
Compiling Standard ML to Java

by

Simon Gammage

An essay

presented to the University of Waterloo

in ful�lment of the

essay requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 1997

c

Simon Gammage 1997

I hereby declare that I am the sole author of this essay.

I authorize the University of Waterloo to lend this essay to other institutions or individ-

uals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this essay by photocopying

or by other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

ii

The University of Waterloo requires the signatures of all persons using or photocopying

this essay. Please sign below, and give address and date.

iii

Abstract

The phenomenal recent success of the Java programming language stands in stark contrast

to the reluctance with which other new languages have been greeted in industry. Java's

popularity can be attributed to both its super�cial similarity to C++, and, perhaps more

importantly, the massive proliferation of the Java Virtual Machine (JVM), to which Java is

most often compiled. The Java language is not, however, a signi�cant improvement over other

conventional languages like C and C++; Standard ML (SML) incorporates many advanced

features not o�ered by Java (such as parametric polymorphism, an advanced module system,

type inference, and algebraic datatypes), and therefore o�ers a potentially more attractive

model for Internet programming. This document describes a compiler which dispenses with

the Java language, and instead compiles SML to the Java Virtual Machine. Both the wide

availability of the JVM, and the many powerful features of SML, are thereby exploited.

Compilation from SML to the JVM runs into many of the traditional problems of compiling

functional languages; to deal with these, several advanced implementation techniques are

employed, including representation analysis, A-normalization, and closure conversion, in the

framework a type-directed compilation strategy. The result is a compiler which demonstrates

both the feasibility of compiling high-level typed languages to the JVM, and the utility of

advanced compilation techniques.

iv

Acknowledgements

I would like to thank my family, without whose constant moral (not to mention �nancial)

support in the face of my frequently changing plans, the last seven years would have not

been possible. I would also like to thank Professor Dominic Duggan for giving me the

opportunity to complete my MMath at Waterloo. My thanks also to Professor Peter Buhr

for acting as my supervisor after Dominic's departure and providing valuable feedback on

the essay, and to Professors Bruce Simpson and Peter Forsyth for their excellent instruction

and encouragement outside the classroom. Finally, I would like to thank my friends, whose

friendship over the last seven years has made my stay in Waterloo worthwhile, and who have

taught me more of value than the sum of my academic courses.

v

Contents

1 Introduction 1

2 Overview 3

2.1 Introduction . 3

2.2 Standard ML . 3

2.3 Java . 4

2.4 Java and the JVM . 4

2.5 Compiler Architecture . 5

3 The Front End 7

3.1 Introduction . 7

3.2 The ML Kit . 7

3.2.1 Lambda . 8

3.3 Typed Intermediate Languages . 12

3.3.1 �

ML

i

. 13

3.3.2 Lambda to �

ML

i

-Rep . 20

3.3.3 Optimization . 25

4 Representation Analysis 27

4.1 Introduction . 27

4.2 Traditional Approaches . 30

4.3 Coercion-Based Approaches . 31

4.4 Type Passing Approaches . 33

4.5 Hybrid Approaches . 33

4.6 Implementation . 34

4.6.1 Type Translation . 35

4.6.2 Term Translation . 36

5 A-Normalization 37

5.1 Introduction . 37

5.2 Continuation Passing Style and A-Normal Form 38

vi

5.3 �

ML

i

-Norm . 39

6 Closure Conversion 44

6.1 Introduction . 44

6.2 Typed Closure Conversion . 45

6.3 Hoisting . 50

7 Translation to Java 51

7.1 Introduction . 51

7.2 Type Erasing . 51

7.3 Type Translation . 52

7.3.1 Basic Types . 52

7.3.2 Enumerated Types . 52

7.3.3 Record Types . 52

7.3.4 Sum Types . 53

7.3.5 Arrow Types . 54

7.3.6 Type Variables . 54

7.3.7 Exception Types . 54

7.3.8 Recursive Types . 56

7.4 Code Translation . 56

7.5 Polymorphic Equality . 60

7.6 Wrapping and Unwrapping . 61

8 Summary, Future Work and Conclusion 64

8.1 Summary . 64

8.2 Future Work . 64

8.3 Conclusion . 65

Bibliography 66

vii

List of Figures

2.1 Architecture of the compiler . 6

3.1 Lambda: Types and primitives . 9

3.2 Lambda: Expressions and programs . 10

3.3 �

ML

i

-Rep: Kinds, constructors and types . 15

3.4 �

ML

i

-Rep: Unary operators, binary operators and coercions 16

3.5 �

ML

i

-Rep: Declarations and misc ops . 16

3.6 �

ML

i

-Rep: Expressions . 17

5.1 �

ML

i

-Norm: Declarations and expressions . 41

5.2 �

ML

i

-Norm: Statements and misc ops . 42

6.1 �

ML

i

-Close: Kinds, constructors and types 47

6.2 �

ML

i

-Close: Declarations and misc ops . 48

6.3 �

ML

i

-Close: Expressions and statements . 49

viii

Chapter 1

Introduction

Programming language research has received considerable recent public attention with the

emergence of the Java programming language [19]. In the past, new programming languages

have been only reluctantly (if at all) adopted by the computing community at large. Despite

�fty years of programming language research, and the design and development of many hun-

dreds of languages, only about ten are in widespread use today | Sammet lists Ada, APT,

C, C++, COBOL, Common Lisp, FORTRAN, Pascal, Prolog and Smalltalk [37]. Conspicu-

ously absent from this list are the many advanced languages, like Standard ML, Modula-3

and Haskell, which have periodically appeared, and almost always failed to achieve success

outside the academic community. By contrast, Java has been embraced by programmers in

academia and industry alike in a very short space of time.

Java has two key features that make it attractive:

1. It is syntactically and semantically similar to C++ [41], meaning that experienced C++

programmers can learn Java quickly. Furthermore, Java addresses some of the more

serious shortcomings and insecurities of C++, making it more appealing for use in

environments requiring robust and secure programs (such as the World Wide Web).

2. Java is closely associated with a virtual machine model (the Java Virtual Machine

(JVM) [28]), to which it is most often compiled. JVM interpreters have been very

widely disseminated, most often as components of web browsers. This feature is crucial

| it means that programmers can write applications in Java which can be run on

millions of machines around the world without regard for architecture, memory model,

operating system, or any other of the other miscellaneous barriers to portability. The

JVM is as close to a `universal' machine as has been seen in recent years.

Despite its sudden popularity, the Java language, while a tidy subset of C++, is only a

small step forward in language design, and deliberately so. Languages like Standard ML

(SML) [30, 36, 49] incorporate advanced features absent from Java, and thus o�er a more

attractive programming model, perhaps better suited to the task of Internet programming.

1

CHAPTER 1. INTRODUCTION 2

If the real innovation of Java is the massive proliferation of the JVM, one is tempted to

dispense with the Java language altogether, and instead use the JVM as a universal machine

code.

This document describes the design and implementation of a compiler which adopts pre-

cisely this strategy, compiling a subset of the SML to the JVM. While the idea of translating

non-Java languages to the JVM is by no means novel | see, for example, Intermetrics' Ap-

pletMagic Ada95-to-JVM compiler [42], or the Kawa Scheme-to-Java compiler [12] | some

of SML's features make the translation particularly challenging. To deal with these issues, a

number of advanced compilation techniques are employed, including A-normalization, rep-

resentation analysis, and closure conversion. The compiler described is therefore both a

demonstration of the feasibility of compiling advanced languages to the JVM, and an explo-

ration of implementation techniques for those languages.

Chapter 2

Overview

2.1 Introduction

This chapter provides brief summaries of the languages involved in the translation (Standard

ML and Java), and presents an overview of the compiler's architecture.

2.2 Standard ML

The Standard ML programming language (SML) can be succinctly characterized as a strongly,

implicitly and polymorphically typed, impure, and strict functional language. SML is �rst

and foremost a functional language, and encourages a functional style of programming. It

is not purely functional, however, as it includes support for traditional imperative features

(although they are not always convenient to use, and cause some trouble for the type system

[46, 53]). SML incorporates many of the advanced features characteristic of languages devel-

oped in the last twenty years, including �rst-class functions, exception handling, algebraic

data types, abstract types, and an advanced module system, including facilities for parame-

terized modules (functors); it is not, however, nor does it claim to be, `object-oriented'.

One interesting feature of SML is that it possesses a formal de�nition of its static and

dynamic semantics, in the form of the De�nition of Standard ML [30] and accompanying

Commentary [29]. The De�nition has recently been amended to simplify some of the more

awkward features of the original language [31] | the revised language is referred to as

SML97. These documents provide the compiler implementor with a precise speci�cation for

both compile-time analysis (static semantics), and run-time behaviour (dynamic semantics)

of SML programs.

There are several guides to programming in SML at a range of skill levels, to which the

reader is referred for a comprehensive language overview [49, 36]. Broad familiarity with

SML is assumed in this document.

3

CHAPTER 2. OVERVIEW 4

2.3 Java

The Java programming language is to C++ what Scheme is to Lisp: a cleaned-up variant,

retaining the avour of the original language, while adding a few features.

The most obvious di�erence between C++ and Java is that Java does not possess pointer

types; in Java, all instances of classes are heap-allocated, whereas all instances of primitive

types (int, double, and so on) are stack-allocated. Java also incorporates automatic storage

management (garbage collection), a feature notably absent from C++.

Java's object model is also slightly di�erent from that of C++:

� In addition to traditional classes, Java introduces the notion of an interface, which is

essentially a class signature.

� Whereas C++ permits multiple inheritance, Java allows to single inheritance only (al-

though classes may implement multiple interfaces, and an interface may be an extension

of multiple interfaces).

� In Java, all functions must be methods of classes, and the only user-de�nable types

are classes and interfaces; Java therefore restricts the programmer to a more purely

object-oriented mode of operation than C++.

Although it does not possess a formal semantics in the manner of SML's De�nition, Java's

static and dynamic semantics are reasonably well-de�ned by the Java Language Speci�cation

[19]. Again, there are a wide variety of Java programming guides available, to which the

reader is referred for a language overview (see [9], for example); familiarity with Java is

assumed in this document.

2.4 Java and the JVM

Compilers have traditionally translated the source language into assembly code for the target

platform (native-code compilers). This approach is attractive from the standpoint of perfor-

mance, but can result in considerable development e�ort if the source language is relatively

high-level, and means that the compiler must be customized for each target architecture.

Another approach is to translate the source language into another high-level language

for which a compiler already exists. This approach sacri�ces some performance for reduced

development time and enhanced portability, especially if a widely used language (like C or

C++) is used as the target. Several major projects have adopted this approach, including

compilers for FORTRAN [15], Pascal [17], Standard ML [45], Scheme [10], and Haskell [23],

all of which use C as the target language.

Compilation to the JVM does not fall neatly into either category, however, since the JVM,

although nominally a machine code, is relatively high-level. In particular, it includes some

constructs not normally found in assembly code (such as representation of classes, interfaces

CHAPTER 2. OVERVIEW 5

and exceptions), and lacks others (such as non-local gotos). The JVM also includes di�erent

operations for di�erent operand types, giving it somewhat the avour of a typed language,

as distinct from traditional assembly code, which is more or less untyped. Compilation to

the JVM therefore takes much more the character of a source-to-source translation (where

in particular type information must be preserved) than a traditional source-to-assembly

translation.

Further inspection of the JVM reveals that it is very strongly tied to the Java language.

Many Java language constructs (including classes, interfaces and exceptions) map directly

to JVM constructs, making the task of compiling to the JVM almost identical to that of

compiling to the Java language. In the interests of simplicity and ease of development, then,

it was decided to compile SML to Java and then use an existing Java compiler to compile

to the JVM. It is gratifying to note that other projects have independently adopted this

strategy, for much the same reasons [35].

2.5 Compiler Architecture

In common with most compilers, the SML-to-Java compiler is structured as a pipeline of

stages, each stage passing its results to the next for further transformation. The SML-to-Java

compiler comprises six stages, as illustrated in Figure 2.1.

The �rst stage of compilation is the traditional `front-end' of the compiler, performing

lexical analysis, parsing, type checking (elaboration), and translation to an intermediate

language Lambda (a typed �-calculus). This stage of translation is described in Chapter 3.

The second stage translates from Lambda to another (somewhat di�erent) �-calculus,

�

ML

i

, which is used as the basis for further intermediate form transformations. This trans-

lation is also described in Chapter 3.

The next three stages perform transformations on the �

ML

i

intermediate form. The

�rst such transformation is representation analysis (discussed in Chapter 4), which deals

with issues arising from SML's polymorphic type system. The next transformation is A-

normalization (discussed in Chapter 5), where a distinction between expressions and state-

ments is introduced. The �nal transformation is closure conversion (discussed in Chapter 6),

where SML's �rst-class functions and nested scope are dealt with.

The �nal stage of the compiler translates the (suitably transformed) �

ML

i

intermediate

form to Java code. This process is described in Chapter 7. The Java code generated by the

compiler can then be compiled and run by an existing Java compiler and interpreter (such

as Sun's Java Development Kit (JDK), or Microsoft's Visual J++).

CHAPTER 2. OVERVIEW 6

#

"

!

#

"

!

#

"

!

#

"

!

#

"

!

#

"

!

?

?

?

?

?

?

?

Lambda to �

ML

i

Representation

Analysis

Closure

Conversion

�

ML

i

to Java

Front End

SML Code

Java Code

A-Normalization

Figure 2.1: Architecture of the compiler

Chapter 3

The Front End

3.1 Introduction

Compilers are traditionally separated into front- and back-ends: the front-end performs

lexical and syntactic analysis, and semantic analysis such as type-checking, whereas the

back-end is responsible for code generation. This chapter discusses the front-end of the

SML-to-Java compiler.

3.2 The ML Kit

Lexical and syntactic analysis of SML has been an area of signi�cant complexity for SML

compilers [5, 8, 11, 14], due in no small part to the ambiguous grammar presented in the

De�nition. The static semantics, by contrast, are well understood and easily translated into

practice; indeed, the ML Kit system [11, 47] includes an almost literal implementation of the

static semantics of the De�nition in SML, as well as a full lexer and parser

1

. Rather than

revisit problems solved by the Kit's implementors, it seems sensible to make use of the Kit's

front-end, and simply implement a new back-end for the translation to Java. This approach

has been adopted by a number of other projects [43, 14].

The SML-to-Java compiler thus makes use of the front-end provided by the ML Kit

version 2 to perform lexical analysis, syntactic analysis, and elaboration. As a further bene�t,

the Kit version 2 includes a compiler to a typed �-calculus Lambda, which performs pattern-

matching compilation. With the issues of type-checking and pattern-matching resolved,

the development of the SML-to-Java compiler can focus on the speci�c issues related to

translation to Java.

1

Version 1 of the Kit also includes a full interpreter for SML, based on the dynamic semantics of the

De�nition, and a small compiler. Version 2 of the Kit (with region inference) includes a full region-based

compiler.

