Exact Positioning of Data Appr oachto
Memory Mapped Persistent Stores:
Design, Analysis and Modelling

by

Anil K. Goel

A thesis
presentedto the University of Waterloo
in ful Iment of the
thesisrequirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 1996

c Anil K. Goel 1996

| hereby declare that | am the sole author of this thesis.
| authorize the University of Waterloo to lend this thesisto other institutions or indi-

viduals for the purpose of scholarly reseach.

| further authorize the University of Waterloo to reproduce this thesis by photocopy-
ing or by other means,in total or in part, atthe requestof other institutions or individuals

for the purpose of scholarly reseach.

The University of Waterloo requiresthe signaturesof all personsusing or photocopy-

ing this thesis. Pleasesign below, and give addressand date.

Abstract

One of the primary functions of computers is to store information, i.e.,to deal with long
lived or persistentdata. Programmers working with persistent data structuresare faced
with the problem that there are two, mostly incompatible, views of structured data,
namely data in primary and secondary storage. Traditionally , thesetwo views of data
have beendealt with independently by researchersin the programming language and
databasecommunities.

Signi cant reseach has occurred over the last decade on ef cient and easy-to-use
methods for manipulating persistent data structuresin a fashion that makes the sec-
ondary storagetransparent to the programmer. Merging primary and secondary storage
in this manner produces a single-levelstorg which gives the illusion that data on sec-
ondary storageis accessiblein the sameway asdata in primary storage.In complex de-
sign environments, a single-level store offers substantial performance advantages over
conventional le or databaseaccess. These advantages are crucial to unconventional
databaseapplications such ascomputer-aided design, text management, and geograph-
ical information systems. In addition, a single-level store reducescomplexity in a pro-
gram by freeing the programmer from the responsibility of dealing with two views of
data.

This dissertation proposes, develops and investigates a novel approach for imple-
menting single-level storesusing memorymapping Memory mapping is the use of virtual
memory to map data stored on secondary storage into primary storage so that the data
is dir ectly accessibleby the processors instructions. In this environment, all transfer of
data to and from the secondary store takes place implicitly during program execution.
The methodology was motivated by the signi cant simpli cation in expressing com-

plex data structuresoffered by the technique of memory mapping. This work parallels

vii

other proposals that exploit the potential of memory mapping, but develops a unique
approach basedon the ideas of segmentation and exact positioning of data in memory.
Rigorous experimentation hasbeenconducted to demonstrate the effectivenessand ease
of useof the proposed methodology vis-a-vis the traditional approachesof manipulating
structured data on secondary storage.

The behaviour of high-level databasealgorithms in the proposed memory mapped
environment, especiallyin highly parallel systems,hasbeeninvestigated. A quantitative
analytical model of computation in this environment has beendesigned and validated
through experiments conducted on several databasejoin algorithms; parallel multi-disk
versions of the traditional join algorithms were developed for this purpose. An analytical
model of the system is extremely useful for data structure and algorithm designers for
predicting general performance behaviour without having to construct and test speci ¢
algorithms. More importantly , a quantitative model is an essential tool for database

subsystemssuch asa query optimizer.

viii

Acknowledgements

The production of this dissertation would have been so much harder, if not impossi-
ble, without the guidance, encouragement, mentoring, unbounded patience, hard work,
friendship and generosity of my supervisor Dr. Peter Buhr. | thank Peterfor everything
he has done for me sincemy arrival at Waterloo.

| am grateful to Dr. Prabhakar Ragdeand Dr. Naomi Nishimura for co-supervising
the theoretical aspectsof this dissertation. Their contribution was instrumental in mak-
ing this dissertation into a reality.

| thank my wife Aparna, daughter Ankita and son Anir udh, who have all contributed
to the dissertation in more ways than one. They provided the icker of light during the
darkest hours and ensured that | did not get lost somewhere along the way.

| thank my external examiner, Dr. John Rosenbexg of the University of Sydney, Aus-
tralia and the other members of my examining committee, Dr. Paul Larson, Dr. Frank
Tompa and Dr. Bruno Preissfor their valuable suggestions.

Dr. Paul Larson, Dr. Bernhard SeegerAndy Wai and David Clark provided valuable
help during the early experiments. Dr. lan Munr o was always willing to discuss matters
of theory. Several other people, in particular, N. Asokan, Gopi Attaluri, Lauri Brown
and Glenn Paulley, offered suggestions and encouragement that was instrumental in
preserving my senility and | am thankful to all of them.

| am thankful to the Math Faculty Computing Facility at the University of Waterloo
for maintaining atop notch computing environment and for employing me during the
last three years of my stay at UW. MFCF and the wonderful people that work there
certainly made my life much easier In particular, | thank Bill Ince for never saying no.

Finally, | thank all the people | have interacted with at Waterloo for making my stay

here most enjoyable.

Xi

To Aparna

Contents

1

Introduction

1.1 TheSingle-LevelStore

1.2 ExactPositioning of Data Appr oachto Memory Mapping
1.2.1 EPDApproach
1.2.2 Multiple AccessibleDatabasesand Inter-DatabasePointers.
1.2.3 EPDPersistenceModel

1.3 Motivation

1.4 TheThesis

1.4.1 Dissertation OVerview o v i

Memory Mapping and Single-Level Stores

2.1 Motivation for Using Memory Mapping

2.2 Memory Mapping and the EPDApproach.
2.2.1 Non-Uniform AccessSpeed.
222 Advantages
2.2.3 Disadvantages e

2.3 Surveyof RelatedWork

2.3.1 Software Appr oachesBasedon Conventional Architectures

Xiii

10
12
13
15

19
20
23
25
25
31
32
32

PS-Algol/ POMS 33

Napier / Brown's StableStore 35

E/ EXODUS StorageManager 36

Other LanguageEfforts, 37
Texas:Pointer Swizzling at PageFault Time 37

Hybrid Pointer Swizzling 39
ObjectStore 40

Cricket 42

QuickStore e e 42

2.3.2 Architectural Approaches. 44
BubbaDatabaseSystem 44

MONADS Architecture 45

Model for Addr ess-OrientedSoftware 45

Single Addr essSpaceOperating Systems(SASOSs) 46
GrasshopperOperating System. 48

IBM RS6000and AS/400 49
RecoverableVirtual Memory, . 49

Camelot Distributed Transaction System 49

IBM's 801prototype hardware architecture 50

Clouds Distributed Operating System 50

2.3.3 Others 50

24 SUMMAIY e e e e e 51
3 Using the EPD Approach to Build a Single-Level Store 53
3.1 Database Design Methodology 53
3.1.1 DesignObjectives. 54

XV

3.2
3.3

3.4

3.1.2 BasicStructure 57
3.1.3 Representative 58
3.1.4 ACCESSOIS . . . v v it e e 62
3.1.5 Critique of Database 64
Comparison of Database with RelatedApproaches. 65
Parallelismin Database 69
3.3.1 Partitioned File Structuresand Concurrent Retrievals 71
3.3.2 Query Typesand Parallelism 72
3.3.3 RangeQuery Generatorsor lterators 73
3.3.4 Generic Concurrent Retrieval Algorithm 74
Programming Issuesand Interfaces. 78
3.4.1 Polymorphism 78
3.4.2 GenericFile Structuresand AccessMethods 79
3.4.3 StorageManagement. Lo 80

Memory Organization 81
3.4.4 NestedMemory Structure 83
3.45 AddressSpaceTools 83
346 SegmentTools. 84
3.4.7 Database Programming Interface 85
3.4.8 Representativelnterface L. 86

ClassRep 86

ClassSREPACCESS o i i i 87

Organization of Representativeand AccessClasses 89

ClassRepWrapper 91
349 HeapTools. 92

StorageManagementSchemes 93

XV

NestingHeaps 94

Overow Control 95
ExpansionObject 96

3.4.10 Linked ListExample 99
List Application, 99

3.4.1 Linked List File Structure 101
ListNode 101
Administration L 102
ExpansionClass 103

File StructureClass 104
AccessClass. 107
Generator 107
Wrapper 109
3.4.12 Programming Conventions 1m
3.4.13 B-TreeExample 12
B-TreeApplication 113
Nested Memory Manager 14

3.5 Analytical Modelling oftheSystem. 119
3.5.1 SurveyofRRelatedWork 120
TheoreticalModels 120
DatabaseStudies 122

3.5.2 Modelling 124
Disk TransferTime 127
Memory Mapping Costs 128

3.5.3 Using the Model to Analyze an Algorithm 130
3.6 Summary e e e 131

XVi

4 Experimental Analysis of EPD File Structures 133

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Testbed 135
4.1.1 Hardware/Softwar ePlatform 135
4.1.2 SequentDual-Channel Disk Controller (DCC) 135
4.1.3 DYNIX Virtual Memory Implementation 136
4.1.4 Experimental Testbed 138
Experimental Structure for Feasibility Studies. 140
Sequential File Structures 141
431 Prex B -Tree 142
4.3.2 R-Tree 143
4.3.3 Network Graph 145
Resultsand Analysis of Experiments on Sequential File Structures. 145
4.4.1 Stand-aloneSystem:No External Interference 146
4.4.2 Loaded System:External Interference 147
Partitioned B -Tree 149
4.5.1 Partitioning Algorithms, 149
45.2 Modied FileStructure 150
4.5.3 Concurrent Retrieval Algorithm 152
454 Experimental Analysis 152

Effect of Employing Extra Segmentsfor Retrieving Data 155
Partitioned R-Tree. 160
4.6.1 Partitioning Algorithms 160
4.6.2 Modied FileStructure 160
4.6.3 Concurrent Retrieval Algorithm 161
4.6.4 Experimental Analysis 161
SUMMANY o e e e e e e e e 171

5 Application and Validation of the Analytical Model 173

5.1 Parallel Pointer-BasedJoinAlgorithms 174
5.2 Parallel Pointer-BasedNestedLoops 178
5.2.1 Algorithm e 178
5.2.2 ParameterChoices 181
5,23 Analysis 181

5.3 Parallel Pointer-BasedSort-Merge, 185
5.3.1 Algorithm e 185
5.3.2 ParameterChoices 188
533 Analysis 189

5.4 Parallel Pointer-BasedGrace. 195
5.4.1 Algorithm 195
5.4.2 ParameterChoices 197
543 Analysis 198

5.5 Model Validation 201
5.5.1 Experimental Testbed 201
552 Results 203

5.6 Predictions 203
5.6.1 SpeedupandScaleup oo 206

5.7 Summary e 210
6 Unresolved Issuesand Future Work 213
6.1 ConcurrencyControl 213
6.1.1 Integration of Concurrency, Distribution and Persistence. 215
6.1.2 Scalability 215

6.2 RecoveryControl 216

XVviii

6.2.1 ShadowPaging
6.2.2 Write Ahead Logging
6.2.3 PageDifng
6.3 Support for Virtual Pointers
6.3.1 PersistentCode
6.4 Implementation of Inter-DatabasePointers
6.5 Modelling
7 Conclusions
7.1 ReviewofWorkDone
7.1.1 StaticTypeSafety
7.1.2 Development of the EPD Approach
7.1.3 Experimental Work
7.1.4 Feasibility Studies
7.1.5 Analytical Modelling
Bibliography
Index

XiX

227
227
227

228
229
229

231

245

List of Tables

3.1 ParametersoftheModel 126
4.1 Comparison of Memory Mapped and Traditional AccessMethods 148
4.2 PeaklLoad Retrievals 149
4.3 Comparison of Single Disk B -Treewith Four Disk B -Trees 154
4.4 Expected Effectivenessof B -TreePartitioning Algorithms 156
4.5 Effect of Extra Worker Segmentson Concurrent B -TreeRetrievals 158

4.6 Theoretical Effectivenessof Round-Robin R-TreePartitioning Algorithm . 163

4.7 Using Multiple Index Seach Tasksfor Parallel Window Queries 165
4.8 Using Multiple Index Seach Tasksfor Parallel Point Queries 166
4.9 Using Multiple Representative Segmentsfor Parallel Window Queries . . 167
4.10 Using Multiple Representative Segmentsfor Parallel Point Queries 168
5.1 Variablesand ParametersUsedfor all Joins 177
5.2 Parametersof Sort-MergeJoin. L. 187
5.3 Parametersfor GraceJoin 195
5.4 Validation Valuesof Model Parameters 202

XXi

List of Figures

2.1 Two ViewsofData 21
2.2 Memory Mapping e e e e 23
3.1 Database Design Methodology: BasicStructure 58
3.2 StorageModel for the Representative. 60
3.3 Simultaneously AccessingMultiple File Structures. 61
3.4 Storagelayout for a Partitioned File Structure 63
3.5 Two Forms of Concurrencyin aFile Structure 70
3.6 Generic Concurrent Retrieval Algorithm 76
3.7 Nested Memory Structure 84
3.8 Organization of Representatives 90
3.9 Linked List StorageStructure, 102
3.10 B-TreeStorageStructure L 116
3.11 BasicStructure of the Analytical Model 125
3.12 Machine Dependent Functions 129
4.1 SequentDual-channel Disk Controller (DCC) 136
4.2 DYNIX PageReplacementAlgorithm 137
4.3 Minimum Bounding RectanglesinanR-Tree 144

XXiii

4.4 Network Graph Structure 146

45 Modied B -TreeFileStructure 151
4.6 Comparison of Single Disk B -Treewith Four Disk B -Tree. 153
4.7 Using Multiple Segmentsfor Retriever Tasks(FS®) 157
4.8 Comparison of Single Disk R-Treewith Four Disk R-Trees. 162
4.9 Using Multiple Index Seach Tasksto Perform Parallel Queries. 164
4.10 Queueing Systemfor the Generic Concurrent Retrieval Algorithm 167
5.1 SegmentPartitioning Structure 176
5.2 Parallel Pointer-BasedNestedLoops 179
5.3 Disk Layout: Parallel Pointer-BasedNested Loops 182
5.4 Parallel Pointer-BasedSort-Merge 186
5.5 Disk Layout: Parallel Pointer-BasedSortMerge. 189
5.6 Time Line Progressof Parallel Sort-Merge 194
5.7 Parallel Pointer-BasedGrace. 196
5.8 Model Validation 204
5.9 Model Predictions 205
510 Speedup P D e 207
511 Scaleup(P D R 3200 211
5.12 Scaleupwithout Mapping Overhead(P D R 3200 212
6.1 Embedded Virtual Pointer Problem 221
6.2 Efciently Supporting Virtual Pointers 222

XXV

List of Programs

3.1 BasicRepresentativelnterface, 86
3.2 BasicAccessClassinterface 88
3.3 BasicWrapper Interface 91
3.4 Using aWrapper e 93
3.5 Heap ExpansionObject. 96
3.6 Interface for Uniform StorageManager 97
3.7 Specializing a Uniform StorageManager. 98
3.8 Interfacesfor Variable and Dynamic StorageManagers 99
3.9 Linked ListExample 100
3.10 Abstract List Node Class 101
3.11 List Administration Class 104
3.12 List Expansion Class 105
3.13 Linked List Class 106
3.14 List AccessClass 108
3.A5 List Generator 110
3.16 Using the List Generator 110
3.17 Using alLinked List Wrapper m
3.18 De nition of aLinked List Wrapper 12

XXV

3.19 Example Program using aGenericB-Tree 114

3.20 Administrative Classfor theB-Tree. 115
3.21 Expansion Classfor the B-TreeStorageManager nv
3.22 B-TreeLeafNode Class nv
3.23 Expansion Classfor the B-TreeLeaf Node StorageManager. 118
3.24 Leaf Node Member Routine for Splitting 118
3.25 Leaf Node Member Routine for Inserting aNew Recod 119

XXVi

Chapter 1

Introduction

Reseachersand programmers working with complex and possibly large persistent data
structur eshave traditionally dealt with two different views of data, viz., the data stored
on secondary storage (e.g., a disk) and the structured data in primary storage as seen
by the processors instructions. Thesetwo views of data are largely incompatible with

each other. In primary storage, physical or virtual memory pointers are used to con-
struct complex relationships among data; establishing theserelationships without mem-
ory pointers is often cumbersome and expensive. On the other hand, data on secondary
storage is organized without the use of memory pointers. The traditional approach of
maintaining and manipulating thesetwo disparate views of essentially the same data
hasresulted in adichotomy that is quite arti cial —reseachersin the programming lan-
guage community have dealt primarily with the primary storageview of data, while the
databasereseachershave concernedthemselveswith the handling of data on secondary
storage. In addition, when dealing with secondary storage data, the programming lan-
guage community hastended to use tools, such as le systems, made available by the
operating system designers whereasthe database community has designed and used
its own alternative tools. The dichotomy has meant, among other things, that the pro-
gramming language, databaseand operating system communities have spent signi cant

effort duplicating eachothers' work, albeit in separateenvironments and with dif ferent

2 Introduction

immediate goals. A prime example of this replication of effort is the page replacement
strategies developed by the operating system designers as compared to the extensive
buffer management strategies developed by their counterparts in the databasecommu-
nity; the two strategiesare often in con ict with, rather than enhancing, one another. An
additional consequenceof maintaining the two views of data has beendevelopment of
applications that spend signi cant amounts of execution time converting data back and
forth from one view to the other. To befair, it needsto be pointed out that the mentioned
dichotomy was borne out of, and sustained by, a lack of essentialarchitectural tools be-
ing available at the user level. However, during recentyears many of these historical
de ciencies have beenremoved or made lessrestrictive at the hardwar e and operating
system levels. This development, in conjunction with an increasedappreciation of the
bene ts provided by a merging of the two views of data, especially for complex emerg-
ing databaseapplications, hasresulted in a signi cant increasein collaboration among

the programming language, databaseand operating system communities.

1.1 The Single-Level Store

Signi cant reseach has occurred over the last decade, starting with the seminal work
by Atkinson, etal[ABC 83, AM85], on efcient and easy-to-usemethodologies for con-
structing, storing, and subsequently retrieving and manipulating persistent data in a
fashion that makesthe secondary storage transparent to the programmer. This reseach
extendsprimary storagepracticesand tools sothat they also apply to secondary storage.
Merging primary and secondary storage in this way produces a single-levektore, which
gives the illusion that data on secondary storage is accessiblein the sameway as data
in primary storage. This uniform view of data eliminates the need for complex and ex-

pensive execution-time conversions of structured data between primary and secondary

1.1The Single-Level Store 3

storage and allows the use of the expressive power and the data structuring capabil-
ities of a general purpose programming language for creating and manipulating data
on secondary storage, which is analogous to the goals of virtual memory. Although a
single-level store was investigated as far back as the Multics system (1968)[Org72], it
has seenonly limited use, evenin the eld of operating systems. Only in the last few
years has the use of single-level stores blossomed in both the databaseand program-
ming language communities [CFW90, SZ90a,LLOW91, RCS93. In complex design en-
vironments, a single-level store offers substantial performance and programming advan-
tagesover conventional le or databaseaccess.Theseadvantagesare crucial to complex
databaseapplications such ascomputer-aided design, text management, and geograph-
ical information systems.

While there are several ways to implement a single-level store, some projectsdo so
using memory mapping. Memory mapping is the use of virtual memory to map data
stored on secondary storage into primary storage so that the data is dir ectly accessible
by the processors instructions. In this environment, there are no explicit read and write
routine callsto accesdata on secondary storage. All /0 operations are done implicitly
by the operating system during execution of a program when pointers are calculated
and dereferenced. Hence, data structuresrelated by pointers (e.g.,a linked list) can be
stored onto secondary storage and still be manipulated directly via pointers. When the
working setof a databaseprogram can be kept entirely in memory, performance begins
to approachthat of memory-r esident databases.

While there are few disadvantagesin using memory mapping, it is still uncommon
to seeit used for accessingsecondary storage in traditional le and databasesystems.
One explanation is alack of general virtual memory hardwar e on many computers and
limited accessto memory mapping capabilities by older operating systems. Stonebraker

concluded [Sto81]that the DBMSsmade little or no use of servicesoffered by the operat-

4 Introduction

ing systembecausetheseserviceswere either inef cient or inappr opriate. However, with
today's large virtual addressspaces(32-64bits and more) and powerful memory man-
agement co-processors,memory mapping of secondary storage makes excellent sense,
and operating systemsare beginning to provide accesgo this capability, e.g.,the mmap
system call in UNIX and more general accessto virtual memory in the Mach [TRY 87]

and SunOS[Sun9(] operating systems.

1.2 ExactPositioning of Data Approach to Memory Mapping

All single-level storessupport addressesn someform to relate data, and theseaddresses
dir ectly referencethe data. The particular addressing mechanism used is central to the
design and performance of each persistent storage system; Cockshott [Coc85| gives a
general overview of a number of possible addressing schemes.Fundamental to all per-
sistent storage systemsis the following addressing problem. When data is copied from
secondary to primary (or virtual) storage, either the data must be positioned exactly
where it was originally created to maintain integrity of embedded pointers, or the em-
bedded pointers must be modi ed to re ect the new location of data in primary storage.
The former is dif cult to handle becausedata from multiple les or databasesmay need
to be copied to the same locations, thereby producing an irreconcilable conict. The
latter caseis dif cult to handle becauseit must be possible to locate all embedded point-
ers so they can be updated, and there is the additional complexity and runtime cost of
reliably modifying the pointers. Pointer modi cation in this manner is called pointer
swizzling [CAC 84, Mos90]. Pointer swizzling is essentially a software version of vir -
tual memory. A referencethrough a pointer to data on disk is detected by a software
or hardwar e check, storageis allocated in primary storage,the data from disk is copied

into that storage, and nally , the dereferenced pointer is updated (swizzled) to refer to

1.2ExactPositioning of Data Approach to Memory Mapping 5

the primary storage location of the data read from secondary storage. Depending upon
the actual swizzling technique used, futur e usesof the same pointer may need no fur-
ther checking to accessthe primary storage copy of the data dir ectly. Pointer swizzling

is called lazy when done only for the pointer being dereferenced,i.e., when the pointer

is actually used during execution, and eagemwhen done for the dereferenced pointer as
well asall pointers embedded in data read into primary storage. In the latter case,the
amount of data readin, over and above that needed by the speci ¢ pointer dereference,
varies; it canbethe size of alogical unit suchasanindividual record, or a xed size such
asapageor disk block. The smaller the amount of data read at one time, the greaterthe
total /0O cost; alternatively, the larger the amount of data read, the more pointers that
may need swizzling evenif they are never dereferenced. In lazy pointer swizzling, there
is normally some additional costfor each dereferenceof a pointer to determine if the
pointer hasalready beenswizzled. Eagerswizzling of pointers, on the other hand, elim-
inates the per dereferencecheckat the costof swizzling some pointers that may never be
dereferenced. Two other types of pointer swizzling techniquesthat have beenproposed
recently are called adhocand hybrid pointer swizzling.

Ad-hoc pointer swizzling usesmemory mapping techniques coupled with swizzling
of pointers, asdescribed below. In ad-hoc schemes,the persistent pointers are the same
size asthe virtual memory pointers and the two may be identical. Whenever possible,
the page containing the referent data is copied into the virtual memory indicated by the
persistent pointer being dereferenced,i.e., an attempt is made to memory map the disk
page to the virtual memory locations where the page was last memory resident so that
pointers to data contained in the page remain correct. If the desired virtual memory
locations are already occupied, e.g.,when two objectswith identical persistent pointers
from different persistent storage areasneed to be accessedsimultaneously, swizzling is

employed. One major problem exhibited by ad-hoc schemesis their greedy allocation of

6 Introduction

virtual memory.

Hybrid pointer swizzling combines the bene ts of lazy and eager schemes,and at-
tacks the greedy virtual allocation problem by dividing the swizzling processinto two
phases. In the rst phase, embedded pointers are swizzled into an intermediate for-
mat called partly swizzledpointers A partly swizzled pointer is converted into its nal
memory format called fully swizzledpointerwhen it is actually dereferenced. Details of
the various pointer swizzling techniques are presentedin chapter 2. In general, direct
pointer manipulation, e.g.,pointer arithmetic, is impossible in most swizzling schemes.

The rst persistent storage systemsto appear [PS-87 Bro89] used lazy pointer swiz-
zling implemented entirely in software. In recenttimes, schemeshave been proposed
that perform eagerpointer swizzling at page fault time [Wil91a] or employ hybrid swiz-
zling of pointers [VD92]. ObjectStore [LLOW91] is a commercial database system that
usesad hoc pointer swizzling, and other similar schemeshave recently appeared, such
as QuickStore [WD94]. However, a signi cant performance advantage of a single-level
storeis lost if all or most of the pointers embedded in data have to be swizzled. This loss
of performance is especially signi cant for operations that incur high overhead in data
preparation; examples include operations like sequential scans,where the data is ac-
cessedonly once,and operations that deal with large data structureswith small primary
storage, where the data is implicitly fetched and prepared multiple times. Therefore,
| have pursued an alternative approach to memory mapping, called exactpositioningof

data(EPD) that eliminates the swizzling overhead for pointer dereference.

1.2.1 EPD Approach

As part of this pursuit, | have developed atoolkit, called Database (pronounced micro-
database), for building persistent data structures using the EPD approach to memory

mapping. The EPD approach employs a novel technique that allows application of an

1.2ExactPositioning of Data Approach to Memory Mapping 7

old solution to the problem of addresscollisions when multiple les or databasesare
accessedsimultaneously by an application. The old solution is hardwar e segmentation;
each hardwar e segmentis an addressspace,starting at a virtual zero, in which persis-
tent data structurescan be built, stored, and subsequently retrieved and updated. Data
stored in multiple segmentscan be simultaneously accessedoy an application program
becauseeach segment has its own non-con icting address-space.When a segmentis
mapped into primary memory, embedded pointers that refer to data within the segment
do not require modi cation and are treated like normal memory pointers; inter-segment
or inter-databas@ointers require special treatment, but in general, these pointers repre-
sentasmall percentageof the total number of pointers accessedluring atypical database
computation. The issue of intra and inter-segment pointers implemented in software
was addressedby van Dam and Tompa [vDT72] in 1971. Mor e recently, the MONADS
architecture [Ros90]employs similar ideas at a hardwar e/ar chitectural level in its object
store layer. The current implementation of Database is basedon the UNIX operating
systemand usesthe systemcall mmap to mimic segmentation on conventional hardwar e
without user accessiblesupport for segmentation; Brown's stable store [Bro89] predates

this work and alsousesmmap to implement a singlerepository persistent store.

1.2.2 Multiple Accessible Databasesand Inter -Database Pointers

The EPD approach,and some other memory mapping schemes support multiple simul-
taneously accessiblepersistent areasor databases,each of which can be viewed as an
independent single-level store by a program. This support is fundamental to the world
view adopted in this work that there will always be multiple, independent data reposi-
tories motivated by the desireto cluster related data, enhancesecurity, make it easierto
distribute data and simplify addressing.All schemesthat support simultaneous accesgo

multiple databaseshave to deal with the problem of inter-databasepointers that are re-

8 Introduction

quir ed to construct relationships among objectsstored in different databases.Although
the complexity of implementing inter-databasepointers varies with individual schemes,
there is usually some costto be paid for the processingof inter-databasepointers over
and above the cost of dereferencing intra-database pointers. Some schemesbypass the
problems related with accessingmultiple databasesby only supporting a single persis-
tent addressspace,i.e., all persistent objectslive in a single repository and are uniformly
accessedon disk(s). Such systemsusually require a format for persistent pointers that
allows avery large persistent space.However, the support is provided at the costof pre-
cluding the notion of multiple repositories, which | believe is unrealistic. Further, these
systemsincur high execution time costsassociatedwith pointer swizzling.

As a consequenceof the additional costimposed by the processingof inter-database
pointers, the performance of all multi-database approachesdegradeswhen an applica-
tion program dereferencesa relatively large number of inter-databasepointers as com-
pared to intra-database pointers. It is typical for a computation to dereference many
more intra-database pointers than inter-databasepointers. The clustering of relatedob-
jectsin both traditional and emerging databaseapplications is a widely accepted phe-
nomenon that supports the above assertion. It would be interesting to conduct a study
of existing applications to determine the number of nearobjectsand far objectgeferenced
during a computation. Such a study, however, is beyond the scope of this work and |
was unable to nd any published reports to contradict the popular wisdom asit applies
to this aspect.In other wor ds, the degeneratecasefor multi-database approachesis quite
atypical for real applications and the costof supporting multiple databasesis completely
justied by the bene ts derived from such support.

It should also be pointed out that the performance of multi-database memory map-
ping schemesapproachesthe performance of single-databasememory mapping schemes

for applications that only accessa single databaseif the memory mapping approach op-

1.2ExactPositioning of Data Approach to Memory Mapping 9

timizes the casewhere data can be copied into its previous memory locations. The dif-
ferencesamong various memory mapping schemesarise when an application needsto
accesanultiple databasessimultaneously.

When compared with other multi-database approaches,the main disadvantage of
the EPD approachis the additional costof accessingdata between segmentsunder cer-
tain scenarios. In the EPD approach, an inter-database pointer is always dereferenced
within the virtual space of the segment corresponding to the database containing the
referent data. Thus, the additional costof dereferencing an inter-databasepointer is the
cost of establishing a connection to the appropriate segment, where the actual derefer-
encing of the pointer takes place at normal intra-database pointer dereference speeds.
However, sometimes data from one databaseis needed simultaneously with data from
another database,e.g.,when data objectsfrom different databasesneed to be compared
during the execution of a program. This situation canbehandled in threedifferent ways,

depending upon the facilities provided by the hardwar e and the operating system:

1. by using hardwar e segmentinstructions, e.g., an inter-segment compare instruc-

tion,

2. by copying data dir ectly from one segmentto the other by means of block move

instructions, which implies an inter-segmentcopy instruction,

3. by copying data into and out of a shared memory area that is accessibleto all

segments.

