classes.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 72

template<class Key, class Data> class arrayDataNode {
public:

Key keyValue;
Data data; // or Data *data

arrayDataNode();
arrayDataNode(Key &r, Data &data);
arrayDataNode &operator=(const arrayDataNode &e);
void print();

};

Figure 4.18: Array Node with Data
template<class Key, class Data> class listDataNode {

public:
Key keyValue;
Data data; // or Data *data
listDataNode *next;

listDataNode();
listDataNode(Key &r, Data &data);
listDataNode &operator=(const listDataNode &e);
void print();

};

Figure 4.19: List Node with Data

4.3.3 Container � Node �

Containers have nodes inside, so the Container type is a template class with Node as a type pa-

rameter. As discussed in Section 4.1.3, a Container class is used to provide common data variables

and the interface for operations that an individual container needs to specify, like subscripting,

returning the first/last node of the container and adding/deleting nodes to/from the container. The

container can be an array or a linked list. Figure 4.20 and 4.21 list two versions of Container type

definitions. numEntry is the maximum number of entries that the container can hold. Other vari-

ants may support a linear ordering among the nodes; leaf containers may be connected for easy

sequential retrieval.

Associated with each container, there is a Cursor class, which is a generator for the container.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 73

template<class Node> class Array : public Container<Node> {
public:

int numEntry; // number of nodes in this container
private:

Node *firstNodePtr, *lastNodePtr;
Node node[1]; // the first node

public:
class Cursor { // iterator for the container

int i;
Array<Node> *array;

public:
Cursor(Array<Node> *array);

Node *start();
Node *succ();
Node *pred();

};

Array(int size); // constructor
Node &operator[](int i); // subscripting operator
Node *&first(); // first node
Node *&last(); // last node
void printContainer(); // print content of container
void AddNode(Node &node); // add a node to container
void DeleteNode(Node &node); // delete a node from container

}

Figure 4.20: Array Container Example

No matter what kind of structure and implementation a container has, it must provide the Cursor

class with the following common interface:

class Cursor {
// . . .

public:
Node *start(); // the first node
Node *succ(); // the next node
Node *pred(); // the previous node

};

The Cursor class provides a common interface for iterating through containers so that the internal

structure and implementation of a container is transparent.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 74

template<class Node> class List : public Container<Node> {
public:

int numEntry; // number of nodes in this container
private:

ListExpType<Node> expobj;
uUniform usm;
Node *firstNodePtr, *lastNodePtr; // pointers to the first/last node

public:
class Cursor { // iterator for the container

Node *prev;
Node *curr;
List<Node> *list;

public:
Cursor(List<Node> *list);

Node *start();
Node *succ();
Node *pred();

};

List(int size); // constructor
Node *alloc(Node &e); // allocate storage for node
void free(Node *p); // free storage
Node *&first(); // first node
Node *&last(); // last node
void printContainer(); // print content of container
void AddNode(Node &node); // add a node to container
void DeleteNode(Node &node); // delete a node from container

}

Figure 4.21: List Container Example

4.3.4 Data

Data stored in a database may be a basic type, such as integer or float or complex, such as array

or structure, and finally, a user-defined class. A database search tree should be able to index on all

different kinds of data. Thus, the notion of “data” should be represented with minimal dependence

on a special type. The search tree is generalized on the data type by taking the data type as a type

parameter.

Each indexed datum in the database can be an arbitrary data object, fixed or variable sized. The

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 75

data can be stored in the index nodes, but most commonly in the leaves of the search tree. Usually

if the data objects are large, in order to maximize the fanout of the tree, only pointers (tuple ids) to

the actual locations of data objects in the database are stored in leaves of the tree.