7

CHAPTER 3. THE FRONT END 8

3.2.1 Lambda

The ML Kit's Lambda language is essentially a simpli�ed form of the abstract syntax for

SML presented in the De�nition, with pattern-matching reduced to simpler constructs. The

abstract syntax for Lambda is shown in Figures 3.1 and 3.2. Here i represents an integer, r

a real number, s a string, t a type name, c a datatype constructor name, ex an exception

constructor name, x an expression variable, and � a type variable. Each kind of variable

exists in its own name space.

A Lambda monotype � can be a type variable �, a function type (�

1

; : : : ; �

n

) ! � , an

instance of a datatype (�

1

; : : : ; �

n

) t, or a record type h�

1

� � � � � �

n

i. A polytype (or type

scheme) � is a universally quanti�ed monotype. A type instance � is a lists of types, used to

annotate term variable occurrences, and in construction of datatypes. A datatype corresponds

to an SML datatype declaration, and represents the sum type of constructors c

i

, each

possibly carrying a type �

i

, abstracted over by a set of type variables �

1

; : : : ; �

n

. The arity

of a datatype is de�ned as the number of abstracted type variables. Types int, real, string,

exn, instream and outstream are treated as arity-0 datatypes with no constructors (essentially

abstract types), bool is treated as an arity-0 datatype with constructors true and false, and

list is treated as an arity-1 datatype with constructors nil and :: (cons). A dgroup de�nes a

group of mutually recursive datatype declarations. Finally, a datbind represents the datatype

declarations for a Lambda program.

Lambda primitives include injection into and selection from datatypes (con and decon)

at a particular type instance �, injection into and selection from exception packets (excon

and deexcon), construction of and projection from records (record and �

i

), dereference, con-

struction and assignment operations on reference types (annotated by the referred-to type),

equality and inequality testing operations, arithmetic and comparison operations, some of

which are overloaded for integer and real types (shown by subscripts int and real respectively),

operations on strings (including concatenation and length computation), and I/O operations,

including the print operation overloaded for integers, strings, booleans, and reals.

A Lambda expression (or term) can be:

� a variable annotated with its instantiating type,

� an integer, string or real constant.

� a �-abstraction (i.e. anonymous function),

� a let-binding,

� a recursive function de�nition (�x),

� a function application,

� a primitive application (note that primitives are always fully applied),

CHAPTER 3. THE FRONT END 9

Monotypes � ::= �

j (�

1

; : : : ; �

n

)! �

j (�

1

; : : : ; �

n

) t

j h�

1

� � � � � �

n

i

Polytypes � ::= 8(�

1

; : : : ; �

n

):�

Instances � ::= (�

1

; : : : ; �

n

)

Datatypes d ::= t = �(�

1

; : : : ; �

m

):c

1

[: �

1

] + � � � + c

n

[: �

n

]

Dgroups dg ::= (d

1

; : : : ; d

n

)

Datbinds dbs ::= (dg

1

; : : : ; dg

n

)

Primitives p ::= con

�

c j decon

�

c j excon ex j deexcon ex j record j �

i

j

!

�

j ref

�

j :=

�

j =

�

j 6=

�

j

not j �

int

j �

real

j abs

int

j abs

real

j oor j real j

exp j ln j sqrt j sin j cos j arctan j

�

int

j �

real

j mod j �

int

j �

real

j +

int

j +

real

j �

int

j �

real

j

<

int

j <

real

j >

int

j >

real

j �

int

j �

real

j �

int

j �

real

j

^ j size j chr j ord j explode j implode j

open out j close out j std out j output j

open in j close in j std in j input j

ush out j lookahead j end of stream j

print

int

j print

real

j print

bool

j print

string

Figure 3.1: Lambda: Types and primitives

CHAPTER 3. THE FRONT END 10

Expressions e ::= x

�

j i

j s

j r

j �(x

1

: �

1

; : : : ; x

n

: �

n

):e

j let x : � = e

1

in e

2

j �x f

1

: �

1

= e

1

; : : : ; f

n

: �

n

= e

n

in e

j e (e

1

; : : : ; e

n

)

j p (e

1

; : : : ; e

n

)

j exception ex [: �] in e

j raise

�

e

j e

1

handle e

2

j switch

i

e of i

1

: e

1

; : : : ; i

n

: e

n

; [default : e

d

]

j switch

s

e of s

1

: e

1

; : : : ; s

n

: e

n

; [default : e

d

]

j switch

r

e of r

1

: e

1

; : : : ; r

n

: e

n

; [default : e

d

]

j switch

c

e of c

1

: e

1

; : : : ; c

n

: e

n

; [default : e

d

]

j switch

e

e of ex

1

: e

1

; : : : ; ex

n

: e

n

; [default : e

d

]

j frame

values = x

1

: �

1

; : : : ; x

n

: �

n

excons = ex

1

[: �

1

]; : : : ; ex

m

[: �

m

]

Programs pgm ::= datbinds : dbs

body : e

Figure 3.2: Lambda: Expressions and programs

CHAPTER 3. THE FRONT END 11

� an exception declaration (as induced by an exception declaration in SML),

� an exception raised at a type,

� an expression with associated exception handler,

� a switch over integers, strings, reals, data constructors, or exception constructors, each

with optional default clause, or

� a frame, corresponding to an SML structure de�nition.

A Lambda program consists of a set of datatype binding groups, each of which de�nes a

set of mutually recursive datatypes, followed by an expression representing the body of the

program.

The static semantics and dynamic semantics for Lambda are standard.

As noted above, translation from SML source to Lambda is performed by the Kit system.

For example, the SML program:

datatype 'a A = A1 of 'a | A2 of 'a * 'a

fun fact 0 = 1

| fact x = x * fact (x - 1)

fun foo x =

case x

of A1 y => y

| A2 (y1, y2) => y1

fun bar x =

let

exception baz of int

in

if x < 0 then

raise (baz x)

else

x

end

val a = fact 5

val b = foo (A2 (1.2, 3.4))

is translated by the Kit into the following Lambda program:

CHAPTER 3. THE FRONT END 12

datbinds:

(A = � (�) . A1 : � + A2 : h� � �i)

body:

�x fact : int ! int =

� (v1 : int) .

switch

i

(v1) of

0 : 1

default: �

int

(v1 , fact (�

int

(v1 , 1)))

in �x foo : 8 (�) . � A ! � =

� (x : � A) .

switch

c

(x) of

A1 : let y : � = (decon

�

A1) (x) in y

A2 : let v2 : h� � �i = (decon

�

A2) (x)

in let y1 : � = �

1

(v2)

in let y2 : � = �

2

(v2)

in y1

in �x bar : int! int =

� (v3 : int) .

exception baz : int

in switch

c

(<

int

(v3 , 0)) of

true: raise

int

((excon baz) (v3))

false: v3

in let a : int = fact (5)

in let b : real = foo

real

((con

real

A2) (record(1.2, 3.4)))

in frame values = fact : int! int, foo : 8(�):� A! �, a : int, b : real

3.3 Typed Intermediate Languages

So far the problem of compilation from SML to Java has been reduced to translating the

typed �-calculus Lambda to Java. Here the type-directed compilation approach of Morrisett

et al. [33, 44, 43] is employed, using a series of typed intermediate languages as the basis for

compilation.

Type-directed compilation is a fairly recent innovation in programming language research,

but has already been incorporated in a number of advanced compiler development projects

[40, 39, 43, 48]. Although the idea is simple | retain type information for as long as

possible through compilation, rather than discarding it early on, as in many conventional

compilers | the potential bene�ts of this technique are seen most clearly when applied

to languages with advanced type systems, such as SML. Moreover, in translating between

strongly typed languages (as between SML and Java), as opposed to conventional compilation

from a strongly typed language to untyped assembly, it seems natural that types in the source

CHAPTER 3. THE FRONT END 13

language should be preserved in the translation.

The �rst stage of a type-directed compiler is conventionally to translate the source lan-

guage into a second-order typed �-calculus, such as Harper and Mitchell's XML [20], Harper

and Morisett's �

ML

i

[43, 33, 44], Shao's FLINT [39], or Harper and Stone's Internal Language

[21], all of which are essentially predicative variants of Girard's system F [18]. Examples of

such translations are given by Harper and Mitchell (transforming Core-ML to Core-XML)

[20], and Harper and Stone (transforming (most of) SML97 (including the module system)

to their Internal Language) [21].

3.3.1 �

ML

i

Rather than invent a new calculus, a group of variants of Harper and Morisett's �

ML

i

are used

as the intermediate forms of the type-directed translation. The �rst variant used is �

ML

i

-Rep,

to which the ML Kit's Lambda language is translated. Later transformations add wrapping

and unwrapping operations, introduce the distinction between statements and exceptions,

and add constructs for closure representation.

�

ML

i

-Rep comprises kinds, constructors, types and expressions, as shown in Figures 3.3

to 3.6. �-abstraction occurs at both the expression and constructor levels; the language of

constructors is hence a �rst-order calculus, whose `types' are the kinds of �

ML

i

-Rep.

�

ML

i

-Rep kinds � include:

� the `ground' or `base' kind
, representing basic types (such as integers, reals, functions,

records, sums, exceptions, and so on),

� the kind of constructor functions (�

1

; : : : ; �

n

)! �, and

� the kind of constructor tuples h�

1

� � � � � �

n

i.

�

ML

i

-Rep constructors � include:

� constructor variables (�) and module projections (m:l),

� integer, real, string, enumeration and exception constructors (Int, Real, String, Enum i,

and Exn),

� the array constructor Array (note that reference types can be simulated using arrays,

and hence there is no distinct reference constructor),

� function, disjoint sum and tuple (record) constructors ((�

1

; : : : ; �

n

)! �,

(�

11

; : : : ; �

1n

1

) + � � �+ (�

m1

; : : : ; �

mn

m

), and h�

1

� � � � � �

n

i, respectively),

� Excon and Deexcon constructors, values of which type are used to introduce and elim-

inate exception packets, as discussed below,

CHAPTER 3. THE FRONT END 14

� constructor tuples h�

1

; : : : ; �

n

i (note carefully the distinction between a constructor

tuples, and tuple constructors) and projection �

i

,

� constructor abstraction �(�

1

:: �

1

; : : : ; �

n

:: �

n

):�, and application

� (�

1

; : : : ; �

n

),

� recursive constructor de�nition Rec �

1

= �

1

; : : : ; �

n

= �

n

In � (note that in �

ML

i

-Rep,

as in Morrisett and Harper's calculus, the isomorphism between a recursive type and

its unrolling is not implicit; a value must be `rolled' or `unrolled' at the term level, as

discussed below), and

� constructor let-binding.

Types � include constructors � (constrained to be of kind
), polymorphic types 8(�

1

::

�

1

; : : : ; �

n

:: �

n

):�, and Export types, representing module signatures.

�

ML

i

-Rep expressions include:

� variables (x) and module projections (m:l),

� tuples (he

1

; : : : ; e

n

i),

� injections into the i

th

variant of sum type � (inject

�

i

(e

1

; : : : ; e

n

)),

� integer, real, enumeration, and string constants (i, r, enum

�

i, and s respectively),

� let declarations, binding:

{ simple values (x : � = e),

{ simple constructors (� :: � = �),

{ groups of mutually recursive term functions (corresponding to �-abstractions), or

{ groups of mutually recursive type functions (corresponding to �-abstractions),

� �-abstractions (representing anonymous functions over terms) and applications,

� �-abstractions (representing anonymous functions over types) and applications,

� coercion operations, including:

{ unroll, coercing a recursive type to its unrolled form | the unrolled form of

Rec �

1

= �

1

; : : : ; �

n

= �

n

In �

is de�ned as

f�

0

1

=�

1

; : : : ; �

0

n

=�

n

g�;

CHAPTER 3. THE FRONT END 15

Kinds � ::=

j (�

1

; : : : ; �

n

)! �

j h�

1

� � � � � �

n

i

Constructors � ::= �

j m:l

j Int

j Real

j String

j Exn

j Enum i

j Array �

j (�

1

; : : : ; �

n

)! �

j (�

11

; : : : ; �

1n

1

) + � � � + (�

m1

; : : : ; �

mn

m

)

j h�

1

� � � � � �

n

i

j Excon �

j Deexcon �

j h�

1

; : : : ; �

n

i

j �

i

�

j �(�

1

:: �

1

; : : : ; �

n

:: �

n

):�

j � (�

1

; : : : ; �

n

)

j Rec �

1

= �

1

; : : : ; �

n

= �

n

In �

j Let � :: � = �

1

In �

2

Types � ::= �

j 8(�

1

:: �

1

; : : : ; �

n

:: �

n

):�

j Export

Types : l

11

:: �

1

; : : : ; l

1n

:: �

n

Values : l

21

: �

1

; : : : ; l

2m

: �

m

Figure 3.3: �

ML

i

-Rep: Kinds, constructors and types

CHAPTER 3. THE FRONT END 16

Unary ops op

1

::= real j not j oor j sqrt j sin j cos j arctan j

exp j ln j size j �

i

j � j abs j strlen

Binary ops op

2

::= � j � j + j � j mod j

= j < j > j � j � j or j and j xor j << j >> j

alloc j sub j excon j deexcon j strcat

Coercion ops c ::= roll

�

j unroll

j enum to int

j int to enum

�

Figure 3.4: �

ML

i

-Rep: Unary operators, binary operators and coercions

Declarations d ::= x : � = e

j � :: � = �

j �x

f

1

: �

1

= �(x

11

: �

11

; : : : ; x

1n

1

: �

1n

1

):e

1

.

.

.

f

m

: �

m

= �(x

m1

: �

m1

; : : : ; x

mn

m

: �

mn

m

):e

m

j �xtype

f

1

: �

1

= �(�

11

:: �

11

; : : : ; �

1n

1

:: �

1n

1

):e

1

.

.

.

f

m

: �

m

= �(�

m1

:: �

m1

; : : : ; �

mn

m

:: �

mn

m

):e

m

Misc ops m ::= e

1

[e

2

] := e

3

j extern s : �

j newexn �

j = (�; e

1

; e

2

)

j 6= (�; e

1

; e

2

)

Figure 3.5: �

ML

i

-Rep: Declarations and misc ops

CHAPTER 3. THE FRONT END 17

Expressions e ::= x

j m:l

j he

1

; : : : ; e

n

i

j inject

�

i

(e

1

; : : : ; e

n

)

j i

j r

j enum

�

i

j s

j let d in e

j �(x

1

: �

1

; : : : ; x

n

: �

n

):e

j �(�

1

:: �

1

; �

n

:: �

n

):e

j e (e

1

; : : : ; e

n

)

j e (�

1

; : : : ; �

n

)

j c e

j op

1

e

j op

2

(e

1

; e

2

)

j m

j switch e of

i

1

: �(x

11

: �

11

; : : : ; x

1n

1

: �

1n

1

):e

1

;

.

.