On hardwar e that does not support segmentation, no inter-segment instructions exist
and it is necessaryfor segmentsto share someportion of their addressspacefor transfer-
ring information, possibly for further processing. Therefore, Database segmentshave
an addressspacethat is divided into private and shared portions implemented using

shared memory.

10 Introduction

The lack of segmenthardwar e forcesinter-segmentcopying of data, resulting in poor
performance of the EPD approach when the nature of computation requires copying
large amounts of data out of containing segment(s)to shared memory. Other multi-
database approacheshave similar degenerate cases. For example, schemesthat map
data from multiple databasesinto a single segmentdo not have to copy data in a man-
ner similar to the EPD approach. However, such schemeshave to deal with the issue
of virtual addresscollisions and the solutions to this problem impose additional costs;
e.g.,White and DeWittfWwD94 , p. 406] showed that for the worst casescenarioinvolving
relocations, the performance of their storage systemworsened by a factor of three. What
is essential is that the degenerate case does not occur often. In subsequent chapters,
different techniques will be demonstrated that signi cantly reduce copying in the EPD

approach, further reducing degeneratesituations.

1.2.3 EPD Persistence Model

The following terms are used in this dissertation. A le structureis de ned to be a data
structur e that is a container for user records or arbitrarily complex data structures on
secondary storage;a le structure may relate the contained data in a particular way, for
example, maintaining a setof records in order by one or more keys. A le structure is
conceptually similar to a databaseand the two terms are used inter-changeably in this
dissertation. An accessnethodis de ned to be a particular way the data objectsin a
le structure are accessedpachaccessmethod provides a particular interface to the le
structure. Examples of dif ferent accesanethods are: one time reading of a setof records,
sequential accessof records, keyed accessof records, depth rst traversal of a B-Tree.
The EPD approachto memory mapping usesthe notion of a separatepersistent area
in which data objectsare built or copied if they are to persist; this decision was in uenced

by ideas presentedby Buhr and Zarnke [BZ86, BZ89]. From the user's perspective the

1.2ExactPositioning of Data Approach to Memory Mapping 11

approach is largely traditional, as user data must be copied to and from the persistent
area through a traditional interface (e.qg., get() and put()) that provides encapsulation
of the le structure to ensure its integrity . Therefore, in this design, memory mapping
normally comesinto play only for the le structure designer, which is necessaryto sup-
port multiple accessible le structuresin a single application while allowing each le
structur e to use conventional memory pointers without having to perform any pointer
modi cation whatsoever.

The major alternative to this persistencemodel is reachability Reachability is the no-
tion that once a pointer has been made persistent, all data reachablefrom that pointer
also persists. In other wor ds, a data item persists aslong assome active data item refers
to it, directly or indir ectly. In systemsbasedon reachability, the executing program cre-
atesan arbitrarily complex data structurein its addressspaceand storesaroot pointer to
that data structureinto a persistenstore Upon program termination, the systemperforms
arecursive traversal of the data structure, storing it in someway in the persistent store;
retrieval occursin a simpler fashion by dereferencing the root pointer, which causesthe
data structure and all of its referenced elements to become accessible. The concept of
reachability relies on the existence of a special object, usually called the persistentroot
All objectsin the transitive closure of the persistent root are reachablefrom the root and,
therefore, persist.

Reachability is a powerful abstraction with somevery bene cial properties especially
from the user's point of view, becausethe useris completely relieved of the responsibility
of having to manage object storage. The user does not have to explicitly specify persis-
tence for the objects, neither does the user have to worry about freeing storage for ob-
jectsthat are no longer needed becausedeallocation happens automatically in a system
basedon reachability. However, thesebene ts come at a hefty price becausereachability

imposes complex storage management and garbage collection requirements upon the

12 Introduction

system, which in my view, constitute a prohibitive cost. As well, while system handled
storage management is useful for most applications, it prevents the implementation of
sophisticated user-de ned schemes,which are essentialin certain circumstances. Also,
it may be impossible to delete objects from the store if referencesto the objects “leak
out”, which may be an unacceptable prohibition from an object management point of
view. Reachability also implies that there can never be a dangling referencein the store.
| do not believe that such a requirement is scalablewithout an exorbitant implementa-
tion and/or run time cost. Finally, underlying the notion of reachability is aworld view
that consists of a single ether i.e., all objectslive in a single address spacethat spans
all physical storage devices in the system, the network and even the entire universe.
The notion of the ether is in direct contrast to my chosenworld view comprising of re-
lated objectsstored in independent collections; aview | believe is much closerto the real
world of objects. While it is possible to selectively apply the abstraction of reachability
to independent collections of objects,such an attempt dilutes the conceptand results in

adiminution of the bene ts of reachability. In view of thesereasons,l have chosenthe

explicit persistent areasmodel over reachability for this work.

1.3 Motivation

| was motivated to investigate a memory mapped single-level store based on the EPD
approachbecauseit seemedlike the perfect solution to the dichotomy between program-
ming language and databasetechniques, and yet | found very little evidence of its use
in universities or in industry. At the beginning of my investigation, there were only a
few systemsin various stagesof development, and these systemseither were basedon
aworld view | considered unrealistic (single persistent addressspace)or did not apply

the memory mapping technique asdir ectly asl envisaged. In addition, therewas acom-

1.4The Thesis 13

plete lack of experimental evidence for or against the effectivenessof single-level stores
in general and memory mapped single-level storesin particular. A sound practical and
theoretical framework in which to measure and evaluate this emerging reseach was also
missing. Consequently, | have pursued the EPD approachto memory mapping, outlined
in section1.2,for building single-level stores. | have designed and developed a method-
ology for implementing memory mapped single level storesbasedon the EPD approach,
performed rigor ous experimentation to demonstrate the effectiveness of the approach,
developed algorithms tuned for performance in an EPD environment and constructed a
theoretical framework within which the EPD and other related approachescan be stud-
ied and evaluated. In addition to ndings presentedin this dissertation, the approach
followed by this work hasbeenvindicated by the emergenceof other systemsthat have

followed similar approaches.

1.4 The Thesis

The thesis of this dissertation is that the EPD approachto memory mapping provides a
means of simplifying the implementation and impr oving the performance of the meth-
ods used for manipulation of persistent data. The major issuesand problems arising
from the use of the EPD approach to memory mapping as a means of building a per-
sistent storage system or databaseare examined. Many of the problems, such as par-
allelization of I/0, have essentially the sameimplications in memory mapped systems
asthey do in traditional databases.However, the use of memory mapping allows more
ef cient and straightforwar d solutions and provides an enormous benet in terms of
simpler interfaces between the low-level databasestructuresand the databasedesigner,
and subsequently, between the DBMS and the end user. Memory mapped databasesare

simpler to implement than their traditional counterparts, while eliminating the need for

14 Introduction

a traditional buffer manager as the operating system managesall I/O operations. On
the other hand, some problems, such as recovery control, are much harder to solve in a
memory mapped system, largely due to the lack of essentialsupport at the architectural
level. As well, someinef ciencies canbeintr oduced becauseof lack of control over page
replacementin most contemporary architectures.

In order to demonstrate the thesis, a prototype implementation, an experimental

testbed and a theoretical model were designed and developed:

to allow experiments to be conducted for comparing the construction and perfor-

mance of memory mapped data structureswith their traditional counterparts,

to identify fundamental problems related to the memory mapping approach and

its implementation on conventional architectures,

to provide strong empirical evidence that traditional databasetechniques can be
ef ciently implemented in a memory mapped environment with signi cantly re-

duced programming effort,

to show that the solutions presentedare stable enough to allow the construction of

analytical models for predicting behaviour,

to provide necessarytheoretical and experimental tools that canbe used for study-
ing high level sequential as well as parallel databasealgorithms and for perfor-

mance tuning.

In parallel with the work presentedin this dissertation, a few other proposals have
beenpublished that exploit similar ideas and contain some common features. However,
eachof the other proposalshas dif ferencesthat make this work novel. Thesedifferences

have a profound impact on how eachproposal works. In some casesthe differencesare

1.4The Thesis 15

largely in the way the overall systemis constructed. The important thing to note is that
these systems have been developed independently and most have been commissioned
only in the last few years. Further, sincememory mapping technology is still in a nascent
state,there are few measuresby which to judge memory mapped systems,making it im-
possibleto evaluate and compare theseproposals. All the approacheshave to be consid-
ered viable and pursued much further before a consensusor a clear winner emerges. It
is partially for this reasonthat | decided to do extensive modeling work; no other project
has developed a quantitative analytical model of a memory mapped system. It is my
belief that the model will prove extremely useful for studying and evaluating various
memory mapped and related systems. In addition to the conceptual differenceswith

other work, another unique feature of this work is the extensive experimentation that
has beencarried out on a number of dif ferent databasestructures.

There are some aspectsof the thesis that have not beenimplemented due to the size
of the undertaking. A deliberate decision was made to concentrate efforts on building
the core module of the system and on performing an extensive performance analysis,
both comparative and quantitative, of the system. Further, the emphasis of my work has
beenon the storage aspectsof a persistent system and, as such, language design issues
were not examined in detail. As aresult, | choseto add persistencemechanismsto an
existing language, CH [BDS 92], by meansof a setof library classesthat can be linked

with the applications that need to manipulate persistent data.

1.4.1 Dissertation Overview

The dissertation is divided into the following parts:

Single-Level Stores: Chapter 2 motivates and intr oduces memory mapping and

the EPD approachto building a single-level store in more detail. Advantages and

16

Introduction

disadvantages of memory mapping and single-level storesover the traditional ap-

proachesare outlined, followed by an extensive survey of related work.

The EPD Approach to Memory Mapped Stores: Chapter 3 presentsthe main body

of this work; the contributions have beendivided into four parts:

1. The EPD approach proposed and developed by this dissertation is presented
along with a detailed design and critique of the system. The presentation

includes a comparison with related work.

2. The EPD approach allows general primary storage programming languages
tools to be applied, with equal ease,to secondary storage data and its ma-
nipulation. It is demonstrated how thesetechniques are used in building le
structures based on the EPD approach. A detailed description of the pro-

gramming interface to Database is also provided.

3. In addition to building sequential le structures, partitioned le structures
and parallel accesamethods were designed, developed and analyzed. Details
of an investigation into the issue of parallelism in an EPD based system are

presented. Parallelism is exploited both at the storage and retrieval levels.

4. An analytical model of computation for making accuratepredictions is anim-
portant tool that goesalong way towar ds demonstrating the thesis. A survey
of the existing 1/0 and memory models revealed that none of these models
applied well to the system proposed in this dissertation. Consequently, sig-
ni cant effort was devoted to the design and development of a reliable ana-
lytical model of the proposed system. To make the effort even more useful,

the model that hasbeendeveloped is quantitative asopposed to qualitative.

1.4The Thesis 17

Experimental Analysis of EPD File Structures and Access Methods: Chapter 4
presentsthe results of a seriesof experiments conducted on a carefully designed
testbed. The experience gained from conducting these experiments suggestsnot
only that EPD le structuresand their accessmethods canbe built more easily than
their traditional counterparts, but alsothat, in most casesmemory mapped struc-
turesperform asef ciently or better than their traditional counterparts. Further re-
sults presentedin the chapter show that memory mapped parallel accessmethods

perform quite admirably in an EPD system and offer some distinct advantages.

Applying and Validating the Analytical Model: Parallelized multi-disk versions
of several databasejoin algorithms were designed and implemented. The analyti-
cal model developed aspart of this work was employed to perform a quantitative
analysis of these algorithms when run on a speci ¢ machine. The analysis and its

veri cation by meansof experiments are presentedin chapter 5.

Unresolved Aspects of the System: Two important servicesprovided by a DBMS
are concurrency and recovery control. Theseaspectshave not been dealt with in
the current phase of this work. Chapter 6 contains a discussion of problems as-
sociated with providing theseservicesin EPD systems. The discussion includes a
survey of related work highlighting approachestaken by related memory mapped
single-level stores. Someof thesesolutions can be applied to systemsbasedon the

EPD approach.

Chapter 2

Memory Mapping and Single-Level Stores

The main objective of this work is to investigate issuessurrounding a single-level store
basedon the exact positioning of data (EPD) approach to memory mapping. The main

reasonsfor using a single-level store are:

A single-level store eliminates the need for expensive execution time conversions
of structured data that are essentialin a traditional multi-level store. As well, the
cost of referencing persistent data is the sameasa normal memory referenceonce

the initial transfer of data from secondaryto primary memory has occurred.

The uniform view of data afforded by a single-level store has various other im-
plications, the most important of these being reduced programming complexity,
and the availability of the expressive power and the data structuring capabilities
of a general purpose programming language for creating and manipulating data

stored on secondary storage.

In a single-level store based on the EPD approach, the contents of a mapped le
structur e are accessibleby a program just like the contents of a data structurein primary
storage. What differentiates a mapped le structure from primary memory data is that
the le structure data persists after a program using it terminates and during its use,

the time to accesdts data is non-uniform becausethe le structureis kept on secondary

19

20 Memory Mapping and Single-Level Stores

storagebut isimplicitly cachedin primary storageby memory mapping. In Database, a
le structureis maintained in anamed UNIX le. A mapped le structureand its access
methods need to be optimized to achieve good performance in the face of nhon-uniform

accesgime, usually by impr oving locality of referencesby clustering related objects.

2.1 Motivation for Using Memory Mapping

Complex data structuresin primary storageare usually organized with memory pointers
used dir ectly by the processors instructions, rather than organized physically, such as
elementsof an array or records in a disk block. It is extremely dif cult and cumbersome
to construct complex relationships among data objectswithout the help of dir ect point-
ers. Thus, it is highly desirable to be able to use pointers in organizing and relating data
in a le structure. However, it is generally impossible to store and retrieve data struc-
turescontaining dir ect pointers from secondary storagewithout converting (at best)the
pointers or (at worst) the entire data structure into a different format. In other words,
the data structurein primary storage hasto bereorganized into aform (e.g.,a stream of
bytes) that is suitable for secondary storage;the reversemust take place when the stored
data structure is retrieved into primary storage. Considerable effort, both in terms of
programming and execution time, is required to transform data from one format to the
other in this manner. As an example, gur e 2.lillustrates the transformations that occur
for restructuring atreedata structure into a stream of bytes suitable for secondary stor-
ageand vice-versa. The transformations X and Y are data structur e speci ¢ and must be
executedeachtime the data is written to or read from secondary storage. Consequently,
the use of powerful and exible data structuring capabilities of modern programming
languagesare not dir ectly available for manipulating secondary storage data.

In spite of theserather taxing dif culties, databaseimplementors have traditionally

2.1 Motivation for Using Memory Mapping 21

Primary Storage Secondary Storage
Data Structrues ! System Supported File
(e.g.,Tree) i (e.g.,Streamin UNIX)

Figure 2.1: Two Views of Data

rejectedthe use of memory mapped les and have chosento implement the storagelevel
support for databasesusing traditional approaches(e.qg., explicit buffer management).
This rejectionis not entirely basedon alack of availability of memory mapping facilities.
The earliest use of memory mapping techniques can be traced back more than 20 years
to the Multics system [BCD72]. However, earlier operating systems,including Multics,
provided thesefacilities in a framework that was very rigid and dif cult to work with.
There are other reasonsgiven to explain why memory mapping has not been popular

with databasedesigners. Among the most notable of thesereasonsare [SZ903g p. 90]:

Operating systems typically provide no control over when the data
pagesof a mapped le are written to disk, which makes it impossible
to use recovery protocols like write-ahead logging [RM89] and sophis-

ticated buffer management[CD85].

The virtual addressspaceprovided by mapped les, usually limited to

32bits, is too small to representa large database.

22 Memory Mapping and Single-Level Stores

Pagetables associatedwith mapped les canbecomeexcessivelylarge.

Thesecriticisms, while valid in the past, are no longer as strong now. The rebuttals

to thesecriticisms, aspointed out in [CFW9(Q], are:

Newer operating systems,such asMach [TRY 87] and SunOS[Sun9(],
are considerably more liberal in what they allow usersto do with the
underlying virtual memory system. Mach provides user-level facilities

to better control when the data pagesof a mapped le arewritten back.

The addressspaceprovided by 32 bits, while not excessivelylarge, is
suf cient for many emerging and traditional applications. Addition-
ally, processorswith larger virtual addressspaces(up to 64 bits) have
become commercially available, e.g.,the MIPS R4000[Mip91] and the
DEC Alpha [Sit92] microprocessors.

Memory managementschemesare becoming more sophisticated sothat
less memory is used for page tables. For example, some implementa-
tions employ N-level paging and page tables that are smaller than the
size of the areathey map, by using subscript checking before indexing

the page table [RKA92].

Using memory mapping to implement asingle-level store offers anumber of advantages
that signi cantly simplify the development of le structuresin complex design environ-
ments, suchasCAD/CAM systems. Theseadvantagesare described in detail in section
2.2.2,and clearly outweigh any disadvantages of memory mapping described in section

2.2.3.

2.2Memory Mapping and the EPD Approach 23

2.2 Memory Mapping and the EPD Approach

As illustrated in Figure 2.2, memory mapping is the technique of using the underlying
hardwar e and software architectural support for virtual memory to map some portion
of the secondary storage (e.g.,adisk le) into the virtual addressspaceof a program, so
that the data stored on secondary storage becomesdir ectly accessibleby the processor's
instructions. Once mapped, the secondary storage data hasa one-to-one correspondence

with its image in virtual memory.

-~ S—
\\
FILE
arbitrarily complex >
object T
‘]
Primary Storage Virtual Memory Secondary Storage

Support
Figure 2.2: Memory Mapping

The concept of virtual memory has been expounded upon in detail in the literatur e
(see[Den7Q]) and a basic understanding of virtual memory is assumedin this disserta-
tion. Virtual memory capabilities and their accessibility vary substantially among dif fer-
ent computer architectures. In general, there are two major capabilities: segmentation
and paging, which canbe used independently or together. A segments a variable sized
contiguous areaof virtual memory with a xed starting address,usually 0. This starting
addressis called the virtual zeno. Conceptually, a segmentis a set of contiguous pages
in virtual memory, where a pageis a xed sizerange of virtual addresses.The physical

memory analogue of avirtual memory page,called amemory frame, isa xed sizerange

24 Memory Mapping and Single-Level Stores

of contiguous physical memory locations. Pagingis the ability to map a non-contiguous
setof physical memory frames onto a contiguous setof virtual memory pages.
Depending on the system capabilities, memory mapping can map a le structure
into a new segmentor into a portion of an existing segment. Becausethis work adopts
the EPD approach to memory mapping, a le structure is mapped into its own dedi-
cated segment; otherwise the mapping cannot be guaranteed to start at the samevirtual
addresseachtime the le structureis mapped, and memory pointers embedded in per-
sistent data cannot be used to accessthe referent data without rst being relocatecbr
swizzled(addressconsistency problem). The ability to store direct memory pointers to
relate data in a le structure and to use these pointers, without modi cation, to access
the referent data is essentialto the design presentedin this dissertation. Demand seg-
mentation and paging, the abilities to copy only those pagesof a segmentinto primary
storage that are referenced during execution, are also essentialto this design becausea
le structureis almost always larger than the primary storage capacity of the machine.
Notice that demand paging conceptually performs the function of atraditional buffer
manager, except that the buffering is implicit and tied into accessat the instruction
fetch/stor e level. ldeally, different page replacement algorithms are required for dif-
ferent kinds of accesgatterns to achieve maximum ef ciency, but the desired ef ciency
is possible with relatively few different page replacement schemes[Smi85]. Although
commercial operating systemshave traditionally supported a single system-wide page
replacement scheme, many systems are beginning to provide tools that allow applica-
tion programsto in uence the underlying page replacementstrategy. In addition, some
reseach projectsare building operating systemswith specialized paging support geared

towar ds persistent systems.

2.2Memory Mapping and the EPD Approach 25

2.2.1 Non-Uniform AccessSpeed

When constructing a memory mapped le structure, it is imperative to understand that
certain accessbehaviours can be expensive. While the contents of a le structure are
made dir ectly accessibleto the processor the accessspeed is non-uniform —when the
page containing areferencehasto bereadin, along delay occursasfor atraditional disk
read operation, otherwise the referenceis direct and occurs at normal memory speed.
Non-uniform accesds an aspectof performance that a le structure designer will never
be able to control in its entirety as the use of memory mapping involves a deliberate
decision to let the operating system be in control of the demand aspectof segmentation
and paging to make ef cient useof primary storageand other systemresources.Unless
different page replacement schemescan be selected by individual applications, a le

structur e designer can, at best, in uence the effects of paging by controlling the man-
agementof primary storage and, to alesserextent, by controlling disk allocation. While
this lack of control seemslike afundamental aw , experimental work hasshown that it
presentsfew practical problems, exceptfor certain specialized accesspatterns, depend-
ing upon the particular page replacement strategies available. The problem is further

mitigated by advancementsin the operating system technology mentioned earlier.

2.2.2 Advantages

The following are some of the bene ts that are derived from using single-level stores,

especially memory mapped stores,to build le structuresand their accessmethods.

Uniformly Accessible Data: The dichotomy resulting from maintaining two disparate
views of data in traditional programming systems has been mentioned earlier.
Pointers embedded in a data structure must be transformed in order to be com-

patible with secondary storage before they can be stored and the reversemust oc-

26

Memory Mapping and Single-Level Stores

cur during retrieval. For example, a CAD/CAM designer may want to store data
organized in the form of a CSGtree[Req8(on a conventional le system,e.g.,the
UNIX le system. The accessmethod designer must devise ways of expressing
the CSGtreein the form of a stream of bytes, and either graph operations execute
on this stream of bytes emulating a graph, or the primary memory graph must
be regeneratedduring retrieval. Both approachesresult in signi cant overhead in
terms of program complexity and execution time. A single-level store greatly re-
duces and even eliminates thesede ciencies by allowing the use of programming
language constructs for organizing persistent data. No conversion of primary stor-
age data structuresis necessaryto store them on secondary storage, which results

in signi cantly impr oved performance.

A Single Pointer Type: Single-level storesbasedon pointer swizzling schemespresent

a uniform view of all data to an application program but these systemsuse dif fer-
ent formats for pointers to persistent and transient data; the conversion of pointers
from one form to the other is transparent to the executing program. In the EPD ap-
proach, however, normal memory pointers are stored dir ectly on secondary stor-
agewithout any transformation, and used subsequently to accesghe referent data.
When pointers to persistent data are dereferencedduring execution of a program,
the I/O necessaryto bring the referent data into primary storage occursimplicitly

through the virtual memory mechanisms.

For rather simple data structures,like a B-Tree,the elimination of pointer swiz-
zling doesnot result in a major performance impr ovement. However, for complex
data structur es,such asgraphical objectsin a CAD/CAM systemor in ageograph-
ical information system, where a large proportion of the data consistsof pointers,

thereis a signi cant performance advantage resulting from the elimination of the

2.2Memory Mapping and the EPD Approach 27

transformation of pointers from one format to the other.

Elimination of Explicit Buffer Management: Efcient buffer managementis crucial for
the performance of a traditional databasesystem and writing a good buffer man-
ager is complex. Further, given the availability of a buffer manager, a le struc-
tur e designer must be skilled in its usageto achieve good performance, explicitly
invoking the buffer manager's facilities correctly, possibly pinning/un-pinning
buffers, which results in code that is complex and dif cult to write, understand

and maintain.

In a memory mapped system, all data is implicitly buffered, with the I1/O be-
ing done by the underlying operating system. This model of I/O resultsin signif-
icantly lesscomplex accessmethods. I/O managementis completely transparent
and is handled at the lowest possible level, where it has the potential to have the
greatesteffect on the overall ef ciency of the system, particularly on a shared ma-

chine.

Unfortunately , most contemporary operating systemsdo not allow an applica-
tion to selectits own pagereplacementstrategy. This lack of choicenulli es the ad-
vantage of memory mapping for somespeci ¢ applications. However, subsequent
resultswill show that, in general, the buffer managementprovided by atypical op-
erating system page replacement algorithm producesresults that are comparable

to a hand-coded buffer-manager for a number of varied accessatterns.

Simple Localization of Access: The apparent dir ect accessof all memory locations im-
plies that any data structure can be stored on secondary storage. This feature,
which gives afalse senseof control to the le structure designer, and coupled with
non-uniform accessof locations canresult in data structuresthat are not appropri-

ate for the memory mapping (or any other) approach from a performance view-

28

Memory Mapping and Single-Level Stores

point. The main design criterion for constructing memory mapped accessmeth-
ods is localization of data access.While locality of referencesis crucial for all data
structureswhere accesds non-uniform, memory mapped accesanethods can eas-
ily take advantage of it by controlling memory layout. Simple changesto mem-
ory allocation strategies can produce signi cantly better performance in memory

mapped accessmethods due to localization of accesses.

Becausethe data structureson secondary storage can be manipulated dir ectly
by the programming language, tuning for localization is straightforwar d. Also,
this capability provides a wider spectrum of choicesfor the designer. A trade off
between complexity (of increasinglocality of references)and performance can be

exploited to achieve a desirable balance.

Rapid Prototyping: By relieving the le structure designer of the responsibility of deal-

ing with two different views of data in essentially two different environments, a
le structure canbe reliably constructed in a shorter period of time. The le struc-

turesdiscussedlater in this dissertation were constructed and debugged quickly.

Building a le structure basedon the EPD approachis further assistedby the
ability to useall the available programming languagetools. For example, language
polymorphism can be exploited to reuseexisting code, and an interactive debug-
ger canfacilitate quick detection of errors. When debugging, it is possible to exam-
ine secondary storage data aseasily and ef ciently asprimary storage data. Other
programming languagetools such asexecution and storagemanagementpro lers,

and visualization tools are also dir ectly usable for secondary storage data.

Better Utilization of a Shared System: In memory mapped systems, all I/O is per-

formed by the underlying page replacement algorithm, which allows the oper-

ating systemto be fair to all usersand to dynamically respond to the system load

2.2Memory Mapping and the EPD Approach 29

both from databaseand non-databaseaccess.When the system load is light, it is
perfectly reasonableto allow large portions of the databaseto reside in memory.
During times of heavy load, databaseapplications share available resourceswith
other applications. In traditional databasesystems,the buffer manageris often in
conict with other usersof the machine, holding resourcesit is not currently using

when accesdo the databaseis low.

In general, accesamethods built using memory mapping cannot make guaran-
teesabout absolute performance during execution on a shared system any more
than traditional accessmethods and buffering strategiescan. In both cases,state-
ments about performance are only valid if there are no other applications running
on the machine. In reality, most database systems share the machine with other
applications that affect performance in unpredictable ways. It is my contention
that tying le accessinto the paging mechanism allows better overall system re-
source utilization and that memory mapped accesamethods have the potential to
achieve better performance on a shared systemthan traditional databasesystems.
This assertionis basedon the fact that the operating system has knowledge about
the entire state of the machine, and therefore, has the potential to make informed
decisions to achieve good overall performance. Further, memory mapped access
methods can immediately benet from any extra memory that becomesavailable

in the system, even on machineselsewhere in the local-areanetwork [FMP 95|.

Improved Support for Large Objects: Memory mapping provides the le structurede-
signer with a contiguous addressspace even when persistent data is not stored
contiguously, which meansthat a large single object may be split into several ex-
tents on one disk or several disks and the application does not need to be aware

of this splitting. In traditional systems,the buffer manager hasto be designed to

30

Memory Mapping and Single-Level Stores

explicitly support this seamlessview of individual objectsin a le structure con-

sisting of non-contiguous xed-size blocks on secondary storage.

Further, systems based on conventional pointer swizzling schemesare con-
strained to read at least a whole object. An entire object must become memory-
residentwhen a pointer to it is dereferencedin order to maintain integrity of refer-
encesto persistent objects. In virtual memory basedsystems,partial objectscanbe
memory-r esident; only those pagesof a multi-page objectthat are referencedneed
to be read into virtual memory resulting in a signi cant performance advantage

for applications that make sparseuse of large objects.

Elimination of Double Paging: In traditional systems, the buffer management pro-

vided by the databasesystem can be at odds with the underlying virtual memory
management of the operating system. This conict canresultin excessiveand un-
necessaryl/O, unlessfacilities are provided to instruct the operating system not to
managethe buffer spacein virtual storage.Not all operating systemsprovide such
a facility nor will they guaranteeto honour such a request. In a memory mapped

system this problem is eliminated.

Pointer Arithmetic: An important advantage of the EPD approachfor building asingle-

level store is the ability to perform normal pointer arithmetic on pointers to per-
sistent data structures. While all programs may not needto perform pointer arith-
metic, certain specialized storagemanagementschemesrequire this capability. The
fact that pointer arithmetic works on persistent data structuresin a manner sim-
ilar to data structuresin primary memory illustrates the level of transparency in

the single-store provide by the EPD approach.

2.2Memory Mapping and the EPD Approach 31

2.2.3 Disadvantages

Rigid PageReplacement Schemes: Commercial operating systems have tended to be
quite in exible in terms of allowing application programs to control the page
replacement strategy used. Typically, a single system-wide page replacement
scheme,usually a variant of the LRU scheme,is employed. While LRU is quite
suitable for a wide variety of accesgpatterns, it canresult in excessivepaging un-
der certain circumstances,e.g.,when it is known in an algorithm that a page will
never be used again, the LRU schememust still let the page agebeforeit becomesa
candidate for removal. This problem canberemoved to alarge extent by providing
operating system facilities that allow an application to in uence pagereplacement
decisions taken by the operating system. Operating system designers are begin-
ning to take notice and some application level control over page replacementis
already available in a few commercial operating systems, most notably the Mach

operating system.