4.3.5 Storage Management

Similarly to the key type and the data type, the storage manager type is generalized, and is a

type parameter of the search tree class. The type of the storage manager can be chosen from the

following depending on the type of the data it manages:

� uniform: for storage of fixed size, which is specified with the creation of the storage manager

� variable: for storage of variable size, which is specified on a per allocation basis but can not

be changed later on

� dynamic: for storage of variable size, which is specified on a per allocation basis and can be

subsequently expanded or contracted

4.3.6 GIST � Key, Node, Container �

As discussed in Section 4.1.4, a set of static methods in class GIST provide behaviour routines for

an individual search tree corresponding to a particular implementation. GIST is a template class

with Key, Node and Container type as its type parameters. The following shows the definition of a

GIST class. The file structure designer provides an implementation of a GIST class for each kind

of access method.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 76

template<class Key, class Node, class Container> class GIST {
public:

static bool Consistent(Key &key1, Key &key2);
static Key Union(Container *container);
static Node *ChooseSubtree(Container *container, Key &r);
static void Split(Container *container, Node &e, Container **newContainer);

};

Consistent: Given two nodes, returns true if they match a certain condition, false otherwise. The

matching condition depends on the particular tree structure.

Union: Given a pointer to a container containing nodes
� � 0 � ����� 0 � � ����� � � 8 � ����� 8 � , returns a key �

that covers all nodes in the container, � A � 0 �
�����

� � 8 .

ChooseSubtree: Given a pointer to a container and a key to insert, a node is selected to be the

root of the subtree for insertion depending on the desired property of the tree. For a B-tree with

ordered records in leaves, the node chosen leads to the correct leaf to insert the key according to

the ordering. For an R-tree, the node chosen is the rectangle that needs the least enlargement to

include the key r.

Split: Given a pointer to a full container and a node to be inserted, a new container is created

and the nodes from the old container and the new node are distributed between the two containers.

Different search trees usually have different algorithms on container splitting. The same search

tree may also have different container splitting algorithms. For example, a quadratic and a linear

algorithm can both be applied to an R-tree.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 77

4.4 Tree Generators

The definition of GTreeGen is shown in Figure 4.22. GTreeGen is implemented using coroutines.

Retaining both data and execution state is crucial for creating a generator to traverse a tree structure.

The coroutine allows a generator to return control back to the caller after each node is extracted

but retain its location in the tree structure [Buh95]. Specific tree generators are also coroutines

inheriting from GTreeGen, for example:

template<GTreeType> uCoroutine RangeGen : public GTreeGen<GTreeArgs> { . . . }
template<GTreeType> uCoroutine ContainmentGen : public GTreeGen<GTreeArgs> { . . . }

The member routine uOver resets the generator to the root of the tree. Operator >> resumes

the coroutine main to invoke member nextNode, which performs the recursive traversal of the tree,

suspending back to operator >> for each node satisfying the query. The resume in operator >>

restarts the coroutine in nextNode, where it has suspended. When a query finishes, the generator

returns to the call in GTreeGen::main, which completes the traversal by setting root to NULL.

Member GTreeGen::main then suspends back to operator >>, which returns a NULL data pointer

and false. GTreeGen has two constructors. The first constructor allows the specification of a tree

access object and is employed when the generator is going to be used only once for one particular

tree object, as in:

for(gen(tree); gen >> p) {
p->. . . // reference data in the node

}

The second constructor is employed to create a generator that is subsequently initialized to work

with any associated tree object. The association occurs through the uOver member routine.

In order to accommodate diverse queries, a specific query routine is passed to GTreeGen as a

pointer to a function. For one query, the criteria used on index keys and leaf keys may be different.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 78

For example, a containment window query needs to test the overlap relation between the query key

and index keys and to test the containment relation between the query key and leaf keys. Hence,

two pointers to query function are used in GTreeGen with Consistent applying to index keys and

Query applying to leaf keys.

A counter (variable count) is used to control traversal if only a certain number of records are

needed. For example, a query such as “get the first 10 records in the range from Key1 to Key2” can

be performed by a generator declared as (where tr represents the tree file structure):

RangeGen<. . .> gen(tr,Key1,Key2,10);

The default value for the counter is -1, which means the query is conducted on the entire tree

structure.

4.5 Summary

The essential nature of a database search tree and the general notion of a search key provide the ba-

sis for generalizing tree operations. Multiple levels of generalization are shown. The levels include

tree functionality, container structure, tree behavior, tree generator, index and storage management.

Finally, the implementation of the generalization is presented, including the hierarchy of persistent

tree classes and the components of the generalized tree class library.