.;

i

m

: �(x

m1

: �

m1

; : : : ; x

mn

m

: �

mn

m

):e

m

;

[default : e]

j raise

�

e

j e

1

handle(x : Exn) e

2

j export

types : l

11

: �

1

; : : : ; l

1n

: �

n

values : l

21

: e

1

; : : : ; l

2m

: e

m

Figure 3.6: �

ML

i

-Rep: Expressions

CHAPTER 3. THE FRONT END 18

where

�

0

i

� f�

00

1

=�

1

; : : : ; �

00

n

=�

n

g�

i

and

�

00

i

� Rec �

1

= �

1

; : : : ; �

n

= �

n

In �

i

;

so that, for example, the unrolled form of type

Rec l = () + hInt � li In l

is

() + hInt � Rec l = () + hInt� li In li

{ roll

�

, coercing a recursive type to its rolled form (note that there are many possible

rolled forms for a particular type, and hence the explicit annotation � of the rolled

type is required),

{ enum to int, coercing an enumerated type to an integer, or

{ int to enum

�

, coercing an integer type to an enumeration (with the attendant

range check)

� unary operations, including:

{ conversions for widening an integer to a real, and truncating a real to an integer,

(real and oor),

{ bitwise negation (not) over integers,

{ square-root taking (sqrt) over reals,

{ trigonometric operations (sin, cos, and arctan) over reals,

{ hyperbolic operations (exp and ln) over reals,

{ array size computation (size),

{ projection of the i

th

�eld from a record (�

i

),

{ unary negation (�) and absolute value (abs) operations, for integer or real types,

and

{ string length computation (strlen),

� binary operations, including:

{ arithmetic operations for division (�), multiplication (�), addition (+) and sub-

traction (�) over integers and reals, and modulus (mod) over integers,

{ comparison operations (<;>;�;�) over integers and reals, and (in)equality com-

parisons (= and 6=) over integers, reals and strings,

CHAPTER 3. THE FRONT END 19

{ bitwise and, or and xor operations over integers,

{ left and right shift operation (<< and >>) over integers,

{ array allocation (alloc) and subscripting (sub) operations,

{ exception packet introduction (excon) and elimination (deexcon); the former takes

arguments of type Excon � and �, and creates an exception packet of type Exn

carrying a value of type �; the latter takes arguments of type Deexcon � and

Exn, and returns a variant sum () + �, where the �rst variant is returned if the

exception packet is not of the type created by the Deexcon's Excon counterpart,

and the second is returned otherwise, and

{ string concatenation (strcat),

� miscellaneous operations, including:

{ array update (e

1

[e

2

] := e

3

),

{ external (i.e. native Java) reference,

{ exception construction, which creates a pair of type hExcon �;Deexcon �i whose

components are used to introduce and eliminate exception packets (as described

above),

{ polymorphic equality and inequality testing at type �,

� switches over integer, enumerated or sum types; the switch arms deconstruct sum

types, so that, for example, a switch over sum type (�

1

) + � � � + (�

n

) would appear as

switch e of

1: �(x

1

: �

1

) . e

1

.

.

.

n: �(x

n

: �

n

) . e

n

where if e is the i

th

variant of the sum, then the i

th

arm of the switch is selected, and

x

i

bound in e

i

to the value carried by e,

� exceptions raised at type � (raise

�

e),

� guarded expressions with an exception handler (e

1

handle(x : Exn) e

2

), where x is

bound in e

2

to any exception thrown in e

1

, and can subsequently be decomposed using

deexcon operations as described above, and

� module de�nitions (export), specifying types and values exported by the module.

CHAPTER 3. THE FRONT END 20

3.3.2 Lambda to �

ML

i

-Rep

As will be observed from the above description, there are two main di�erences between

Lambda and �

ML

i

-Rep:

1. �

ML

i

-Rep does not include an explicit datatype type; instead, datatypes are repre-

sented by more basic constructors, such as enumerations or recursive sums, and

2. types are passed explicitly in �

ML

i

-Rep.

Translation from Lambda to �

ML

i

-Rep deals with these issues in a two-step transformation:

�rst, representations for the datatypes of the Lambda program in �

ML

i

-Rep types are selected;

second, the expression component of the Lambda program is translated to an �

ML

i

-Rep ex-

pression. These two components are dealt with in turn.

Datatype translation

Datatype translation roughly follows the scheme suggested by Morrisett [33]. A datatype is

translated more or less as follows:

� If the datatype is recursive, then it is represented as a Rec constructor, whose body is

a sum (+) constructor. For example, the SML datatype

datatype 'a list =

nil

| cons of 'a * 'a list

is translated into the Lambda datatype

list = �(�):nil + cons : h� � � listi

which in turn is represented by the �

ML

i

-Rep type

�(� ::
):Rec list = () + (h� � list i) In list

Note that the constructor names have been erased in the translation. Note also the use

of constructor-level �-abstraction to capture the polymorphic nature of the datatype.

Instances of the list type (such as int list) then appear as applications of the con-

structor function in �

ML

i

-Rep.

� If none of the constructors carry a value, the datatype is represented as an enumerated

type. For example, the SML datatype

datatype degree = BMath | MMath | PhD

is translated to the Lambda datatype

CHAPTER 3. THE FRONT END 21

degree = BMath +MMath + PhD

which in turn is represented by the �

ML

i

-Rep constructor

Enum 3

� If there is only one constructor, and it carries a value, then the datatype is represented

directly by the value type. For example, the SML datatype

datatype foo = BAR of int * int

is translated to the Lambda datatype

foo = BAR : hint� inti

which in turn is represented by the �

ML

i

-Rep constructor

hInt� Inti

� Otherwise (i.e. the type is not recursive and there are at least two constructors, at least

one of which carries a value), the Lambda datatype is represented by a sum constructor.

For example, the SML datatype

datatype A = A1 of int | A2 of real | A3 of string

is translated to the Lambda datatype

A = A1 : int+ A2 : real+ A3 : string

which in turn is represented by the �

ML

i

-Rep constructor

Int+ Real+ String

Note that in any of the above cases, if the datatype is polymorphic, then the representation

is a constructor function in �

ML

i

-Rep. In his translation, Morrisett also employs a specialized

enumorrec representation for datatypes where only one of the constructors carries a value, and

enumorsum for datatypes where some constructors carry values and some do not [33]. The

enumorsum and enumorrec representations, however, are speci�cally designed for e�cient

assembly-code representation; there is no bene�t to their use in translating to Java, and

hence the additional complication that they introduce is avoided by not including them in

�

ML

i

-Rep.

CHAPTER 3. THE FRONT END 22

Expression translation

Translation of expressions from Lambda to �

ML

i

-Rep proceeds much in the manner described

by Harper and Mitchell [20], Tolmach [48], and Morrisett et al. [43, 33] for compiling an

implicitly typed ML-like language to a second-order �-calculus.

The main feature of this translation is to insert type abstraction (�-abstraction in �

ML

i

-

Rep) at the points in the code where type abstraction occurs (namely, in the generalization

of let- and �x-bound variables), and type application at the points of mention of polymorphic

variables.

This translation is not as straight-forward as it may seem, however. In particular, as

Tolmach observes, since evaluation does not proceed under �-abstraction, any computation

performed by a let-bound expression will not be performed at the binding point; instead,

it will be repeated at each point of instantiation of the bound variable [48]. This is poten-

tially ine�cient, and more to the point semantically incorrect if the let-bound expression

causes side-e�ects. For this reason, Wright's value restriction, which restricts polymorphic

abstraction to values (i.e. constants and �-abstractions, which are guaranteed not to cause

side-e�ects) [53], is adopted. Fortunately, SML97 adopts precisely this restriction [31].

Translation of expressions proceeds as follows:

� A Lambda variable x

�

is translated as an application of x to the types �. If � is empty,

then no application is performed.

� Lambda constants i, s and r are translated directly to their �

ML

i

-Rep counterparts.

� A Lambda �-abstraction is translated as a �

ML

i

-Rep �-abstraction.

� A Lambda let expression

let x : � = e

1

in e

2

is translated to a let binding in �

ML

i

-Rep. If x is polymorphic, it is bound to a �-

abstraction, abstracting over the free type variables of x ; if not, then no abstraction is

introduced.

� Translation of the Lambda �x construct (binding mutually recursive functions) is com-

plicated by the fact that the �x expression may introduce type abstraction. It is

assumed that the abstracted type variables for all bound functions are the same. If

there are no abstracted type variables, the Lambda �x is translated to the �

ML

i

-Rep �x

construct. (Note that although it is not enforced at a syntactic level, the expressions

e

1

; : : : ; e

n

in a �x binding are always �-abstractions in Lambda.) If the set of abstracted

type variables is non-empty, then an �

ML

i

-Rep �xtype declaration is introduced, where

each of the bound variables f

1

; : : : ; f

n

is bound to a curried function abstracting �rst

over type variables, and second over term variables. Appearances of f

1

; : : : ; f

n

in the

bound expressions e

1

; : : : ; e

n

are then translated as type application to the abstracted

CHAPTER 3. THE FRONT END 23

type variables. That is to say, if the binding of f

1

is f

1

: 8(� :: �): : : : = �(� :: �):e

1

,

then an appearance of f

1

in e

1

is be translated as an application of f

1

to �. As a (fairly

contrived) example, the SML code

fun f (x, y, z) =

if x = 0 then

y

else

f (x - 1, z, y)

...

where f has type 8�:int� � � �! �, would be translated into Lambda as

�x f : 8� . (int, �, �) ! � =

� (x : int, y : �, z : �) .

switch

i

(x) of

0: y

default: f (�

int

(x , 1), z , y)

in . . .

and in turn translated to the �

ML

i

-Rep code

let �xtype f : 8 (� ::
) . (Int, �, �) ! � =

� (� ::
) .

� (x : Int, y : �, z : �) .

switch x of

0: y

default: (f (�)) (- (x , 1), z , y)

in . . .

� Application in Lambda is translated directly as application in �

ML

i

-Rep.

� An exception expression in Lambda for exception constructor ex gives rise to a binding

for an �

ML

i

-Rep variable ex of type hExcon �;Deexcon � i in �

ML

i

-Rep, corresponding

to a (constructor, deconstructor) pair for the exception. A Lambda excon primitive at

exception constructor ex (i.e. an expression of form (excon ex) (e)) is then translated

to an �

ML

i

-Rep excon operation taking �

1

ex and e as arguments (i.e. an expression

of form excon (�

1

ex ; e)). Deconstruction is handled similarly, where the sum type

resulting from the deexcon is decomposed with the aid of a switch construct.

� A Lambda raise expression is translated directly as an �

ML

i

-Rep raise expression.

� The handle expression of Lambda is translated to the corresponding handle construct in

�

ML

i

-Rep. Note that in �

ML

i

-Rep, the handler is a function whose parameter is bound

CHAPTER 3. THE FRONT END 24

to the thrown exception, whereas in Lambda, the handler is constrained to be a function

over exceptions (but not necessarily a �-abstraction per se); in the translation from

Lambda to �

ML

i

-Rep, then, the �

ML

i

-Rep translation for the Lambda handler function is

applied to the variable bound to the caught exception.

� The Lambda switch construct is compiled di�erently for each of the di�erent types of

index:

{ The integer variant switch

i

is straight-forward, and maps directly to an �

ML

i

-Rep

switch expression, where the arm functions take no parameters.

{ The real and string variants switch

r

and switch

s

have no direct counterpart in

SML (indeed, type real is no longer considered an equality type in the SML97,

so the value of the switch

r

construct is questionable). The switch is translated

to a series of comparisons in �

ML

i

-Rep (which are themselves two-case switch

statements ranging over Enum 2 (i.e. boolean) types).

{ The datatype switch variant switch

c

presents some di�culty in translation. In

�

ML

i

-Rep, sum-indexed switch arms decompose the switch argument implicitly,

whereas there is an explicit decon primitive to achieve this e�ect in Lambda. Proper

translation of the switch therefore depends on the type of the argument to the

switch. As noted above, a Lambda datatype may be represented by any of a

number of �

ML

i

-Rep types, and so translation of the switch

c

depends on the �

ML

i

-

Rep representation of the argument argument type.

In the case of a recursive datatype (represented as a recursive sum type in �

ML

i

-

Rep), the argument is unrolled by the unroll coercion, and the switch arms are

handled as in the case of a sum datatype.

In the case of a sum datatype, fresh variables are generated for each case in the

sum, binding the decomposed sum type. The name of this binding is stored in the

translation environment, so that, as an optimization, if a decon is encountered in

an arm decomposing the switch argument, it can be replaced by the bound name.

In the case of an enumeration datatype (where there is more than one constructor,

and no constructor carries a type), the switch is translated in the same manner

as an integer-indexed switch

i

.

{ The switch

ex

construct is translated similarly to the switch

c

described above.

� The con primitive has no direct counterpart in �

ML

i

-Rep; the code generated in �

ML

i

-

Rep depends on the representation of the Lambda datatype being constructed.

{ In the case of a sum representation, an appropriate inject expression is generated.

{ In the case of a recursive sum representation, the inject expression is also `rolled'

via the roll coercion.

CHAPTER 3. THE FRONT END 25

{ For an Enum i representation, the tag for the constructor is introduced as an enum

constant expression.

{ For a single-constructor datatype, represented as itself, the argument to the con

is translated directly.

� The decon primitive in Lambda again has no direct counterpart in �

ML

i

-Rep. Translation

proceeds as described in the case of the switch

c

above, save that here there are only

two arms: one for the constructor being deconstructed, and another default case which

raises a bind exception.

� The Lambda excon primitive is translated to an excon operation in �

ML

i

-Rep, taking

the �rst component of the hExcon �;Deexcon �i pair (to which the ex will have been

translated) as its Excon argument.

� The deexcon primitive is translated as a �

ML

i

-Rep switch operation (as in the switch

ex

above) operating on an deexcon expression.

� Other Lambda primitives are translated in the obvious manner; in some cases, it is nec-

essary to extract the type of the argument to properly annotate the �

ML

i

-Rep operation

(as for the `=' operator).

3.3.3 Optimization

In order to prevent unnecessary e�ort in subsequent stages of the compiler, a series of simple

optimizations on the �

ML

i

-Rep form are performed, roughly following those suggested by

Appel and Jim [6, 7, 4].

In the discussion that follows, an expression e is de�ned to be small if and only if e is a

variable, or an integer, real or enumeration constant. An expression e is de�ned to be safe

if its execution cannot cause side-e�ects (such as updating an array, or input/output) or

cause an exception to be raised. As a conservative approximation to the safeness property,

it is assumed all expressions are safe except function application, certain unary and binary

operations (which either cause updates to the store, or can cause exceptions to be raised),

raise expressions, and expressions whose sub-expressions are not themselves safe.

The optimizations performed include:

� Constructs of form

(�(x

1

: �

1

; : : : ; x

n

: �

n

):e (x

1

; : : : ; x

n

)) (e

1

; : : : ; e

n

)

are optimized to

e (e

1

; : : : ; e

n

)

CHAPTER 3. THE FRONT END 26

This construct is generated quite frequently by the ML Kit in its pattern-matching

compiler, and so optimization is highly bene�cial.