Timing of Dirty PageWrite Back: Another major irritant with conventional operating
systemsis the lack of control over the time at which modied (or dirty) pagesin
the virtual spaceof an application are written back to disk. Premature writing
of dirty pagesin the middle of a transaction results in the data on disk being in
an inconsistent state, which increasesthe dif culty of implementing transactional
support for memory mapped systems. One suggested solution to overcome this
dif culty isbasedon pagecomparing techniques. The basicidea s to keep abefore
copy of all pagesthat needto be modi ed during a transaction. When the trans-
action commits, the current state of the modi ed pagesis compared against the
before copiesand any differencesare used to maintain recovery logs. This issueis

discussedfurther in chapter 6.

32 Memory Mapping and Single-Level Stores

2.3 Survey of Related Work

The earliest use of memory mapping techniques can be found in the Multics system
[BCD72). However, earlier operating systemswerenot exible enough to allow exploita-
tion of memory mapping techniquesin a serious manner. In recenttimes, with the de-
velopment of more open systems,a number of efforts have been made to use memory
mapping. The following discussion covers salient work on memory mapping aswell as

work on single-level storesin general.

2.3.1 Software Approaches Basedon Conventional Architectures

In thesesystems,the emphasisis on using software systemsto build a single-level store
without requiring new hardware and making no or little changesto the operating sys-
tem kernel. The main advantages of following this approach are simplicity , cost effec-
tiveness,immediate availability on existing architectures,and wide applicability . On the
other hand, there are certain aspectsof building a single-level store that are dif cult or
inef cient to implement without the availability of specialized hardwar e or operating
system support. Nevertheless, the convenience of the software approach makesit an at-
tractive pursuit, particularly in view of recentand imminent advancementsin hardware
and operating system technologies. The experiencesgained by pursuing the software
approach also provide valuable input in the design of desired features for futur e com-
mercial architectures.

While some projectshave designed new or modi ed compilers (PS-Algol, E, Object-
Store), many of the systemshave beenimplemented aslanguage (particularly CH) class
libraries that can be linked with applications, and require no special compiler support.
Somesystemssupport orthogonabersistencfABC 83] implying that the samecompiled

code canbeusedto manipulate both transient and persistent data, and objectsof all data

2.3Survey of Related Work 33

types de nable in the language can be made persistent. On the other hand, many of the
non-orthogonal systemsprovide a subsetof the bene ts of orthogonal persistence,e.g.,
aunied type systemfor all data without considerations of longevity. Finally, some sys-
tems, such asthe EXODUS Storage Manager, support the concept of objectidentity at
an additional cost, whereasmost memory mapped systemsdo not fully support object
identity becausenon-garbage collected memory managementis used.

In addition to the systemsdescribed below, there are other varied object managers
and storage systems that have been proposed in the last decade, e.g., the O2 Object
Manager [D 91] and the GemStonedatabasesystem [BOS9]. The emphasisand design
of these systemsis, however, quite different from my work and, as such, they are not

described here.

PS-Algol / POMS

PS-Algol [PS-87 was the rst effort to add persistenceto a conventional programming
language and the Persistent Object Management System (POMS) [CAC 84], written in
PS-Algol, can be considered the rst persistent object system. An implementation of
POMS in the C language [Bro89], called CPOMS, provides the underlying support for
PS-Algol in Unix environments. In POMS, pointers to objectsresidentin virtual memory
have a format different from pointers to objects stored on disk; the former are called
localobjectnumbers(LONs ') and the latter are referred to as persistenidenti ers (PIDs?).
Although PIDs can be arbitrarily large, in the actual implementation of CPOMS, the
PIDs were the same size as normal pointers in PS-Algol. PS-Algol's persistence model

is based on reachability (seesection 1.2.3)— all objectsstored in a databaseon disk are

1in CPOMSimplementation, aLON is simply avirtually memory address,called a local address.

2A PID may beasimple offsetwithin a le for single databaseimplementations or amore complex entity,
e.g.,along pointer that identi es the disk objectin a(single) universe of objectscomprising all objectsstored
on all disks on a network.

34 Memory Mapping and Single-Level Stores

reachablefrom a distinguished object called the root of the database. At the beginning
of program execution, the root object is loaded in virtual memory and assignedto a
global pointer accessibleto all programs. The root object contains pointers (PIDs) to
other objectson disk. When a program tries to dereferencean embedded PID, the system
loads the referent objectinto virtual memory from disk and replaces(i.e., swizzles) the
dereferencedPID with the LON of the newly loaded objectin memory. Thus, all pointers
embeddedin an objecton disk arerepresentedby PIDs, whereasfor an objectin memory,
the embedded pointers can be either LONs or PIDs. When the program nishes, all
embedded LONs are converted back (i.e., de-swizzled) to PIDs before the objectsin
memory are written back to disk. All of this addresstranslation is handled in software
and is lazy pointer swizzling becausea pointer is swizzled only when it is actually used.
Since LONs and PIDs co-existin primary memory, it is necessaryfor the two types of
pointers to be distinguishable. In POMS, this distinction is achieved by using the most
signi cant bit (MSB) of the pointer elds; PIDs have a MSB value of 1 whereasthe LONs
contain a zero in that bit. At eachdereference,the MSB is checkedto seeif the pointer
being dereferencedis aPID or aLON. Thesechecks,called residencghecksare a potential
performance problem. Another problem with the schemeis that an object has to be
loaded in its entirety in order to avoid problems with referential integrity . Also, the size
of the PIDLAM, described next, can become a problem since it contains one entry for
every object.

During program execution, POMS maintains atwo way mapping between LONs and
PIDs to facilitate swizzling and de-swizzling of pointers. The mapping is implemented
in amemory-r esident data structur e called the Persistentldenti er to Local Addr essMap
(PIDLAM), which is atwo way index implemented by meansof two hashtables. When
an embedded pointer in local memory is dereferenced,the dereferencing operation does

a residency check and consults the PIDLAM if the pointer is a PID. If an entry for the

2.3Survey of Related Work 35

PID exists, the referent objectis already in memory and, therefore, execution canresume
as soon asthe dereferenced PID is replaced by the LON of the referent object from the
PIDLAM. If, however, the PIDLAM contains no entry for the PID, the referent objectis
fetched from disk and loaded into local memory. An entry linking the PID with the new
LON of the objectis added to the PIDLAM, the dereferencedPID is replacedby the LON
and execution continues. In both cases,any subsequentdeference of the same pointer

eld continues without delay after the residency check becausethe pointer is a LON.

Napier / Brown's Stable Store

The Napier88 system used a stable store by A. L. Brown [Bro89, DRH 92]. Brown's
store is one of the earliest proposalsto exploit memory mapped les for implementing
a persistent store. The store is implemented by mapping a single, xed length Unix le
to a single virtual addressspace. The mapping of the le is done ata xed virtual zero;
the mapped data in the le starts at an offset from the beginning of the le. Sincethe
mapping occursata xed address(EPD approach),thereis no needto relocateor swizzle
memory pointers embedded in the data objects. Brown's store doesnot support multiple
simultaneously accessiblepersistent stores;all persistent objectslive and are addressed
in a single persistent store. Also missing is support for disk partitioning of the single-
level store. The Napier88 system has since beenextended considerably by integration of
concurrency and distribution mechanismsinto the system. This extension was carried
out by Munr o [Mun93] as part of his doctoral thesis and is described briey in section

6.1.1.

36 Memory Mapping and Single-Level Stores

E/ EXODUS Storage Manager

E [RCS93 is a persistent programming language, developed as part of the EXODUS
project at the University of Wisconsin, that relies on the EXODUS storage manager for
providing basic support for objects, les and transactions. E extends C+ by adding
persistence and some other language features; the latest version of the E compiler is
basedon the Gnu C+ compiler. The support for persistencein E is provided by means
of new data types (called databaseor db types) and a persistent storage class. Any C+
type/class canbe de ned asadb type/class, thereby de ning the type of objectsin the
database. The persistent storage class provides the mechanism for storing objectsin a
database.In order to persist after a program is run, an object of a db type needsto have
the persistent storage class property. Additional language constructs are provided for
manipulation of persistent objects, e.g., the built-in db classcollection[Type] provides a
mechanism for creating and deleting objectsin a persistent collection. The support for
persistencein E is implemented in software similar to PS-Algol; each dereferenceof a
pointer incurs aresidency checkimplemented by meansof in-lined code.

The style of persistenceprovided by E is called allocation-basegersistence;the de-
signers of E rejectedthe notion of reachability (seesection 1.2.3)for reasonsoutlined in
[RCS93. In E, the persistence of an object of db type needsto be explicitly specied
(either by declaring a persistent variable or by placing the objectin a persistent collec-
tion). Another aspectin which E differs from PS-Algol and other systemsis its rejection
of orthogonal persistence. Only objects of db types can persist, i.e., E has a dual type
system: objectsof db types maypersist whereasobjectsof normal types are all transient.
One of the implications of this dual approachis that only pointers to db types incur the
costof arun time residency check. Another reasoncited by the designers of E for reject-

ing orthogonal persistenceis the wasted spacethat results by making all pointers long

2.3Survey of Related Work 37

pointers.

Other Language Efforts

In addition to PS-Algol, Napier and E, there have been several other language design
efforts that add persistenceto a traditional programming language. One of the more
prominent of these languagesis O++ [DAG93, BDG93 based on the Ode/EOS object
manager. O++ is a databaseprogramming language basedon C+ that provides support
for orthogonal persistence. The compiler is implemented asa front end called ofront

that translates O++ code into G+ code to be compiled and linked together with the
Ode Object Manager, which is implemented on top of the EOS storage system. EOS
manipulates data on disk in units of disk pagesand objectsare essentially uninterpr eted
sequencesof bytes with someheaderinformation. One of the important featuresof O++
is its support for making the virtual pointers of C+ persist, i.e., it allows objects with

virtual membersto be persistent.

Texas: Pointer Swizzling at PageFault Time

Paul Wilson [Wil91a] has developed a schemethat combines the concepts of pointer
swizzling and run-time pagefaulting to support huge persistent addressspaceswith ex-
isting virtual memory hardware. Texas[SKW92] is a persistent store basedon Wilson's
scheme of pointer swizzling at page fault time. In Wilson's scheme, pointers on sec-
ondary store have aformat different from the pointers in primary storage,which allows
for a persistent store that is larger in size than the virtual spacesupported by a given
hardware. Wilson's schemerequires a special page fault handler that is responsible for
swizzling pointers.

The basic strategy is to fetch pagesas opposed to objectsasis done in classicallazy

38 Memory Mapping and Single-Level Stores

pointer swizzling. When a page fault occurs,i.e., the virtual memory hardwar e detects
an attempt to dereference a pointer to a location in a non-resident disk page, virtual
memory for the disk page is allocated (if not done already) and the page is fetched in
memory. An addresstranslation table maintains the current mapping of virtual memory
to disk pages. The table contains one entry per page rather than one entry per object
resulting in a considerably smaller and xed sizetable.

During fetching, a disk page is scanned and all embedded persistent pointers are
translated into virtual memory pointers, which requiresknowledge of all pointers. Thus,
memory resident pagesin Wilson's schemenever contain persistent pointers, only vir -
tual memory pointers. Extra information is maintained on disk to permit the nding of
all pointers embedded in data and there is an associatedrun-time costof processingthis
extra information. Furthermor e, objectsthat cross page boundaries require additional
language support.

For embedded persistent pointers that refer to disk pagesseenpreviously during the
current execution, the translation table is used to swizzle the pointers into correspond-
ing virtual memory values. To facilitate the translation of other embedded persistent
pointers, all the referent disk pages are greedily allocated virtual memory space and
appropriate entries are made in the translation table. However, the disk pagesare not
actually loaded at this time. Thus, the faulting of a single page can result in virtual
memory being allocated for a rather large number of other pages. Someof these pages
may never be used and, therefore, Wilson's schemecan result in under utilization of vir -
tual space.Wilson has proposed some solutions to these problems, such as periodically
invalidating all the mappings and rebuilding them; however, the solutions increasesig-
ni cantly the complexity and costof his basic scheme. For example, if virtual memory
spaceis exhaustedduring execution of atransaction, someof the memory-r esident pages

have to be written back to disk in order to recover virtual memory space. Evacuation

2.3Survey of Related Work 39

of memory-resident pagesin this manner requiresa signi cantly complex de-swizzling

processwhich resultsin a serious degradation of performance.

Hybrid Pointer Swizzling

Vaughan and Dearle [VD92] have presenteda hybrid pointer swizzling schemethat re-
tains the salient features of both the lazy swizzling employed by POMS and the eager
swizzling of Wilson's scheme. The hybrid schemesplits the pointer swizzling process
into two phasesin order to avoid the problems associatedwith Wilson's greedy vir -
tual memory allocation. The hybrid scheme mandates that persistent pointers be at
least twice the size of virtual memory pointers. The low order bits in a pointer eld

are used for machine addressing and the extra spaceavailable in a swizzled pointer is
used to maintain some additional information used to simplify the de-swizzling pro-
cess.Pointer elds in memory-r esident pagescan contain valid virtual memory pointers
to either actual objectsor entries in a memory-r esident translation table; the former are
called fully swizzled pointers and the latter partially swizzled pointers. To dereference
a partially swizzled pointer, the system consults the translation table to seeif the cor-
responding disk page is memory-resident; if not, a page fault occurs and the disk page
is brought into virtual memory. At this time, eachpointer embedded in the newly read
page is changedto afully swizzled pointer if it refersto a memory-r esident page, or to
a partially swizzled pointer if the referent page has not yet been fetched into memaory.
Dereferencing of fully swizzled pointers proceedswithout interr uption, thereby avoid-
ing the per referencecostassociatedwith lazy swizzling. Sincereferencesto non-resident
pagesare not immediately translated into virtual memory pointers, the greedy alloca-
tion of virtual memory is avoided; a disk page is allocated virtual memory only when
actually used. The main additional costswith the hybrid schemeare a special software

dereferenceoperator and the increasedsize (at leastdouble length) of pointers.

40 Memory Mapping and Single-Level Stores

ObjectStore

The ObjectStore Database System [Atw90, LLOW91], developed by Object Design Inc.,
is a commercial object oriented DBMS that makes use of conventional hardwar e in con-
junction with an ad hoc pointer swizzling schemefor storing virtual memory pointers on
secondary storage. The swizzling schemeused is similar to Wilson's schemeexceptthat
in ObjectStore, normal programming language pointers are used to refer to persistent as
well astransient objects. ObjectStore supports simultaneous accesso multiple databases
and individual databasesare allowed to be larger than the virtual addressspace.These
capabilities are achieved by maintaining a mapping between disk pages and the vir-
tual memory addressesassignedwhen the pageswere last memory-r esident. The exact
details of the scheme used by ObjectStore are proprietary 3. However, the QuickStore
system, described below, is believed to use the samescheme.

Every new persistent object in ObjectStore is explicitly created in a particular
database. Individual databasesare subdivided into segments* and the application can
cluster related objectsby specifying the segmentwithin a databasewher e the new object
is to be created. An inter-databasepointer in ObjectStore is treated dif ferently from an
intra-database pointer. In general, an inter-databasepointer is transient, i.e., it is valid
only during the scope of the assigning transaction. A persistent inter-databasepointer
needsto be explicitly distinguished and is implemented asalong pointer.

ObjectStore is basedon the client/server paradigm; the server maintains the persis-
tent store and provides all fundamental support servicesincluding concurrency and re-
covery control. The server makesavailable, on demand at page fault time, the necessary

pagesof secondary storage,which are then mapped by the client into its virtual address

3The description in this section is basedon information obtained from [LLOW91] and [Obj93]

4The term segmentin this sectionrefersto alogical sub-division of alarger databaseand doesnot mean
a hardwar e supported segmentasdiscussedin section 1.2.

2.3Survey of Related Work 41

space;the granularity of server transfers can be changed from a page to a segment, with
the latter resulting in enmasséransfer of a complete segment. For eachtransaction, only
those parts of the database(s)that are accessedby the transaction are mapped into the
addressspaceof the client. This strategy intr oduces a restriction on the total amount of
data that canbereferred to by any single transaction. Large operations needto be broken
down into a seriesof smaller transactions.

When a page is mapped into the virtual addressspace,ObjectStore dynamically as-
signsavirtual addresswherethe mapping is to take place. An attempt is made to assign
the addresssothat the pointers stored on the server continue to bevalid in virtual mem-
ory of the client, which is possible when the page being mapped aswell asall the pages
referred to by pointers embedded in the mapped page can be assignedthe samevirtual
addresseswhere the pageswere last resident. No pointers need to be swizzled in this
scenario and execution can continue as soon asthe page is mapped. In all other cases,
the serverhasto nd all the pointers embedded into the page and swizzle the pointers as
needed, which requiresthat some portion of the type system be available at run time in
order to locate all embedded pointers. ObjectStore keepsthis information in an auxiliary
data structure called the tag table, which records the location and type of every objectin
the database.The tag table is used in conjunction with the databaseschemato locate all
pointers embedded in objectsstored in the page being mapped.

At the end of a transaction, all pagesin the client's address space are unmapped
and any modi ed pages are transmitted back to the server; the client blocks until the
pagesare written backto the server's disk(s). Unmapped pagesstay in the client's cache
until room is needed for other new pages. A client cachecoherency schemeis used to
accommodate sharing of pagesby multiple clients. In this aspect, ObjectStore's storage

managementis similar to the one employed by the EXODUS Storage Manager.

42 Memory Mapping and Single-Level Stores

Cricket

Cricket[SZ904] is a storage system that usesthe memory management primitives of
the Mach operating system [TRY 87] to provide the abstraction of a “shared, transac-
tional single-level store that can be directly accessedby user applications” [SZ903g p.
89]. Cricket follows the client/server paradigm and, upon an explicit request, maps the
databasedir ectly into the virtual spaceof the client application. Cricket usesdir ectmem-
ory pointers and the databaseis mapped to the samerange of virtual addressesso that
pointer modi cation is unnecessary However, the mapping takes place in the address
spaceof the application, and hence,only one databaseat a time can be used by an ap-
plication. Indeed, the conceptof adisk le to group related objectsinto one collection is
not supported in Cricket. Cricket takesthe view that everything an application needsto
useis placed in asingle large persistent store. The designers of Cricket did acknowledge
the needto support les and planned on providing animplementation for les in future
work. However, it may be almost impossible to support atruly generalimplementation

of les within the framework of Cricket's architecture.

QuickStore

QuickStore [WD94] is a storage system for persistent G+ that is built on top of the EX-
ODUS Storage Manager (ESM), offers nearly the same functionality as E, makes use of
memory mapping, and performs pointer swizzling at page-fault time similar to Object-
Store. Becauseof its use of ESM, QuickStore hasaclient-server architecture with support
for transactions. There are no limits placed on the size of a database;the amount of data
accessibleby a single transaction is limited to the size of virtual memory. The persistent
pointers in QuickStore are the sameasvirtual memory pointers. The value of a pointer

to a persistent objectin QuickStoreis the virtual memory addressof the objectwhen the

2.3Survey of Related Work 43

page containing the objectwas last memory resident.

Dereferencing a pointer to a non-resident objectcausesa page fault to be detected by
hardwar e causing the QuickStore page fault handler to request ESM to fetch the page
containing the object into the ESM client buffer pool; from there the objectis memory
mapped into the virtual addressspace of the application program for direct manipu-
lation. While fetching, the page fault handler performs actions such as swizzling of
embedded pointers before the client application resumes. Virtual memory is greedily
allocated for the page being fetched aswell asfor all the other pagesthat are referred to
by embedded pointers. Like ObjectStore, an attempt is made to assignthe samevirtual
frames asused previously. If all of the pagescan be assignedtheir old virtual frames, no
swizzling of pointers is needed and the application canresume execution. If some disk
pagesget mapped to new virtual addresseshowever, the faulted page is scannedand
any embedded pointers that refer to the relocated page(s)are updated.

In order to perform swizzling, QuickStore maintains extra information for memory-
resident and persistent data. The main memory-r esident data structure is a table that
keepstrack of the current logical mapping from virtual memory frames to disk pages.
This table contains one entry, called a page descriptor, for every page that has been
fetched into memory or is referred to by pointers embedded in memory-r esident pages.
Pagedescriptors contain the virtual memory and disk addressesf corresponding pages.
The page descriptor table is consulted during allocation of virtual memory addresseso
disk pages.

The information maintained on disk for eachdisk page includes a mapping object
and a bitmap. The mapping objectfor a disk page, say p;, records the mapping between
virtual framesreferred to by pointers embedded in p; and the corresponding disk pages
at the time when p; was last memory resident. The size of a mapping object can vary

and, therefore, the mapping objectis not stored aspart of its disk page;instead, a pointer

44 Memory Mapping and Single-Level Stores

to the mapping objectis kept in aspecial xed-size meta objectstored at the beginning of
the disk page. The bitmap for adisk pageis maintained by meansof the type information

made available at run time and is usedto locate all embedded pointers sothat they canbe
swizzled, if necessary The bitmap is also stored independently of its disk page because

the bitmap for adisk pageis only neededif pagesare relocated at page fault time.

2.3.2 Architectural Approaches

This section describesmajor projectson single-level storesother than Multics, which has
beenmentioned before, that focus on memory mapping at the hardwar e and operating
system level. By its very nature, this work takes an entirely different approach than
the softwar e basedsystemsdescribed earlier. Ar chitectural approachesare signi cantly

more expensiveto investigate and representimportant work that provides insights into,
and hopefully guides the development of futur e hardwar e and operating systemsupport

in commercial systems.

Bubba Database System

The designersof Bubba[BAC 90, CFW9(], a highly parallel databasesystem developed
at Micr oelectronics and Computer Technology Corporation (MCC), exploited the con-
cept of asingle-level storeto representobjectsuniformly in alarge virtual addressspace.
Cricket borrowed several ideas from Bubba. The focus of Bubba was on developing
a scalable shaed-nothingarchitecture, which could scale up to thousands of hardware
nodes and the implementation of a single-level store was only a small, though impor -
tant, portion of the overall project. In Bubba,the Flex/32 version of the AT&T UNIX Sys-
tem V Release2.2 was extensively modi ed to build a single-level store, which makes

the store highly unportable. The programming interface to Bubba is FAD, a parallel

2.3Survey of Related Work 45

databaseprogramming language.

MONADS Architecture

The MONADS project [RK87, Ros9(Q started in 1976 at the University of Newcastle,
Australia developed a new computer architecture that supports orthogonal persistence
by meansof a uniform virtual memory asone of its central design goals. The MONADS
architecture provides explicit support for objects,both at the architectural and the system
software levels. The implementation of the MONADS architecture took the route of
employing a combination of hardwar e, microcode and software. The virtual memory in
MONADS is uniformly addressableusing a segmentaddressingscheme. Segmentsare
essentially arbitrary size chunks of addressesn avery large virtual addressspace(up to
128bits).

The virtual store in MONADS, unlike many other architectures, is divided into re-
gions called addessspacesand assuchis not at. A non-at store was motivated by a
desire to make the store asefcient and exible asaconventional le system,which al-
lows related data objectsto be grouped together and managed independently of other
groups of objects(seesection 1.2). To facilitate ef cient and easyaddressing,eachvirtual
addressin MONADS consists of two components, the addressspacenumber and the
offset within the addressspace. The segment addressing schemein MONADS builds

upon the conventional segmentation schemessuch asthe one used in Multics.

Model for Address-Oriented Software

In [SW92Z], Smith and Welland intr oduce a concept called addess-orientedoftwaeto de-
scribe any software that makes use of the valueof memory addressesit references. The

authors further propose a general model of the operations, called addess-management

46 Memory Mapping and Single-Level Stores

such software uses. The model is being used to design a new operating system and
hardwar e that is more conducive to supporting the classof address-oriented software.
The address-oriented servicesin their model relevant to this work include support for
virtual memory and a persistent object store.

The model proposesa single large persistent addressspace,larger than the address
spaceof the processor As such, object pointers are not the same as memory addresses
and addresstranslation must take place before a pointer canbe dereferenced. At the time
of opening the store, the root objectsof the store are copied into memory and converted
to the memory format. At the sametime, virtual addressspaceis allocated to all objects
that are referencedin the root objects;no physical memory is allocated yet. When a new
objectis referenced,it is read into memory using virtual addressesthat have previously
been allocated for the objectand new virtual spaceis allocated for all objectsthat have
referencesin the newly read object. This processrepeatsasthe computation progresses,
asfor Texas,ObjectStore and QuickStore.

In the same paper, Smith and Welland presenteda hardwar e model for implement-
ing their address-managementmodel of address-oriented servicesand describe the im-
plementation of a subsetof their hardwar e design in the memory management unit of
the ARM 600,a processorbeing built by Advanced RISCMachines, Ltd. of Cambridge,

England.

Single Address SpaceOperating Systems (SASOSSs)

Quite recently, some reseach has been done on developing a new class of operating
systems called Single AddressSpaceOperating Systemssee[CFL93] for a description of
some issuesand problems with SASOSs;this section includes a brief relevant discus-
sion). An SASOSis fundamentally different from traditional operating systemsin that

it usesa single global virtual addressspacefor all protection domains as opposed to

2.3Survey of Related Work a7

assigning each protection domain (e.g.,a UNIX process)its own private virtual space.
The single addressspaceapproach has becomeviable with the commercial availability
of workstations with large virtual addressspacesbecauseit is now realistically possible
for all computation on anode to occur within asingle addressspace.The global address
spaceis shared by all threadsexecuting on the system. Thus, all threadswork with the
samevirtual to physical mapping of addressesand any virtual addressin the system can
be dereferenced by any thread. Accessto data, however, is determined by the thread's
protection domain.

The goal of an SASOSis not to provide persistencebut to facilitates sharing of the
transientaddressspace;in somesense,an SASOSdoesfor transient datawhat Database
doesfor persistentdata. Nevertheless, SASOSsave somerelevanceto this work because
of their promotion of EPD and the use of large virtual addressspaces. One of the best
known SASOSss Opal [CLBHL92, CLFL94] developed at the University of Washington.
Opal is built on top of the Mach operating system and thus, co-existswith UNIX. The
virtual memory allocation unit in Opal is a virtual memory segment, which is a vari-
able sized set of contiguous virtual memory pages. Opal supports recoverable as well
as distributed virtual memory segments. Upon allocation, a virtual memory segment
is assigned a unique range of addressesin the global addressspacein order to avoid
addresscon icts in the event of sharing. One of the major similarities between Opal and

Database is support for sharing of pointer-baseddata structures. Database facilitates
sharing via the EPD approach to persistence,whereasin Opal, the use of a single ad-
dressspaceallows independently developed tools (e.g.,editors and debuggers) to pass

and manipulate transient pointer -baseddata structures.

48 Memory Mapping and Single-Level Stores

Grasshopper Operating System

The Grasshopperoperating system [DdBF 94] is an attempt to develop an orthogonally
persistent operating system that runs on conventional hardwar e. The desire to develop
anew operating systemis motivated by the fact that it is often inef cient or too hard to
build an orthogonal persistencesystem on top of a conventional operating systemdue to
their fundamentally different natures. A persistent operating system like Grasshopper
removesthis inef ciency by providing support for orthogonal persistencein the operat-
ing systemitself. Nevertheless, there are somelimitations that remain due to the lack of
required featuresin conventional hardwar e.

The fundamental abstractions used in Grasshopper to support orthogonal persis-
tence are called containers(storage), loci (computation) and capabilities (accesgontrol).
The three abstractions are orthogonal in nature and, as such, can be applied indepen-
dently. Grasshopper adopts a fully partitioned addressspace model, i.e., there is no
global addressspace.Instead, there are fully independent addressspaceseachof which
canbearbitrarily sized. Processeexecutewithin one of theseaddressspaces(hostaddess
spacgand accesss limited to data stored within the host addressspace.Further, the con-
ventional associationof addressspaceswith processeds non-existent becauseprocesses
(loci) are orthogonal to addressspaces(containers). A Grasshopper system contains a set
of addressspacesand a setof loci executing within the setof addressspaces.A locus can
executein and accessdata stored within one container at atime. Unlike other operating
system designs, loci or processesn Grasshopperare inherently persistent. The orthogo-
nality of loci and containers facilitates support for multi-thr eaded programming because
anumber of loci can executewithin one container simultaneously. Finally, accesscontrol

over containers and loci in Grasshopperis capability based.

2.3Survey of Related Work 49

IBM RS 6000and AS/400

Malhotra and Munr oe [MM92] have proposed schemesto support persistent objectson
the architectures of IBM RS/6000 and IBM AS/400 computer systems. Both these sys-
tems incorporate support for single large virtual memories that are subdivided into seg-
ments, although segmentshave slightly different semanticsin the two systems. The au-
thors argue that using virtual memory referencesto accessobjectsis both more ef cient

than other approaches,including swizzling, and easierto implement sincethe operating

system does most of the work.

Recoverable Virtual Memory

Thatte [Tha86] has described a persistent memory system basedon a uniform memory
abstraction for a storage systemin which both transient and persistent objectsare man-
agedin auniform manner. The memory is viewed asacollection of variable size blocks of
consecutive addressesjn a single large virtual space,interconnectedwith virtual mem-
ory pointers. Reachability (seesection 1.2.3)is used for the persistent model; an object
in the virtual space persists as long asit is reachablefrom a persistent root. Thatte's
proposal includes a recovery schemeat the level of virtual memory itself becausehis
schemeassumesno separate le system.

In [Kol90], Kolodner presentsa critique of Thatte's persistent memory and proposes

an alternative scheme.

Camelot Distributed Transaction System

The Camelot project[STP 87] used the memory management facilities of the Mach op-
erating systemto provide asingle-level store. However, the store was not dir ectly acces-

sible to the application processesbut was to be used within a“data server” for storing

50 Memory Mapping and Single-Level Stores

persistent data. In this regard, Camelot differs from Cricket and the approach | have

developed lies somewhere between thesetwo extremes.

IBM' s 801prototype hardware architecture

IBM's 801architecture [CM88] incorporated an operating systemthat provided mapped
les with automatic concurrency control and recovery. The major share of the support for
operations on mapped les was provided by adding special hardwar e, which resulted

in asolution lacking both exibility and portability .