CHAPTER 4. GENERALIZING PERSISTENT SEARCH TREES 79

template<GTreeType> uCoroutine GTreeGen {
protected:

const GTreeAccess<GTreeArgs> *ga;
IndexContainer *root;
LeafNode *curr;
LeafKey testkey;
bool (*Consistent)(IndexKey key1, LeafKey key2);
bool (*Query)(LeafKey key1, LeafKey key2);
LeafContainer *parentPtr;
int count;

void nextNode(IndexContainer *c);

void main() {
nextNode(root);
root = NULL;
curr = NULL;
uSuspend;

}
public:

GTreeGen(const GTreeAccess<GTreeArgs> &ga,
bool (*Consistent)(IndexKey, LeafKey),
bool (*Query)(LeafKey, LeafKey),
LeafKey testkey, int count = -1);

GTreeGen(bool (*Consistent)(IndexKey, LeafKey),
bool (*Query)(LeafKey, LeafKey),
LeafKey testkey, int count = -1);

void uOver(const GTreeAccess<GTreeArgs> &ga) {
RepWrapper wrapper(ga.repacc);

GTreeGen::ga = &ga;
root = ga.tree.SegZero->Root;

}

bool operator>>(LeafNode *&tp) {
RepWrapper wrapper(ga->repacc);
if (root != NULL) uResume;
tp = curr;
return root != NULL;

}
};

Figure 4.22: GTree Generator

Chapter 5

Example File Structures and Experiments

After constructing the generalized search tree and developing the specialization component library,

the next goal is to demonstrate the feasibility of the generalization idea on database search trees;

that is, to show that the overhead of generalization does not affect the performance of search trees

significantly. The most effective way of doing so is to design and construct illustrative search tree

structures and run experiments on them. B+-tree, R-tree and R*-tree file structures are developed

from the generalized search tree toolkit.

5.1 B+-tree Example

Section 4.2.3 showed the definition of a B+-tree. A B+-tree can take advantage of the existing

operations provided in GTree. The key class contains a value of the same type as the indexed data.

For keys in ascending order, the implementation of the GIST methods are:

� bool Consistent(Key &key1, Key &key2): if key1 � key2, then return true, otherwise

return false

80

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 81

� Key Union(Container *container): return the last key, which is the biggest value, in the

container

� Node *ChooseSubtree(Container *container, Key &r): return the address of the first

node in the container whose key is greater than key r. If r is greater than all keys in the

container, the last node is returned

� void Split(Container *container, Node &e, Container **newContainer): first half of old

container and the new node go into the old container and the second half go into the new con-

tainer

The queries supported by the B+-tree are exact match and range queries. To achieve efficient

range queries, B+-tree range generators are developed on the basis of GTreeGen, taking full advan-

tage of sequential scan. The overloaded coroutine main is shown in Figure 5.1, where querykey1

and querykey2 represent the range of the query and variable count is used to control the number of

records needed for partial retrieval.

Several versions of B+-tree with different index or leaf structures can be developed very easily

by specifying appropriate template parameters in the B+-tree definition. For the experiment, the

B+-tree has an array of (key, pointer) pairs in its index containers and a linked-list with (key, data)

in its leaf containers. To declare an instance of such a B+-tree, the following statement is used:

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 82

template<GTreeType> uCoroutine RangeGen : public GTreeGen<GTreeType> {
const BTreeAccess<GTreeArgs> *ba;
LeafKey querykey2; // the end of the range
int count;

void main() {
nextNode(root); // get the first record in the range
if(count > 0) count--;

LeafContainer::Cursor cursor(parentPtr);
LeafNode *start = cursor.current(curr->next);
for(; ;) { // sequential through rest leaves till reach the end of the range

for(curr = start; curr; curr = cursor.succ()) {
if(Less(curr->rect, querykey2)) root = NULL;
uSuspend;
if(count > 0) count--; // -1 => infinite maximum number
if(count == 0) break;

} // get nodes out of the first leaf in the range

if(count == 0) break;

parentPtr = parentPtr->nextPtr; // get the next leaf
if(!parentPtr) { // exhaust all nodes till last leaf

root = NULL;
uSuspend;

} // if
cursor.over(parentPtr);
start = cursor.start();

} // for

root = NULL;
uSuspend;

}
public:

RangeGen(LeafKey querykey1, LeafKey querykey2, int count = -1);
RangeGen(const BTreeAccess<GTreeArgs> &ba, LeafKey querykey1,

LeafKey querykey2, int count = -1);

void uOver(const BTreeAccess<GTreeArgs> &ba);
bool operator>>(LeafNode *&tp);

};

Figure 5.1: BTree Range Generator Example

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 83

BTree< Bkey, arrayNode<Bkey>, Array< arrayNode<Bkey> >,
arrayGist< arrayNode<Bkey>, Bkey, Array< arrayNode<Bkey> > >,
Bkey, listDataNode<Bkey,Data>, List< listDataNode<Bkey,Data> >,
listGist< listDataNode<Bkey,Data>, Bkey, List<listDataNode<Bkey,Data> > >,
> btree("testdb", // UNIX file name

// creation only arguments
10000*1024, // initial size of segment
10000*1024, // index size
1024 // container size

);

The node types and container types can be chosen from the generalization library. Only the key

type and GIST methods need to be specified. Two different implementations for the same set

of GIST method are used here, arrayGist and listGist. The UNIX file name for this B+-tree file

structure is testdb with an initial size of 10M bytes. The container size chosen is 1K.

5.2 R-tree Example

Similar to the B+-tree, an R-tree is defined as:

template<GTreeType> class RTree : public GTree<GTreeArgs> {
friend class RTreeAccess<GTreeArgs>;

char *fileName;
RTreeAdmin<GTreeArgs> *admin;

public:
RTree(char *Name, int initSize, int indexSize, int dataSize, int containerSize);
~RTree();

};

In the 2-dimensional domain, the keys in the tree are 4 numbers of type float, representing the

upper-left and lower-right corners of rectilinear bounding rectangles for 2d-objects. The following

is the implementation of the GIST methods:

� bool Consistent(Key &key1, Key &key2): if key1 is contained in key2, then return true,

otherwise return false

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 84

� Key Union(Container *container): return a rectangle having the smallest lower-right cor-

ner and the biggest upper-left of all rectangles in the container

� Node *ChooseSubtree(Container *container, Key &r): return the address of the node

in the container whose rectangle needs the least enlargement to include the key r (If several

nodes qualify, one node is chosen randomly.)

� void Split(Container *container, Node &e, Container **newContainer): splitting uses

Guttman’s quadratic splitting algorithm

Besides exact matching, the queries supported are point queries and window queries including

containment, enclosure and intersection queries. The generator classes for these queries simply

inherit from GTreeGen class and pass the query routines to the constructor of GTreeGen. For

example, the following is the generator for containment queries, where the query routines used are

Overlap, for querying on index containers, and Contained, for querying on leaf containers:

template<GTreeType> uCoroutine ContainmentGen : public GTreeGen<GTreeType> {
public:

ContainmentGen(const RTreeAccess<GTreeArgs> &tr, LeafKey querykey,
int count = -1) :

GTreeGen<GTreeType>(&Overlap, &Contained, testkey, count) { . . . }
};

An R-tree file structure with separate index and data parts is built. To declare an R-tree instance

with backing-store file name testdb and initial file size 2500K is:

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 85

RTree< Rect, indexNode<Rect>, Array<indexNode<Rect> >,
arrayGist<indexNode<Rect>,Rect,Array<indexNode<Rect> > >,
Rect, indexNode<Rect>, Array<indexNode<Rect> >,
arrayGist<indexNode<Rect>,Rect,Array<indexNode<Rect> > >,
Data, uUniform
> rtree("testdb", // UNIX file name
// creation only arguments
2500*1024, // initial size of segment
1000*1024, // index size
1000*1024, // data size
1024 // container size

);

5.3 R*-tree Example

As introduced in Section 2.1.3, R*-trees differ from R-trees mainly in the insertion algorithm. An

R*-tree inherits from the R-tree and uses an overloaded insertion routine to implement the forced

reinsertion policy:

template<GTreeType> class RStarTree : public RTree<GTreeArgs> {
friend class RStarTreeAccess<GTreeArgs>;

public:
RStarTree(char *Name, int initSize, int indexSize, int dataSize, int containerSize);
~RStarTree();

int Insert(LeafKey &r, Data *data, int size); // overloaded routine
};

To achieve dynamic reorganizations of old rectangles, the R*-tree forces nodes to be reinserted

during the insertion routine. Whenever an overflow occurs, an algorithm called OverflowTreatment

is used:

OverflowTreatment: if the container is not the root and this is the first call of OverflowTreatment

at this container level during the insertion of one data rectangle, then invoke ReInsert, else invoke

Split as in the R-tree.