� Constructs of form

(�(x

1

: �

1

; : : : ; x

n

: �

n

):e) (e

1

; : : : ; e

n

)

are optimised to

let x

1

: �

1

= e

1

.

.

.

in let x

n

: �

n

= e

n

in e

This optimization helps to prevent unnecessary closure allocation.

� If e

1

is small, or if e

1

is safe and x occurs free exactly once in e

2

, then

let x : � = e

1

in e

2

is optimized to

fe

1

/xg e

2

� If e

1

is safe and x does not occur free in e

2

, then

let x : � = e

1

in e

2

is optimized to

e

2

This optimization amounts to dead-variable elimination, and is particularly useful in

conjunction with the following optimization.

� If e

1

; : : : ; e

n

are all small, then

let x : h�

1

� � � � � �

n

i = he

1

; : : : ; e

n

i in e

is optimized to

let x : h�

1

� � � � � �

n

i = he

1

; : : : ; e

n

i in e

0

where

e

0

� fe

1

/(�

1

x), . . . , e

n

/(�

n

x)g e

� Simple constant-folding of integer arithmetic operations which do not cause overow

is performed.

Chapter 4

Representation Analysis

4.1 Introduction

From a software engineering standpoint, one of the most attractive features of SML is that it

possesses a polymorphic type system. Polymorphism can be broadly de�ned as the property

that some values and variables of a program may have more than one type [3, 13]. While many

languages have this property in their type systems to some degree (for example, operators

such as `+' are often overloaded to perform similar operations on di�erent types), SML's

type system permits variables and values to be de�ned over a range of types | usually

referred to as parametric polymorphism (as distinct from ad-hoc and subtype (or inclusion)

polymorphism). Parametric polymorphism allows the SML programmer to write generic

routines which operate uniformly over a range of types. While C++ and Ada address the

issue of generic code by providing template and generic and facilities respectively [41, 52],

these are not type-checked or compiled to object code until instantiation, and hence amount

to little more than macro substitution.

The exibility and power a�orded the programmer by a polymorphic type system is not

without penalty, however. An immediate consequence of the polymorphic type system is

that the actual type of an object may not be known until run-time. Compiling polymorphic

code therefore requires either that all types have the same representation, or that the code

has some mechanism for discovering types and their representations at run-time.

Consider as an example the operation of pairing. In SML, a polymorphic pairing function

could be written as

type 'a pair = {fst : 'a, snd : 'a}

fun make_pair (x : 'a) : 'a pair = {fst = x, snd = x}

val y : string pair = make_pair "hello"

val z : string = #fst y

where make pair has type 8�:�! � pair, y has type string pair, and z has type string.

Consider now an attempt to translate this into Java. Begin by de�ning a pair type:

27

CHAPTER 4. REPRESENTATION ANALYSIS 28

class pair {

Object _fst;

Object _snd;

pair(Object fst, Object snd) { _fst = fst; _snd = snd; }

};

The idea here is that a pair can consist of any two objects; note that property that they

must be the same type has been lost, replaced by the weaker property that they must both

be subtypes of Object. Note also that a number of basic types have been excluded from

pairing, since in Java the `primitive' types (int, double, etc) are not reference types, and so

not subtypes of Object, as will be explored further below. Fortunately, the example pairs

strings, and String is indeed a subtype of Object. The pairing operation would then look

something like

pair make_pair(Object x) {

return new pair(x, x);

}

and a pair of strings can be created by

pair y = make_pair("hello");

The di�culty now arises in selecting the �rst �eld from y. The na��ve approach

String z = y._fst;

does not work, because Object is not a subtype of String. Instead, the result of y. fst

must be cast in order to perform the assignment, at the cost of a run-time type check, and

rather messy code

String z = (String) y._fst;

As noted above, Java makes a distinction between primitive types (int, double, boolean,

etc), which are always stack-allocated, and reference types (classes and interfaces), which

are always heap allocated. That is to say, the primitive types are not reference types, and

so not subclasses of Object. The example code above can only construct pairs of reference

types, so the call

pair y = make_pair(3);

is illegal since int (the type of 3) is not a subtype of Object. Instead, a heap-allocated copy

of 3 must be made using the Java-provided `wrapper' class Integer:

pair y = make_pair(new Integer(3));

Extraction of the �rst �eld from the pair now becomes the cumbersome

CHAPTER 4. REPRESENTATION ANALYSIS 29

int z = ((Integer) y._fst).intValue();

where the result of the �eld selection y. fst must be cast an Integer, and then the int

extracted by method invocation.

Java's use of name-equivalence for types makes translation of polymorphism even more

di�cult. Consider for example a pair of string values (of SML type string� string); the

natural representation of string pairs would in Java is

class StringPair {

String _fst;

String _snd;

StringPair(String fst, String snd) {

_fst = fst;

_snd = snd;

}

};

One would then expect to be able to use objects of type StringPair anywhere the more

general type Pair is employed (in particular, so that they could be passed to polymorphic

functions expecting arguments of type � � �). Indeed, it seems sensible that if type A is

a subtype of A

0

(A <: A

0

), then it should follow that A � A <: A

0

� A

0

. However, this is

not the case in Java, where the subtyping relation must be explicitly indicated | so that,

for example, the de�nition of StringPair would have to be changed to include an extends

clause, indicating that it is a subtype of Pair. Unfortunately, this is not good enough, since

objects of type string� string could also be passed to functions taking arguments of type

� � string, string� �, or �, so that StringPair would have to be a subclass of three

distinct types (which are not themselves subclasses of one another) | clearly impractical.

There is therefore a choice between either representing string pairs (and indeed all pairs)

as instances of Pair at all times, or introducing a coercion from StringPair to Pair when

moving from monomorphic to polymorphic contexts | both approaches are investigated

below.

It is clear then that na��ve translation of SML code to Java is not feasible; a more so-

phisticated scheme to deal with the awkwardnesses imposed by Java's type system must be

adopted. In the sections that follow, a number of approaches are described.

It is worth noting that these problems are not unique to translating to Java. Much

the same problems arise in compilation to assembly code if di�erent types occupy di�erent

amounts of space, or are passed by di�erent conventions. A common example is double-

precision oating point numbers, which are often larger than pointers and integers (64-bit

versus 32-bit) and are often stored in their own special-purpose oating-point registers. A

polymorphic pairing function which operates equally well on oating-point numbers and

other types, then, must be passed a `boxed' oating-point number in order to be able to

operate correctly.

CHAPTER 4. REPRESENTATION ANALYSIS 30

4.2 Traditional Approaches

The problem with polymorphism is essentially that a polymorphic variable must have a

uniform representation regardless of its actual type. One obvious way of achieving this

property is to represent all values uniformly at all times, as is done in untyped languages

like Lisp and Scheme. The most sensible choice for a uniform representation is a single

word pointer, corresponding to reference types in Java. In this scheme, values of primitive

types such as int and double are `boxed' in their heap-allocated counterparts Integer

and Double at all times, only being `unboxed' when passed to native functions (such as for

addition, subtraction, and so on). Similarly, pair types like string � string adopt the

uniform representation for all pair types, such as the Pair type above, rather than using

more specialized types such as StringPair. This approach is clearly unattractive from a

performance standpoint, since each time an integer is passed to a function, or placed in a data

structure, an Integer object is allocated, taking both time and space; unnecessary boxing

and unboxing can also occur if the compiler is not careful [22]. Casts (and hence run-time

type checks) to extract �elds from records like Pair are also necessary. Finally, interfacing

to lower-level languages (for example, invoking Java API functions from an SML program)

becomes di�cult, since the lower-level languages generally use `unboxed' representations at

all times.

A somewhat more attractive solution is to create speci�c instances of polymorphic code

for each instantiation in the program (what Morrison et al. call `textual polymorphism' [34]),

much in the way that templates and generics in C++ and Ada are implemented. Since there

are only �nitely many di�erent instantiations of a polymorphic function in a program, it is

possible to generate di�erent code for each such instantiation, specialized to the particular

instantiating types. In the example above, specialized versions of the pairing function which

operated on strings and integers would be created. In this approach, boxing and unboxing

are unnecessary, since e�ectively all of the polymorphism has been removed from the pro-

gram. There is, however, potential for considerable code duplication. Furthermore, separate

compilation is impossible, since if a function in a module is compiled separately from its ap-

plication, it is not known at compile-time what all the possible instantiations of the function

will be. This approach is therefore space-ine�cient and non-general, and hence unattractive.

The two approaches suggested in this section roughly correspond to the `homogeneous'

and `heterogeneous' translations presented by Odersky and Walder for their Pizza language,

which extends Java with parametric polymorphism, algebraic datatypes, and high-order

functions [35]. In the heterogeneous translation, each instantiation of a polymorphic class

in the source gives rise to a di�erent class de�nition in the target | this corresponds to

the specialization approach. In the homogeneous translation, type variables in polymorphic

datatypes and functions are replaced by type Object, much as was done in the pairing

example above. This approach roughly corresponds to the uniform representation scheme

suggested above, with the drawback that less e�cient `boxed' representations are used for

some types even when the type is not used polymorphically. For example, in Pizza the pair

CHAPTER 4. REPRESENTATION ANALYSIS 31

type could be declared as

class Pair<T> {

T _fst;

T _snd;

Pair(T fst, T snd) {

_fst = fst;

_snd = snd;

}

}

and the make pair function as

<T> Pair<T> make_pair(T x) {

return new Pair(x, x);

}

The pair type would then be translated into Java almost identically to the Pair object above

(i.e., with two Object �elds). Thus, �eld extraction from a Pair object always involves a

cast, even if the Pair is not being used in a polymorphic context. Furthermore, creating pairs

of non-reference objects (such as pairs of int) requires the `wrapping' procedure described

above. The result is a rather ine�cient representation.

4.3 Coercion-Based Approaches

A novel coercion-based approach to the problem of polymorphic code has been suggested by

Leroy [26], building on his own earlier work [25] and complementing the work of Peyton Jones

[22]. Peyton Jones suggested introducing boxing and unboxing operations explicitly into the

intermediate language (by way of an algebraic data type), exposing them for conventional

optimisation. He further introduced the key restriction that polymorphic functions should

only range over boxed types in order to address what Shao later called the vararg problem

[38], which will be addressed in greater detail below. Leroy's contribution was to show

a transformation from the unrestricted polymorphism of SML to Peyton Jones' restricted

system.

Leroy's idea is to keep objects in their natural (unboxed) representation whenever possi-

ble; objects are coerced into a uniform `wrapped' representation when passed to polymorphic

functions, and coerced back to their natural representation when returned from polymorphic

functions (much as primitive values must be coerced to and from their boxed forms when

passed to native functions in the traditional untyped approach). The `wrapped' represen-

tation would normally be the `boxed' form of the value (where the `boxed' form of a value

is one which �ts in a single-word register), although it may be more elaborate than this, as

will be discussed below.

CHAPTER 4. REPRESENTATION ANALYSIS 32

Coercions are introduced so as to preserve the invariant that objects whose type is a

type variable (i.e., unknown at compile-time) have a uniform representation | the coercion

wrap(�) coerces from the natural (specialized) representation of a value of type � to its

uniform representation, and unwrap(�) coerces from uniform representation to the specialized

representation for type � . Polymorphic values in polymorphic code are thus guaranteed to

always be in uniform representation, while monomorphic code (which Leroy and others have

claimed is the majority of `realistic' SML code) leaves values in their natural (and more

e�cient) representation.

The key to Leroy's approach is to introduce the coercions to and from uniform wrapped

representation at the appropriate points in the code. SML has the convenient property that

the only polymorphic values in a program are let-bound variables. As a consequence, in

SML, the appropriate points at which coercions should be introduced are where a let-bound

variables are applied to their arguments (where their type schemes are instantiated).

Leroy's scheme works adequately for simple types like as tuples and functions, but has

di�culty with mutable and recursive types. The di�culty with coercion in these cases is

that it involves creating a wrapped copy of the coerced object. Reference types cannot be

coerced by copying, since to do so would lose the update semantics of the type, resulting in an

unsound translation. Although recursive values can be coerced, doing so would require time

and space proportional to the size of the structure being coerced, which is clearly impractical.

Leroy's solution is to leave reference and recursive types wrapped at all times, even when

not being used in polymorphic code. The representation of recursive types (widely used in

SML in the form of lists) is therefore relatively ine�cient.

As Leroy points out, however, it is not enough to require that recursive types be wrapped

at all times. Consider, for example, a list `unzipping' function having type 8(�; �):(� �

�) list ! (� list � � list). This function could be called to operate on lists of any

possible type of pair | for example, lists of type (int�int) list, (int�(int�int)) list,

and so on. The representation of each of these types must therefore be compatible with all

the others. Since it is not known beforehand to what functions a value may be passed,

the worst must be assumed, and a representation for lists employed that allows the list

to be passed into contexts requiring an � list, (� � �) list, (int � �) list, and so

on. The restriction that the components of a wrapped object must themselves be wrapped

must therefore be introduced. This `recursive' wrapping (or full boxing, as Shao calls it [38])

detracts considerably from the simplicity of Leroy's scheme.

Interestingly, Leroy has recently suggested that it may be more e�ective to leave objects

in their wrapped state at all times, and employ local optimizations to reduce the cost of

wrapping, rather than to employ a full-edged coercion-based approach [27].

CHAPTER 4. REPRESENTATION ANALYSIS 33

4.4 Type Passing Approaches

Another approach suggested by Morrisett et al. is to pass types at run-time [33, 43]. In such

an approach, a program can discover an object's representation by inspecting the run-time

representation of the type. As a consequence, objects can remain in their unboxed state at

all times.

This method is attractive in that it can cope properly (and e�ciently) with recursive and

mutable types, leaving them in their natural state, rather than arbitrarily requiring that they

be (recursively) boxed at all times. The disadvantage of this approach is that additional time

and space is required for constructing, passing and analyzing type descriptors at run-time.

Shao and Leroy have claimed that the cost of this `heavy-weight' run-time type analysis is

considerable [38, 27].

A more serious problem is that it may be impossible to call functions with di�erent

argument types in the �rst place | Shao's vararg problem [38]. In Java, for example, a

function which takes an int argument can only be passed an int | the virtual machine

does not permit an object with any other type to be passed, regardless of whether if it is

the same size as int or what additional type information accompanies it. The only occasion

where this is an issue for Morrisett is in the passing of oating-point values, which do not �t

in general-purpose registers; Morrisett deals with this in a rather ad-hoc way by wrapping

all oating-point values, except where they occur in arrays [33]. The problem is more serious

in Java, where all primitive types have this problem, and e�ectively precludes a type-passing

approach.

4.5 Hybrid Approaches

Shao has recently suggested a exible representation approach, which basically amounts to a

hybrid where aspects of both coercion and type-passing approaches are employed [38]. Shao

seeks to employ the coercion-based approach where possible, and resort to type-passing only

where necessary; as a by-product, the vararg problem can be dealt with reasonably neatly.