Clouds Distributed Operating System

The Clouds project [DLA87, PP88,DC9(0] was an attempt to build a general purpose
distributed computing environment for a wide variety of user communities. An “ob-
ject” in Clouds is the fundamental entity used to build the system. A Clouds objectis
conceptually a persistentvirtual spaceand lightweight threadsare usedto perform com-
putations through code stored in objects. The persistent objectsand threads,give rise to

a programming environment composed of a globally shared permanent memory.

2.3.3 Others

The following are some other interesting efforts at exploiting mapped les and single-
level stores. The focus of these works is quite different from my work, and they are

described here for completeness.

Someother notable projectsthat proposed new architecturesto addressproblems
faced by persistent programming community include EOS, an environment for
object-based systems [GADV92] and work done on Choices, an object-oriented

operating system[CRJ87 RC89 MC92].

2.4Summary 51

Inohara, et al [ISU 95 describe an optimistic page-based concurrency control

schemefor memory mapped persistent object systems.

Peter van Oosterom [vO90] used shared mapped les to introduce persistent ob-
jectsin the object-oriented programming language Procol [vdBL89] as part of his

Ph.D. thesis on reactive data structur esfor Geographical Information Systems.

The Hurricane Operating System[SUK92] is a shared memory multi-pr ocessorop-
erating systemthat runs on The Hector Multipr ocessor[VSWL91] and usesmem-

ory mapping to implement its le system.

Orran Krieger, etal [KSU91] describe a stream I/O interface for Unix using mem-

ory mapping facilities.

2.4 Summary

This chapter presentedthe raisond'étre for this work: how a single-level store basedon
the EPD approachis bene cial for managing persistent data. An extensive survey of all
major software and architectural approachesto building persistent systemsis presented
as background material for the design of an EPD based system presentedin the next
chapter. The software approachto building EPD persistent storesimposes some restric-
tions on what can be achieved realistically and ef ciently , but it provides an excellent
opportunity to explore new ideasand to establish a solid framework in which theseand

other related ideas can be evaluated and analyzed.

Chapter 3

Using the EPD Approach to Build a

Single-Level Store

As stated earlier, this work hasresulted in the design and development of atoolkit called

Database to implement the EPD approach to memory mapped persistent stores on
conventional hardwar erunning the UNIX operating system. Database hasbeenusedto
study anumber of sequential and parallel accesamethods. Also, atheoretical framework
hasbeenestablishedby meansof an analytical model of computation in Database. This

chapter presentsall thesecontributions in detalil.

3.1 Database Design Methodology

The design methodology developed as part of this work provides the necessaryenvi-
ronment to build efcient le structuresand their accessamethods in a memory mapped
environment basedon the EPD approach. As stated earlier, a toolkit approach hasbeen
adopted, which allows le structure designersto participate in some of the design activ-
ity; Database allows extensible additions or simple replacement of low-level compo-
nents by le structure designers. While Database sharesthe underlying principles of a

single-level storewith other proposals[CM88, CFW90,57903 LLOW91, STP 87,WD94],

53

54 Using the EPD Approach to Build a Single-Level Store

it offers featuresthat make it unique and an attractive alternative. Database is intended
to provide easy-to-useand ef cient tools for developing new databases,and for convert-
ing and maintaining existing databases.It alsoful lls aneedfor asetof educational tools
for teaching operating system and databaseconcepts. The design is basedon someim-

portant decisions, described next, that were made at the outset of this work.

3.1.1 Design Objectives

Employ the EPD approach to memory mapping. Database develops and exploits the
EPD approach so that an arbitrary programming language data structure can be
stored on secondary storage asis; neither restructuring of data nor pointer swiz-
zling is required for accessingand manipulating the data structure. In the caseof
a B-Tree,for example, the tree structure can be stored in its entirety on disk using
programming language pointers, to beretrieved and navigated at a later date. The
routines for performing B-Treeoperations in primary storage are used dir ectly on
persistent data, which allows conventionaprogrammingtechniquegor datastructures
that happen to be stored in a le. The absenceof any transformation of pointers

hasabene cial impact on execution costs.

Retain conventional user interfaces. A deliberate design decision was made to retain
the conventional semantics of openingand closinga le. A le structure must be
made accessibleexplicitly becausethe le content is not dir ectly accessibleto the
processor(s)until it is memory mapped, and therefore, this aspectshould be re-
ected in the semantics of the constructs and not hidden by making the le im-
plicitly accessibleat all times. Like pointer-swizzling, there is some problem with
ef ciently detecting the rst accessto a le structure so that the additional data

structuresneeded during accesscan be created. However, the most dif cult prob-

3.1 Database Design Methodology 55

lem with implicit accesds knowing when the accesscan be terminated, which is a

particular concernwith concurrency control.

Use light-weight threading. To provide highly concurrent accessto the le structures,
it was decided to use a concurrent shared-memory thread library asthe basis of
the design. This decision ensured that concurrency issueswere dealt with starting
at the lowest levels of the design, thereby avoiding the problems associatedwith

trying to add concurrency post hoc on an inherently sequential design.

Provide library of routines. The currentimplementation of Database is designed asa
multi-level modular system, based on the toolkit approach, with each level per-
forming a particular aspectof the overall system. The systemis available asa G+
library that canbelinked with user applications. This route was preferred, at least
for the present,over making language extensionsvia a new front end parser or a

modi ed compiler.

Use conventional hardware and software. Database follows the software approach
of building a persistent store on top of conventional hardwar e and operating sys-
tem. It is one of the fundamental goals of this work to basethe design on astandard
commercial architecture while keeping the design exible enough to copewith ad-
vancesin architecture design. This decision makesthe reseach immediately avail-
able to theoreticians and practitioners alike. Also, the use of a standard systemhas
highlighted certain problems that need to be addressedat the architecture level

before memory mapped systemscan becomemainstream.

Multiple simultaneously accessibledatabases. Database allows individual applica-
tions to simultaneously accessmultiple le structuresor databases. Conversely,

multiple applications can share the same le structure. This decision has beenin-

56 Using the EPD Approach to Build a Single-Level Store

uenced by the recognition of the merits of aworld view that tends to relate objects
by their functionality and groups related objectstogether. Groups of functionally
related objectsare shared freely among applications in this world view while pro-
viding the necessaryabstraction, protection and ef ciency. The current scope of
Database doesnot cover inter-databasepointers, only intra-database pointers are

fully implemented.

Reachability does not extend to world view. Many current systems (e.g., Cedar, Lisp,
Smalltalk, PS-Algol, Napier) use reachability asthe fundamental mechanism that
determines the persistence of data. Conceptually, reachability can be applied as
easily locally, to determine persistence of data items within a single program or
process,as globally, to determine persistence of data that is independent of pro-
grams, such asconventional les and databases.This feature permits special pro-
gramming language constructs, such as les, databasesdir ectories,namesspaces,
etc., to be replaced by simpler arrays or linked-list structures. However, reacha-
bility placescomplex storage-managementrequirements[BDZ89] on the le struc-
turedesigner. As explained in section 1.2.3,instead of reachability, Database uses
the notion of a separate persistent area, in which data objectsare built or copied
if they are to persist. Reachability has also been rejected by some other systems
described earlier, e.g., E and ObjectStore provide a style of persistencesimilar to

that of Database.

The world is not at. Database envisions a pragmatic non- at view of the world. The
persistent store in Database consists of a collection of les stored in a conven-
tional le system. To becomeaccessibleto a program, each le is mapped into an
independent segmentwith its own virtual space.Thus, eachinter-segmentpersis-

tent addressin Database is conceptually divided into a handle for a conventional

3.1 Database Design Methodology 57

le (e.g.,the Unix le name)and an addresswithin the virtual spacecorrespond-
ing to the le. This model extendsto a hierarchical address,including machine or

node id on which the le structure resides.

Separatetransient and persistent data. Data associated with accessingthe le struc-
ture, such astraversal locations in the structure, are not mapped in the le struc-
ture. This organization facilitates performance and recovery after system failur e

by ensuring that this data is never written to the disk.

Finally, persistencein the current implementation of Database is not orthogonal
becauseof the restrictions imposed on the use of persistent and transient pointers. How-
ever, Database provides some of the featuresand bene ts associatedwith an orthogo-
nal persistencesystem. For example, creating and manipulating data structureswithin a
persistent areais the sameasin aprogram, i.e., all data within a persistent areais treated
uniformly irr espective of its longevity, which meansthat codewritten for primary mem-

ory data structurescan be used, without re-compilation, to manipulate persistent data.

3.1.2 Basic Structure

In order to simplify the speci cation of le structures,object-oriented programming tech-
niques are used in the implementation of Database, but are not essential; an imple-
mentation may be done in a non-object-oriented programming language. CH [ES9(Q
is used as the concrete implementation programming language. The constructors and
destructors in G+ eliminate the need to have explicit initializations and clean ups, and
allow an implementor to make certain assumptions about correct usage (e.g., pre- and
post-conditions). Concurrency facilities employed by Database are provided by G+

[BDS 92], which is the preferred implementation language for writing accessmethods

58 Using the EPD Approach to Build a Single-Level Store

in Database. CH is a superset of G+ with concurrency extensions. However, the
fundamental ideas are implementable in any imperative programming language.

The design involves severallevels, eachperforming aparticular aspectof the storage
or accessmanagement of the le structure. The design structureis illustrated in Figure

3.1and the components at eachlevel are discussedbelow in detail.

disk le

secondary)
storage A MeMory ~_ persistent
primary ~L_mapping - volatile

storage
representative
accessog ‘ ‘ accessog ‘ accessog ‘ ‘ accessoy ‘ s . le structure
implementor
databaseimplementor
L L or user
application 1 application

Figure 3.1: Database Design Methodology: BasicStructure

3.1.3 Representative

To allow virtual memory pointers to bestoredin the le structureand subsequently used
without modi cation, the system maps each le into its own segment. None of the op-
erating systemsavailable for this work provide the facility of segmentation even when
the underlying hardwar e is capable of supporting such a facility. To overcome this de -
ciency, Database mimics a segmentby using a UNIX process.The disk le is mapped

into the virtual spaceof the UNIX processstarting at a xed memory location, called

3.1 Database Design Methodology 59

the SegmenBaseAddress The segmentbaseaddressis conceptually the virtual zero of a
separatesegment. In the current implementation, the value 16M has beenchosenasthe
SegmentBaseAddr ess,which leavesa suf ciently large spacefor the process'stransient
data and program code. In an ideal situation, where independent creation of new vir -
tual memory segmentsis allowed, eachdisk le would be mapped into its own segment;
separatesegmentsare possible, at least at the hardwar e level, on the Intel 386/486, IBM
RS/6000and the IBM 400seriescomputers.

The object that managesthe segmentis called its repesentativén Database, and it
is responsiblefor the creation and initialization of the le structure,the storage manage-
ment of accessnethod data in primary storage,concurrent accesseso the le structure's
contents, consistencyand recovery. Each le structure hasa unique representative. The
representative is created implicity on demand, during creation of a le structure and
for subsequentaccessby a user application, and it existsonly aslong asrequired by ei-
ther of theseoperations. Thus, the representativefor a le structureis created when the
rst accessrequestis received for the le structure and terminates when all the access
requestshave completed. For eachapplication program, thereis a oneto one correspon-
dence between a le structure and its representative, i.e., at any given time there is at
most one active representativefor a le structureirr espective of the number of dif ferent
tasksaccessingthe le structure simultaneously (asthe scopeof Database is expanded,
therewill be only one representativeper le structure acrossan entire system).

A representative's memory is divided into two sections: private and shared; Figure
3.2illustrates this storage structure. Private memory canonly be accessedoy the thread
of control associatedwith the UNIX processthat createdit, i.e., the representative. The
persistent le structureis mapped into the private memory of the representativewhile all
data associatedwith concurrent accessto the le structureis contained in the represen-

tative's shared memory; such data is always transient. Shared memory is accessibleby

60 Using the EPD Approach to Build a Single-Level Store

Representative | Application
|
I
|
'l accessog shared
concurrency| | memory
control \ ACCESS0g
|
| SegmentBase
“““““““ I Addr ess
normally private
le structure not used memory

A)

mapping
\

disk le

Figure 3.2: StorageModel for the Representative

multiple threadsthat interact with the representative'sthread. There is no implicit con-
currency control among threads accessingshared memory exceptat the memory word
level where synchronization is enforced by the hardwar e. Mutual exclusion must be ex-
plicitly programmed by the le structure designer using the light-weight tasking facility
of CH [BS9Q BDS 92]. The light-weight tasking facilities allow virtually any concur-
rency control schemeto beimplemented in the representative.

Some operating systems arbitrarily restrict the maximum accessiblevirtual space
size of a process(e.g.,DYNIX has a restriction of 256M), while the hardwar e is capable
of supporting much larger virtual spaces(4G or more). Becauseof the EPD approach
used by Database, the maximum allowable size of any single le structureis the maxi-
mum accessiblevirtual spacesize minus the SegmentBaseAddr ess.For databasedarger

than the maximum allowed virtual spacesize, it is possible to subdivide the database

3.1 Database Design Methodology 61

into multiple les, which the representative can handle by creating sub-representatives;
however, this strategy increasesthe complexity of the le structure. With the increasing
number of 64 bit processorsbecoming available, the restriction imposed on the database
sizeis no longer anissue.

It is possible for an application in Database to have multiple le structuresaccessi-
ble simultaneously becauseeach le structureis mapped into its own representativethat
has an independent private mapping area. Figure 3.3 shows the memory organization
of an application using 3 le structuressimultaneously. Since eachrepresentative is a

separatesegment,relocation of pointers in a le structureis never required.

private shared private
memory memory memory
] r-———=—~>==7=- aorr-- - - -0~ arye-- - - - - T- -0 A 7
N X X /AN
le ; KMAP) i representative | application || representative: (MAP | le 5
—|. ¥ ! N
Lo B ibueuliuuuegt J
| |
l l
| | 1
. private
| representative; | pamory
Lo 4
le 2

Figure 3.3: Simultaneously AccessingMultiple File Structures

The effect of mapping eachdisk le into a different virtual spaceis to move the ab-
straction of a single-level store from the domain of the application (which is the casein
systemssuch asCricket [SZ904) into the domain of the le structuredesigner. This strat-
egy maycompromise performance and complexity slightly, but any potential lossis sig-

ni cantly offset by the added protection for the le structureand the exibility provided

62 Using the EPD Approach to Build a Single-Level Store

by multiple accessibledisk les. Nevertheless, for specialized situations, Database
makes it possible to have a single le structure mapped into the application address
space,which allows the application directaccessto the le structure data at the cost of
having only one specialized le structure accessibleat atime. However, the use of this
facility is intended mostly for temporary data that is generated by the program doing the
mapping. The design philosophy of Database discouragesgeneral use of this feature.
The representative for a le structure partitioned across multiple disks works by
mapping the individual partitions into asingle addressspacesimilar to single-disk non-
partitioned le structures.A partitioned le structure consistsof alist of UNIX les each
of which may exist on a different disk. The representative partitions its addressspace
basedon the list of les and mapseach le into apartition of its addressspaceasdepicted
in gur e 3.4. This schememakes many of the details of partitioning transparent to the
application program. One obvious drawback of the schemeis that the sizeto which each

partition cangrow is restricted.

3.1.4 Accessors

Therepresentativeof a le structure provides all the low-level support and the le struc-
tureis “hidden” in that the representative does not provide any directaccesgo it. The
mechanisms for requesting and providing accessto a le structure are provided in the
form of another entity called an accessomDeclaration of an instance of an accessorcalled
an accessbject constitutes the explicit action required to gain accessio a le structure's
contents (i.e., create the mapping). Creating an accessobject corresponds to opening a
le in traditional systemsbut is tied into the programming language block structure.
As well, the accessobject contains any transient data associatedwith a particular access
(e.g.,the current locations in the le structure), while the representative contains global

transient information (e.g.,the type of accessfor each accessor). At least one accessor

3.1 Database Design Methodology 63

Representative
Addr essSpace
SHARED
MEMORY
SegmentBase
Addr ess
MAP
,,,,,,,,,,,,,,, DiSkl
PRIVATE MAP .
MEMORY j\F”ez/

,,,,,,,,,,,,,,, DiSkz

MAP

I}

Fi|63

,,,,,,,,,,,,,,, DiSk3

[

I}

MAP

Filey

DiSk4

L

Figure 3.4: Storage Layout for a Partitioned File Structure

must be provided for each le structurede nition. However, it is possible to have multi-
ple accessorseachproviding a particular form of accessg.g.,initial loading, sequential
accesskeyed retrieval. An application canchoosethe particular accessorit wants to use
for a given transaction depending upon the type of accessneeded and the functionality
provided by the available accessors.It is also possible to have multiple accessobjects
communicating with the samerepresentative,which allows an application to have mul-
tiple simultaneous views of the samedata, asillustrated in Figures3.1and 3.2.

In order to gain accesgo a le structure, an application program createsan instance

of an accessoravailable for the le structure. The connection between accessorand le

64 Using the EPD Approach to Build a Single-Level Store

structure is established by passingthe le objectto the accessobject. The le objectalso
contains a transient pointer to the representative for the le structure. The accessobject
initiates the creation of the representativeif it doesnot already exist. The execution of the
termination code of the last accessobjectfor a le structureterminates the corresponding
connection to the representative. Further details of the programming interface to the
representative and the accessorsare presentedlater in section 3.4.8.

Once instantiated, the accessobject can be used by the application to perform oper-
ations on the le structure by invoking the methods of the accessobject. For example,
in order to read from the le structure, a call may be made to a method called read()
provided by the accessor The method read() communicates with the representative, to
perform the desired operation. Depending on the particular kind of concurrency control
requested, the declaration of the accessobject or individual accessobject method calls
may block until it is safeto accesshe le contents.

Using the techniques discussed earlier, a library of several memory mapped access
methods has been built. Currently, these accessmethods are used for comparison pur -
posesamong themselves and with traditional accessmethods, but they will ultimately
provide databaseaccess-methoddesignerswith a starting point for construction of new
databases.The programming interface for the Database library, le structuresand their

accessmethods is presentedin section 3.4.

3.1.5 Critique of Database

A pointer to an object stored in a le structure can be dereferenced only within the
addressspaceof the le structure's representative. Therefore, dereferencing an inter-
segment pointer may require the objectto be copied out of the representative segment
via shared memory. This copying involves an extra costbut is necessaryin general, to

protect the integrity of the le structure.

3.2Comparison of Database with Related Approaches 65

Currently, Database does not provide support for the virtual pointers of CH+ be-
causethese pointers refer to data in the text segment of an executing program and the
referential integrity of these pointers cannot be guaranteed across multiple invocations
of the program. Virtual pointers are an important mechanism used by C+ to support
inheritance and dynamically linkable code. Partial solutions to this problem have been
reported in the literatur e (see[BDG93]) and canbe applied to Database.

Currently, Database is based on a shared-memory design and is not distributed.
[RD95b] contains a collection of papers that deal with the issue of distribution in per-
sistent object stores. Further, an object store can be built on top of Database but in its
current form, Database doesnot incorporate an objectmanagement system.

Many persistent systems make code as well as data persist due to the advantages
that arrive from it. Somesystemseven provide support for making the current state of
execution persistent, i.e., they allow for the current state of a program to be preserved
for resuming at a later time. Database, in its current form, does not deal with storing

codein the persistent store; seesection 6.3.1for a brief discussion of the issuesinvolved.

3.2 Comparison of Database with Related Approaches

Database is more closely related, both in scopeand intent, to the software based ap-
proachesdescribed in section 2.3.1than to the architectural approachesdescribed in
section 2.3.2.

The basic memory mapping schemeused in Brown's stable store is identical to the
one employed by a single Database representative. The major differencelies in the
fact that Brown's store is at while the store in Database consists of a collection of
addressspacesthat all start at the samevirtual zero. Thus, Database provides support

for multiple simultaneously accessiblepersistent areasfor an application. Both schemes

66 Using the EPD Approach to Build a Single-Level Store

suffer from the same problems insofar as operating system support is concerned, e.g.,
lesscontrol over the time at which dirty pagesare actually written out.

ObjectStore and Database share many goals and objectives. Someof theseinclude
easeof learning, no translation ! between the disk-r esident representation of data and the
main memory-r esident representation used during execution, full expressive power of
a general purpose programming language when accessingpersistent data, re-usability
of code and statically type-checked accessto data. In ObjectStore, there is a limitation
on the size of data a single transaction can accesssimultaneously becauseObjectStore
maps only portions of a le at a given time. In Database, an entire le structure is
mapped into an individual segment,which restricts the maximum size of any single le
structureto be lessthan the virtual spacesupported by the available hardwar e; large le
structures have to be split into multiple smaller ones. There is, however, no restriction
on how much data a single transaction can accesssimultaneously. Admittedly , the re-
striction imposed in ObjectStore may be lesssevere than the oneimposed in Database,
especially with small virtual addressspaces. In ObjectStore, all pointers embedded in
a data page may needto be found and relocated when the page is mapped. This prob-
lem is non-existent in Database becauseeach databaseis mapped into a different vir -
tual spaceand relocation of pointers is unnecessary However, in Database additional
copying of data hasto occur for inter-segment pointers from the le structure segment
to the application segment. Someof this copying is unavoidable in any mapped system,
including ObjectStore. Overall, | believe that any additional copying costswill be less
than the total costof doing relocation and, in general, is required to protect the integrity
of the le structure, anyway.

The ObjectStore server is conceptually analogous to the Database representative.

INote that, unlike Database, ObjectStore only achievesthis goal in the special casewhen it can reload
data into memory where the data was last manipulated; otherwise, pointers must be modi ed (swizzled).

3.2Comparison of Database with Related Approaches 67

Thereis somedifferencein the treatment of inter-segmentpointers between ObjectStore
and Database. In ObjectStore, inter-databasepointers can be short-lived (created and
valid during the scopeof atransaction) or long-lived; the former are implemented using
normal virtual memory pointers whereasthe latter are long pointers. It is possible for
ObjectStore to use short-lived normal pointers becausea transaction maps all databases
it accessesnto the same addressspace. Database, on the other hand, maps eachin-
dividual databaseinto its own segment, and, therefore, it must use long pointers for
all inter-databasepointers exceptfor one special le mapped into the application seg-
ment. Clustering of objectsin Database can be attained by means of simple storage
management primitives.

Cricket is similar to Database in its use of direct memory pointers that are always
mapped to the samelocations in the virtual addressspace,thereby eliminating the need
for relocation. The fundamental differencebetween thesetwo systemslies in their view
of the addressspace. Unlike Cricket, Database usesa structured rather than a at
virtual space.In Cricket, everything that an application ever needsto use must exist in
a single databasewhereas Database allows the application(s) to group related data in
independent collections that can be used and shared asdesired aslong asthere are few
data inter-relationships; otherwise, the performance of the system degrades. Database
builds on top of the conceptof les to provide multiple, individually sharable collection
areas, and provides for sharing of information stored in les, with each different le
being mapped into its own individual segment.

Texasand similar schemesare clear winners for applications that require extremely
large persistent addressspaces larger than the addressspaceof currently available hard-
ware. For applications that do not require persistent address spacesthat are larger
than the virtual spaceof modern computers (32-64bits), the simplicity and ef ciency

of Database put it at a distinct advantage over the schemeused by Texas. In other

68 Using the EPD Approach to Build a Single-Level Store

cases,| believe that splitting a very large databaseinto smaller databasesof related ob-
jectsis a very good approach simply for organizational reasonswhile eliminating the
need for complicated swizzling mechanisms.

QuickStore usesmemory mapping to create the mapping between virtual memory
frames and disk pagesin its client buffer pool. However, its use of memory mapping
techniquesis quite different from the EPD approachfollowed in Database. QuickStore
is essentially a pointer swizzling schemethat managesto avoid swizzling the pointers
in some casesasdoes ObjectStore. And like ObjectStore, it hasto maintain all the infor -
mation needed by a swizzling system. Also, since it is built on top of another storage
system (EXODUS storage manager), it does not gain from all the bene ts afforded by a
fully memory mapped implementation.

Texasand QuickStore have many of the same problems as ObjectStore with regard
to dynamic relocation and multiple accessibledatabases,and as such, the critique of
ObjectStore is applicable here aswell. Also, the need to relocate pagesin thesesystems
hasthe potential of seriously degrading performance for certain accesatterns.

Systems described in section 2.3.2 make use of new hardware and operating sys-
tems and, as such, are usually not portable to other systems. Database can run on
any UNIX system that supports the mmap system call. Unlike Bubba, the current de-
sign of Database is basedon a multipr ocessorshared-memory architecture and is not
intended to be usedin adistributed environment unless the environment supports dis-
tributed shared memory[SZ90b, WF90] which, | believe, will allow the current design to
scaleup to a distributed environment. The representativein Database is quite similar
to the Clouds object, except that the representative has its own thread of control while
the Clouds obijectis totally passive. Also, the focus of Clouds was to build anew operat-
ing system,while Database is an attempt to make memory mapping ideas available to

databasedesignersin the form of atoolkit that can be supported on any operating sys-

3.3Parallelism in Database 69

tem that provides support for segmentation. Malhotra and Munr oe make some of the
samearguments that | have made for Database when it comesto using virtual memory
referencesto accessobjects. Their proposed long objectidenti er for the RS6000system
is similar to the one employed by Database: along identi er consistsof a le id and an
addresswithin the virtual spacecorresponding to the le. Like MONADS, the virtual
storein Databaseis not at; it consistsof a collection of independent areasasdescribed
in section 3.1.1. The segmentation addressing schemeemployed in MONADS is similar
to the one envisioned for Database. However, due to the nature of the current imple-
mentation of Database, it is not possible to make use of an addressingschemeidentical

to MONADS.

3.3 Parallelism in Database

Generally speaking, there are two distinct forms of parallelism that can be exploited in
database systems to achieve better performance and functionality . The two forms of

parallelism, asdepicted in gur e 3.5,are:

Concurrent Retrieval of Data. The slowest link in accessinga le structureis transfer-
ring data to and from secondary storage. Secondary storage speedsrange from
1,000to 100,000times slower than primary storage. Further, there doesnot appear
to be any imminent technological advancementsthat will signi cantly reducethis
ratio in speed between secondary and primary storage;in fact, the differencehas
only increasedover the last decade. Therefore, the only approachthat is currently
available to impr ove performance is to partition data onto multiple secondary stor-
agedevices and accesshesedevicesin parallel. Disk arrays (RAIDs) are the most
common implementation of this idea [PGK88, WZS91]. Once the data is parti-

tioned, signi cant performance advantage can be obtained by partitioning indi-

70 Using the EPD Approach to Build a Single-Level Store

Concurrent DBMS Concurrent
Retrievers Accessors
D
disk; «—»
>
Yy
[
disk, accessop
<
representative
Ty
disks accessog
>
back end front end

Figure 3.5: Two Forms of Concurrency in a File Structure

vidual queries and executing the resulting sub-queriesin parallel.

Concurrent Accessors. Supporting concurrent accessto a database improves its uti-
lization, in the sameway that multipr ogramming operating systemsimpr ove uti-
lization of a computer—by having several simultaneous requeststo execute, it is
possible to perform some of the requestsin parallel if the requestsaccessdata in a
non-con icting manner. Thereis no differencein the turnaround time of an indi-
vidual request(in fact, there may be a slight increasein turnar ound) in comparison
to serial execution of the samerequest, but the total throughput of requestsis im-
proved. However, thereis a high costin complexity that must be paid to ensure
proper accessto shared data. Problems such aslivelock, deadlock, and starvation

must all be dealt with, while attempting to achieve as much parallelism between

3.3Parallelism in Database 71

the processorsand the I/O devices. As well, such systems can quickly saturate
becauseof the I/O bottleneck; therefore, attempts to achieve optimal parallelism

in accessingpersistent data are often fruitless.

Note that concurrent retrieval and concurrent accessare orthogonal aspectsof paral-
lelism; systemsexist that provide one or the other or both.

The question addressedin this sectionis how to usethe EPD techniquesfor partition-
ing le structuresacross multiple disks and accessingpartitioned data to achieve con-
current retrieval. The issue of concurrent accessorsor EPD le structuresis addressed
in chapter 6. Further, the design, implementation and analysis of the parallelized multi-

disk versions of three databasejoin algorithms is presentedin chapter 5.

3.3.1 Partitioned File Structures and Concurrent Retrievals

Concurrent retrieval attempts to deal with the CPU-1/0O bottleneck by partitioning data
acrossmultiple disks and then accessingthe data in parallel. A typical disk-array system
partitions a le structure into several stripes eachstored on a different disk. Both static
and dynamic allocation of le structuresacrossseveraldisks have beenaddressedin the
literatur e. One of the major issuesis that the striping or partitioning algorithm should
partition the data sothat the accesgime for a particular accesamethod is minimized and
the I/O load is balanced acrossthe disks. The partitioning algorithm can be application
speci ¢ or general. While partitioning, balancing the I/O load does not imply a physi-
cally even distribution of data acrossseveral disks. The goal is to partition data in such
a manner that during retrievals, the data units that need to be accessedare as evenly
distributed aspossible acrossdisks.

In the discussion here and in chapter 4, the general concern is not about accessto

the index portion of the le structure. Normally the index is relatively small and highly

72 Using the EPD Approach to Build a Single-Level Store

accessedso that most of it remains resident in main memory, and consequently, does
not contribute signi cantly to disk accessesNevertheless, the discussion can be easily
extended, if necessaryto include the index portions of le structures.

A B -Treeand an R-Tree based on the EPD approach were modi ed so that insert
operations automatically partition the data acrossseveraldisks and the query operations
retrieve data from multiple disks in parallel. The partitioning of the two le structures

is discussedin chapter 4, while some general issuesare presentedbelow.