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 86

ReInsert: for all
� � = � nodes of a container C, compute the distance between the centers of

their rectangles and the center of the bounding rectangle for C; sort the nodes in decreasing order

of their distances; remove the first 30% nodes from C and adjust rectangle of C; invoke Insert for

the nodes removed.

Declaring the R*-tree is similar to that of the R-tree, except that for template parameter GIST,

the ChooseSubtree method uses an alternative algorithm for testing a rectangle’s area, margin and

overlap in different combination in order to minimize overlaps.

5.4 Experiments

For each experiment, the performance gathered is the elapsed time, which is the real clock time

from the beginning to the end of a test run. All experiments show that the search trees developed

from the generalized model have competitive performances comparing to traditional search trees

developed from scratch.

5.4.1 B+-trees

Query performances are compared for the B+-tree inheriting from GTree and a B+-tree developed

from scratch, both using memory mapping. For each of the B+-trees, 100,000 uniformly distributed

records are generated with keys taken from the unit interval. The records are inserted into the B+-

tree. For the resulting B+-tree, two kinds of queries are conducted. First, for exact matches, query

files with three different distributions, normal, uniform and random, are generated with 10, 100,

1000 query keys in each file for all distributions. For each query file, the experiment searches for

the specified key in the B+-tree and retrieved the corresponding data record. Second, for multiple-

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 87

response searches, four query files are generated with each requiring 10,000 records to be read in

total in response to a collection of multiple-response queries of a given size. An individual query

in each file is specified by a key based on a uniform distribution and a fixed number of records

(the size of the range query) to be read sequentially starting from the specified key. Each of the

query files is described by a tuple � n,m � where n is the total number of queries in the file and m

is the size of each query. For example, � 10,1000 � implies 10 queries of size 1,000 records each

and the query file consists of 10 keys from a uniform distribution. For each key, the experiment

searches for the key in the B+-tree and reads up to 1,000 data records sequentially by following

the leaf links of the B+-tree. Tables 5.1 and 5.2 show the experiment results for exact matching

queries and multiple-response queries respectively. The results are essentially identical, given that

the experiments were run with other users on the computer.

Elapsed Time (in secs) of Each Run
Generalized

Query number memory mapped memory mapped
Distribution keys B+-tree B+-tree

normal 10 0.14 0.16
100 0.15 0.17
1000 0.33 0.33

uniform 10 0.15 0.16
100 0.16 0.17
1000 0.35 0.34

random 10 0.15 0.16
100 0.16 0.17
1000 0.36 0.35

Table 5.1: Experiment Results of Exact Matching Queries on B+-trees

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 88

The Elapsed Time (in secs) of Each Run
Generalized

Query memory mapped memory mapped
Distribution B+-tree B+-tree

� 1,10000 � 0.58 0.58
� 10,1000 � 0.66 0.61
� 100,100 � 0.84 0.77
� 1000,10 � 1.85 1.84

Table 5.2: Experiment Results of Multi-response Queries on B+-trees

5.4.2 R-trees and R*-tree

The experiment is conducted on an R-tree developed using traditional I/O with a generalized R-tree

and R*-tree using memory mapping. Each tree is populated with data obtained from a standardized

testbed [BKSS90]. The data consists of 100,000 2-dimensional rectangles where each rectangle is

assumed to be in the unit square
� �
� � 2 . The centers of the rectangles follow a 2-dimensional inde-

pendent uniform distribution. These rectangles are the minimum bounding rectangles of elevation

lines from real cartography data. The query files used for the experiment are also taken from the

same testbed and consist of 1000 point queries and 400 each of the containment, enclosure and in-

tersection window queries. The experiment results are shown in Table 5.3. The generalized R-trees

are slightly slower. It is difficult to determine if the slow down is the result of the generalization

or the difference between traditional I/O and memory mapping I/O. Since performance of the two

memory mapping B+-trees is identical, the cause of the difference is probably the I/O.