Shao's approach �rst introduces a type function Wrap which maps a type to its boxed

form, and two value functions wrap, which maps a value to its boxed form, and unwrap,

which performs the inverse transformation from boxed form to natural form. That is to say,

wrap has type 8(� ::
):�! Wrap �, and unwrap has type 8(� ::
):Wrap � ! �. Note that

what is meant by the wrapped form of a type has deliberately not been de�ned | one of

the strengths of Shao's technique is that it works equally well for any de�nition of wrapping

and unwrapping which satisfy certain basic criteria.

Wrapping and unwrapping coercions are introduced in the source code more or less in the

manner of Leroy's coercion-based approach. For a second-order, explicitly typed �-calculus,

coercions must be introduced at the point of type application, much as they are at the point

of mention of a polymorphic variable in Leroy's technique.

CHAPTER 4. REPRESENTATION ANALYSIS 34

The novelty of Shao's work is that the de�nition of wrap and unwrap depend on the extent

of boxing desired by the programmer. Shao presents three schemes which de�ne di�ering

levels of boxing for types:

� In full boxing, types are boxed recursively. This is the scheme used in Leroy's coercion-

based approach.

� In simple boxing, only the top layer of a data structure is boxed.

� Partial boxing is similar to simple boxing, save that all function arguments and results

are also boxed.

The attraction of simple boxing (as opposed to full boxing) is that less coercions are required;

however, in certain circumstances, run-time analysis of types may be necessary. Partial

boxing eliminates some (but not all) of the cases where run-time type analysis is necessary.

The run-time work of Shao's approach is performed by the wrap and unwrap coercions.

E�ectively, then, Shao's approach is two-level method: �rst, wrap and unwrap coercions are

introduced, following the method of Leroy; second, wrap and unwrap are de�ned in terms of

boxing and unboxing operations.

4.6 Implementation

The SML-to-Java compiler essentially employs Shao's approach of a two-phase translation,

in order to achieve a fully-boxed representation. The fully-boxed representation was chosen

because it is straight-forward to implement, avoiding altogether the need for run-time type

analysis.

The SML-to-Java compiler takes advantage of the two-stage nature of Shao's representa-

tion analysis to break the analysis into two phases. In the �rst stage, the wrap and unwrap

coercions and the Wrap constructor are added to �

ML

i

-Rep, but their de�nition is deferred

to the �nal stage of compilation (translation to Java). This permits exibility in choosing

representation strategy, and allows the use Java's subclassing and method override facili-

ties to implement wrapping and unwrapping, without the need for introducing an elaborate

typecase or typerec operation in the intermediate form. Note that no commitment to a fully-

boxed representation has been made at this stage. The translation of the wrap and unwrap

operations will be discussed in detail in Chapter 7.

At this point of the compiler, then, only modest revision to the �

ML

i

-Rep syntax is

required. In particular, a constructor Wrap �, denoting the wrapped form of constructor

�, is added, and two new term-level operations, wrap(�; e) and unwrap(�; e), which coerce

terms of type � and Wrap � to types Wrap � and � respectively, are introduced.

CHAPTER 4. REPRESENTATION ANALYSIS 35

4.6.1 Type Translation

Following Shao, two transformations on types are de�ned: �

u

, translating a type in �

ML

i

-Rep

to its unwrapped form, and �

w

, translating a type to its wrapped form. �

u

is in most cases

an identity operation; however, for recursive and array types, the unwrapped representation

must be identical to the wrapped form, so that no copying coercions occur. As a consequence,

the unwrapped form of constructor Array � is Array (Wrap �).

Recursive types are rather more troublesome to translate. Consider two lists types: a

monomorphic integer list type, and the usual polymorphic list type. These would normally

be declared in SML as

datatype ilist =

inil

| icons of int * ilist

datatype 'a list =

nil

| cons of 'a * 'a list

The equivalent �

ML

i

-Rep types are

ilist � Rec il = () + (hInt � il i) In il

and

list � �(� ::
):Rec l = () + (h�� li) In l

respectively. Now, ilist can only be an instantiation of �; in particular, polymorphic code

always treat the Int �eld of type ilist as an Int. The same is not true of list , however,

where a polymorphic function of type 8(� ::
):list � ! �, for example, could extract the

�rst element from a list, and treat it as a polymorphic type. The unwrapped form of ilist

therefore does not require that the Int �eld be wrapped, whereas the � component of list

must be wrapped, so that no coercion is required to pass the list into a context requiring an

object of type list �.

The di�culty arises when considering an SML value of type int list; this has type

list Int in �

ML

i

-Rep, which, after type normalization, is indistinguishable from ilist . Once

types are normalized, then, it is impossible to determine which �elds of a datatype are

instantiations of type variables (such as � in list) or are monomorphic (such as Int in ilist).

It is therefore not possible to determine by inspection what form the unwrapped type should

take. This is not a problem in a true type-passing approach, such as that employed by

Morrisett, since both the instantiation of the polymorphic type and the monomorphic type

have the same run-time representation. However, since a type-passing approach is not being

used, it is necessary to distinguish the two cases.

CHAPTER 4. REPRESENTATION ANALYSIS 36

The root of the problem is really that the �

ML

i

-Rep calculus is overly eager in doing away

with datatypes and type-level application. In retrospect, may have been more sensible

to employ a simpler calculus which retained a notion of polymorphic datatypes, rather

than dispensing with them early in the compilation. A type-passing variant of Lambda, for

example, may have been more suitable. As a work-around, however, it is su�cient to avoid

type normalization until after the coercions have been introduced, and to treat type-level

�-abstraction as if it de�ned a polymorphic datatype. This makes it possible to determine

which �elds in the unwrapped representation of recursive datatypes should be wrapped |

namely, those which are abstracted over.

4.6.2 Term Translation

Following Shao, coercions are introduced at the point of type application (i.e., at a term

e (�

1

; : : : ; �

n

)), so that in the translated form, e is only applied to wrapped types. The

coercion for most types is relatively straight-forward, and will not be described in detail

here.

There are two other points where it is necessary to introduce coercions, corresponding to

the introduction and elimination forms for incoercible types:

� roll and unroll coercions can be thought of as introduction and elimination forms for

recursive types. Since certain �elds of recursive types are boxed at all times (i.e.,

even in the `unwrapped' state), it is necessary to introduce coercions at roll and unroll

operations, so that the unwrapped, unrolled form is properly converted to the wrapped,

rolled form, and vice versa. It is again worth noting that �

ML

i

-Rep's type system makes

the task of deciding which �elds are to be rolled more di�cult than necessary.

� The array introduction and elimination forms (alloc and sub) also require coercion,

since array elements are kept wrapped at all times.

Chapter 5

A-Normalization

5.1 Introduction

A distinction is often made in programming languages between expressions, which compute

values, and statements, operate on values, but which are evaluated for their side e�ects only.

Many languages restrict the type of computations which are permitted as expressions. In

traditional imperative languages, expressions are limited to arithmetic and logical opera-

tions; constructs for selection and iteration are not generally permitted

1

. In the extreme

case of assembly code, only numeric constants and variables are allowed as expressions. In

most functional languages, by contrast, all computations belong to a universal class of ex-

pressions. One of the tasks in compiling SML to Java is therefore translating from a view of

computations as expressions to the more conventional view of computations as statements

operating on expressions.

As an example, consider the use of a case expression as the argument to a function in

SML:

fun foo (x : int) = ... (* Some SML code *) ...

...

val y = 3

val z = foo (case y of 0 => 1 | 1 => 2 | _ => y - 1)

The obvious translation into Java or C does not work:

int foo(int arg) { ... /* Some Java or C code */ ... }

...

int y;

int z;

1

Although it is interesting to note that ALGOL 68 made no distinction between statements and expres-

sions [50, 51].

37

CHAPTER 5. A-NORMALIZATION 38

y = 3;

z = foo(switch (y) (1: 1; break; 2: 2; break; default: y - 1; break))

This code is not syntactically valid, because switch is a statement, not an expression, and,

in Java and C, arguments to methods must be expressions. The solution is to name the

result of the switch with a temporary, and pass the temporary to the function:

int foo(int arg) { ... }

int y = ...;

int temp;

int z;

y = 3;

switch (y) {

1: temp = 1; break;

2: temp = 2; break;

default: temp = y - 1; break;

}

z = foo(temp);

The di�culty can be attributed to the fact that functional languages allow the results

of all computations (including conditionals) to remain anonymous, while conventional im-

perative languages require that some computations (namely, those which take the form of

statements) must modify store in order to be useful | essentially, that their results must

be named. As Appel observes, this is analogous to the way in which the early imperative

languages allowed arithmetic and logical relations to be anonymous in expressions, by con-

trast with assembly code, where all intermediate arithmetic results had to be named [4]. The

problem is then that some operations which are explicit in conventional languages (such as

storing the result of a statement in a variable) are implicit in functional ones.

5.2 Continuation Passing Style and A-Normal Form

A technique often employed to deal with this problem is to transform the source program

into Continuation Passing Style (CPS) [4, 6]. The idea of a CPS transformation is to make

control- and data-ow explicit, and to name all intermediate results, resulting in a form

which is amenable to translation to machine code.

CPS achieves this by transforming the program so that all control ow takes the form of

a tail-call. Every function is passed an additional argument (its continuation | `what to do

next' in the computation), which it invokes instead of returning. Another useful feature of

a CPS transformation is that all intermediate results are named, so that a program in CPS

CHAPTER 5. A-NORMALIZATION 39

operates only on named values and constants, much as assembly code. CPS is then basically

a formalized assembly code, and is straight-forward to translate to machine code.

While CPS intermediate forms have been fruitfully employed in a number of compilers

for functional languages [24, 8], CPS has two signi�cant drawbacks:

� Since CPS functions do not return, CPS function invocations must be translated to

assembly code in such a way that they do not cause stack growth | the target language

(to which the CPS is being translated) must therefore provide a form of global jump

or goto.

� Na��ve CPS translation introduces many `administrative' �-abstractions, which must

be eliminated by optimization (for example by �-reduction).

In the particular case of translation to the Java, the �rst point above is a critical problem.

For reasons of security, the JVM does not permit jumps out of a method; as a consequence,

the Java language does not provide a goto construct. The only calling mechanism available

in Java is therefore method invocation, which causes stack growth, and is hence unusable

for CPS tail calls. This restriction seems to rule out a CPS transformation.

The second problem is of more general concern, and is addressed by Flanagan et al.

[16]. Their observation is that in performing a CPS transformation, the optimization phase

required to eliminate unnecessary administrative �-abstractions is essentially an undoing of

the original CPS transformation. That is to say, a CPS compiler must go through the stages

of:

1. CPS transformation

2. �-normalization

3. \un"-CPS transformation

in order to produce e�cient code. As a consequence, it is suggested that these three stages

be replaced by a single-step A-transformation to A-normal form.

Indeed, A-normal form is attractive for an SML-to-Java compiler. The A-reductions lift

redexes out of evaluation contexts (as the switch was lifted out of the invocation of foo),

and names intermediate results, while not introducing unnecessary �-abstractions that need

to be optimized away. For this reason, a transformation in the avor of A-normalization was

adopted for the SML-to-Java compiler.

5.3 �

ML

i

-Norm

The implementation of A-normalization in the SML-to-Java compiler employs modi�ed ver-

sion of �

ML

i

-Rep, �

ML

i

-Norm, which distinguishes between expressions and statements, as

shown in Figures 5.1 and 5.2. Kinds, constructors, and types are as before, and expressions

CHAPTER 5. A-NORMALIZATION 40

are separated into two categories, based on Java's separation of expressions and statements.

Note that traditional A-normalization is considerably more restrictive in what is left as an

expression | typically only names and constants [33, 44, 16]. However, the fact that Java

permits some intermediate results (namely arithmetic and logical expressions) to remain un-

named can be exploited to simplify the translation. If the target of the translation were the

JVM instead of Java, a more aggressive normalization would have to be adopted.

Statements are only allowed in a few places: in the bodies of functions and let-declarations,

as the arms of a switch, as the guarded block of a handle, and importantly in a let assign-

ment. This last feature allows the results of arbitrary statements to be named, and provides

a way of translating a statement into a variable expression representing the result of the

statement. return sub-statements in let bindings should be interpreted as assignment to the

nearest enclosing let-bound variable.

Translation from �

ML

i

-Rep to �

ML

i

-Norm takes the form of a continuation-passing-style

algorithm, in the manner of the linear-time algorithm presented by Flanagan et al. [16].

The idea is to de�ne a function normalize taking an �

ML

i

-Rep expression, and a continua-

tion k mapping expressions to statements. �

ML

i

-Rep expressions which map to �

ML

i

-Norm

expressions are then translated by applying the continuation to the expression, to produce

an �

ML

i

-Norm statement. �

ML

i

-Rep expressions which map to �

ML

i

-Norm statements are

translated by generating a temporary label for the statement, applying the continuation to

the label, and then enclosing the resulting statement in a let statement, binding the variable

to the result of the statement.

The interesting cases in this translation arise in the translation of switch expressions in

�

ML

i

-Rep. For example, the �

ML

i

-Rep code:

let foo : (Int) ! Int = : : :

in let x : Int = : : :

in foo (switch (x) of 1: 2, 2: 3, default: x - 1)

is translated as

let foo : (Int) ! Int = : : :

in let x : Int = : : :

in let temp : Int = switch (x) of 1: return 2, 2: return 3, default: return (x - 1)

in foo (temp)

Note that the result of the switch has been bound to temp.

The handle expression in �

ML

i

-Rep becomes a statement in �

ML

i

-Norm by a similar pro-

cess. For example, the �

ML

i

-Rep code:

let foo : (Int) ! Int =

in let bar : (Int) ! Int = . . .

in let x : Int = . . .

in foo (bar (45) handle(x : Exn) . 21)

CHAPTER 5. A-NORMALIZATION 41

Declarations d ::= x : � = t

j � : � = �

j �x

f

1

: �

1

= �(x

11

: �

11

; : : : ; x

1n

1

: �

1n

1

):t

1

.

.

.

f

m

: �

m

= �(x

m1

: �

m1

; : : : ; x

mn

m

: �

mn

m

):t

m

j �xtype

f

1

: �

1

= �(�

11

:: �

11

; : : : ; �

1n

1

:: �

1n

1

):t

1

.

.

.

f

m

: �

m

= �(�

m1

:: �

m1

; : : : ; �

mn

1

:: �

mn

m

):t

m

Expressions e ::= x

j m:l

j he

1

; : : : ; e

n

i

j inject

�

i

(e

1

; : : : ; e

n

)

j i

j r

j enum

�

i

j s

j �(x

1

: �

1

; : : : ; x

n

: �

n

):t

j �(�

1

:: �

1

; : : : ; �

n

:: �

n

):t

j c e

j op

1

e

j op

2

(e

1

; e

2

)

j m

Figure 5.1: �

ML

i

-Norm: Declarations and expressions

CHAPTER 5. A-NORMALIZATION 42

Misc ops m ::= e

1

[e

2

] := e

3

j extern s : �

j newexn �

j = (�; e

1

; e

2

)

j 6= (�; e

1

; e

2

)

j wrap (�; e)

j unwrap (�; e)

Statements t ::= return e

j let d in t

j switch e of

i

1

: �(x

11

: �

11

; : : : ; x

1n

1

: �

1n

1

):t

1

;

.