3.3.2 Query Types and Parallelism

Exact match queries (e.g., retrieving a single record to match a specied key) usually
cannot take advantage of partitioning becausethe index is already in memory and there
is only one disk accessrequired to service the request. Note, however, that in some disk
array basedimplementations, individual datarecords are also split acrossmultiple disks.
Retrieving arecord in such a systeminvolves a parallel reading of the individual pieces
of the record from multiple disks.

Range queries, on the other hand, can exploit partitioned le structuresto perform
parallel retrievals if the data neededfor responding to aquery is distributed acrossmulti-
ple disks. A speci ed range query canbe broken down into multiple smaller sub-queries
that can be executedin parallel inside the DBMS. By dividing the original query sothat
the resulting sub-queries accessdata on different disks, the overall query can be pro-
cessedmuch faster. Similarly, if the le structure is aware of the accesspattern for its
data blocks, it can employ pre-reading techniquesto increasethe parallelism in reading
blocks of data from secondary storage.

Several different kinds of range queries common in databaseapplications were de-
signed, implemented and evaluated using Database to demonstrate the effectiveness

of parallelism in a memory mapped environment basedon the EPD approach. In partic-

3.3Parallelism in Database 73

ular, the following threetypes of range queries were investigated:

1. A range query, called a <K,K> range query, described by two key values K; and K.
All records with key values between K; and K inclusive are returned asa result of

the query. Neither K; nor K, need be in the database.

2. A range query, called a <K,C> range query, described by a key value K and a
signed integer C. The query result consistsof C consecutive records starting with
the record with key value K. The direction traversed from K is specied by the
sign of C. A positive C indicates traversal in the order that the keys are sorted in
the le structure—for ascending order, values greaterthan K are returned and for
descending order, values lessthan K are returned. A negative C causestraversal

to occur in the opposite dir ection.

3. A range query, called a <K,C,C> range query, described by a key value K and two
positive integer values C; and C,. C; records with keys before and C, records with

keys after the record with the key value K are returned.

In general, the records returned from arange query are unordered.

3.3.3 Range Query Generators or Iterators

In Database, an application program performs arange query by using a programming
construct called a generatoor an iterator[LAB 81, Sha8] RCS93. A typical range query
generator provides at leasttwo methods, namely, an initialization routine and an iter-
ative operator. The initialization routines are used to specify a range query. Once the
generator has been initialized, each successiveinvocation of the iterative operator re-
turns another object from the result of the specied query until all records have been

returned. Further discussion of generatorsis presentedin section 3.4. The generators

74 Using the EPD Approach to Build a Single-Level Store

developed for the partitioned le structuresperform parallel retrieval of data neededto
processthe speci ed range query. Eachgenerator provides an iterative operator >> that
can be invoked to retrieve, one record at a time, the result of the speci ed range query.
As an example, consider the following code fragment: This code fragment initializes an
instance of a B-Tree generator object, gen, to processa <Key,100> range query on the B-
Treestructur e referred to by the accessobject, accessObject. Eachsuccessivecall to the
>> operator of gen returns a pointer to another record from the result of the <Key,100>
range query. When all the records have been exhausted, the NULL pointer is returned,

which causesthe loop to terminate.

Il <K,C> range query application
for (BTreeRangeQuery gen(accessObject, Key, 100); gen >> rec;) {

Il process rec

3.3.4 Generic Concurrent Retrieval Algorithm

Once a le structure has been partitioned, the issue of accessingit while employing
as much parallelism as possible can be addressed. The main concern is increasing the
degreeof parallelism at the back end of the DBMS. A concurrent retrieval algorithm can
take advantage of the potential parallelism, but only if suf cient hardware is available.
First, multiple disks must be accessiblein parallel, which implies that disks must be
capable of concurrent seeks. Second,if multiple processorsare available, they must be
capable of performing any le-str ucture administration in parallel with the application
program processingthe results of the range query. The Sequent Symmetry computer
con guration describedin section4.1satis ed both of thesehardwar e requirements.

The following algorithm was developed to perform concurrent retrievals on EPD

3.3Parallelism in Database 75

le structures. The algorithm is generic in nature and can be easily specialized for per-
forming concurrent retrievals on any arbitrarily complex indexed le structure. Recall,
in Database, a le structure is a single object with one representative. When the le
structure is partitioned acrossD disks, the le structure segmentis also divided into D
contiguous partitions (seesection 3.1.3)and the D le structure partitions are memory
mapped, one after the other, into the divided segment by the representative. Then M
kernel threads(UNIX processedn CH) are createdto share the representative segment
containing the mapped le structure partitions; M is a control variable speci ed by the
experimenter. The M kernel threadsexecuteD 1 light-weight tasksthat are createdto
perform retrieval requests. D of the tasks, called retrievers, copy records from the pri-
vate memory of the representative to shared memory and the remaining task is called
the leafretrievaladministrator(LRA) asdepicted in gur e 3.6. When a generator objectis
instantiated for executing aspeci ed range query, the generator allocatesa buffer areaof
speci ed sizeto be shared between the speci ed accessorobjectand its representative.
In addition, another task, called the le structuretraverser(FST),is created. The FST
organizesand maintains the allocated buffer spaceasa sharablebuffer pool. As well, the
FSTtraversesthe le structureindex and generatesa list of pointers to leaf nodes that
contain all the records satisfying the query being executed, without actually dereferenc-
ing any leaf node pointers. For eachpointer in the list, the FSTcommunicates with the
LRA specifying the leaf node pointer, number of records needed from the referent leaf
node (obtained from an appropriate index entry), and a handle for the buffer pool. The
LRA partitions and distributes the FSTrequestsamong the retriever tasks. A retriever
task dereferencesthe speci ed pointer causing the referent leaf node to beretrieved from
disk, allocates a buffer from the buffer pool, and copies as many records from the leaf
node aswill t into the buffer. The last stepis repeated until all the selectedrecords in

the leaf node have beencopied into the buffer pool and then the retriever task waits for

76 Using the EPD Approach to Build a Single-Level Store

Partitioned File Structure Segment Accessor

Structﬁirlg (Representative)

Y
e A

diskq

Records -

Shared Buffer
|

|

|
| Query

|
| Specs

|

|
__________ - A
File :
Structure |
Traverser(s) |
|
|
|

Seach Index

Figure 3.6: Generic Concurrent Retrieval Algorithm

more work from the LRA. This design ensuresthat the only bottleneck in parallel pro-
cessingof the speci ed query is the speedwith which the bounded buffer can be lled
and emptied. In general, an application program can keep ahead of a small number of
disks (1-7 disks), depending upon the complexity of data processinginvolved, because
the data processingtime is signi cantly lessthan the I/O time.

A retriever task may or may not be tied to a particular disk. In EPD terminology,
being tied to a particular disk meansaccessingonly that part of the addressspacethat
contains the mapping for the disk. When a retriever task is not tied to a particular disk,

the task can be asked to processany leaf node by the LRA. In this strategy, the LRA

3.3Parallelism in Database 77

maintains a single FIFO queue of requestsfrom the FST When any of the retrievers
is free, the LRA passeson the FSTrequest at the front of the queue, causing the leaf
nodesto be processedin FIFO order. The problem with this schemeis that parallelism is
compromised when several consecutive leaf node requestsin the queue are for the same
disk. In this case,many or all of the retriever tasks may block on a single disk while other
disks (and their controllers) remain un-utilized. Therefore, it is usually more ef cient to
tie eachretriever task to a particular disk by making the LRA create D queues, one for
eachdisk. Upon arrival atthe LRA, aleafretrieval requestfrom the FSTis queued on one
of the D queuesdepending upon the disk containing the leaf node to be processed.Each
retriever task processegequestsfrom one queue only. In this scheme,the throughput is
dir ectly controlled by the slowest disk in the chain, resulting in a near optimal solution.
This observation was veri ed by running experiments on both of these strategies (see
chapter 4).

Finally, double buffering can be exploited by tying more than one retriever task to
eachdisk so that while one retriever is processingdata for a leaf node, another one is
reading the next leaf node to be processedfrom the samedisk. Note that in order to
gain from this strategy, the number of kernel threads must be at least the number of
retriever tasks, becausein a memory mapped system, the kernel thread causing a page
fault blocks until the faulted page hasbeenbrought into memory.

The generic concurrent retrieval algorithm described above can be used for dif ferent
indexed le structuresby specializing the FST and the components of a retriever task

responsiblefor processingof individual leaf nodesto extract information.

78 Using the EPD Approach to Build a Single-Level Store

3.4 Programming Issues and Interfaces

A memory mapped le structure should be able to use all the capabilities of the imple-
mentation programming language. This chapter illustrates some of the ways in which

the EPD approachto memory mapping achievesthis goal in Database.

3.4.1 Polymorphism

The polymorphic facilities of G+ canbe applied to generalize the de nitions of le struc-
turesand to allow reuseof the le structure's implementation by other le structures.
Generalization allows existing le structure code to be specialized by users and reuse
allows le structure designersto write new le structuresin a shorter time with fewer
errors (on the assumption that the old le structure is debugged). The desire to gen-
eralize and reuse code arose during the construction of the le structuresused in the

experiments described in chapter 4. During this process,two issueswere noticed:

1. A le structure and its accessmethods are usually polymorphic, that is, they can
handle a number of dif ferent record (and possibly key) types. However, this poly-
morphism is usually achieved at the loss of type safety by dealing with blocks
of untyped bytes. Some systems [GR83, CLV91] provide dynamic type/format
checking to tackle this problem. | believe that the interface to an accessmethod of
a le structure should be statically type checkedto permit early detection of errors
and ef cient code generation (asin E[RCS93). Therefore,thereis aneedto beable
to generalize a le structure and its access-methodinterface acrossthe record (and

possibly key) type.

2. Many le structure algorithms incorporate both a data structure and a storage

management scheme, e.g., a B-Treeis an N-ary tree with xed or variable sized

3.4Programming Issues and Interfaces 79

data records stored in uniform sized nodes. Storage management deals with un-
typed blocks of bytes of a segment and, therefore, it is not possible to perform
static type-checking at the storage management level [BDZ89]. Among different
le structures,thereis asigni cant amount of duplicated codedealing with storage
management that can be abstracted out and reused. By factoring out the storage
management aspect, it is possible to deal with the data structure independently
of storage management, which can be encapsulated into a separatetool that can
be used in varying ways with different data structures. In Database, only le
structure designerswork at this level; usersusually work at a statically type-safe

level.

The rest of this section describeswork done to achieve the above two goals. Object-
oriented programming techniques are employed, but languages with other forms of
polymorphism, e.g., parametric polymorphism, are equally applicable. C+ [ES90]is
used asthe concrete implementation programming language. A general knowledge of
object-oriented programming is assumedthroughout this discussion. In addition, a ba-

sic familiarity with CH is assumed,although most of the examples are self-explanatory.

3.4.2 Generic File Structures and AccessMethods

From a codereusestandpoint, the codeto managea le structureis largely independent
of the record (and possibly key) types. A simple example is an ordered linked-list. The
linked-list data structure is independent of the type of elements stored in a node of the
list, requiring only assignment on the record type if stored by value, and comparison
on the key type. However, the access-methodroutines used to modify a le structure

needto be specialized in the record (and possibly key) type sothat static type-checking

80 Using the EPD Approach to Build a Single-Level Store

is possible. Therefore, an accessmethod needsto be genericin these elds and possibly
generalized in other aspects.To accomplish thesedesign requirements, | initially used a
preliminary version of the G+ template facility [FON90] to de ne generic le structures
and their accessmethods; the code was subsequently changed to use the standard C+
templates when they becameavailable.

The template facility allows all components of a le structure to be statically type-
safe. A user application specializesa generic le structure by the data stored in it. For
example, aB-Tree le structureis declared asfollows:

BTreeFile<int, oat> db("testdb" , greater);

which createsa B-Tree stored in a UNIX le named "testdb" , with int keys and oat
data records, and the B-Treeis structured by a user supplied key comparison routine
greater(). Genericlinked-list and B-Tree le structuresare presentedlater in this chapter
to demonstrate the basic concept, and | have applied this approachto construct R-Tree,

general N-ary Tree,generalized graph and other le structures.

3.4.3 Storage Management

One of the most complex parts of any data structure is ef cient storage management.
In fact, much of a le structure designer's time is spent organizing data in memory and
on secondary storage. For memory mapped le structures,organizing data in memory
indir ectly organizesthe data on secondary storage.

This section discussesthe conventions and softwar e tools used to organize and man-
agea le structure's storage. By following theseconventions and using the appropriate
tools, it is possible to signi cantly reduce the time it takes to construct a complex le
structure. The details of the programming interface to the memory management tools

are presentedand then atutorial in which a simple persistent linked-list data structure

3.4Programming Issues and Interfaces 81

and a generic B-Treeare built using the tools.

To alarge extent, this is the approach of many garbagecollection systemsthat provide
system- or program-wide storage management[Wil91b]. The criterion usedto judge the
successof this approach is whether an independent facility for storage management
can provide performance that is close to traditional schemesthat incorporate storage

managementdir ectly with the data structure.

Memory Organization

In the EPD approach, memory is conceptually divided into threemajor levels for storage

management:

address space is a set of addressesfrom O to N used to refer to bytes or words of
memory. This memory is conceptually contiguous from the user's perspective,
although it might be implemented with non-contiguous pages. An addressspace

is supported by hardwar e and managed by the operating system.

segment is a contiguous portion of an addressspace. Usually, there is a one-to-one
correspondence between an addressspace and a segment, but it is possible for
an addressspaceto be subdivided into multiple segments,e.g., with segmented
hardwar e addressing. In Database, a segmentis also mapped onto a portion of
the secondary storage. A segmentis supported by hardwar e and managed by the

address-spacestorage manager (the representative).

heap is a contiguous portion of a segmentwhose internal managementis independent
of the storage management of other heapsin the segment,but heapsat a particular
storagelevel interact. A heapis not supported by hardwar e and is managed by its

containing storage manager.

82 Using the EPD Approach to Build a Single-Level Store

Since Database is capable of creating multiple mappings simultaneously (seesec-
tion 1.2.2),multiple segmentscan exist at the sametime. In atraditional programming
environment with only a single heap, dynamic memory management routines for the
heap are usually provided by the programming language system (e.g.,new and delete

operators). This facility is no longer adequate for the multiple segmentsin Database

for the following reasons:

1. When multiple segments are present simultaneously with each having its own

heap, a target segment must be speci ed eachtime a memory allocation request

OcCcurs.

2. The programming language heap is a general purpose storage area. A mapped
segment, on the other hand, is almost always dedicated to a particular data struc-
ture,e.g.,alinked list or aB-Tree. Therefore,thereis an opportunity for optimizing
the storage management schemebased on the contained data structure. In addi-
tion, many data structuresrequire special action to be taken when storage over-
ows and under ows, e.g.,when anodein aB -Tree lls up during insert, the
data structur e requiresthe creation of anew node and the movement of a subsetof
data from the old node to the new one. The storage management facility must be
able to accommodateapplication speci ¢ actions for thesecases.The basicconcept
of using multiple independent heapshas beenemployed by many other systems,

e.g.,the areavariables in PL/I [IBM81].

To achievethe above, Database memory managementfacilities are provided in the
form of generic memorymanageclassesMemory manager objectsinstantiated from these
classesare self-contained units capable of managing a contiguous piece of storage of ar-
bitrary size, starting at an arbitrary address. If a segmentis managed by a given mem-

ory manager object,invoking member routines within the objectimplicitly performs the

3.4Programming Issues and Interfaces 83

desired management on its segment. Sincethe different managed areasare controlled
by independent memory managers, it is possible to creatememory managementclasses
with different storage managementschemesto suit the needsof dif ferent data structures.
Finally, a programming technique is provided that allows application speci c over ow

action.

3.4.4 Nested Memory Structure

All segmentsare nestedin an addressspace.All heapsare nestedin a segment. Further,
sincea heap is simply a block of storage, it is possible for heapsto be nestedwithin one
another. This structureis illustrated in Figure 3.7. The form of an addressfor eachlevel
may depend on the storage managementschemeat that level.

In theory thereis no limit on the depth of nesting of heaps, but in practice thereis a
limit imposed by the number of bits in the addressused to referencedata in the lowest
level heap. In general, a small number of sub-heaps are suf cient for most practical

problems; see[BZ88] for a further discussion of expressing nesting.

3.4.5 Address SpaceTools

As mentioned, an addressspaceis managed by the operating system so there is usu-
ally little or no control over it by the le structure designer. However, some operating
systems support speci cations like sequential or random accessof an address space,
providing different paging schemesfor each;facilities to control which pageis replaced
would be extremely useful. If address-spacemanagementtools are available, they can
make a signi cant differencein the performance of a le structure, but currently such

tools are almost non-inexistent in commercial systems.

84 Using the EPD Approach to Build a Single-Level Store

addressspace
e segment,', ,,,,,,,,,,,, B
— heap...................
N S |
e heap.........oooooooo, |
Lol heap... |
| N |
i R heap........... 3
1 v heAp_ 1
| |
I ' :
1 RN |
| ' |
O |
f-___segment _____________ B
| |
L J

Figure 3.7: Nested Memory Structure

3.4.6 Segment Tools

Segmenttools create, manage and destroy segmentsin an addressspace. Furthermor e,
exible capabilities are provided for mapping one or more disk les into asegment. The
capability to map multiple disk les is discussedin chapters 3 and 4 where it is used
for partitioned le structures. In this chapter, the focus is on mapping a single le into
a segment. All segment capabilities are provided through the representative for a le

structure. The programming interface for thesefacilities is discussednext.

3.4Programming Issues and Interfaces 85

3.4.7 Database Programming Interface

An application program that uses Database consists of the following basic modules

that are linked together to form an executableprogram.

1. Database library: This library is the core module that contains the basicimple-
mentation of the representative and the accessor both of which are generic and
provide all low-level support needed to employ the EPD approach to memory

mapping for building le structures.

2. File structures and their accessmethods: A specic le structure and its access
methods are implemented as classesthat inherit from the specialized versions of
the baserepresentative and the accessomrespectively. An alternative to inheritance
is to make a specialized instance of the representative a member object of the le
structure class. It is the responsibility of the le structure designer to provide de -
nitions and implementations for the le structureand its accessnethods. A library
consisting of severaldifferent le structures,both sequential and parallel, hasbeen

developed aspart of this work.

3. Application program: In order to manipulate data stored in a le structure, the
application program declaresinstancesof the le structureand the accessombjects
and usesthe interface provided by the accessorclassto perform operations on the

le structure.

Code in the Database library aswell as le structure codeis executedin the repre-
sentative segment,while application program codeis executedin its own addressspace.
With the use of wrappergrovided in the Database library and describedin section3.4.8,

application code canbe executedin the context of the representative segment.

86 Using the EPD Approach to Build a Single-Level Store

3.4.8 Representative Interface

Therepresentativeinterface in the Database library is provided by threerelated classes:

Rep, RepAccess and RepWrapper.

Class Rep

Rep is the representative data structure. It is responsible for mapping and un-mapping
les to/fr om segments,and controlling the size of the segment, which determines the
size of the le. The basic public interface of Rep is shown in Program 3.1; some details

have beenomitted to simplify the following discussion.

uMonitor Rep {

public:
virtual void =start(); /I starting address of mapping
virtual int size(); I current size of mapping
virtual void resize(int size); /l resize mapping
virtual bool created(); /I UNIX le created by this rep?
void createExtraProcs(int Num); // add extra virtual processors
void deleteExtraProcs(); /I remove extra processors

Program 3.1: BasicRepresentative Interface

uMonitorisa CH- artifact that declaresa monitorclass Brie y , amonitor classis anor-
mal CH classexceptthat concurrent execution of the public member routines of a moni-
tor classis serialized (see[BFC9] for further details on monitors). The member routine
start returns the starting addressof the mapping, the segmentbaseaddress,which is cur-
rently 16M. The member routine size reports the current size of the mapped spaceand
thus the size of the mapped le. Theroutine resize setsthe size of the mapped space,and
indir ectly, the le sizeto the value speci ed asits argument. The routine created returns

true if the requested UNIX le was created by the current representative, and false if

3.4Programming Issues and Interfaces 87

the le was presentbefore the representative was created. The routine createExtraProcs
createsextra virtual processorsthat are attached to the addressspaceof the representa-
tive segment. Extra virtual processorsare useful for increasing parallelism and can be
destroyed when not needed by invoking the companion routine deleteExtraProcs.
ClassRep is not intended to be instantiated dir ectly by the le structure code, which
is why it has no public constructors. Instead, a representative is created indir ectly
through class RepAccess, which may create a new instance of Rep for the le struc-
ture, if one does not exist yet, or use an existing one. Thus, the only way to control
le mapping and un-mapping is through an instance of RepAccess. The representative
accessobject takes part in maintaining the Database global representative table that
guarantees a one-to-one relationship between representativesand le structuresin an

application.

Class RepAccess

The basic interface to RepAccess is shown in Program 3.2. RepAcess is generic in the
type of a specialized representativethat is createdby inheriting from Rep. Usually, aspe-
cialized representative is not needed and RepAcess is specialized with classRep itself.
The constructor's parameter for RepAccess is the nameof aUNIX le for a le structure
or alist of the namesof UNIX les comprising a partitioned le structure. Upon the cre-
ation of an instance of RepAccess, the global representative table for the application is
searchedin an attempt to locate an active representativefor the le structurespecied by
the given UNIX le(s). If arepresentativeis present,the corresponding le structureis
already mapped and a new mapping is unnecessary A pointer to the existing represen-
tative is stored in the newly created RepAccess instance, the representative's use count

in the global table is incremented, and the creation is complete. If, however, no represen-

88 Using the EPD Approach to Build a Single-Level Store

tative is found for the le structure, an instance of classRepType is created and entered
into the representative table. If the le structure doesnot already exist in the UNIX le

system, it is created and initialized. The le structure is always mapped at the same
starting location, the segmentbaseaddress(seesection 3.1.3).However, an advanced fa-
cility is provided for specifying the starting addressfor the mapping. This facility must
be used with caution and only when no dereferencing of embedded pointers is to take

place during execution.

template<class RepType> class RepAccess {
public:
RepAccess(char * lename);
RepAccess(char * lename[], int NumPartitions);

void =*start(); /I starting address of mapping
int size(); I current size of mapping

void resize(int size); I/l resize mapping

int created(); /I UNIX le created by this rep?

Program 3.2: BasicAccessClassInterface

The member routines start, size, resize and created are coversfor similar onesin class
Rep. RepAccess routines perform the samefunctions astheir counterparts in Rep. They
are presentsothe full functionality of the representativeis available to the le structure
designer via the accessclass. This approach servesto completely isolate the represen-
tative objectsfrom the le structure code. However, this intended isolation presentsa

problem for objectsstored within the persistent areafor the following reasons:

1. A persistent object within the le structure cannot reliably refer to an existing
RepAccess object created outside the persistent area becausea RepAccess ob-

jectis created on a per accessbasis and has a many-to-one relationship with the

persistent space.

3.4Programming Issues and Interfaces 89

2. A RepAccess objectcannot be created from inside the persistent areabecausethat
would resultin a pointer out of the mapped area, which is a pointer to a transient

objectfrom a persistent area.

3. The RepAccess constructor takes the name of the UNIX backing le asan argu-
ment. To supply the argument, the name of the le hasto be stored inside the
persistent area, which meansthat the UNIX backing le cannot be renamed once

it is createdby Database. This limitation is quite unacceptable.

Becauseof the above problems, the only accesgo mapping control for objectswithin the

persistent areais by a dir ect pointer to the Rep structure.

Organization of Representative and AccessClasses

After the representative is created (indir ectly by an accessorobject), the le is mapped
into anew segment,and by convention, the representativewrites a pointer to itself at the
beginning of the newly mapped spacefor the following reason.The storage manager for
asegmentor heap must exist before the areait managessothereis at leastsomewhere to
store a pointer to the new segmentor heap. Therefore, the storage manager is allocated
out of an existing storage area and the new storage areais conceptually nestedin the
storage areathat contains its storage manager. In general, the nesting relationship needs
both a pointer from parentto child and vice versa. Without the back pointer from child to
parent or a pointer to the root of the storage hierarchy, it is not possibleto nd the parent
storagemanager when a child needsmore storage. The pointer inserted at the beginning
of asegmentfor anewly instantiated mapped le structure provides the back pointer for
storage managersin the segmentto communicate with the representative's storage man-
ager. For abstraction, this pointer is contained in an instance of a pre-de ned Database

class,RepAdmin, which is stored at the beginning of the segmentby convention.

90 Using the EPD Approach to Build a Single-Level Store

Figure 3.8shows the organization of representativesand their accessclassesand seg-
ments. The representativesare chained together to allow them to be searched when an
accesbjectis createdto seeif thereis already an active representative for the speci ed
le structure. Notice, also, a pointer from the segmentto the representative. Having
a pointer from persistent memory to transient memory for the representative violates
a previous design restriction becausea pointer to the transient representative from the
persistent le is invalid as soon asthe application that created the representative ter-
minates or destroys the representative object. However, this schemeworks becausethe
representative pointer is dynamically initialized on the rst accesdo the corresponding
persistent areaduring an application's execution, i.e., when the representative objectis
created and the persistent areais mapped, the representative segmentpointer is initial-
ized. Oncethe le structure hasbeenunmapped, the representative segment pointer at

the beginning of its persistent areabecomesmeaningless.

segment
private memory
shared memory
Rep
| - e oe e
le structure
/ \ implementor
databaseimplementor
or user
RepAccess

Figure 3.8: Organization of Representatives

Upon the destruction of an instance of RepAccess, the use count for the represen-

3.4Programming Issues and Interfaces 91

tative in the global table is decremented. If the use count for the representative reaches
zero, all accesgequestsfor the corresponding le structure have beenclosed. The map-

ping is then terminated and the representative object destroyed.

Class RepWrapper

Sincethe le structureis mapped into the representative's private memory, user appli-
cation code does not have dir ect accessto the contents of the le structure;the applica-
tion code only has accessto shared memory. The classRepWrapper, with an interface
shown in Program 3.3, provides the mechanism to allow application code to accesspri-

vate memory for a particular representative's segment.

class RepWrapper {
public:
RepWrapper(RepAccess &repacc);
2

Program 3.3: BasicWrapper Interface

RepWrapper is a wrapperclassand, therefore, does not have any member routine of
its own; all actions of the wrapper classare carried out by the constructor and destructor
of the wrapper. When a wrapper is declared inside a program block, both of the wrap-
per's operations are guaranteed to be performed, even if the block is terminated by an
exception. The RepWrapper constructor takesan instance of RepAccess asan argument,
which indir ectly refersto a representative's addressspaceand any segment(s)mapped
into it. The main action taken by the constructor is to resetthe current segmentpointer,
to a value corresponding to the speci ed RepAccess object, from which addressesare
implicitly related. In effect, the current thread of control is migrated to another segment

in which addresseshave a new meaning, except for those addressesthat refer to data

92 Using the EPD Approach to Build a Single-Level Store

in the common shared area of eachsegment. However, since Database executeson an
architecture without segmentation capabilities, switching the current segment pointer
is achieved indir ectly by explicitly migrating the current thread of control to another
UNIX process,which hasa different page table and, hence,a different mapping for the
private part of the addressspace. In practice, the UNIX processexecuting the thread
stops and the other UNIX processcontinues executing the thread's code. The destruc-
tor executesthe reverseaction, i.e., it migrates the current thread of execution back to
the addressspacewhere the constructor was executing. The cost of either operation is
a light-weight context switch and possibly a heavy weight context switch if the UNIX
processassociatedwith the destination addressspaceis currently blocked.

As soon as an instance of RepWrapper is created, the speci ed representative's ad-
dressspacebecomesaccessibleto the executing program in addition to the already ac-
cessibleshared memory; the duration of accessibility is the life of the wrapper. Note,
however, that two wrappers cannot be active at the sametime becauseonly one address
spacecan be in effect at a time so only segmentsin that addressspaceare accessible.
Therefore, a processcannot have dir ect accessto two or more mapped les simultane-
ously. One way to ensure this restriction is to only create one instance of RepWrapper
per block and make the wrapper the rst declaration to ensure the segmentis accessible
before operations are performed on it, asshown in Program 3.4. This convention further
ensures that the wrapper 's actions occur asthe rst and last operations of a program

block.

3.4.9 Heap Tools

As mentioned earlier, asegmenthasno inherent facilities to manageallocation and deal-
location of its memory. This section discussesheap tools that can be used to manage

a segment's memory. If none of the tools presentedin this section is appropriate for a

3.4Programming Issues and Interfaces 93

void list::rtn() {
RepWrapper(repacc); // rep's address space becomes accessible

/l may access data in shared segment and rep's segment only

} // back to previous address space and rep's address space is inaccessible

Program 3.4: Using a Wrapper

given application, it is possible to build specialized heap managementtools.

Storage Management Schemes

While there are a large number of storage management schemespossible, three basic
schemesare provided in Database. The rst version of theseschemeswas implemented
by A. Wai aspart of his M.Math essay[Wai92]. The schemespresentedbelow are ordered

in increasing functionality and runtime cost.

uniform has xed allocation size. The sizeis speci ed during the creation of the mem-
ory manager objectand cannot be changed afterwards. Uniform memory manage-
ment is often used to divide a segmentinto xed sized heaps (e.g., B-Tree xed-

sized nodes).

variable hasvariable allocation size. The size is speci ed on a per allocation basis but
once allocated, cannot be changed. This is a general purpose schemevery similar

to the malloc and free routines of C [KR88§].

dynamic hasvariable allocation size. The size is speci ed on a per allocation basisand
can be expanded and contracted any time aslong as the area remains allocated.
Becauseof this property, the locations of allocated blocks are not guaranteed to
be xed. Therefore, an allocation returns an objectdescriptolinstead of an absolute

address. An allocated block does not have an absolute addressand must be ac-

94 Using the EPD Approach to Build a Single-Level Store

cessedindir ectly through its descriptor. Becauseof this indir ection, it is possible to
perform compaction on the managed space. Therefore, fragmentation can be dealt

with in an application independent manner.