5.5 Summary

This chapter demonstrated the feasibility and viability of the generalization on database search

trees. Example B+-tree, R-tree and R*-tree file structures were easily built to illustrate different

CHAPTER 5. EXAMPLE FILE STRUCTURES AND EXPERIMENTS 89

The Elapsed Time (in secs) of Each Run
Generalized Generalized Traditional

Query memory mapped memory mapped I/O
Type R-tree R*-tree R-tree

containment 0.18 0.16 0.17
enclosure 0.15 0.15 0.11
intersection 0.22 0.22 0.18
point 0.48 0.47 0.34

Table 5.3: Experiment Results on R-trees and R*-tree

capabilities of the generalization and for running experiments. The experimental results show that

the generalization does not affect the performance of search trees significantly.

Chapter 6

Conclusion

The generalized search tree provides all the basic search tree logic required to build most tree based

access methods. It unifies distinct structures, such as B-trees and R-trees. Specific search trees can

be built from the generalized model significantly faster and more reliably than hand-coding. As

well, flexibility is provided for search tree developers to choose the kind and number of indices,

the internal representation and implementation of index and leaf, as well as the specific algorithms

for particular operations. The tree generators are able to support an extensible set of queries and

provide a unified interface for the queries.

In summary, the generalizations for search tree file structures are:

� Functionality: basic search tree operations are captured in a base tree class.

� Structure: container structure makes internal representation and implementation transparent.

� Behaviour: parameterization of behaviour routines allow different algorithms and imple-

mentation.

90

CHAPTER 6. CONCLUSION 91

� Generator: extensible set of queries can be built easily and have unified interface.

� Index: flexibility is provided in the kind and number of indices.

� Storage management: nested storage managers provide efficient memory management at all

levels.

A generalized class library is created including a small set of specialized components so that

a search tree file structure developer is not required to write all the components from scratch. By

carefully selecting components from the library and only specializing components needed for a

new algorithm/data-structure, a new tree access method can be created, and subsequently tested,

significantly faster than via the traditional approach, as experienced in developing the example tree

file structures in this thesis.

Performance experiments demonstrate the feasibility and viability of the generalization idea to

achieve efficient implementation of tree access methods.

6.1 Future Work

This thesis concentrates on the generalization on database search trees. More work is needed to

explore the idea on other database access methods, such as hashing techniques. Currently, the

generalization of tree access methods is only pursued in a memory mapped environment, but the

ideas are also applicable in a traditional environment and possibly on more complex data structures.

Bibliography

[ABC � 83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An ap-

proach to persistent programming. The Computer Journal, 26(4):360–365, November

1983.

[Ben75] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, 1975.

[BGW92] Peter A. Buhr, Anil K. Goel, and Anderson Wai. � Database : a toolkit for constructing

memory mapped databases. Persistent Object Systems, pages 166–185, 1992.

[BKSS90] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient

and robust access method for points and rectangles. In ACM SIGMOD International

Conference on Management of Data, pages 322–331, 1990.

[BM72] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indices.

Acta Information, 1(3):173–189, 1972.

[Buh95] Peter A. Buhr. Understanding Control Flow with Concurrent Programming Using

� C++. http://www.uwaterloo.ca/ cs342, 1995.

92

BIBLIOGRAPHY 93

[Com79] D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(2):121–138, 1979.

[DD94] H. M. Deitel and P. J. Deitel. C How to Program. Prentice Hall, 2 edition, 1994.

[FNPS79] R. Fagin, J. Nievergelt, N. Pippenger, and R. Strong. Extendible hashing: a fast access

method for dynamic files. ACM Transactions on Database Systems, 4(3):315–344,

1979.

[Fre87] M. Freeston. The bang file: a new kind of grid file. In ACM SIGMOD International

Conference on Management of Data, pages 260–269, 1987.

[GG98] Volker Gaede and Oliver Gunther. Multidimensional access methods. ACM Computing

Surveys, 30(2):171–231, 1998.

[Goe96] Anil K. Goel. Exact Positioning of Data Approach to Memory Mapped Persistent

Stores : Design, Analysis and Modelling. PhD thesis, University of Waterloo, 1996.