.

.;

i

m

: �(x

m1

: �

m1

; : : : ; x

mn

m

: �

mn

m

):t

m

;

[default : t]

j raise e

j t

1

handle(x : Exn) t

2

Figure 5.2: �

ML

i

-Norm: Statements and misc ops

CHAPTER 5. A-NORMALIZATION 43

becomes

let foo : (Int) ! Int = . . .

in let bar : (Int) ! Int = . . .

in let x : Int = . . .

in let temp : Int = (return (bar (45))) handle(x : Exn) . return 21

in foo (temp)

Putting the examples together, consider the �

ML

i

-Rep code:

let foo : (Int, Int) ! Int = . . .

in let bar : (Int) ! Int = . . .

in let x : Int = . . .

in foo (switch (x) of 1: 2, 2: 3, default: x - 1,

(bar (45)) handle(x : Exn) . 21)

becomes

let foo : (Int, Int) ! Int = . . .

in let bar : (Int) ! Int = . . .

in let x : Int = . . .

in let temp1 : Int = switch (x) of 1: return 2, 2: return 3, default: return (x - 1),

in let temp2 : Int = (bar (45)) handle(x : Exn) . 21

in foo (temp1 , temp2)

Note here that the order of evaluation of the switch and handle are preserved.

Chapter 6

Closure Conversion

6.1 Introduction

A common feature of modern programming languages (including SML) is the provision of

facilities for treating functions as �rst-class objects | meaning that they can be stored in

data structures, passed as parameters, and so on, just as any other object in a program.

Facilities for nesting of scope (functions within functions) are also often provided. While

conventional languages sometimes provide either or both of these (for example, C (almost)

provides the former but not the latter, Ada provides the latter but not the former, and Java

provides neither), their combination in languages like SML causes di�culty in compilation,

both to machine code, and to other more conventional languages.

Restrictions on functions are included in conventional languages in order to preclude the

computation of closures. A closure is a pairing of a piece of code with an environment,

mapping its free variables to values. Closures arise because the combination of �rst-class

functions and nested scope can create situations where variables out-live their lexical scope.

Consider the following SML program, for example:

val f = fn (x : int) =>

let val g = fn (y : int) => x + y

in g

val add1 = f 1

val add2 = f 2

val a = add1 2

val b = add2 2

Even when f returns in these cases, the variable x is still needed by g; x has outlived its

scope. To deal with this, the invocation f 1 returns a closure consisting of the code for g,

together with a binding of f's free variable x to 1, and the invocation f 2 returns a closure

consisting of the code for g, together with a binding of f's free variable x to 2. The resulting

functions add1 and add2 may be applied as if they had been declared by

44

CHAPTER 6. CLOSURE CONVERSION 45

val add1 =

let val g = fn (y : int) => 1 + y

in g

and

val add2 =

let val g = fn (y : int) => 2 + y

in g

add1 and add2 cannot simply be treated as pointers to code, as is the case in C (where there

are no free variables to consider).

A key phase in the translation of high-level languages to lower-level languages or assembly,

then, is that of closure conversion, where the representation of closures in the target language

is chosen. In particular, the free variable environment for a function is made explicit (often

as an additional parameter) and references to free variables are replaced by indices into the

environment. A closure is then the result of applying a function to its environment, and is

hence a pairing of code with data. This is similar to the concept of an object, and indeed

the implementation of closures in Java is by an object, as described in Chapter 7.

6.2 Typed Closure Conversion

Typed closure conversion is a particular form of closure conversion in which types are pre-

served in the transformation [32]. This approach is particularly useful in the context of an

SML-to-Java compiler, where type information must be preserved throughout compilation.

Minamide, Harper and Morrisett give a detailed account of typed closure conversion for

both �rst- and second-order typed �-calculi [32]. Their approach is employed in performing

closure conversion on �

ML

i

, which is after all an enriched second-order �-calculus. Since �

ML

i

is a second-order calculus, closure conversion must account for free type variables as well

as free term variables; both type- and value-environments, mapping type- and term-level

variables to types and values respectively, must be dealt with.

Closure conversion is implemented as a transformation from �

ML

i

-Norm to �

ML

i

-Close,

in which closures, environments, and environment projection are introduced as primitive

constructs of the calculus, as shown in Figures 6.1 to 6.3.

At the term level, �

ML

i

-Close possesses two forms for function code, vcode and tcode,

corresponding to �- and �-abstraction in the unconverted code, which abstract over the

type and value environments. An expression

vcode([�

1

; : : : ; �

m

]; [�

1

; : : : ; �

n

]; (x

1

: �

1

; : : : ; x

o

: �

o

):t)

de�nes a function with constructor environment entries of kind �

i

, value environment entries

of type �

1

, and ranging over variables x

i

of type �

i

. The tcode expression is similar, save

CHAPTER 6. CLOSURE CONVERSION 46

that it abstracts over type variables. An expression of form

hhe; [�

1

; : : : ; �

n

]; [e

1

; : : : ; e

m

]ii

represents a closure over code expression e, partially applying it to its constructor envi-

ronment [�

1

; : : : ; �

n

] and value environment [e

1

; : : : ; e

m

]. An expression # i denotes the

projection of the i

th

component of the value environment. The let binding �xcode replaces

the �x and �xtype constructs of �

ML

i

-Norm, allowing arbitrary expressions (and in particular,

closure expressions) to be recursively bound to identi�ers.

At the type level, types Vcode and Tcode are introduced, denoting the types of the vcode

and tcode expressions. At the constructor level, forms for closed code (Code, abstracting

over a constructor environment), projection from constructor environment (# i), and con-

structor closure (hh�; [�

1

; : : : ; �

n

]ii, representing partial application of constructor code to its

environment), are also introduced. The kind Code classi�es Code constructors.

Note that at the expression level, a closure expression either has arrow or polymorphic

types ((�

1

; : : : ; �

n

)! � or 8(�

1

:: �

1

; : : : ; �

n

:: �

n

):�), depending on whether it closes over a

value abstraction (an object of type Vcode) or a type abstraction (an object of type Tcode).

Similarly, at the constructor level, a closure constructor has an arrow kind ((�

1

; : : : ; �

n

)! �).

The closure conversion algorithm (translating from �

ML

i

-Norm to �

ML

i

-Close) essentially

follows that of Minamide, Harper and Morrisett. A recursive traversal of the �

ML

i

-Norm

form is performed, collecting bindings for variables, much in the manner of a type checker.

Four environments are maintained:

1. A mapping of non-local type variables currently in scope to their kinds �

env

.

2. A mapping of local type variables currently in scope to their kinds �

arg

.

3. A mapping of non-local term variables currently in scope to their types �

env

.

4. A mapping of local term variables currently in scope to their types �

arg

.

When a �- or �-abstraction is encountered, it is replaced by a closure expression (hh�ii),

comprising a tcode or vcode expression (using the current mapping of type variables to kinds

and term variables to types to abstract over type and value environments), and references

to the current environment values for the environment component. Upon entry to a �- or �-

abstraction, the entries of the local environments are shifted into the non-local environments,

and are replaced in the local environments by the formal parameters to the abstraction. As

an optimization, and at the cost of some compile-time e�ciency, the compiler only abstracts

over variables which are free in the �- or �-abstraction.

When a term or type variable is encountered, it is looked up �rst in the local term (resp.

type) environment; if it is found, it is left unchanged. If it is not found, it is looked up

in the non-local term (resp. type) environment, and replaced by a projection from that

environment.

CHAPTER 6. CLOSURE CONVERSION 47

Kinds � ::=

j (�

1

; : : : ; �

n

)! �

j h�

1

� � � � � �

n

i

j Code([�

0

1

; : : : ; �

0

m

]; (�

1

; : : : ; �

n

)! �)

Constructors � ::= �

j m:l

j Int

j Real

j String

j Exn

j Enum i

j Array �

j (�

1

; : : : ; �

n

)! �

j (�

11

; : : : ; �

1n

1

) + � � �+ (�

m1

; : : : ; �

mn

m

)

j h�

1

� � � � � �

n

i

j Excon �

j Deexcon �

j Wrap �

j h�

1

; : : : ; �

n

i

j �

i

�

j � (�

1

; : : : ; �

n

)

j Rec �

1

= �

1

; : : : ; �

n

= �

n

In �

j Let � :: � = �

1

In �

2

j Code([�

0

1

; : : : ; �

0

m

]; (�

1

:: �

1

; : : : ; �

m

:: �

n

):�)

j # i

j hh�; [�

1

; : : : ; �

n

]ii

Types � ::= �

j Vcode([�

1

; : : : ; �

m

]; [�

1

; : : : ; �

n

]; (�

1

; : : : ; �

o

)! �)

j Tcode([�

0

1

; : : : ; �

0

m

]; [�

1

; : : : ; �

n

]; (�

1

:: �

1

; : : : ; �

o

:: �

o

):�)

j 8(�

1

:: �

1

; : : : ; �

n

:: �

n

):�

j Export

Types : l

11

:: �

1

; : : : ; l

1n

:: �

n

Values : l

21

: �

1

; : : : ; l

2m

: �

m

Figure 6.1: �

ML

i

-Close: Kinds, constructors and types

CHAPTER 6. CLOSURE CONVERSION 48

Declarations d ::= x : � = e

j � :: � = �

j �xcode

f

1

: �

1

= e

1

.

.

.

f

n

: �

n

= e

n

Misc ops m ::= e

1

[e

2

] := e

3

j extern s : �

j newexn �

j = (�; e

1

; e

2

)

j 6= (�; e

1

; e

2

)

j wrap (�; e)

j unwrap (�; e)

Figure 6.2: �

ML

i

-Close: Declarations and misc ops

Note that no e�ort is made to perform further transformations in the manner of Mi-

namide, Harper and Morrisett's `closure representation' analysis. It is relatively straight-

forward to encode the primitive closure operations e�ciently in Java (indeed, more straight-

forward than encoding the existential types used by Minamide, Harper and Morrisett in

their closure representation), as described in Chapter 7.

As an example, consider the following SML code:

val f = fn (x : int) => fn y => x + y

val swap (x, y) = (y, x)

val inc = f 1

val x = inc 3

...

This is translated to the following �

ML

i

-Rep program

let f : (Int) ! ((Int) ! Int) =

�(x : Int) . �(y : Int) . + (x , y)

in let swap : 8(� ::
, � ::
) . (h� � �i) ! h� � �i =

�(� ::
, � ::
) . �(v1 : h� � �i) . h�

1

v1 , �

0

v1 i

in let inc : (Int) ! Int = f (1)

in let x : Int= inc (3)

in . . .

CHAPTER 6. CLOSURE CONVERSION 49

Expressions e ::= x

j m:l

j he

1

; : : : ; e

n

i

j inject

�

i

(e

1

; : : : ; e

n

)

j i

j f

j enum

�

i

j s

j vcode([�

1

; : : : ; �

m

]; [�

1

; : : : ; �

n

]; (x

1

: �

1

; : : : ; x

o

: �

o

):t)

j tcode([�

0

1

; : : : ; �

0

m

]; [�

1

; : : : ; �

n

]; (�

1

:: �

1

; : : : ; �

o

:: �

o

):t)

j e (e

1

; : : : ; e

n

)

j e (�

1

; : : : ; �

n

)

j # i

j hhe; [�

1

; : : : ; �

m

]; [e

1

; : : : ; e

n

]ii

j c e

j op

1

e

j op

2

(e

1

; e

2

)

j m

Statements t ::= return e

j let d in t

j switch e of

i

1

: �(x

11

: �

11

; : : : ; x

1n

1

: �

1n

1

):t

1

;

.

.

.

i

m

: �(x

m1

: �

m1

; : : : ; x

mn

m

: �

mn

m

):t

m

[default : t]

j raise e

j t

1

handle(x : Exn) t

2

j export

types : l

11

: �

1

; : : : ; l

1n

: �

n

values : l

21

: e

1

; : : : ; l

2m

: e

m

Figure 6.3: �

ML

i

-Close: Expressions and statements

CHAPTER 6. CLOSURE CONVERSION 50

After closure conversion (removing the wrapping and unwrapping coercions introduced by

representation analysis for clarity), this becomes:

let f : (Int) ! ((Int) ! Int) =

hhvcode([], [], �(x : Int) . hhvcode([], [Int], �(y : Int) . + (# 0, y)), [], [x]ii),

[], []ii

in let swap : 8(� ::
, � ::
) . (h� � �i) ! h� � �i =

hhtcode([], [], �(� ::
, � ::
) .

hhvcode([
,
], [], �(v1 : h# 0�# 1i) . h�

1

v1 ; �

0

v1 i), [�, �], []ii),

[], []ii

in let inc : (Int) ! Int= f (1)

in let x : Int= inc (3)

in . . .

6.3 Hoisting

Having performed closure-conversion, the �

ML

i

-Close code has the convenient property that

each piece of code is self-contained, independent of its enclosing scope. Code may therefore

be hoisted to the top level of the program from its lexical position, its place being taken by

a variable of the appropriate type. This transformation is useful in translating to languages

like Java, since they often, in the �rst place, require that all code be named, and in the

second, require that all code be declared at the top-level scope.

Hoisting is a relatively simple transformation. All vcode and tcode expressions are iden-

ti�ed and named; they are then moved to the top-level of the program, where they are

bound to their name in let declarations, and replaced in their position of appearance by the

generated name.

To continue the example above, after closure hoisting the code would become

let code1 : Vcode([
,
], [], (h# 0�# 1i) ! h# 1 �# 0i) =

vcode([
,
], [], �(v1 : h# 0�# 1i). h �

1

v1 , �

0

v0 i)

in let code2 : Tcode([], [], 8(� ::
, � ::
) . (h� � �i) ! h� � �i) =

tcode([], [], �(� ::
, � ::
) . hhcode1 , [�, �], []ii)

in let code3 : Vcode([], [Int], (Int) ! Int) =

vcode([], [Int], �(y : Int).+ (# 0, y))

in let code4 : Vcode([], [], (Int) ! ((Int) ! Int)) =

vcode([], [], �(x : Int) . hhcode3 , [], [x]ii

in let f : (Int) ! ((Int) ! Int) = hhcode4 , [], []ii

in let swap : 8(� ::
, � ::
) . (h� � �i) ! h� � �i = hhcode2 , [], []ii

in let inc : (Int) ! Int= f (1)

in let x : Int= inc (3)

in . . .

Chapter 7

Translation to Java

7.1 Introduction

Having dealt with the issues of representation analysis, A-normalization, and closure con-

version, actual Java code can be generated from the �

ML

i

-Close intermediate representation.