These three storage management schemesshould cope with most application de-
mands. Should special needsarise, special purpose memory management schemescan
be createdand easily integrated into Database, possibly reusing code from the supplied

schemes.

Nesting Heaps

With many applications, a segment has to be subdivided into multiple heapsthat are
managedindependently of eachother. The nodesof a B-Treeare examplesof such heaps.
Sincethe heaps are themselves piecesof storage that are usually allocated and released
dynamically, it is logical to have a higher level memory manager to deal with these
heaps. The segmentthen becomesan upper level heap with dynamically allocated sub-
heapsnestedinside.

A heap may be accessedin two ways: by the le structure implementor and by a
nestedheap. For example, the storagemanagementfor a B-Treehas3levels: the segment,
which is managed by the representative, within which uniform-size B-Tree nodes are
allocated, within which uniform or variable sized records are allocated. Depending on
the particular implementation of the storage manager at eachlevel, dif ferent capabilities
are provided. A le structure implementor makes calls to the lowest level (uniform or
variable storage manager) to allocate records. A uniform or variable memory manager
can then be created within the node. After that, the lower level memory manager for
the node can be called to allocate data records in that node. Figure 3.100n page 116

illustrates this storage structure.

3.4Programming Issues and Interfaces 95

Over ow Control
When aheap lls, ageneric storage manager can sensibly take threeactions:

1. enlarge the heap by adding additional storage at the end of the contiguous heap.
However, when there are multiple heaps at a particular nesting level, this may

necessitatemoving one or more other heaps.

2. allocate anew heap which is larger than the existing heap, copy the contents of the

old heapto the new heap, and delete the old heap.

3. allocate a new heap and copy some portion of the contentsto the new heap sothat
eachheap has some free space. This action resultsin two independent heapsthat

must be managed.

Moving heaps or their contents requires nding and relocating pointers to data being
moved. Sincegeneric memory managersare independent of the type of data they man-
age, it is impossible for them to take theseactions on behalf of the le structure. There-
fore, a generic memory manager does not deal with expansion.

Instead, a generic memory manager is designed with an expansiorexit, which is ac-
tivated when a heap lls, so that a data-structure specic action can be performed to
deal with heap over ow . The following aretwo examplesof such data-structure speci c
actions. When a B-Treenode lls during an insert operation, an additional node is al-
located and some of the contents of the old node are migrated to the new node. When
a variable-size character string heap lls, the heap may be copied to a new heap that is
larger and the previous heap freed.

To encapsulatethis application speci ¢ dependency, the concept of an expansion exit
is implemented using an expansiorobject An expansion objectis written aspart of a le

structurede nition and it contains enough intelligence to deal with over ow . All expan-

96 Using the EPD Approach to Build a Single-Level Store

sion objectsare derived from a special expansiorbaseclassand one must be provided to
the generic memory manager when the latter is created. When the generic memory man-
ager detectsthat a heapis full during an allocation operation, it calls member routines
in the expansion objectto deal with the situation.

Note that heap under ow can also be dealt with in a similar manner, but is not dis-

cussedhere.

Expansion Object

As mentioned earlier, a basic memory manager does not deal with heap over ow . In
order to handle over ow , a specialized heap expansion de nition must be created to
perform application speci ¢ over ow action. The classuExpand, shown in Program 3.5,

is the interface between the memory manager and the over ow handler.

class uExpand {

public:
virtual bool expand(int) { /I default expand routine
cerr << "uExpand::expand(" << this <<
"): no expand routine defined." << endl;
uExit(-1);
}
h

Program 3.5: Heap Expansion Object

The member routine expand is called from within the memory manager whenever
more storage is needed due to a heap over ow . The routine takes an integer argument
that speci es the amount of additional storage requested. A le structure specic ex-
pansion classmust derive from classuExpand and rede ne the expand routine to per-
form the desired over ow action, adding more private variables to the classde nition

asnecessary The expand routine's return code controls the futur e action of the memory

3.4Programming Issues and Interfaces 97

manager. If the expand routine returns false, the allocation processfails. If the expand
routine returns true, the memory manager re-attempts to allocate memory out of the
expanded heap and fails if there s still insuf cient storage after the expansion.

As shown in program 3.5, ordinarily the expand routine would be de ned asa CH
virtual routine sothat it canbereplacedby specialized derived expansion classes.How-
ever, expansion objectsassociatedwith persistent data structuresare stored in the per-
sistent areatogether with the data they manage. As mentioned in Section3.1.5,virtual
members are currently not supported in a persistent area. Consequently, the expand rou-
tine is de ned asaregular member routine and specialized using the generic (template)
facility in C+. The memory managers,which invoke the le structure speci ¢ version of
expand, are parameterized basedon the le structure expansion class. The interface of

the generic uniform memory manager is shown in Program 3.6.

template<class T> class uUniform {
public:
uUniform(void *mstart, int msize, T &expn, int usize);
void =alloc();
void free(void *p);
void sethsize(int newsize);

3

Program 3.6: Interface for Uniform StorageManager

The constructor takesfour arguments: mstart is the starting addressof the managed
space(i.e., the heap), msize is the initial heap size, expn is a referenceto the specialized
expansion object and usize is the allocation size for the uniform heap. Once initialized,
the member routines alloc and free are used to allocate and free uniform sized blocks of
storagein the heap. The member routine sethsize is usedto inform the memory manager

of achangein heap size and is intended to beinvoked by the expansion object.

98 Using the EPD Approach to Build a Single-Level Store

To createa specialized uniform memory managerfor usein a le structure,aspecial-
ized expansion classis de ned rst, asshown in Program 3.7. This program createsa
uniform memory manager to manage storage that starts at the beginning of the persis-
tent areareferred to by the accessobjectrepacc, is initially 1000bytesin size,is allocated

in 100byte blocks and over ow is handled by myExpOb;.

class myExpand : public uExpand {
I/ variables necessary to perform expansion
public:
myExpand(...); I specify data needed for expansion
bool expand(int) {
Il code to perform expansion

}
k

myExpand myExpObj; I create specialized expansion object

/l create and initialize the storage manager
uUniform<myExpand> myUniSM(repacc.start(), 1000, myExpObj, 100);

Program 3.7: Specializing a Uniform StorageManager

For more exible storagemanagement,avariable or dynamic memory manager may
be required. The interfaces of thesetwo parameterized classesare shown in Program
3.8. The constructors takes three arguments mstart, msize and expn, which specify the
starting address,the initial size of the heap and the expansion object, respectively, just
as they do in the uniform manager constructor. Further, member routines alloc, free
and sethsize perform the samefunctions asthosein the uniform manager. The dynamic
manager deals with movable memory blocks, and therefore the alloc and free routines
make use of the indir ect pointer type Descriptor instead of the dir ect pointer type void *.
Specializedvariable and dynamic memory managersare created in the samemanner as

specialized uniform managersdescribed earlier.

3.4Programming Issues and Interfaces 99

template<class T> class uVariable {
public:
uVariable(void *mstart, int msize, T &expn);
void *alloc(int size);
void free(void b);
void sethsize(int newsize);
¥
template<class T> class uDynamic {
public:
uDynamic(void *mstart, int msize, T &expn);
Descriptor alloc(int size);
void free(Descriptor p);

void sethsize(int newsize);
Descriptor realloc(Descriptor area, int addition);

h

Program 3.8: Interfacesfor Variable and Dynamic StorageManagers

3.4.10 Linked List Example

This sectionillustrates basictechniques and tools for constructing a persistent le struc-
tureby building agenericsingly linked list with nodescontaining avariable length string
value. Note that for a more exible linked list, the type of the data stored in the nodes

can also be parameterized.

List Application

At the application level, the le structure designer makes available four data struc-
tures: one to form the nodes of the list (listNode), one to declare a persistent linked
list (list<class nodeType>), oneto accesst (listAccess<class nodeType>) and one to tra-
verse it (listGen<class nodeType>). Program 3.9 shows a simple application program
using the persistent linked list.

There are severaldistinguishable components of the persistent linked list application.

First, thereis ade nition of the specialized list node, myNode, which must inherit from

100 Using the EPD Approach to Build a Single-Level Store

class myNode : public listNode {
public:
char valuel[0];
}; // myNode

char #next_string() { ... };
void process_string(char *p) { ... };

void uMain::main() {
list<myNode> I("abc");
listAccess<myNode> la(|);

for (inti=1;i<=100;i+=1){
la.add(next_string());
} /Il for

listGen<myNode> gen;
myNode *p;
char name[MAX_STRING_LEN];

for (gen.over(la); gen >> p;) {
la.get(p, name);
process_string(hame);
la.put(p, nhame);

} Il for

for (gen.over(la); gen >> p;) {
la.remove(p);
} Il for
} // uMain::main

/I inherit from list node

I/ variable sized string

/I a random string generator
/I modify contents of string
/I create persistent list

/I open list

/I create nodes in list

// used to scan through list
/I buffer space for strings
/I modify the list indirectly
// copy out information

/I modify contents as needed
Il copy information back

/I destroy the list

Program 3.9: Linked List Example

listNode to getthe appropriate link elds added. Sincethe data in eachnode is avariable
length string, the node structureonly de nes aplaceholder eld, value, of zero size,and
the actual storagefor the string is allocated aseachnode is created. Secondis the creation
of the persistentlist le structure,l, with UNIX le name"abc" . Third is the declaration
of the accessclassobject, la, for persistent list object, |. Both the persistent list classand

its accessclassare generic in the type of the node so that all accessedo the two classes

3.4Programming Issues and Interfaces 101

can be statically type checked.

The next threeloops add, update and remove nodes using the accessclassroutines
add, get and put, and remove, respectively. The generic linked-list generator, listGen,
returns a sequenceof pointers to nodes stored in the persistent list. However, these
pointers cannot be dereferencedin the application program; they can only be used as
place holders to nodes and passedto other accessoutines, like get and put. It is possible

to createa speciallist pointer type that restricts dereferencing to authorized list objects.

3.4.11 Linked List File Structure

Figure 3.9 shows all the list data structures created and their inter-relationships in the

persistent linked list le structure.

List Node

The abstract class, listNode, shown in Program 3.10,contains the elds needed by each
node in alinked list to relate the data. The member routine next allows indir ect access

to the link eld.

class listNode { /I abstract class containing link eld
listNode *nxt;
public:
listNode *&next() { // accessto link eld
return nxt;
} I/ listNode::next
}; I/ listNode

Program 3.10:Abstract List Node Class

102 Using the EPD Approach to Build a Single-Level Store

repacc RepAccess
listAccess _ | Representative
Ist B
leName ——— UNIX le name 1 controls
list ' mapping
admin i
SegmentBase .
ddr ess _ . l
listAdmin \
rep (initialized when mapping is created) ¥ List
head . MAP Disk
expobj ~— 7| Image
vsm (several pointers into the heap area) stored
list segment |- alignment boundary - lln UNIX
e
,,,,,,,,,,,,,, W leName
e A T A
o myNode ' myNode,
L | L1 J

Figure 3.9:Linked List StorageStructure

Administration

Information pertinent to a particular linked list, e.g., the pointer to the head of the list
and the memory managementinformation for the persistent area, must outlive the ap-
plication program that createsthe list, i.e., information other than the linked list data
itself must persist. Therefore, this information must be stored in the samepersistent area
asthe linked list itself. By convention, all such persistent administrative information is
encapsulated into an administrativeobjectstored at the beginning of the persistent area

or the segment. Furthermor e, the administrative type mustinherit from the pre-de ned

3.4Programming Issues and Interfaces 103

abstracttype RepAdmin (seesection 3.4.8).

The code for the list administrative classis presentedin Program 3.11. The class
contains a pointer, head, to the root of the persistent linked list, the expansion object
for the persistent areafor the list, and the variable memory manager that managesthe
persistent area. As discussedin section 3.4.8,the representative initializes a pointer to
itself at the beginning of its persistent area. This pointer can be accessedrom subclasses
of RepAdmin through the protected variable rep and is the reasonfor the convention
requiring the administrative classto inherit from RepAdmin and for the administrative
objectto be stored at the beginning of the persistent areaor segment. The constructor for
the administrative classtakesan integer, indicating the initial heap size,asan argument,
initializes the expansion object, expobj, the variable memory manager, vsm, and then
setsthe list root pointer to NULL, indicating an empty list. Thetwo private member rou-
tines alloc and free are utility routines that make use of the underlying variable memory
manager. The routine alloc is important becauseit caststhe untyped bytesreturned from
the variable memory manager into the type of the generic list node, thereby providing

type-safe accesgo the routines of the linked list le structure.

Expansion Class

The expansion class for the linked list is de ned in Program 3.12. The constructor
initializes a referenceto the administrative object so that the expansion object can ac-
cessboth the containing storage manager, listAdmin::vsm, and the list representative,
listAdmin::RepAdmin::rep. The member routine expand rst extends the persistent area
by calling the representative'sresize routine. It then informs the variable memory man-

ager of the changeby calling its sethsize routine and nally , returns true indicating that

104

Using the EPD Approach to Build a Single-Level Store

template<class T> class listAdmin : public RepAdmin {
friend class listExpType<T>; /I give access to expansion class
friend class list<T>;

T +head,; / root node of the list
listExpType<T> expobj; /I expansion object to extend list memory
uVariable< listExpType<T> > vsm; /I variable sized list storage manager

T =alloc(int size) {
return (T *)vsm.alloc(sizeof(T) + size);
} Il listAdmin<T>::alloc

void free(T *p) {
vsm.free(p);
} I/ listAdmin<T>::free
public:
listAdmin(int leSize) :
expobj(*this),
vsm((void #)this + sizeof(listAdmin<T>),
leSiz e - sizeof(listAdmin<T>),
expobj
) {
head = NULL;
} /1 listAdmin<T>::listAdmin<T>
}; I listAdmin<T>

Program 3.11: List Administration Class

the original allocation operation should be re-attempted?.

File Structure Class

The purpose of the list le structure classis to establish a connection between the exe-

cuting program and the UNIX le that contains the list data structure. It does not make

the le accessibleunlessit is creating the le, and then the le is made accessibleonly

long enough to initialize the le structure. Program 3.13contains the de nition of the

list class,list.

2An additional error checkis required to deal with failur eto obtain suf cient storagefrom the segment,
but has beenremoved for clarity.

3.4Programming Issues and Interfaces 105

template<class T> class listExpType : public uExpand {
listAdmin<T> &admin;
public:
listExpType(listAdmin<T> &adminobj) : admin(adminobj) {
}; I listExpType<T>::listExpType

bool expand(int extension) {
Il extend the segment
admin.rep->resize(admin.rep->size() + extension);
I/l inform the storage manager
admin.vsm.sethsize(admin.rep->size() - sizeof(listAdmin<T>));
return true;

} Il listExpType<T>::.expand

}; I listExpType<T>

Program 3.12:List Expansion Class

The constructor of list takestwo arguments. The rst one indicates the name of the
UNIX le that contains the persistent linked list. The secondargument is optional and
indicates the initial size of the persistent storage that contains the linked list nodes, if
the le structure is to be created; otherwise this parameter is ignored. The constructor
makes a copy of the UNIX le name in shared memory, establishesa mapping to the
le by creating a RepAccess object, makesthe resulting segmentaccessibleby creating
a RepWrapper, obtains a pointer to the beginning of the segmentto use asthe location
of the administrative object,and checksto seeif the le was created on accesslf the le
has beennewly created, the segmentis extended to the speci ed size and the adminis-
trative objectis created at the beginning of the segment, which initializes itself through
its constructor, creating an empty list.

The private member routines rst, add and remove manipulate the list nodes. These
routines are in the list object so that the list can be modi ed by other objectswithin the
persistent area. The rst routine returns a pointer to the beginning of the list. The add
routine calls the variable storage manager in the administrative objectto obtain storage

for a node of type myNode that can contain the string parameter, copies the parameter

106 Using the EPD Approach to Build a Single-Level Store

template<class T> class list {
friend class listAccess<T>;
friend class listGen<T>;

char = leName; /I UNIX le containing the list
listAdmin<T> *admin; /I administrator for the list segment
list(const list &); Il prevent copying

list &operator=(const list);

T *rst() { [return pointer to rst node in list
return admin->head;
} I ist<T>:: rst

void add(char *value) { /l add name to the beginning of the list
T *newNode = admin->alloc(strlen(value));
... Il initialize newNode with value and put at head of list

} I/ list<T>::add

void remove(T *p) { /I remove node from list
if (p == admin->head) { /l remove rst node
admin->head = (T *)p->next();
} else { /I remove node in list

... Il search for and remove node p from list
Y Iif
admin->free(p);
} I/ list<T>::remove

public:
list(char *name, int initSize = 4 * 1024) {
leName = new char|[strlen(name) + 1]; / allocate storage for le name
strcpy(leName, name); /I copy le name
RepAccess<Rep> repacc(leName); // map le
{
RepWrapper wrapper(repacc); // migrate to le segment
admin = (listAdmin<T> *)repacc.start(); // admin object at start of segment
if (repacc.created()) { /I le created when mapped ?
repacc.resize(initSize); / initialize segment
new(admin) listAdmin<T>(repacc.size()); // initialize admin object
Y I if
}

} I list<T>:list

~list() {
delete [] leName;
} I list<T>::~list
Y I ist<T>

Program 3.13:Linked List Class

3.4Programming Issues and Interfaces 107

into the new node, and chains the node onto the head of the list. The remove routine
removesthe given node from the list and freesthe storage for the node. Theseroutines

make use of standard singly linked-list algorithms using pointers.

AccessClass

An accessclassde nes the duration for which a le structure segmentis accessible.The
accessclassfor the list le structure, called listAccess, is shown in Program 3.14 and
provides routines to operate on the list. It is the sole meansfor the application code to
accesdist data. listAccess also contains per accessnformation, in a manner similar to a
UNIX le descriptor.

The constructor of listAccess takes a referenceto a list classobject as an argument.
The referenceis retained for subsequentaccessto the list routines and a le structure
mapping is established by creating a RepAccess object. The member routines add and
remove are covers for the corresponding routines in the list object whereasget and put
are cover routines that copy data out of or into the value eld of alist node, respectively.
All these routines make the list segment accessibleby creating a RepWrapper object

before performing an operation on the list.

Generator

As discussedin section 3.3.3,a generator iterates over a data structure, returning some
or all of the elements of the data structure. Generators provide accessto the elements
of a data structure without having to use or accesshe particular data structure'simple-
mentation; hence,generatorsenforcethe notion of abstractdata types. Depending on the
data structure, there may be multiple generators that iterate over the data structure in

different ways and/or agenerator may have several parametersthat control the precise

108 Using the EPD Approach to Build a Single-Level Store

template <class T> class listAccess {
friend class listGen<T>;
friend class listWrapper<T>;

RepAccess<Rep> repacc; /I access class for representative
list<T> &lst; /I list being accessed
listAccess(const listAccess &); /I prevent copying

listAccess &operator=(const listAccess);

public:
listAccess(list<T> &lst) : Ist(Ist), repacc(Ist. leName) {
} Il listAccess<T>::listAccess

void add(char *value) {
RepWrapper wrapper(repacc);

Ist.add(value);
} I/ listAccess<T>::add

void get(T *p, char »value) {
RepWrapper wrapper(repacc);

strepy(value, p->value);
} Il listAccess<T>::get

void put(T *p, char *value) {
RepWrapper wrapper(repacc);

strepy(p->value, value);
} I/ listAccess<T>::put

void remove(T *p) {
RepWrapper wrapper(repacc);

Ist.remove(p),
} /I listAccess<T>::remove
}; Il listAccess<T>

Program 3.14:List AccessClass

3.4Programming Issues and Interfaces 109

way the generator iterates over the data structure.

The list generator, as de ned in program 3.15,hastwo constructors. The rst con-
structor allows the speci cation of alist accessobjectand initializes the generator to the
beginning of the list. This constructor is employed when the generator objectis going to
be used only oncefor one particular list object,asin:

for (listGen<myNode> gen(la); gen >>p;) { ...}

The second constructor is employed to create a generator that is subsequently re-
initialized to work with a particular list accessobject, asshown in Program 3.16.In this
case,when the list generator objectis created, it is not associatedwith a particular list
accesbject. The associationoccurs through the over member routine, which initializes
the generator to the beginning of the speci ed list. Notice that the samegenerator object,
gen, is used to iterate over two different list accessobjects, la and ma, which may be
accessingthe sameor different lists; the only requirementis that both accessbjectsrefer
to lists that contain nodes of type myNode. Finally, the iterative operator >> is used to
extract the next place holder to an elementin the data structure. While the place holder
may be declared to be a normal pointer, in general, it cannot be dereferenced in the
application program becauseit points into the list segment,which is not accessiblefrom
the application (exceptionsto this rule are discussed next). Instead, the place holder is
used by other member routines in an accessobjectto transfer element data out of or into

appropriate list nodesin the list segment.

Wrapper

Program 3.9 showed how an application can modify linked list data by copying data
out of alist node, changing it, and copying it back by invoking the accessclassroutines;
hence, the data is modi ed indir ectly in the original list nodes. The reasonfor copying

is that a pointer returned by a list generator cannot be used in the application program

110 Using the EPD Approach to Build a Single-Level Store

template<class T> class listGen {
listAccess<T> +la;
T =curr,;

listGen(const listGen &); /I prevent copying
listGen &operator=(const listGen);

public:
listGen(const listAccess<T> &la) {
RepWrapper wrapper(la.repacc);

listGen::la = &la;
curr = la.lst. rst();
} I listGen<T>:listGen

listGen() {
} Il listGen<T>::listGen

void over(const listAccess<T> &la) {
RepWrapper wrapper(la.repacc);

listGen::la = &la;
curr = la.lst. rst();
} I listGen<T>::over

int operator>>(T *&p) {
RepWrapper wrapper(la->repacc);

p = curr; [l return current node

if (curr I= NULL) { /I if possible, advance to next node
curr = (T *)curr->next();

Y f

return p !'= NULL;
} Il listGen<T>::operator>>
}; 1 listGen<T>

Program 3.15:List Generator

listGen<myNode> gen; /I one generator
listAccess<myNode> la, ma; // two lists

for (gen.over(la); gen>>p;){...} /I generator used with different lists
for (gen.over(ma); gen>>p;) {...}

Program 3.16:Using the List Generator

3.4Programming Issues and Interfaces 111

sinceit points into the list segment,which is not dir ectly accessiblefrom the application.
As mentioned in Section 3.4.8,a wrapper is used to make the representative's address
space accessible. This technique can be extended to the application program by pro-
viding a wrapper that makes the list segment dir ectly accessible;pointers from the list
generator can then be used dir ectly to modify data in list nodes, as shown in Program
3.17. A new block is started to de ne the duration of the list segment accessand the
list wrapper is declared. Within the block, pointers returned from the generator can be
dir ectly dereferencedto read and modify the list node data. A substantial performance
gain canbe achieved by this technique, becausethe list segmentis only made accessible

oncefor all accessego the list data and the copying of the list data is eliminated.

{
listWrapper<myNode> dummy(la); / make la's segment accessible
for (gen.over(la); gen >> p;) { // modify the list directly
process_string(p->value);
} 1/ for
}

Program 3.17:Using a Linked List Wrapper

Thelist wrapper isde ned in Program 3.18and is simply acover de nition for declar-

ing a RepWrapper for the speci ed list segment.

3.4.12 Programming Conventions

The simple generic linked-list illustrated all the basicconventions and tools for building

apersistent le structure. The conventions are:

The representative writes a pointer to itself at the beginning of the newly mapped

segment.

112 Using the EPD Approach to Build a Single-Level Store

template<class T> class listWrapper {
RepWrapper wrapper;

listWrapper(const listWrapper &); /I prevent copying
listWrapper &operator=(const listWrapper);

public:
listWrapper(const listAccess<T> &la) : wrapper(la.repacc) {
} Il listWrapper<T>::listWrapper
}; I listWrapper<T>

Program 3.18:De nition of aLinked List Wrapper

All persistent administrative information is encapsulated into an administrative
object that is stored at the beginning of the segment. Further, the type of the ad-
ministrative object inherits from RepAdmin to ensure there is spacefor the back

pointer to the representative.

A block is started before declaring a wrapper so that the wrapper 's action occurs

asthe rst and last operations of the block.

Only one accesswrapper canbe declared in a block, becauseonly shared memory

and one segment'smemory can be accessibleat atime.

Eachbasic le structure should provide the following classesat the application level: a
node abstractclass,a le structure class,one or more accesslassesand (usually) one or

more generator classes.At the le structure level, thereis the administrative class.

3.4.13 B-Tree Example

Thefollowing example further illustrates advanced techniquesand tools, such asnesting
storage managers, for constructing a persistent data structure by building a generic B-
Tree le structure. However, the basic structur e of the B-Tree le structuresfollows the

persistent linked list exactly.

3.4Programming Issues and Interfaces 113

B-Tree Application

Similar to the persistent linked list, the B-Tree makes available three data structures:
one to declare it (BTreeFile), one to accessit (BTreeAccess), and one to traverse it
(BTreeGen). The nodes of the B-Tree are not created dir ectly by users and, hence, this
structure does not exist. All these classde nitions are parameterized on two classes
KeyType and RecordType to specify the types of the key and the data records, respec-
tively, for the B-Tree.

Program 3.19illustrates the usage of these classesto write a small application pro-
gram that createsa persistent B-Tree, inserts a number of records into the B-Tree and
nally , retrieves the records from the B-Treein their sorted order. The program rst de-
nes a classRecord to describe the structure of the data records to be stored into the
B-Tree. The type of the key used to index the records in the B-Treeis the built-in type int.
In general, both KeyType and DataType canbede ned asarbitrarily complex data struc-
tureswith the requirement that there exist an assignment operator that can be invoked
to copy objects. This requirement is necessaryso that records and keys can be copied to
and from shared and private memory.

Next, a comparison routine is de ned to specify a function that takestwo objectsof
type KeyType and returns atrue or false value depending upon whether the rst object
is “gr eater” or “smaller” than the second. The comparison routine provides the mech-
anism necessaryto order keys in the B-Tree. In Program 3.19,the comparison routine
greater resultsin the records being arranged in descending order by their keys.

The program then createsthe B-Tree, if it does not already exist, with an initial size
of 30K by creating a BTreeFile object, db, which is passedas an argument to a newly
created B-Treeaccessbject. Oncethe accessobjecthasbeencreated,its member routine

insertis invoked to insert anumber of records into the B-Tree. Finally, a B-Treegenerator

114

Using the EPD Approach to Build a Single-Level Store

struct Record { // data record
oat eldl, eld?;
Record &operator = (const Record &rhs) { /l de ne assignment

eldl = rhs. eld1;
eld2 = rhs. eld2;
return(this);

k

bool greater(const int &opl, const int &op2) { // key ordering routine
return opl > op2;

}

void uMain::main() { // uMain is a uC++ artifact
BTreeFile<int, Record> db("testdb" , greater, 30 Kb); // create B-Tree
BTreeFileAccess<int, Record> dbacc(db); // open B-Tree
Record rec, *recp;

Il insert records
for (int key = 1; key <= 1000; key += 1) {
rec. eldl = key / 10.0;
rec. eld2 = key / 100.0;
dbacc.insert(key, &rec); /I static type-checking

}

Il retrieve records
for (BTreeGen<int, Record> gen(dbacc); gen >> recp;) {
... Il processrecp
}
}

Program 3.19:Example Program using a Generic B-Tree

objectgen is invoked to retrieve the records stored in the B-Treein order.

Nested Memory Manager

As discussedin Section3.4.9,heapsmanaged by memory managerscan be nestedwithin

eachother. A B-Tree le structureis a good example where nesting is needed. The le

spaceis divided into uniform sized B-Treenodes managed by a uniform memory man-

ager. A variable memory manager is created within each node to manage the variable

3.4Programming Issues and Interfaces 115

sized B-Treerecords contained within the node (SeeFigure 3.10).

The administrative classfor the B-Tree,shown in Program 3.20,is de ned in the same
manner asthe linked list structurein section 3.4.10.Note that the classde nitions in this
section are not presentedasgeneric classesfor simpli cation of presentation. In practice,
these classesare parameterized in the types of keys and records. The administrative

classcontains a uniform memory manager and an expansion object for the manager.

class BTreeAdmin {

public:
Rep *rep; [initialized automatically
e I at beginning of mapping
void *Root; /l root node of the B-Tree

BTreeExpType expobj;
uniform<BTreeExpType> usm,;

BTreeAdmin(int FileSize, char *TypeName, int BlkSize);
}; // BTreeAdmin
BTreeAdmin::BTreeAdmin(int FileSize, char *TypeName, int BIkSize) :
expobj(*this),
usm((void #)this + sizeof(BTreeAdmin),
FileSize - sizeof(BTreeAdmin),
expobj,
BlkSize

) {
Root = NULL;

} // BTreeAdmin::BTreeAdmin

Program 3.20: Administrative Classfor the B-Tree

The expansion classis de ned in Program 3.21. The expansion object attempts to
expand the size of the mapped le by calling the representative's resize routine, which
is the typical action taken by the top level expansion object.