[Gun88] O. Gunther. Efficient structures for geometric data management. In LNCS, number

337. Springer-Verlag, 1988.

[Gun89] O. Gunther. The cell tree: an objected-oriented index structure for geometric databases.

In Proceedings of 5th IEEE International Conference on Data Engineering, 1989.

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In ACM

SIGMOD International Conference on Management of Data, pages 47–54, 1984.

[HNP95] J. M. Hellerstein, J. F. Naughton, and Avi Pfeffer. Generalized search trees for database

systems. In Proceedings of the 21st International Conference on Very Large Data

Bases, Zurich, Switzerland, 1995.

BIBLIOGRAPHY 94

[HSW88] A. Hutflesz, H. W. Six, and P. Widmayer. Globally order preserving multidimensional

linear hashing. In Proceedings of 6th IEEE International Conference on Data Engin

eering, pages 572–579, 1988.

[HSW89] Andreas Henrich, Hans-Werner Six, and Peter Widmayer. The lsd tree : spatial access

to multidimensional point and non point objects. In Peter M.G. Apers and Gio Wieder-

hold, editors, Proceedings of the International Conference on Very Large Data Bases,

Amsterdam, Netherlands, 1989.

[HSW90] A. Hutflesz, H. W. Six, and P. Widmayer. The r-file: an efficient access structure

for proximity queries. In Proceedings of 6th IEEE International Conference on Data

Engin eering, pages 372–379, 1990.

[Knu73] D. Knuth. sorting and searching. In The Art of Computer Programming, volume 3.

Addison-Wesley, 1973.

[Lar80] P. A. Larson. Linear hashing with partial expansions. In Proceedings of the Sixth

International Conference on Very Large Data Bases, pages 224–232, 1980.

[Lit80] W. Litwin. Linear hashing: a new tool for file and table addressing. In Proceedings of

the Sixth International Conference on Very Larg e Data Bases, pages 212–223, 1980.

[LS89] David B. Lomet and Betty Salzberg. A robust multi-attribute search structure. IEEE

Conference on Data Engineering, pages 296–304, 1989.

[LS90] David B. Lomet and Betty Salzberg. The hb-tree: a multiattribute search structure.

ACM Transactions on Database Systems, 15(4):625–658, 1990.

BIBLIOGRAPHY 95

[Nah90] Stefan Naher. Leda, 1990.

[NHS84] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: an adaptable, symmetric

multikey file structure. ACM Transactions on Database Systems, 9(1):38–71, 1984.

[OM84] J. Orenstein and T. H. Merrett. A class of data structures for associative searching. In

ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 181–

190, 1984.

[OS90] Y. Ohsawa and M. Sakauchi. A new tree type data structure with homogeneous node

suitable for a large spatial database. In Proceedings of 6th IEEE International Confer-

ence on Data Engin eering, pages 296–303, 1990.

[Rob81] J. T. Robinson. The k-d-b-tree: a search structure for large multidimensional dynamic

indexes. In ACM SIGMOD International Conference on Management of Data, pages

10–18, 1981.

[SK88] B. Seeger and H. P. Kriegel. Techniques for design and implementation of spatial

access methods. In Proceedings of the 14th International Conference on Very Large

Data Bases, pages 360–371, 1988.

[SL95] Alexander Stepanov and Meng Lee. The Standard Template Library, 1995.

[SRF87] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dynamic

index for multi-dimensional objects. In Peter M Stocker and William Kent, editors,

Proceedings of the Thirteenth International Conference on Very Large Data Bases,

pages 507–518, Brighton, England, 1987.

BIBLIOGRAPHY 96

[SSH86] M. Stonebraker, T. Sellis, and E. Hanson. An analysis of rule indexing implementa-

tions in database systems. In Proceedings of 1st International Conference on Expert

Database Systems, 1986.

[Sto86] Michael Stonebraker. Inclusion of new types in relational database systems. In Pro-

ceedings of 4th IEEE International Conference on Data Engin eering, pages 262–269,

Washington, D.C., 1986.

[Str97] Bjarne Stroustrup. C++ Programming Language. addison wesley, 1997.