The principal di�erence between �

ML

i

-Close and Java at this stage is the restrictive nature

of Java's type system. While �

ML

i

-Close permits anonymous user-de�ned types, and admits

structural equality of types, Java rigidly requires that all user-de�ned types be named (and

moreover that all user-de�ned types be classes or interfaces), and that types are name-

equivalent (with the usual subtyping rules). Java's type system makes life somewhat simpler

in as much as all class de�nitions are visible to one another (that is, a Java compilation unit

can be thought of as a set of mutually recursive class type de�nitions), so that de�nition

of recursive types is straight-forward, and the order in which type de�nitions appear is

immaterial.

7.2 Type Erasing

The �rst step in translating �

ML

i

-Close to Java is to perform a transformation to �

ML

i

-Box

form. �

ML

i

-Box is a variant of �

ML

i

-Close with a considerably simpli�ed type system. In

particular, the distinction between constructors and types made in �

ML

i

-Close is eliminated;

furthermore, since there is no type-based dispatch in �

ML

i

-Close (that is to say, no typecase

or typerec construct in the style of Morrisett), type functions at the term level may be

eliminated without changing the dynamic semantics of the program, and so tcode constructs

are absent from �

ML

i

-Box.

Type abbreviations (introduced, for example, by Let and Rec constructors) and type vari-

ables (introduced by constructor-level � abstraction, type-level 8 abstraction, and term-level

� abstraction (or rather, their equivalents after closure-conversion), which are essentially

place-holders for unknown types), are also distinguished at this point. The representation of

51

CHAPTER 7. TRANSLATION TO JAVA 52

the former is known at compile-time, whereas a uniform representation must be adopted for

the latter. As a consequence, all instances of type variables are replaced by a Box constructor

(although perhaps Any may be more suggestive of the meaning).

As a �nal simpli�cation, the representation of recursive types (introduced by the Rec

constructor) is changed to be an SML reference to a type. As a consequence, an �

ML

i

-Close

type such as

list � �(� ::
) . Rec l = () + (h� � li) In l

will be replaced by

list � ref (() + (hBox � listi))

in �

ML

i

-Box. This makes translation of recursive types considerably simpler.

7.3 Type Translation

Translation of �

ML

i

-Box to Java begins with a translation of the simpli�ed �

ML

i

-Box types to

Java types. The �rst phase of this translation creates a table of distinct types which appear

in the �

ML

i

-Box program, and each non-trivial type is given a Java type name. In the second

phase, Java code for each type is emitted, using the names assigned in the �rst phase. Each

�

ML

i

-Box type is considered in turn.

7.3.1 Basic Types

The basic �

ML

i

-Box types (Int, Real, String) are translated to their direct counterparts in

Java, namely int, double, and String.

7.3.2 Enumerated Types

The lack of subrange types in Java makes the translation of enumerated types somewhat less

that optimal. The �

ML

i

-Box type Enum i is either translated as a Java byte type if i > 2, or

as a Java boolean type if i = 2. Java byte types are rather inconvenient to use since there

are no byte literals, and byte values can only be introduced by way of a cast from an int.

7.3.3 Record Types

Record types in �

ML

i

-Box (of form h�

1

; : : : ; �

n

i) are translated as a Java class, comprising

�elds f

1

through f

n

of the appropriate types, and a constructor.

For example, the �

ML

i

-Box type hInt� Inti is translated to the following Java code:

CHAPTER 7. TRANSLATION TO JAVA 53

class _record$_int_int$ {

int _f1;

int _f2;

_record$_int_int$(int f1, int f2) {

_f1 = f1;

_f2 = f2;

}

}

7.3.4 Sum Types

Sum types in �

ML

i

-Box of form (�

11

; : : : ; �

1n

1

)+� � �+(�

m1

; : : : ; �

mn

m

) are compiled into m+1

classes: an abstract base class, comprising an int tag �eld; and m sub-classes of the base

classes, one for each variant of the sum. Each variant class's constructor sets the tag �eld

appropriately, and de�nes �elds f

1

through f

n

j

of the appropriate types for variant j.

For example, the �

ML

i

-Box type (Int) + (hInt� Inti) would be translated to the following

Java code (assuming that type hInt� Inti was given the Java class name record$ int int$):

abstract class _sum$_int$$_record$_int_int$$ {

int _tag;

}

class _sum$_int$$_record$_int_int$$_1

extends _sum$_int$$_record$_int_int$$ {

int _f1;

_sum$_int$$_record$_int_int$$_0(int f1) {

_tag = 1;

_f1 = f1;

}

}

class _sum$_int$$_record$_int_int$$_2

extends _sum$_int$$_record$_int_int$$ {

_record$_int_int$ _f1;

_sum$_int$$_record$_int_int$$_0(_record$_int_int$ f1) {

_tag = 2;

_f1 = f1;

}

}

CHAPTER 7. TRANSLATION TO JAVA 54

7.3.5 Arrow Types

An arrow type in �

ML

i

-Box of form (�

1

; : : : ; �

n

) ! � is represented in Java as an abstract

class, de�ning the abstract method invokewith the appropriate parameter and return types.

Code instances of a particular type are de�ned as subclasses of the abstract arrow type, as

will be seen below.

For example, the �

ML

i

-Box type (Int;String) ! Int would be translated to the following

Java code:

abstract class _arrow$_int_string$_int {

abstract int invoke(int _arg1, String _arg2);

}

7.3.6 Type Variables

Type variables (i.e., types which are unknown at compile-type), which appear as Box in �

ML

i

-

Box, are represented by type SMLBox in Java. Any type which could be an instantiation of

a type variable is therefore constrained to be a subclass of SMLBox. Note that the coercions

introduced by the representation analysis phase of compilation will guarantee that type

variables will only be instantiated with boxed types (subtypes of SMLBox).

It may seem more sensible to use the prede�ned type Object to represent type variables;

however, as will be seen, it was desirable to add a number of abstract methods to the SMLBox

class.

For reasons which are made clear in section 7.3.7, SMLBox is de�ned as a subclass of

Exception.

7.3.7 Exception Types

An exception declaration in SML gives rise to four types in �

ML

i

-Box: the exception packet

type, the exception constructor type, the exception deconstructor type, and a constructor

and deconstructor pair. The translation from �

ML

i

-Box to Java must account for all of these

types, in such a way as to allow the Java exception system to be used.

The exception packet type seems as though it should be simply a subclass of Exception,

so that they may be thrown by Java programs. However, since exception packets can be

instantiations of type variables, they must be subclasses of SMLBox (see section 7.3.6 above).

Exception packets must therefore be subclasses of both SMLBox and of Exception. Note

however that Java only permits single inheritance, so either SMLBox must be as a subclass

of Exception, or vice versa.

Since Exception is a `core' Java class, its position in the class hierarchy cannot be changed

| in particular, it cannot be made a subclass of SMLBox. Thus, the only alternative is to

make SMLBox a subclass of Exception, and all exception packets subclasses of SMLBox. In

CHAPTER 7. TRANSLATION TO JAVA 55

this way, exceptions can at once be instantiations of type variables, and throwable exceptions.

The only peculiarity of this approach is that any SML type is throwable.

The treatment of exception constructor and deconstructor types is somewhat tricky.

First, excon interface and deexcon interface interfaces de�ning methods excon, and

deexcon respectively are de�ned. A record type with �elds f1 of type excon interface,

and f2 of type deexcon interface, and which implements the excon interface and

deexcon interface interfaces (i.e., which de�nes the excon and deexcon methods), is

then de�ned. The constructor for the record assigns the f1 and f2 �elds to itself, thereby

creating in a single allocation a structure which is the pair of constructor and deconstructor,

and the constructor and deconstructor themselves.

The excon and deexcon operations are then translated simply as invocation of the excon

and deexcon methods of the record respectively.

For example, the �

ML

i

-Box code:

let x : hExcon Int� Deexcon Inti = newexn Int

in. . .

generates the following Java code (assuming that sum$$ int$ is the Java name for �

ML

i

-Box

type () + (Int)):

interface _excon_int {

abstract SMLExn excon(int data);

}

interface _deexcon_int {

abstract _sum$$_int$ deexcon(SMLExn exn);

}

class _exn_x extends SMLExn {

int _data;

_exn_x(int data) {

_data = data;

}

}

class _con_x implements _excon_int, _deexcon_int {

_excon_int _f1;

_deexcon_int _f2;

SMLExn excon(int data) {

return new _exn_x(data);

CHAPTER 7. TRANSLATION TO JAVA 56

}

_sum$$_int$ deexcon(SMLExn exn) {

if (exn instanceof _exn_x) {

return new _sum$$_int$_2(((_exn_x) exn)._data);

} else {

return new _sum$$_int$_1();

}

}

_con_x() {

_f1 = this;

_f2 = this;

}

}

_con_x x = new _con_x();

7.3.8 Recursive Types

As noted above, recursive types are represented in �

ML

i

-Box by an SML reference to an

�

ML

i

-Box type. Translation for a reference type therefore simply requires translation of

the referred-to type (although care must be taken to avoid in�nitely translating referred-to

types).

7.4 Code Translation

In the closure conversion phase of the compilation (Chapter 6), all code was

� Closed with respect to its free variables, and

� Hoisted to the top-level and named.

Code emission in Java then involves identifying the top-level declarations which corre-

spond to code segments, and emitting a closure class. The closure class consists of �elds e

i

to for each free variable in the enclosing environment, and a single invoke method. The

class is de�ned as a subclass of the appropriate abstract arrow type (section 7.3.5 above).

Individual expressions can be translated almost directly from �

ML

i

-Box, thanks to the

control ow analysis performed earlier:

� �

ML

i

-Box variable references (x) are translated to the corresponding Java variable.

�

ML

i

-Box variable names are suitably altered so that they represent valid Java identi-

�ers.

CHAPTER 7. TRANSLATION TO JAVA 57

� Injection into sum types (inject

�

i

(e

1

; : : : ; e

n

)) is translated as a class instance allocation

for variant i of the sum type.

� Integer, real, and string expressions are translated to integer, double, and string literals

in Java.

� Enumerated constants of type Enum i are translated as either Java byte constants

(which must unfortunately be introduced indirectly, by a cast from an integer literal),

or as boolean constants if i = 2.

� Record creation (he

1

; : : : ; e

n

i) is translated as a class instance allocation for the appro-

priate record class type.

� Function invocation (e (e

1

; : : : ; e

n

)) is translated as a invocation of the invokemethod

of the operand with the corresponding arguments. If e is an external function (i.e., a

Java API function) it is invoked directly instead of through the invoke method.

� Unary and binary expressions are translated to their direct equivalents in Java where

they exist; some give rise to calls to methods in the java.math library, and certain

others had to be hand-coded in Java in order to detect overow and other excep-

tional conditions, as required by SML. Record selection is translated as accessing the

appropriate �eld of the record object.

� Environment projection is translated as a �eld access to the appropriate environment

�eld.

� �

ML

i

-Box's closure expression (hh�ii) gives rise to a class instance allocation of the closure

class referenced in the operation, with the appropriate environment arguments to the

constructor. Note that hoisting guarantees that the code segment named in the closure

operation will be named.

Translation of statements is similarly straight-forward:

� Translation of the �

ML

i

-Box return statement depends on the current context. When

translating a let binding, the return is translated as assignment to the bound variable.

When translating a function, the return is translated as a Java return statement.

� Let declaration translation is somewhat involved, particularly in the case of recursive

function de�nitions. The problem that arises is essentially that a recursive environment

structure must be built, so that all of the functions in the �x can refer to each other.

This is achieved by �rst allocating the closures for each of the functions in the �x,

with dummy (null) arguments for the environment entries of functions in the �x.

Then, when all of the closures have been allocated, they are updated by assigning the

allocated closures to the environment slots for each de�ned function. The example at

the end of this section clari�es this procedure.

CHAPTER 7. TRANSLATION TO JAVA 58

� Translation of the switch construct in �

ML

i

-Box to Java's switch statement causes

essentially the same di�culty as translation from the Lambda switch construct to the

�

ML

i

-Box switch save in reverse: that is, �

ML

i

-Box's switch construct implicitly decom-

poses its argument when switching on sum types, whereas neither Java nor Lambda do

so.

Translation of integer-indexed switches is straight-forward, since no decomposition is

performed.

Translation of enumeration-indexed switches depends on the type of the argument. If

the argument is of type Enum 2, the switch is operating over a boolean type, and so is

translated as an if-then-else construct in Java. Otherwise, the switch is operating

over a Java byte type. In this case, Java's lack of enumerated and subrange types

hinders the translation again, by requiring that the switch include a default case even

though the switch may be provably exhaustive.

Translation of sum-indexed switches requires that decomposition of the argument be

performed. The switch arm is selected by inspection of the tag �eld of the sum type.

Each arm is then translated with a preamble that assigns variables to the �elds of the

appropriate sum arm. Again, since Java does not possess enumeration or subrange

types, a default case must always be included, which simply invokes the fatalmethod

of the pre-de�ned General class, signaling an internal compiler error.

� The raise statement of �

ML

i

-Box is translated as a throw statement in Java.

� The handle statement of �

ML

i

-Box is straight-forward to translate, since Java provides

a mechanism for binding the handled exception to an identi�er, in the guise of the

try-catch construct, much in the manner of �

ML

i

-Box.

The following SML code illustrates more clearly how mutually recursive functions are

compiled to Java:

fun even 0 = true

| even x = odd (x - 1)

and odd 0 = false

| odd x = even (x - 1);

val x = even 43;

The Java translation would look as follows:

abstract class _arrow$_int$_bool {

abstract boolean invoke(int arg);

}

class even_closure extends _arrow$_int$_boolean {

CHAPTER 7. TRANSLATION TO JAVA 59

_arrow$_int$_boolean _even;

_arrow$_int$_boolean _odd;

fact_closure(_arrow$_int$_boolean even, _arrow$_int$_boolean odd) {

_even = even;

_odd = odd;

}

int invoke(int x) {

switch (x) {

case 0:

return true;

default:

return _odd.invoke(x - 1);

}

}

}

class odd_closure extends _arrow$_int$_boolean {

_arrow$_int$_boolean _even;

_arrow$_int$_boolean _odd;

fact_closure(_arrow$_int$_boolean even, _arrow$_int$_boolean odd) {

_even = even;

_odd = odd;

}

int invoke(int x) {

switch (x) {

case 0:

return false;

default:

return _even.invoke(x - 1);

}

}

}

class main {

public static void Main(String args[]) {

even = new even_closure(null, null);

odd = new odd_closure(null, null);

CHAPTER 7. TRANSLATION TO JAVA 60

even._even = even;

even._odd = odd;

odd._even = even;

odd._odd = odd;

boolean x;

x = even.invoke(43);

}

}

7.5 Polymorphic Equality

One issue that has proved troublesome for past implementations of SML is that of poly-

morphic equality [5]. SML allows certain non-trivial types to be compared for equality |

in particular, datatypes and record types whose �elds are themselves equality types may

be compared, just like the basic types int, real

1

, and string. Adding to the complexity,

objects of unknown type (that is, whose type is a type variable), but which are known to be

equality types, may also be compared.