A B-Tree node can be used to hold B-Treeindices or data records. The former is

called an index node while the latter is called a leaf node. Both types keep their infor -

116 Using the EPD Approach to Build a Single-Level Store

BTree Accessor BTree
pointer to BTree pointer to compare routine —{—= comparison routine
rep. accessor representative

pointer to B-Tree

segment storage manager's data

16M B-Treesegment
B-Tree Administration
T e - B-Tree
! uniform storage manager's data . — MAP —=]
P 4 Disk
.................... alignment boundary .o Image
r - - - uniform B-Treenode----------- A

foeeeeee alignment boundary ooy
| |
oo variable record < e
! : : : : I
| |
| |
OO OO UUUUUSUUEUUURUUOE S SURURURURURORS: |
| |
| |
s ey e, |
| |
| |
| |
S |
| |
L e J
r--- uniform B-Treenode - - - - - - ——————— -

Figure 3.10:B-Tree Storage Structure

3.4Programming Issues and Interfaces 117

class BTreeExpType : public expand_obj {
BTreeAdmin &admin;
public:
BTreeExpType(BTreeAdmin &adm) : admin(adm) {};
int expand(int extension);
}; 1/ BTreeExpType

int BTreeExpType::expand(int extension) {
admin.rep->resize(admin.rep->size() + extension);
admin.usm.sethsize(admin.rep->size() - sizeof(BTreeAdmin));
return 1; /I retry allocation

} I/ BTreeExpType::expand

Program 3.21:Expansion Classfor the B-Tree StorageManager

mation within variable sized records managed by a variable memory manager. The leaf
node classBTreelLeaf is shown in Program 3.22and the expansion classfor the memory

manager vsm is shown in Program 3.23.

class BTreelLeaf {
friend BTreeLeafExpType;
BTreeLeafExpType expobj;
variable<BTreeLeafExpType> vsm,;

void MoveRecords(...);
retcode SplitLeaf(...);
public:
BTreelLeaf();
}; I/ BTreeLeaf

BTreelLeaf::BTreeLeaf() : expobj(+this), vsm((void *)this +
sizeof(BTreeLeaf), NodeSize - sizeof(BTreeLeaf), expobj) {

} // BTreeLeaf::BTreeLeaf

Program 3.22:B-TreeLeaf Node Class

Becauseall B-Treenodesare xed size,anode cannot be enlarged when full. Instead,

the member routine SplitLeaf, shown in Program 3.24, within the BTreelLeaf classis

118 Using the EPD Approach to Build a Single-Level Store

class BTreelLeafExpType : public expand_obj {
BTreeLeaf &leaf;

BTreeLeafExpType(BTreeLeaf &If) : leaf(If){}
public:
int expand(int);
}; I/ BTreeLeafExpType

int BTreeLeafExpType::expand(int) {
leaf.SplitLeaf(....);
return 0; /I done, give up allocation
} I/ BTreeLeafExpType

Program 3.23:Expansion Classfor the B-TreeLeaf Node StorageManager

called to split the node into two. First, the SplitLeaf routine allocates a new node by
calling the top level memory manager. Then, the treeis reorganized by moving some of
the data records into the newly createdempty node, thus making more spaceavailable in
the current node. Note that the leaf nodesin a B-Treeare usually chained together in the
form of adoubly-linked list. Existing genericlinked list code canbe reusedto implement
linking of the B-Treeleaf nodes, thereby avoiding the need to implement linked lists in

B-Treecode.

retcode BTreelLeaf::SplitLeaf(BTreeLeaf *OldLeafPtr, ...) {
/I create a new node
BTreelLeaf *NewlLeafPtr = new (SegZero->usm.alloc(NodeSize)) BTreelLeaf();
// move some records out the current node and into the new node
MoveRecords(OldLeafPtr, NewLeafPtr);

return 1,
} I/ BTreeLeaf::SplitLeaf

Program 3.24:Leaf Node Member Routine for Splitting

At the le structure level, an access-methodimplementor makes calls to the lowest

level (variable storagemanager BTreeLeaf::vsm) to allocate records asshown in program

3.5Analytical Modelling of the System 119

3.25. The variable storage manager in turn calls the higher level, BTreeAdmin::usm, if

necessaryasdescribed earlier.

retcode BTreelLeaf::InsertRecord(...) {

/I call lowest level variable storage manager to allocate space within node
BTreeLeafRecord *FreeRecPtr = (BTreeLeafRecord *) vsm.alloc(/+ leaf rec. size */);

} // BTreeLeaf::InsertRecord

Program 3.25:Leaf Node Member Routine for Inserting a New Recod

3.5 Analytical Modelling of the System

Chapter 4 presentsan experimental framework for studying le structures based on
the EPD approach to memory mapping. Conducting experiments of this magnitude is
exorbitantly expensivein terms of both human and machine resources. Consequently, |
felt that animportant reseaxch contribution could be made to the study of EPD persistent
stores by developing a mathematical model for the system. After surveying a number
of theoretical models for memory and I/O systems, none of the existing models was
found to representthe EPD system closely enough to make accurate predictions about
the behaviour of real experiments.

This section describeswork done towar ds the development of an accurate quantita-
tive model for an EPD system that can be employed to accurately predict performance
of algorithms in the EPD environment. A related goal is to investigate the behaviour
of databasealgorithms in a memory mapped environment basedon the EPD approach,

especially in highly parallel systems. | believe that results from this work should apply

120 Using the EPD Approach to Build a Single-Level Store

to other kinds of memory mapped single-level storesaswell.

The model canbe used to analyze and study sequential and parallel algorithms on a
physical machine. My hope is that the model canactasa high-level lter for data struc-
ture and algorithm designersto predict general performance behaviour without having
to construct and test speci ¢ approaches. Only those approachesthat look promising
from the model needto be more fully tested. Further, a quantitative model is an essen-
tial tool for subsystemssuch asa databasequery optimizer wherethe model canbe used
to compute costsfor alternative execution strategiesin order to plan optimal schemes

for executing speci ed queries.

3.5.1 Survey of Related Work

The in uences on this work stretch across many areaswithin computer science. The
following survey of the modelling literatur e is divided into two areas: theoretical I/0O
modelling and other relevant studies on databasejoins, particularly in shared-memory

environments.

Theoretical Models

Classicaltheoretical models of computation in random accessmachines have, in recent
years, beenextended to cover hierarchical memories and the resulting 1/0 bottleneck as
well asspatial and temporal locality. This section presentsa brief survey of this work,
both in sequential and parallel shared-memory settings.

The classicalmodel of a RandomAccesdMachine or RAM [AHUB83] consistsof a pro-
cessorexecuting instructions on data stored in a uniformly accessiblecollection of mem-
ory cells. The ParallelRandomAccessviachine or PRAM [FW78] is an extension of RAM

for aparallel shared memory machine, which consistsof anumber of processorscommu-

3.5Analytical Modelling of the System 121

nicating through shared-memory. Eachprocessorhas accessto two types of memories:
local and shared (or global) and is capable of performing standard RAM operations as
well asreading and writing of cellsin global memory. There are severalaspectsof PRAM
that make it unsuitable as a practical model of computation. Nevertheless, the PRAM
has served asa useful platform for several subsequentmodels that are more realistic.

Re nements of the older models have resulted in increasingly complex models. One
of the major problems with PRAM as a realistic model is its lack of distinction between
local and global memory [PU87, AC88]. The BlockPRAM, or BPRAM, [ACS89], makes
this distinction by assigning dif ferent accesgimes to local and global memory, resulting
in atwo-level memory. Further, ablock size basedcostmodel is intr oduced by the notion
of start-up memory transfer costs — words in local memory are uniformly accessible
whereasthe cost of accessinga block of b contiguous cells in global memory isb
where is the machine dependent latency. However, BPRAM like models fail to capture
the real life notion of a xed block size and block boundaries. Moreover, by its very
nature, the two-level model doesnot account for dif ferential costsin accessingdifferent
sectionsof memory from the point of view of multiple processors.

Further models have recently been proposed for multi-level memory [AACS87,
ACS87, ACFS94],both in the sequential and parallel settings. In the HierarchicalMemory
Model a hierarchical organization of memory cells is modelled by assigning accessime
for location x as f x , for functions suchasf x logxand f x x2 [AACS87]. Block
transfer capability is added to the basicmodel by computing the costof accessingablock
of b bits starting atlocation xasf x b 1 [ACS87]. The notions of block transfer and
hierarchy are developed further by modelling the memory asa tree of modules, where
computation takes place at the leaves [ACFS94. In this model, data is transfered be-
tween modules by buses;parameters of the model include size of blocks, bandwidths of

buses,and branching at eachlevel.

122 Using the EPD Approach to Build a Single-Level Store

I/0 complexity models [HK81, AV88, VS94g VS94H take a slightly different ap-
proach, e.g.,Aggarwal and Vitter [AC88] consider a two-level memory model in which
a single CPU communicates with a single disk; several blocks of memory can be trans-
ferred in a single I/O operation. Vitter and Shriver [VS94a VS94b]changed this model
so that secondary storage consists of several disks and each disk can transfer a single
block in one operation.

The memory mapped analytical model presentedin this chapter draws on ideasfrom
several of the above papers, though the intent is not to characterize the complexity of

problems, but rather to predict performance on many real architectures.

Database Studies

Many databasemodelling efforts related to this work usethe join algorithm for analysis
and validation purposes. Joining is a merging of data from two collections of data ob-
jects,Rand S where an R object contains a join attribute that refersto an S object, and
data from eachis combined to form the join.

This work builds on the framework proposed by Shekita and Carey [SC9({, which
presentsan analytical single-processor single-disk model that can be viewed as a sim-
pler version of my subsequentmultipr ocessor multi-disk model. In their model, three
pointer -basedjoin algorithms are analyzed: nested loops, sort-merge and hybrid hash.
However, no experimental data is presentedto validate their model.

Shekita and Carey make a number of simplifying assumptions some of which are
removed or modi ed in my analysis. For instance,for joining of arelation Rwith another
relation S they assumethat every objectin relation Sis referenced by exactly one object
in R. While my analysis retains this assumption, it leavesopen the possibility for a one-
to-many relationship betweenthe two relations. They assumethe costof I/O on asingle

byte to be a constant, not taking into account seektimes or the possibility of savings

3.5Analytical Modelling of the System 123

using block transfer; they do not distinguish between sequential and random 1/O; they
do not consider the fact that the minimum 1/O transfer unit on virtually all computers
is at leasta disk sectorand more commonly avirtual memory page.

Two assumptions made in their paper need to be extracted from the analysis:
constant-time hashing, and clustering of identical referencesin a single hash chain dur -
ing the hybrid-hash algorithm so that a given object from Sneed only be read once to
perform the join. My analysis replacesthe secondassumption with aweaker assumption
that all of the objectsof Sreferencedin one hashchain can t into the portion of memory
not used by the hashtable. In the traditional hybrid-hash algorithm, only one object (or
one block) of Sis presentin memory at any given time.

Shapiro [Sha84 analyzes sort-merge and three hash-basedalgorithms and also pro-
vides a discussion of various memory management strategies. Again, no experimental
data is provided to validate the model.

Lieuwen, DeWitt and Mehta [LDM93] analyze parallel versions of Hash-Loops and
Hybrid-Hash pointer-basedjoin algorithms (seesection5.1)and compare them to a new
algorithm, the Probe-child join algorithm. Their work also builds upon Shekita and
Carey [SC9Q but has a different emphasis from my work in that | develop a validated
model for a shared memory architecture basedupon the EPD approach.

Martin, Larson and Deshpande [MLD94] present a validated analytical model for
a multi-pr ocessor single disk situation. Their model makes a number of assumptions
that can intr oduce unpr edictable amounts of both positive and negative error. For in-
stance,the assumptions of perfect inter-processparallelism and perfect processing-1/O
parallelism tend to decreasethe model's estimate of elapsedtime, but the assumption of
maximum processorcontention for spin locks tends to increasethe estimate.

I have extended the work in the above papers in several ways: by allowing multi-

ple processorsand multiple disks (resulting in further algorithm design decisionsin the

124 Using the EPD Approach to Build a Single-Level Store

course of parallelizing the standard join algorithms), by drawing a distinction between
private and shared memory, and of course by using an EPD environment. The paral-
lelization used in my algorithms has beenin uenced by ideas presentedin [SD89. In
addition, my analysisis quantitative asopposedto the qualitative analysisin other mod-
els. The model usesmeasured parameters that quantify the computing environment in
which the join occurs,such ashow disk 1/O is affected by all aspectsof the join.

Munr o, etal[MCM 95] have, quite recently, reported some early work on validating
an I/O cost model, called MaStA, for databasecrash recovery mechanisms. Like this
work, MaStA takesinto accountthe peculiarities of a persistent system and attempts to
provide morerealistic and ner grained estimation of I/O coststhan previous attempts.
One of the major areaswhere MaStA differs from this work is the modelling of disk
transfer time, dtt (seesection 3.5.2).MaStA divides the I/O costsinto a number of dif-
ferent accesspattern categories(sequential, asynchronous, clustered synchronous, etc.)
with eachcategory assigneda different costmodel. The Database model, on the other
hand, estimates /O costson the basis of a single unied cost model. The amortized
costmodel developed in this work implicitly incorporates effects of disk accesgatterns
by de ning average costasa function asopposed to a constant. Both models work by
assigning an average cost per disk accessfor a speci c 1/0 category. In the Database
model, the average cost function, dtt , is obtained by experiment. Finally, MaStA con-
centratesexclusively on I/O costswhereasthe Database model models CPU costsas
well. It is my experiencethat in a databasecomputation, while the CPU costsare usually

not dominant, they can be quite substantial.

3.5.2 Modelling

This section presentsthe basicmodel, developed for EPD basedsystems,and its param-

eters. The model has as components a number of processesgach having its own seg-

3.5Analytical Modelling of the System 125

ment with aprivate areaof memory, ashared areaof memory accessibleto all processors
through which communication takesplace,and anumber of disks allowing parallel 1/O.

The parameters of the model are shown in gur e 3.11 and table 3.1.

P

\

CS

Mp, MshH Mp,
| | | | |
Private Memory Shared Memory Private Memory
MTss MTpp
MTsp -~ MTpS ~T1
dtt dtt
\
D

Figure 3.11: Basic Structur e of the Analytical Model

The parameter D usually refers to the number of disk controllers, not disks, since
there is a one-to-many relationship between controllers and disks (seeresultsin section
4.4 concerning performance effects from disk controllers). When simultaneous requests
arrive for the samedisk, the disk arbitration mechanism is left unspeci ed. Alternatives
for futur e re nement of the model include denying algorithms simultaneous accessse-
rializing overlapping requests,and a priority schemefor simultaneous requests.

Memory transfer times are given in the form of combined read/write times because

126 Using the EPD Approach to Build a Single-Level Store

H Parameter | Description H

P number of processesused by a given algorithm
Cs amount of time for a context switch from one processto another
M number of bytes of memory, private and shared
Mp number of bytes of private memory used by processP,
Mg number of bytes of shared memory available for useto P processes
B size,in bytes, of a block or page of virtual memory
D number of disks that can be operated in parallel
dtt disk transfer time
dtt; disk transfer time —read
dtty, disk transfer time —write
MTgp shared to private memory transfer time
MTss shared to shared memory transfer time
MTps private to shared memory transfer time
MTpp private to private memory transfer time
newMap | time to createa mapping for new areaof disk
openMap | time to createa mapping for existing areaof disk
deleteMap | time to destroy mapping aswell asdisk area

Table 3.1: Parametersof the Model

all segment transfers move data using assignment statements, which read and then
write. Furthermor e, thesetransfer times canbe used even if the architecture implements
an explicit block move instruction that doesnot dir ectly involve processregisters;in this
case,the transfer time may be parameterized by the length of the move becausea block
move may be more ef cient for longer transfers. As an example of the use of memory
transfer times, if one processtransfers k bytes from shared memory to private memory,
this takes time k MTsp. For machine with block move instructions, this time could be

MTp K .

3.5Analytical Modelling of the System 127

Disk Transfer Time

Modelling disk transfer is complex becauseit is a function of the data accesspattern
due to the inherent sequentiality of the components of a disk access. The nature of
join algorithms is such that data accessis clustered into contiguous bands on the disk
during certain parts of an algorithm. Intense (random or sequential) I/O occursin a
band followed by similar 1/0 occurring in the next band and so on. This clustering of
accessess modelled by measuring the average cost per block of sequentially accessing
bands in which random accessoccurs, over a large area of disk. The size of the disk
areais irr elevant; it only hasto be large enough to obtain an average accesgime for the
band size. The layout of data on disk is always given to explain the band size in further
algorithmic discussion.

In general, the disk transfer time function, dtt, hastwo arguments: the unit of data
transfer, and the span, in blocks, over which random disk accessegake place, i.e., the
size of the band. In the physical machine used for this work, the rst argument is always
B, the virtual memory page size;therefore, the rst argument of dtt is dropped from all
of the subsequentformulas, i.e., dtt is considered to be a function of band size alone.
Figure 3.12(a)shows the averagetime, for the SequentSymmetry used for experiments
(seesection 5.5.1),to transfer a block (4K) to or from disk with respectto a given band
size. When the band sizeis one, accesss sequential; when the band sizeis greater, access
is random over that area. Thus, averagetime increasesasthe band size increases.One
curve is for random reading in a band with no repetition of blocks; the other curve is for
random writing in the band with no repetition of blocks. One might intuitively expect
the read and write times to be identical. However, while aread page fault must causean
immediate I/O operation, writing dirty pagescanbe deferred allowing for the possibility

of parallel /0 and optimization using shortest seek-time scheduling algorithms. Thus,

128 Using the EPD Approach to Build a Single-Level Store

writes, on average, cost lessthan reads. The two curves are used to interpolate disk
transfer times for reading, dtt;, and writing, dtt,, respectively. Both dtt, and dtt,, are
machine-dependent and must be measured for the physical environment in which the
join is executed.

It needsto be emphasized that the band size in the dtt functions is the not the logical
span in the databaseover which accessedakesplace but rather the actual span on disk.
In other words, the argument to the dtt function has to take into account the actual
layout of the database le on disk (which includes non-contiguous layout of data by the
operating system). In order to measure the dtt curves shown in gur e 3.12(a),the test
le is laid out contiguously on disk sothat the logical bands in the le also correspond
to similar bands on disk.

Finally, the shape of the dtt curves is determined by two distinct phenomenon,
namely, the number of times the disk arm changes dir ection, which is an expensive
operation, and the total amount of distance traveled. The latter increaseslinearly, after
athreshold value is reached,with band size and is re ected in the rise in the dtt values
in the upper portions of the curves. The total number of times the disk arm changesdi-
rections increasesvery rapidly when the band size is increasedfrom 1 but soon reaches
a saturation value and stays relatively constant after that. This behaviour is the main

causeof the initial growth of the dtt curvesin gur e 3.12(a).

Memory Mapping Costs

The costof threefundamental memory mapping operations, namely, creating a mapping
for anew areaof disk, establishing a mapping to an existing areaof disk, and destroying
amapping aswell asits data in an existing area of disk, is modelled by three measured
functions, newMap, openMap and deleteMap. Eachof thesefunctions takesthe size of the

mapping asan argument.

3.5Analytical Modelling of the System 129

T 25F :
|
m
€ 20 _
p
e
r 15+ -
B
I N
0 10
C
K 5
0 10000 20000 30000 40000 50000
Band Sizein Blocks
(a) Disk Transfer Time (in msecs)

50
T 40+ newMap --— i
0 openMap o - o
; 30 L deleteMap -o- - il
I
T 20 .
| .0
m 10 - .
e

OS¢ . ! ! ! ! L

0 10000 20000 30000 40000 50000
Map Sizein Blocks

(b) Memory Mapping Setup Time (in secs)

Figure 3.12:Measured Machine Dependent Functions (for a SequentSymmetry running
DYNIX 3.1with Fujitsu M2344K and M2372K disk drives)

130 Using the EPD Approach to Build a Single-Level Store

Figure 3.12(b)shows the measured values, for the SequentSymmetry used for exper-
iments (seesection 5.5.1),0f memory mapping costs. All mapping costsincreasewith
size becauseconstructing the pagetable and acquiring disk spaceincreasedinearly with
the size of the le mapped. New mappings are more expensive than existing mappings
becausenew disk spacemust be acquired. Deleting is the least expensive becauseonly
the storage for the page table and disk spaceneedto be freed.

In absolute terms these costsare very high and constitute a signi cant performance
problem. However, the high costis mostly afunction of the particular memory mapping
implementation in DYNIX and of the slow hardware. Measuring the same costs on
a SUN SPARCserver 670MP running the SunOS5.3 operating system results in much
smaller values, e.g.,the costof creating a new mapping of 50,0004K blocks on the SUN

machine is lessthan 0.1second.

3.5.3 Using the Model to Analyze an Algorithm

Chapter 5 contains a discussion on the design of threeparallel join algorithms that were
implemented and analyzed by means of the model presentedearlier. This section out-
lines the general procedure for analyzing a given algorithm within the framework of the
model. The analysis can be used to predict the performance of the algorithm on a phys-
ical machine. The speci cs of the physical machine are incorporated into the analysis
by means of the measured parameters such asdisk transfer time and memory mapping
costs. Additional parameters can be added as needed to analyze the given algorithm,
e.g.,in order to analyze heap-sort the cost of inserting and removing an element from
the heap of pointers in memory must be measured. Once all the required parameters
have been compiled and their values determined, they can be used for computing the
costsof the individual stepsperformed by the algorithm.

One of the expensive activities in a databasealgorithm is I/O cost, which canvary

3.6 Summary 131

substantially depending upon how the algorithm accessedlisk blocks. As such, it is
essential to identify the patterns of disk accessin various steps or phasesof the algo-
rithm. After determining the nature of I/O in a particular phase of an algorithm, the
appropriate dtt formulas are applied to compute the I/0 cost of the speci ¢ phase. The
nature of I/O for a phaseis determined not only by the total amount of disk blocks read
and written, but also by the type of disk accesgsequential or random) and by the span
of disk over which the I/O takes place. Finally, the memory, CPU and I/O costsof the
various phasesof the algorithm are summed, as appropriate, to predict the total cost of
the algorithm on the physical machine. Any parallelism in the algorithm is accounted

for by computing the serial cost of computations that occur in parallel.

3.6 Summary

The design of Database is motivated by a desire to eliminate the complexity and ex-
pense of swizzling pointers, support persistencewithin a compartmentalized view of
persistent objectsin which individual programs are allowed to simultaneously manipu-
late data stored in multiple collections, and follow the software approach basedon con-
ventional architectures for its immediate accessibility and portability . This work iden-
ties and quanti es some components of a persistent system that are quite dif cult or
inef cient to construct with conventional operating system and hardwar e support. The
support for multiple persistent areasis provided by employing the notion of hardware
segments, which are implemented on conventional architectures by a novel usage of
Unix processes.This chapter also illustrated the programming interfaces and conven-
tions used for developing applications in Database. The easewith which powerful pro-
gramming techniques such as polymorphism and storage management can be applied

to persistent aswell astransient data is amply demonstrated in the process.The lack of

132 Using the EPD Approach to Build a Single-Level Store

support at the compiler level meansthat programming in the current stageof Database
relies on certain conventions being strictly followed. The Database programming in-
terfacescan be simplied and made more secure by providing some language support,
which is also neededfor implementing serviceslike recovery control (seechapter 6).
Presenting a generic concurrent retrieval algorithm for partitioning le structures
demonstrateshow parallelism canbe exploited easily and naturally in the EPD approach.
For instance,by mapping various partitions of a le structureinto asingle addressspace,
many partitioning issuesare made transparent to the executing program, resulting in
code that is lesscomplex and more ef cient. Finally, this chapter presentedthe design
and development of a quantitative analytical model of computation in the EPD environ-
ment. Once validated (seechapter 5),the model canbe used to predict the performance
of speci ¢ algorithms asthe system and data parameters are tweaked, resulting in sig-

ni cant bene ts when studying new algorithms.

Chapter 4

Experimental Analysis of EPD File

Structures

One of the important goals of this work is to demonstrate the feasibility and viability of
the EPD approachto memory mapped le structures. The most effective way of doing so
is to design and construct illustrative EPD le structuresand run experiments on them
using atightly controlled test bed.

As mentioned earlier, many of the traditionally cited reasonsfor rejecting the use
of mapped les are no longer valid, and compelling arguments have been made for
the use of memory mapped single-level stores for implementing databases. Further,
memory mapping techniques can be used advantageously not only for complex data
structuresbut also for simpler traditional databasestructures. Traditional databasescan
be accessedising memory mapped accesamethods without requiring any changesto the
existing data. It is my thesisthat memory mapping techniquescan provide performance
comparableto traditional approacheswhile making it much easierto construct, maintain
and augment the accesanethods of a le structure (i.e.,to support extensible databases)
by greatly reducing program complexity. In spite of all these arguments, there is still
resistanceand skepticism in the databasecommunity to memory mapping. One reason

for this skepticism is the lack of hard data to support arguments in favour of memory

133

134 Experimental Analysis of EPD File Structures

mapped le structuresand their accessmethods.

At the beginning of this work, no major undertaking to conduct experiments on a
memory mapped storage system had beenreported and there was no experimental evi-
denceavailable to support the view that memory mapped le structurescould perform
aswell asor better than traditional le structures. Therefore,to demonstrate the feasibil-
ity of the EPD approachto memory mapping, | decided to implement severalillustrative
le structuresusing both the EPD approach and the traditional buffer management ap-
proach. The performance of these le structuresin the two environments was measured
and compared. For this purpose, an experimental testbed was designed and imple-
mented. The testbed allowed the experiments to be conducted in a tightly controlled
environment and was employed to make reliable performance measurements.

In addition to conducting experiments on sequential le structures,it was also de-
cided to study the behaviour of partitioned le structuresin an EPD environment since
parallel accessmethods representan important and active area of reseach in database
technology. Two of the sequential single-disk EPD le structureswere partitioned by us-
ing data striping techniques and algorithms were designed to perform parallel queries
on thesestriped structures. Experiments were conducted to study the bene ts obtained
from data partitioning and parallel accessmethods in the memory mapped environ-
ments basedon the EPD approach.

All these experiments are an important and somewhat unique aspectof this work
that has beenwell received by other reseachersworking in this area[BGW92]. In addi-
tion to demonstrating the effectivenessof the EPD approach, this work establishesthe
beginnings of benchmarks against which other work in the area can be evaluated. The
restof this chapter presentsthe design of the experimental testbed and various le struc-

tur es,the experiments conducted on the testbed and an analysis of the results obtained.

4.1 Testbed 135

4.1 Testbed

4.1.1 Hardware/Software Platform

All the experiments presentedin this dissertation were conducted on a 10-processor(In-
tel i386) SequentSymmetry [Sym87], a shared-memory symmetric multi-pr ocessor run-
ning the DYNIX 3.1operating system. The system contained 64M of physical memory,
one Sequentdual-channel disk controller (DCC) and eight Fujitsu M2344K/M2372K disk
drives. The DYNIX operating systemusesa simple pagereplacementalgorithm that em-
ploys a FIFO queue per page table augmented by a global LRU cacheof replaced pages
sothereis a second chanceto recovera memory frame before it is reallocated. In order
to analyze the experimental results, it is important to understand the organization of the
DCC and the DYNIX page replacementalgorithm. Therefore, a summary of thesetwo
aspectsis presentedbefore describing the other details of the testbed. The information

presentedin sections4.1.2and 4.1.3has beenderived from the SequentSymmetry tech-
nical summary guide [Sym87]. Also, gur es4.land 4.2 have beenreproduced from the

samesource.

4.1.2 Sequent Dual-Channel Disk Controller (DCC)

The Sequentdual-channel disk controller (DCC) controls 8 disk drives using the SMD-
E (Storage Module Drive — Extended) disk interface. Transfer of data to and from the
disks takes place at bursts of up to 3 megabytes per second. The DCC provides two
independent data channels,eachof which connects4 disk drives to the systembus. The
dual-channel design, depicted in gur e 4.1, allows two drives, one on each channel, to
transfer data simultaneously in eachdirection. All drives are capable of simultaneous
seeks. The drives are connectedto the data channels of the DCC via two multiplexors,

with eachmultiplexor connecting two drives eachto the two channels.

136 Experimental Analysis of EPD File Structures

Channel A Multiplexor 1 Multiplexor 2 Dual-channel
o e Disk
anne Controller

Figure 4.1: SequentDual-channel Disk Controller (DCC)

4.1.3 DYNIX Virtual Memory Implementation

DYNIX employs the virtual memory management implementation rst used in the
VAXIVMS operating systemfor the VAX-11/780 (see[LL82] for details of the VAX/VMS

implementation). At boot time, the DYNIX kernel allocates physical memory for itself
and its basicdata structures. The remaining pagesof physical memory are inserted into
a queue called the freelist. All memory needed for user processesds taken from the free
list. When a processstarts executing, the pages of virtual memory it needs are loaded
on demand at page fault time. Eachprocesshas a residentset which consists of the list
of physical memory pagesallocated to that process. The maximum size of the resident
setfor eachprocessis limited, to prevent any one processfrom monopolizing physical
memory, and can be speci ed by invoking a system call; otherwise the operating sys-
tem usesa heuristic to determine the maximum resident setfor the process.During the

initial urry of page faults after a processstarts executing, the processobtains physical

4.1 Testbed 137

memory by depleting the freelist (see gur e 4.2(a)}). After the resident setis lled up,
however, the page replacement algorithm is invoked at page fault time to trade a page
from the resident setwith onefrom the free-list (see gur e4.2(b)). When pagesare added
to the freelist, they go to the tail of the list. A page that is not reclaimed by its process

eventually reachesthe head of the freelist and is claimed by a new process.

ProcessA's ProcessA's ProcessA's
Resident Set Free Resident Set Free Resident Set Free
(not yet full) List (full) List (full) List
Al W A6 Al M A9 Al P42
A2 l A2 ; A2 l
M8 M13 P43
~ | ~ 1 il
A4 P40 > | A4 P42 A9 B10
A5 l A5 l > }{
B8 A6 P43 A6
777777 l A7 l A7
,,,,,, B9 B10
l A8 l A8
P12 Ad
FIFO
Pointer
(a) Filing the Resident (b) Page A4 moved to the (c) Reclaiming page A4
Setof ProcessA free list to make room for
page A9

Figure 4.2:DYNIX PageReplacementAlgorithm

IThe letter in a page label indicates a processthat owns the page and the following digits indicate the
page number within the addressspaceof the process.