A number of possible approaches exist to deal with this problem. That adopted by the ML

Kit is to generate Lambda code for comparing each equality type de�ned by the user [11]. This

code must then of course be translated into Java in later stages, at a considerable cost both

to the e�ciency of the compiler, and the legibility of the intermediate code. In keeping with

the type-passing approach, Morrisett suggests a type-passing equality function (essentially

a function eq of type 8(� :: �):(�;�)! bool) which inspects its type parameter at run-time

to dispatch to the appropriate code to perform the actual (possibly recursive) comparison

[33]. This approach is attractive, but requires more machinery in the intermediate form

(in particular, a typecase or typerec construct) than was provided. Instead, the issue of

polymorphic equality was dealt with at the Java translation stage of compilation.

The idea essentially is that every class representing a SML type (i.e., every subclass of

SMLBox) must de�ne an equalsmethod, taking a single SMLBox argument; this is enforced by

making equals an abstract method of SMLBox. The SML-to-Java compiler guarantees that

the argument to the equals method will always be the same type as the object on which

the method was invoked; however, it is a classic de�ciency of object-oriented type systems

lacking self-types that this restriction cannot be speci�ed in Java [1, 2]. The penalty for

the lack of this feature is that a run-time cast will be necessary to get an object of the

appropriate type for comparison.

For record types, the equalsmethod is recursively invoked for each �eld of the record. For

sum types, the equalsmethod checks by way of an instanceOf test whether the parameter

1

Although it is not clear whether it is desirable to compare real values for equality.

CHAPTER 7. TRANSLATION TO JAVA 61

passed is the same variant as the method's class | if it is, then a further recursive �eld-by-

�eld analysis is performed, otherwise false can be returned immediately. Exception and

function types in SML do not admit equality, and so their equals methods should never be

invoked | as a safeguard, they will always invoke the fatal method of the General class.

While it is perhaps desirable to move the code for polymorphic equality to an earlier

stage of compilation, so that for example it may be exposed for optimization, it was felt that

the additional machinery required to do so would have added considerable complexity to the

compiler for comparatively little gain.

7.6 Wrapping and Unwrapping

As noted in Chapter 4, representation analysis in the SML-to-Java compiler is dealt with

in two phases. In the �rst phase, wrap and unwrap coercions are inserted into the code

at the appropriate points; in the second, wrap and unwrap are elaborated into their actual

de�nition, in terms of boxing and unboxing.

In his presentation, Shao makes use of a typecase construct to de�ne the wrapping and

unwrapping transformations for each of his boxing schemes (full boxing, partial boxing,

and simple boxing) [38]. Since �

ML

i

does not include a typecase construct, de�nition of the

wrapping and unwrapping transformations is deferred until the point of translation to Java.

At that stage, virtual method invocation can be used to achieve essentially the same e�ect.

For reasons of simplicity, full boxing approach was implemented. Although partial boxing

would perhaps be more e�cient in execution time, it requires that wrapping and unwrapping

be de�ned in terms of `(un)boxing' and `(un)covering' operations. Full boxing by contrast

de�nes the (un)wrapping transformation by the recursive application of `(un)boxing' only.

To some extent then it is unclear whether the additional bene�t of partial boxing is merited,

given that it may require addition virtual method invocations on each wrapping operation.

Full boxing is implemented in Java by adding two methods to each subclass of SMLBox,

namely the method wrap, which transforms an object (by recursive invocation of wrap if

necessary) into its fully boxed form, and the static method unwrap, which unwraps an

SMLBox object into the type at which the method is de�ned (and which is therefore basically

a specialized Java constructor for the type).

Since the fully boxed form of a class is of a di�erent type from the class itself, at type

extraction time a `boxed' form for each type must also be de�ned. This is done by replacing

each �eld of a record, sum or exception packet type with SMLBox, so that each component

of the type is represented by a heap-allocated object.

The wrapping operation performs recursive full boxing on the object, creating an instance

of its `boxed' counterpart. Each �eld of a record, sum or exception packet will be recursively

wrapped (by invocation of the `wrap' method) and passed to the constructor of the `boxed'

type. Unwrapping reverses this procedure; type casts are required to extract the actual types

from the SMLBox types to which they are coerced by wrapping.

CHAPTER 7. TRANSLATION TO JAVA 62

The full Java translation of the �

ML

i

-Box type hInt� Inti is therefore as follows:

class _record$_box_box$ {

SMLBox _f1;

SMLBox _f2;

_record$_box_box$(SMLBox f1, SMLBox f2) {

_f1 = f1;

_f2 = f2;

}

SMLBox wrap() {

return this;

}

static _record$_box_box$ unwrap(SMLBox x) {

return (_record$_box_box$) x;

}

boolean equals(SMLBox x) {

_record$_box_box$ x_cast = (_record$_box_box$) x;

return _f1.equals(x_cast._f1) && _f2.equals(x_cast._f2);

}

}

class _record$_int_int$ {

int _f1;

int _f2;

_record$_int_int$(int f1, int f2) {

_f1 = f1;

_f2 = f2;

}

SMLBox wrap() {

return new _record$_box_box$(new SMLBoxedInt(_f1),

new SMLBoxedInt(_f2));

}

static _record$_int_int$ unwrap(SMLBox x) {

_record$_box_box$ x_cast = (_record$_box_box$) x;

CHAPTER 7. TRANSLATION TO JAVA 63

return new _record$_int_int$(SMLInt.unwrap(x_cast._f1),

SMLInt.unwrap(x_cast._f2));

}

boolean equals(SMLBox x) {

_record$_int_int$ x_cast = (_record$_int_int$) x;

return (_f1 == x_cast._f1) && (_f2 == x_cast._f2);

}

Chapter 8

Summary, Future Work and

Conclusion

8.1 Summary

The emergence of the Java language and Virtual Machine have created a unique opportunity

for the development of truly portable code. Exploiting the potential of these technologies for

the moment depends on use of the Java language, unfortunately ignoring the great wealth

of programming language research of the last twenty years. This document presents an

alternative, where the Java language and JVM are used a vehicle for the deployment of

Standard ML | a potentially superior platform for Internet and web development.

This compiler also demonstrates how some of the recent developments in the func-

tional language community, such as type-directed compilation, representation analysis, A-

normalization, and typed closure conversion, can be fruitfully applied to realistic compiler

implementation.

8.2 Future Work

The compiler described in this document can, however, only be viewed as a �rst step in

the development of a true SML-to-JVM compiler. In particular, a number of points require

further attention:

1. Most importantly, the compiler described implements only the core-SML language,

and does not address the compilation of modules. Module compilation to the JVM

raises a number of important issues, especially where the naming of types is concerned.

The development of a proper module compiler is also probably a necessary �rst step

to developing a type-safe interface to Java APIs (so that, for example, signatures for

Java packages can be de�ned).

64

CHAPTER 8. SUMMARY, FUTURE WORK AND CONCLUSION 65

2. The issue of tail-recursion elimination has not been addressed. There has been some

suggestion that future versions of the JVM will include constructs for proper tail-

recursion (i.e., recursion without stack growth) but since languages like C and Java

typically do not encourage a recursive programming style, it seems unlikely that there

will be much pressure from industry to incorporate this feature. It seems sensible

therefore to investigate other strategies, using the resources available | for example,

the Kawa Scheme-to-JVM compiler uses the JVM local goto instruction to perform

limited tail-recursion elimination [12]; this strategy could perhaps be employed in the

SML-to-Java compiler, although it would require re-targeting the compiler to emit

JVM bytecode rather than Java. Other less elegant and e�cient solutions which do

not involve the JVM (for example, using labelled loops) are also conceivable.

3. The SML-to-Java compiler currently performs only a few modest optimizations, and

hence su�ers from fairly poor performance. E�cient compilation of SML requires

considerably more aggressive optimization to be competitive with other languages;

and there is now a large body of knowledge on SML optimization (see for example

Tarditi's thesis [44]) from which to draw.

8.3 Conclusion

Experience with Java as an intermediate form seems to suggest that although typed lan-

guages o�er safety and reliability, they present considerable, and to some extent arti�cial,

obstacles to compilation. In particular, the compilation of polymorphism to Java was highly

troublesome, due largely to the restrictive nature of Java's type system. The lack of features

like enumerated types and variable-argument functions also made compilation to Java more

di�cult than necessary.

Despite its limitations, and despite the di�culties posed by Java, the SML-to-Java com-

piler serves to demonstrate at once the feasibility of compiling high-level languages to the

JVM, and the utility of advanced compilation techniques.

Bibliography

[1] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer

Science. Springer-Verlag, 1996.

[2] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Untyped and �rst-order

systems. Information and Computation, 125(2):78 { 102, March 1996.

[3] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principless, Techniques,

and Tools. Addison-Wesley, 1988.

[4] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[5] Andrew W. Appel. A critique of Standard ML. Journal of Functional Programming,

3(4):391 { 429, October 1993.

[6] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing style. In

Sixteenth ACM Symposium on Principles of Programming Languages, January 1989.

[7] Andrew W. Appel and Trevor Jim. Making lambda calculus smaller, faster. Technical

Report CS-TR-477-94, Princeton University, November 1994.

[8] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. Technical

Report CS-TR-329-91, Princeton University, June 1991.

[9] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley,

1996.

[10] Joel F. Bartlett. Scheme! C a portable Scheme-to-C compiler. Technical Report WRL

Research Report 89/1, Digital Western Research Laboratory, January 1989.

[11] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML Kit version

1. Technical Report DIKU-TR-93-14, University of Copenhagen, March 1993.

[12] Per Bothner. Kawa: Compiling Scheme to Java. available at

http://www.cygnus.com/�bothner/kawa.html.

66

BIBLIOGRAPHY 67

[13] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-

morphism. ACM Computing Surveys, 17(4):471{522, 1985.

[14] Martin Elsman. A portable Standard ML implementation. Master's thesis, The Tech-

nical University of Denmark, 1994.

[15] S. I. Feldman, David M. Gay, Mark W. Maimone, and N. L. Schryer. A Fortran-to-C

converter. Technical Report Computing Science Technical Report No. 149, AT&T Bell

Laboratories, March 1995.

[16] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of

compiling with continuations. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 237 { 247, June 1993.

[17] Dave Gillespie. p2c: the Pascal to C translator, version 1.20. available at

ftp://csvax.cs.caltech.edu/pub/p2c-1.20.tar.Z.

[18] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[19] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. Addison-

Wesley, 1996.

[20] Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM

Transactions on Programming Languages and Systems, 15(2):211{252, November 1993.

[21] Robert Harper and Christopher Stone. An interpretation of Standard ML in type theory.

Technical Report CMU-CS-97-147, Carnegie Mellon University, June 1997.

[22] S. L. Peyton Jones and J. Launchbury. Unboxed values as �rst class citizens, pages 636

{ 666. Number 523 in Lecture Notes in Computer Science. Springer Verlag, September

1991.

[23] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil Walder.

The Glasgow Haskell compiler: a technical overview. In Proceedings of the UK Joint

Framework for Information Technology (JFIT) Technical Conference, 1993.

[24] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and Norman

Adams. ORBIT: An optimizing compiler for Scheme. In Proceedings of the ACM

SIGPLAN '86 Symposium on Compiler Construction, pages 219{233, June 1986.

[25] Xavier Leroy. E�cient data representation in polymorphic languages. Research report

1264, INRIA, 1990.

BIBLIOGRAPHY 68

[26] Xavier Leroy. Unboxed objects and polymorphic typing. In Proceedings 19th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 177{

188, January 1992.

[27] Xavier Leroy. The e�ectiveness of type-based unboxing. In Proceedings of Workshop on

Types in Compilation, June 1997.

[28] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. Addison-

Wesley, 1997.

[29] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, 1990.

[30] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT

Press, 1990.

[31] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The De�nition of

Standard ML (Revised). MIT Press, 1997.

[32] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In

Proceedings 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, January 1996.

[33] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, 1995.

[34] R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach to the

implementation of polymorphism. ACM Transactions on Programming Languages and

Systems, 13(3):342 { 371, July 1991.

[35] Martin Odersky and Philip Walder. Pizza into Java: Translating theory into practice. In

Proceedings 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 146 { 159, January 1997.

[36] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, second

edition, 1996.

[37] Jean E. Sammet. From HOPL to HOPL-II (1978-1993): 15 years of programming

language development. In Thomas J. Bergin and Richard G. Gibson, editors, History

of Programming Languages, pages 16 { 23. Addison-Wesley, 1996.

[38] Zhong Shao. Flexible representation analysis. In Proceedings of the 1997 ACM SIG-

PLAN Conference on Functional Programming, 1997.

[39] Zhong Shao. An overview of the FLINT/ML compiler. In Proceedings 1997 ACM

SIGPLAN Workshop on Types in Compilation, 1997.

BIBLIOGRAPHY 69

[40] Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML. In

Proceedings of the 1995 ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 116{129, June 1995.

[41] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, second edition,

1994.

[42] S. Tucker Taft. Programming the Internet in Ada 95. Intermetrics, Inc., March 1996.

[43] D. Tarditi, G. Morrisett, C. Stone, R. Harper, and P. Lee. TIL: A type-directed op-

timizing compiler for ML. In Proceedings of the 1996 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 181{192, May 1996.

[44] David Tarditi. Design and Implementation of Code Optimizations for a Type-Directed

Compiler for Standard ML. PhD thesis, Carnegie Mellon University, 1996.

[45] David Tarditi, Anurag Acharya, and Peter Lee. No assembly required: Compiling

Standard ML to C. Technical Report CMU-CS-90-187, Carnegie Mellon University,

November 1990.

[46] Mads Tofte. Type inference for polymorphic references. Information and Computation,

89(1):1 { 34, November 1990.

[47] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy H�jfeld Olesen,

Peter Sestoft, and Peter Bertelsen. Programming with regions in the ML Kit. Technical

Report DIKU-TR-97-12, University of Copenhagen, April 1997.

[48] Andrew Tolmach. Tag-free garbage collection using explicit type parameters. In ACM

Conference on Lisp and Functional Programming, pages 1{11, June 1994.

[49] Je�rey D. Ullman. Elements of ML Programming. Prentice Hall, 1994.

[50] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, and C. H. A Koster. Report on the

Algorithmic Language ALGOL 68. Mathematisch Centrum, 1969.

[51] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzo�,

C. H. Lindsey, L. G. T. L. Meertens, and R. G. Fisker, editors. Revised Report on

the Algorithmic Language ALGOL 68. Number 50 in Mathematical Centre Tracts.

Mathematisch Centrum, 1976.

[52] David A. Watt, Brian A. Wichmann, and William Findlay. ADA Language and Method-

ology. Prentice-Hall, 1987.

[53] Andrew K. Wright. Polymorphism for imperative languages without imperative types.

Technical Report TR94-200, Rice University, February 1993.