138 Experimental Analysis of EPD File Structures

The pagereplacementalgorithm is amodi cation of FIFO and is implemented with a
pointer per processthat cyclesthrough the pagesof the resident setof a process.When a
pagefault occurs,the pageindicated by the pointer is swapped with apagefrom the free
list. A record is maintained of all the pagesa processhas placed on the freelist. If one
of thesepagesis referencedagain by the process.the resulting page fault, called a minor
pagefault, simply reclaimsthe page from the freelist (see gur e 4.2(c)),thereby avoiding
the need to read the page from disk. By contrast, a major pagefault results in reading
the faulted page from disk. Thus, page faults in gur es4.2(a)and 4.2(b)are major page
faults while the onein gur e 4.2(c)is aminor pagefault. Oncea pageis brought backto
the resident set, it is not replaceduntil the FIFO pointer makes another passthrough the
resident set.

To handle pagesmodi ed during execution, the above processis modi ed slightly by
the introduction of another queue called the dirty list that works in a manner similar to
the freelist. If a page being replaced hasbeenmodi ed during execution, the page gets
added to the dirty list instead of the freelist. When freememory getslow, an operating
system daemon processwrites out a subset of the pagesin the dirty list to disk and

transfers these pagesto the freelist asclean pages.

4.1.4 Experimental Testbed

The testbed designed and developed as part of this work allows experiments to be run
in acontrolled environment. In test mode, the only activities taking place on the system
are the onesconcerning the experiment. Thus, the experiments run without any external
interference. This environment was made possible by the following manipulations of
the DYNIX operating system mechanisms.

During test mode, the system runs in its normal multi-user mode but all operating

system servicesexceptthe ones needed by the experiments are disabled or shut down,

4.1 Testbed 139

which includes disabling external login, and all network services.

The parametersthat can be controlled by the experimenter include:

Maximum resident set: The maximum resident setfor eachindividual processcan be

Total

speci ed at run time, which controls the maximum amount of real memory avail-
able to the experiment during execution. Upon exceedingthat size, the page re-

placement algorithm describedin section4.1.3is invoked to make room for a new

page.

amount of free physical memory in the system: Due to the nature of the DYNIX
virtual memory implementation and to avoid working with extremely large
databases,it was important to control the total amount of free memory available
to the experiment. This restriction was achieved by using non-swappable memory
blocking programs. A blocking program causesa speci ed amount of physical
memory to be allocated and goesto sleep. Becausethe blocking program is made
non-swappable, the physical memory allocated to it is not available for any other

computation; it is asif that memory was not in the system.

During experiments, the total free memory was kept at a level that left a very
small amount of freememory in the global cacheafter memory had beenallocated
to the executing processes.This strategy allowed the processedo continue execu-
tion while ensuring that the experiment did not benet from any extra available

memory in the global cache.

During experiments, the virtual memory systemwas tuned (by meansof the vmtune

facility of DYNIX) to reduce the size of global free memory as much as possible and

to turn off operating system optimizations such as disk read-aheads. Some additional

changesmade subsequently to the testbed are described in section5.5.1.

140 Experimental Analysis of EPD File Structures

For parallel experiments presentedin this dissertation, a maximum of 4 disks, with
one disk attachedto eachside of the two multiplexers of the DCC, were used. This con-
guration allowed the experiments to make parallel use of the 4 disks. Note, however,
that there were only two channelswith two disks on each channel, which intr oduced

some contention for data transfer.

4.2 Experimental Structure for Feasibility Studies

Severalexperiments were constructed to demonstrate the feasibility of the EPD approach
to memory mapping. The general form of an experiment is to implement a le structure
in both the traditional and the EPD styles, create and populate the le structures,mea-
sure performance of retrievals from the le structures,and compare the results. While
every effort was made to keepthe two types of le structuresassimilar aspossible,some
systemlimitations precluded absolutely identical execution environments. In particular,
the traditional le structuresare accessedthrough a custom built LRU buffer manager
that performed raw /0O to and from disk. DYNIX does not support memory mapping
using raw /O, and therefore,regular le systeml/O is employed for the EPD le struc-
tures. Separateexperiments were conducted to ensure that memory mapping through
the le system did not result in any advantages due to buffering; it was found that a
mapped le doesnot make use of le system buffers. To make the comparisons equal,
all le structuresused 8K node sizesand all I/O was performed in 8K blocks.

In order to use the experimental testbed described in section 4.1, the following gen-
eral steps are taken. First, a set of blocking programs are run whose only purpose is to
reduce the amount of available physical in the system sothat it is just enough to be the
total amount of memory neededfor an experiment. The blocking programs sleepduring

the experiment so asnot to causeany interference. After the amount of available system

4.3 Sequential File Structures 141

memory hasbeenreduced to the desired level, the DYNIX limit command is used to re-
strict the maximum resident setsize for the program(s) constituting the experiment. The
experiment is run in this restricted environment. The DYNIX ptime utility is employed
to obtain performance measurements such as the number of page faults and elapsed
time for the program. If it is necessaryto measure the performance of the individual
phasesof the program, appropriate system calls are embedded into the program code.
For example, getusclk() can be invoked to accesshe micro-secondclock.

The traditional le structures were implemented on top of the LauRel database
[Lar88]. The DYNIX pagereplacementalgorithm (seesection4.1.3)was matched against
the custom-built LRU buffer-manager used by LauRel. Experiments were run both
stand-alone to preclude external interference and on a loaded machine. The amount
of memory available for the experiment and total free global memory were tightly con-
trolled using blocking programs sothat both types of le structureshad exactly the same
amount of buffer spaceduring execution.

The test le structuresvaried in size from 6 to 32 megabytes. The total amount of
primary storageavailable for the experiments was restricted to keep the ratio of primary
to secondary storage as 1:10and 1:20respectively for two different setsof experiments.
Thus, primary storage for the experiments ranged in size from .6M to 3.2M and .3M to
1.6M. Theseprimary to secondary storage ratios are common in the current generation
of computers, supporting medium (0.1G-.5G)to large databases(1G-4G) but not very

large databases(1T).

4.3 Sequential File Structures

In order to show that the EPD approachto memory mapping is suitable and ef cient for

the implementation of traditional (pointer-less)and complex (incorporating many point-

142 Experimental Analysis of EPD File Structures

ers)data structur esalike, experiments were conducted on apre x B -Tree[BU77] and an
R-Tree [Gut84], which are pointer-less,and a complex network graph structure, which
contains many pointers. In eachcase,the cost of performing representative queries or
traversals was measured in a controlled environment. The results, presentedin sec-
tion 4.4,demonstrate that the EPD structuresperform quite admirably when compared
against their traditional counterparts.

This section presentsthe sequential single-disk le structuresimplemented for exper-
imentation and the details of the actual queries performed on individual le structures.

The queries are designed to cover many realistic accesgatterns.

4.3.1 Prex B -Tree

Thepre x B -Tree[BU77] is awell studied and widely used data structur e for maintain-
ing indexes, and, assuch, was an ideal candidate for inclusion in this study.

For the experiments with the B -Tree, 100,000uniformly distributed records were
generated whose (order) keys were taken from the unit interval. Records had variable
lengths with an average length of 27 bytes. The records were inserted into aprex B -
Treein the order of their generation, i.e., the records were inserted into the B -Treein a
uniformly distributed order of their keys. For the resulting B -Tree,four different query
les were generated, each le requiring that 10,000records be readin total in response
to a collection of range queries of a given size. An individual query in each le was
specied by arandom key (based on a uniform distribution) and a xed number of
records (the size of the range query) to be read sequentially starting from the speci ed
key. In the restof this chapter, eachof the four query les is described by atuple <n,m>
where n is the total number of queries in the le and m is the size of each query. For
example, <10,1000> implies 10queries of size 1,000records each—the query le consists

of 10keys from a uniform distribution and, for eachkey, the experiment searchesfor the

4.3 Sequential File Structures 143

key in the B -Tree and then reads 1,000data records sequentially by following the leaf
node links of the B -Tree.

An additional fth query le contained 10,000exact match queries obtained from
a normal distribution with a mean of 0.5and a variance of 0.1. For eachquery in this
le, the experiment searched for the speci ed key in the B -Treeindex and retrieved the

corresponding data record.

4.3.2 R-Tree

The R-Tree [Gut84] is a data structure and an accessmethod for multi-dimensional ob-
jects (e.g., points and regions) and is used for representing spatial data, e.g., in geo-
graphical information systems.An R-Treeis a nhatural extension of the B-Treefor multi-
dimensional data. This discussion is restricted to 2-dimensional objects, referred to as
2-dimensional rectangles

A 2-dimensional rectangle is a tuple containing two (x,y) pairs, which denote the
lower -left and the upper-right corners of a rectangular area in a 2-dimensional space.
Thus, a 2-dimensional rectangle might be used to representan areaon a planar surface
while a 3-dimensional rectangle might representa box in space. The structure of an
R-Treeis similar to that of a B -Tree except that the leaf nodes, called data nodes, of
an R-Treecontain pointers to data rectangleswhile index nodes, called dir ectory nodes,
contain minimum bounding rectanglesinstead of keys. A minimum bounding rectangle
for agiven setof rectanglesis the smallest sized rectangle that completely encloseall the
rectanglesin the given set(see gur e 4.3);arectangleis said to encloseanother rectangle
if the former overlaps the latter along eachdimension. Thus, an index entry in an R-
Tree dir ectory node consists of a pointer to a next level (data or dir ectory) node and a
rectangle, which is the minimum bounding rectangle for all rectanglescontained in the

sub-tree rooted at the referent next level node. The R-Tree supports point queries and

144 Experimental Analysis of EPD File Structures

several types of window queries. A point query on an R-Treeasksfor all rectanglesthat
cover a given query point whereasa window query asksfor all rectanglesthat enclose,
intersector are containedn a given query rectangle. An R-Treewindow query is similar
to aB -Treerange query. However, in terms of data accessthere is one basicdifference:
index pagesare accessedmore frequently and involve much more computation for the

R-Treethan for the B -Tree.

-1 7T - - -~ T
[[
[
[
[
|
[
[
[[
[[
[[
[[
[[[
[[[
[[[
L — _\ ______ I O A
Minimum Bounding Rectangle Minimum Bounding Rectangle

(@) (b)

Figure 4.3:Minimum Bounding Rectanglesin an R-Tree

For the R-Tree experiments, a 2-dimensional R-Tree was implemented in both the
traditional and the EPD environments. The maximum number of entries in individual
R-Treenodeswerelimited to 450in data nodes,and 455in dir ectory or index nodes. Each
R-Tree was populated with data obtained from a standardized testbed [BKSS90]. The
data consisted of 100,002-dimensional rectangleswher e eachrectangleis assumedto be

in the unit cube[0,1]%. The centresof the rectanglesfollow a 2-dimensional independent

4.4Results and Analysis of Experiments on Sequential File Structures 145

uniform distribution; see[BKSS90Jfor further details of the testdata. The query le used
for the experiments was also taken from the same testbed and consisted of 1000 point

gueries and 400eachof the enclosement,intersection and containment window queries.

4.3.3 Network Graph

To simulate accesgpatterns found in complex non-traditional data intensive applications
(e.g.hypertext or object-oriented databases)alarge dir ectedgraph was constructed con-
sisting of 64,000nodes of size 512 bytes each. The nodes were grouped into clusters of
64 nodes each;the nodes within a cluster were spatially localized on secondary storage.
An edge going out from a node had a high probability (85%,90% or 95%) of referenc-
ing another node within the samecluster. Inter-node edgeswere paired with randomly
selectednodes. Figure 4.4illustrates this structure. Eachexperiment consisted of 40ran-
dom walks within the graph; eachwalk traversed 500edges. Thesetraversals simulated
a CAD/CAM system where multiple usersaccessa particular part and then accessthe

part information in dif ferent ways.

4.4 Results and Analysis of Experiments on Sequential File

Structures

For each experiment, three performance measures were gathered: the CPU time, the
elapsed time, and number of read operations from secondary storage. Multiple pro-
cessorswere used in both traditional and memory mapped experiments. The retrieval
application processran on one processorwhile the accessmethod for the le structure
ran on another processor The measured CPU time is the total computing time spent
by all processorsin a given testrun and the elapsedtime is the real clock time from the

beginning to the end of atest run. Hence, CPU time for an experiment may be greater

146 Experimental Analysis of EPD File Structures

Inter-cluster
Edge/

Intra-cluster
Edge

Figure 4.4: Network Graph Structure

than elapsedtime. Both times include any system overhead.

4.4.1 Stand-alone System: No External Interference

The results of running the experiments on a stand-alone system are presentedin table
4.1. For the CPU times, the memory mapped accessmethods are generally better than
the traditional onesbecausethereis lessCPU time spent doing buffer management. For
the elapsedtimes, the memory mapped accessmethods are comparable (10%)to their
traditional counterparts. An exception occurs when the traditional LRU buffer spaceis
only 5% of the le size for sequential reads becausethe LRU algorithm is suboptimal
in this caseand results in some extra input operations. The memory mapped FIFO
page replacement algorithm is almost optimal in this caseand can work with smaller
amounts of primary memory without degrading performance. All of the results show

that the DYNIX page replacement schemeperformed well enough to be comparable to

4.4Results and Analysis of Experiments on Sequential File Structures 147

the traditional LRU buffer-manager.
Theseresults con rm the thesis about memory mapped le structures,i.e.,the EPD
approachto memory mapping provides performance comparable to that obtained with

traditional le structuresfor random queries.

4.4.2 Loaded System: External Interference

To verify the conjecture about the expected behaviour of mapped accessmethods on a
loaded machine, the previous B -Treeexperiments wererepeatedduring peak-load peri-
ods. Thememory mapped and traditional retrievals were started at the sametime during
peakload (3:00pm)and, hence,were competing with eachother aswell asall other users
on the system. Thetwo le structureswere on different disks accessedhrough different
controllers sothe retrievals were not interacting at the hardwarel/O level. However, the
amount of global cachewas not restricted, soif freememory was available, the memory
mapped accessmethod would benet from it. Table 4.2 shows the averagesof trials on
5 dif ferent week-days.

Note that for the EPD le structures, the amount of localmemory allocated to the
experiment was 10%of the databasesize,i.e.,the maximum resident setof the program
was restricted to be 10% of databasesize plus an allowance for program code and data.
However, the program's data can be cachedby the operating systemin any globalmem-
ory that is not being used by other competing programs running on the system. As can
be seen,there was a large difference when there were a signi cant number of random
reads. In those cases,the memory mapped accessmethods make use of any extra free
memory to buffer data. This effect is particularly noticeable for the normal distribu-
tion becauseany extra memory produces a signi cant impr ovement. Clearly, the LRU
buffer manager could be extended to dynamically increaseand decreasebuffer space

depending on systemload, but doing sois non-trivial and further complicatesthe buffer

148 Experimental Analysis of EPD File Structures

Memory Mapped Traditional
Block Size= 8K CPU | Elapsed | Major || CPU | Elapsed | Disk
Access Query Time Time Page || Time Time Reads
Method | Distribution (secs)| (secs) | Faults || (secs)| (secs)
Pre x <1,10000> 35 19 61 32 32 53
B -Tree | <10,1000> 35 19 56 32 32 58
<100,100> 37 22 147 35 35 150
<10000,1> 98 217 8789 240 223 8746
normal 91 181 6777 202 183 6638
R-Tree window 154 174 1414 330 334 1462
point 109 124 934 230 234 896
Network | 85%localref | 318 476 15294 || 526 458 15004
Graph 90%local ref | 271 375 11278 | 449 370 11368
95%local ref | 207 243 6584 337 254 6539

(a) Primary Memory Size10%of DatabaseSize

Memory Mapped Traditional
Block Size= 8K CPU | Elapsed | Major || CPU | Elapsed | Disk
Access Query Time Time Page || Time Time | Reads
Method | Distribution (secs)| (secs) | Faults || (secs)| (secs)
Pre x <1,10000> 35 19 61 35 35 17
B -Tree | <10,1000> 35 19 66 34 33 131
<100,100> 37 22 155 37 36 216
<10000,1> 127 255 9415 || 260 224 9723
normal 126 235 8250 || 253 217 9313
R-Tree window 181 227 2913 || 367 374 3396
point 136 184 2647 279 289 3491
Network | 85%local ref | 383 565 17772 | 563 495 16550
Graph 90%]local ref || 330 462 13602 | 484 403 12781
95%local ref | 264 316 8338 || 361 276 7400

(b) Primary Memory Size5% of DatabaseSize

Table 4.1: Comparison of Memory Mapped and Traditional AccessMethods

4 5Partitioned B -Tree 149

Allocated Primary Memory Size10%of DatabaseSize

Memory Mapped Traditional
Block Size= 8K CPU | Elapsed | Major || CPU | Elapsed | Disk
Access | Query Time Time Page | Time Time Reads
Method | Distribution | (secs)| (secs) | Faults || (secs)| (secs)
Pre x <1,10000> 35 21 60 34 35 53
B -Tree | <10,1000> 36 21 56 34 36 58
<100,100> 37 25 143 37 38 150
<10000,1> 111 277 6677 263 263 8746
normal 97 134 2063 221 217 6638

Table 4.2: Peak Load Retrievals

manager while duplicating facilities provided by the operating system.

45 Partitioned B -Tree

A B -Treebasedon the EPD approachwas modi ed to becomeapartitioned B -Treeand
evaluated. This section presentsthe modi cations made to the B -Tree and the results

of the experiments run using the methods presentedin section 3.3.

4.5.1 Partitioning Algorithms

Two different partitioning algorithms, viz., a near-optimal algorithm by Seegerand Lar-
son[SL9]] and a simple round-r obin algorithm, were studied. Given D disks, the Seeger
Larson algorithm guaranteesthat eachleaf node in any sub-sequenceof leaves of size
D 2 or smaller is stored on a distinct disk. In the round-robin partitioning algorithm
with D disks, numbered 0 through D 1, when a node splits, the new node is allocated
on disk M 1 modD, where M is the disk containing the splitting node. The round
robin algorithm distributes new nodes cyclicly over the D disks, and its performance

was compared to the SeegerLarson algorithm.

150 Experimental Analysis of EPD File Structures

45.2 Modied File Structure

The pre x B -Tree(seesection4.3.1)was modi ed to achieve:

ef cient partitioning of data: TheB -Treeis partitioned acrossseveraldisks during the
insert operation; when a node splits, the new node is allocated on a disk dif ferent
from the one containing the splitting node. The disk for the new node is deter-

mined by the partitioning algorithm being used.

ef cient parallel execution of range queries: A parallel retrieval algorithm was de-
signed and implemented for this purpose. The algorithm splits the speci ed range
query into multiple smaller sub-queriesthat accessdata on different disks and are

executedin parallel.

To achievethe rst of the above goals, the structur e of the B -Treenodesis modi ed
to storethe cardinal number of the containing disk with eachindex entry and leaf node.
This modi cation allows the traversal algorithm to determine the containing disk for a
node referred to by an index entry without having to rely on a special format for the
node pointers.

Partitioning a <K,K> range query involves searching the index for the two keys to
determine the leaf nodes for the keys and then partitioning the set of leaf nodes by
following the leaf node links. In order to allow the <K,C> and <K,C,C> range queries
to be processedequally efciently , the B -Tree node structure is further modied as
follows. The total number of records stored in the sub-tree of an index entry is stored
with the index entry asdepicted in gur e4.5.

This structure allows a <K,C> style query to be changedinto a <K,K> style query by
using the record counts in index entries to locate the bounds of the <K,C> style range

guery. For example, execution of a <K,C> query rst searchesthe index for key K and

4 5Partitioned B -Tree 151

\DO Dl\
| |
: 14 N 12:

‘Do Dy Dy, ‘D3 Dy Dy,

| | | | | |

s B lus] Y [Al Rvs|W s
A B,C,D,E EGH, I J K,L, M, N O,PRQ,R S,T,U,V,W X, Y,Z

Do D1 D2 D3 Dl DO
I
Leaf Nodes

Figure 4.5:Modi ed B -TreeFile Structure

then traverses right (assuming C has a positive sign) from K, summing record counts
from index entries until Cis equaled or exceededat key K; the query <K,K,> bounds the
leaf nodesthat must be retrieved to service the <K,C> query. Note that the above process
traversesdown the treeonly up to the last index node level and doesnot dereferencethe
leaf node pointers. With record counts stored in index nodes, the cost for searching
the index structure to locate the bounds of a <K,C> style query is very low becausethe
index pagesfor low to moderately sized B -Treesare usually cachedin memory and
thus require no disk accesses.

The costpaid for the above modi cations to the B -Treeis reduced fan-out causedby
the reduction in number of index entries per node becauseof the increasedsize of each
entry. However, this overhead becomessigni cant only when the averagelength of the

keys stored in the index nodesis relatively small.

152 Experimental Analysis of EPD File Structures

4.5.3 Concurrent Retrieval Algorithm

For retrievals, a specialized form of the generic concurrent retrieval algorithm described
in section 3.3.4is used. During execution of aquery onthe B -Tree,very little processing
takesplacein the index nodes. Therefore, a single task is employed to traverse the index

portion of the B -Tree.

4.5.4 Experimental Analysis

Recall, the machine used for experiments was a SequentSymmetry with 10 processors
and 8 disk drives, of which 4 were used (seesection 4.1). In each experiment, 1000
<K,C> range queries were processed where eachindividual query consisted of reading
arandom number of sequential records starting at arandomly selectedkey. The average
guery size was 2000records. A control experiment was performed rst, in which the
B -Treehad only asingle partition. The code executedis the sameasin the partitioned
casebut thereis no parallelism at the back end from the single partition. The partitioned
B -Treeexperiments were conducted with 4 partitions and the application program did
no processingon query results. Thus, the application program did not intr oduce any
delays.

As before, the performance parameters measured in each experiment included the
elapsedtime, the total CPU time over all processesand the total number of major page
faults (seesection4.1.3). Theseparametersprovide realtime evaluation of the concurrent
retrieval algorithm, and the partitioning algorithm. The results obtained for the parti-
tioned B -Treeare presentedin table 4.3and gur e 4.6. The largestdecreasein elapsed
time is from 1 to 2 processorshecausethere are 2 channels allowing 2 disks to transfer
data without contention. After that, the decreaseis lessbecauseof the data transfer con-

tention on the channels, until the elapsedtime begins to rise becauseof this contention.

4 5Partitioned B -Tree 153

Nevertheless, a speedup of 3.2with 4 disks is quite noteworthy . Note that the graphs
for the single disk casehave only two data points. With only a single disk to work with,
there is no benet derived by having multiple CPUsto do the I/O becauseall 1/0 re-
guestsare serialized at the disk and a kernel thread blocks until a page fault is serviced.
As aresult, there is no saving in elapsetime. In fact, the time increasesslightly asthe
number of CPUs is increasedbecauseof the extra contention intr oduced by multiple

CPUs accessingthe single disk.

Primary Memory Size 10%of DatabaseSize

Single Disk - - - -
Round Robin —
SeegerLarson - - - -
T 500
450 - . =
400 +-
Elapse cpu 400
Time 3501 Time
350
(sec) (sec)
300 |- 300 By
250 F - 250 17 _
| | | | | | | |
1 2 3 4 1 2 3 4
Number of CPUs Number of CPUs

Figure 4.6: Comparison of Single Disk B -Treewith Four Disk B -Tree

During execution of the program, statistical information is collected in the LRA to
measure the effectivenessof the two partitioning algorithms for the query setbeing stud-
ied. First, the total number of retrieval requests,indicating total /O to be done, received

by the LRA is maintained. Second,the distribution of theserequestsover various disks is

154 Experimental Analysis of EPD File Structures

Primary Memory Size 10%of the DatabaseSize
Round Robin SeegerLarson
Partitioning Partitioning

Total Num Total Num
Num | Number || CPU | Elapsed | Page || CPU | Elapsed | Page
Disks CPUs Time Time Faults || Time Time Faults

1 1 254 427 13458 | 254 427 13458
324 440 13313| 324 440 13313
259 438 13655 | 256 424 13623
297 296 13545| 290 263 13639
454 262 13754 | 372 252 13646
491 325 13650 | 454 262 13754

A WODN RN

Table 4.3: Comparison of Single Disk B -Treewith Four Disk B -Trees

measured. An evendistribution acrossall disks indicates that the partitioning algorithm
achieved good overall load balanceand good throughput. However, global load balance
in itself is not suf cient to achievegood local load balanceand responsetime for individ-
ual queries. For example, if eachquery retrieves data from a single disk, but individual
gueries are spread evenly over all disks, the statistical information will indicate an even
overall distribution of disk retrievals. However, there would be no impr ovement in the
responsetime of any one query and neither is there any impr ovement in throughput.
What is needed, therefore, is another criterion to measure the effective performance
gain that takes into account the gain achieved by individual queries. For this purpose,
a new parameter, called the performanceain, is de ned to serve as a theoretical mea-
sure of the gain achieved by partitioning the le structure acrossmultiple disks. Let Qo,
Q1, ..., Qu 1 bethe list of queries executedon a B -Tree partitioned acrossD disks. For
the i-th query,letdj; O j D 1 bethe number of leaf nodes retrieved from disk
j. D; &) d is the total number of leaf nodes retrieved from disk j to processall N

queries and Total é'j) o Dj is the total number of leavesretrieved from all disks. Now,

4 5Partitioned B -Tree 155

for the i-th query, Total; éJD o-dij is the total number of disk reads,and Max ma>J‘-3 S
is the minimum number of serialized disk readsrequired for executing the query; in other
wor ds, the disk with the largestnumber of I/O operations is the bottleneck and dictates
the shortest possible time to processthe query. Hence, Total; Max indicates the maxi-
mum speedup possible by executing the i-th query in parallel. If an individual query
accessedlata equally from all disks, this number for the query is equal to D indicating a
D fold speedup in the parallel execution of the query.

The performance gain over all queriesis computed as Total éiN OlMa>q and provides
a theoretical measure of the effectivenessof the partitioning algorithm alone. The per-
formance gain, ascomputed for the round robin and the SeegerLarson partitioning al-
gorithms, is shown in Table 4.4. As can be seen,the SeegerLarson algorithm performs
much better than the round robin algorithm. However, in practice, the round robin al-
gorithm performs reasonablywell given its simplicity . Further, a sequential reading of
the entire B -Tree indicated that the SeegerLarson algorithm partitioned the B -Tree

almost perfectly with a performance gain of approximately 3.95with four disks. The

corresponding performance gain for the round robin algorithm was slightly lower at 3.6.

Effect of Employing Extra Segments for Retrieving Data

In the experiments described sofar, all the retriever tasks operated on a single mapping
created by the representative (seeFigure 4.7(a))with its own pagetable and resident set.
This arrangement can lead to someinterferenceamong the accesgpatterns of individual

retriever tasks becauseall the retriever tasks share the sameresident setin primary stor-
age. Thus, a page fault generated by one retriever task can potentially remove a page
that might be needed immediately by another retriever task. For the B -Tree experi-
ments, however, the effectis not likely to be large becauseof the uniform distribution of

requests. To test this conjecture, another set of experiments was run, where additional

156 Experimental Analysis of EPD File Structures

Num Leaf Disk Counts Perf.
Disks | Count DO D1 D2 D3 Max | Gain
1 15189 || 15189| - - - 15189| 1.000
4 15189 || 4065 | 4057 | 3534 | 3533 | 6144 | 2.472

(a) Round Robin Partitioning

Num Leaf Disk Counts Perf.
Disks | Count DO D1 D2 D3 | Max | Gain
1 15189 || 15189| - - - 15189 1.000
4 15189 || 3728 | 3824 | 3835| 3802 | 4883 | 3.111

(b) SeegerLarson Partitioning

Table 4.4: Expected Effectivenessof B -Tree Partitioning Algorithms

segmentswere created for the exclusive use of the retriever tasks, while the represen-
tative retained its own original segment (see Figure 4.7(b)). The retriever tasks were
distributed evenly acrossthe additional segments;the number of additional segments
is a control variable. The additional segment created for a retriever task mapped the
corresponding partition, of the representative segment, in its own addressspace,with
its own page table and resident set.

The results of the experiments with extra retriever or worker segmentsare presented
in Table 4.%. With no worker segments,all the tasks executeon the representative seg-
ment, and therefore, any available CPU can execute any ready task. However, when
worker segmentsare created, eachwith one CPU, the tasks are partitioned into disjoint
subsetswith each subset executing on a different segment; the retriever tasks are dis-

tributed uniformly acrossthe available worker segmentsand all remaining taskssuch as

2The last 4 rows from table 4.3have beenreproduced for easyreference.

4 5Partitioned B -Tree 157

Representative Representative
Segment Segment

v T b
' Retriever .| | page
. Segment | Ltable
. Retriever | page
' Segment | Lable

Page P b “

,,,,,,,,,,,,,,, age Ilaiebloluebtolgieebettat

Table Table roootoTTomoooes ~
. Retriever | page
' Segment | Ltable
. Retriever | | page
' Segment | Ltable

(a) A single mapping (b) Extra mappings for Retrievers

Figure 4.7:Using Multiple Segmentsfor Retriever Tasks(FST)

the LRA, the FSTs and the iterator stay on the representative segment.

Unfortunately , this partitioning of tasks is detrimental to parallelism afforded by
multiple CPUs. When there is only one worker segment (rows 5 and 6 of table 4.5), all
the retriever tasks use one CPU and the remaining tasks are executed by the CPU(s) on
the representative segment. As a consequence the representative segment CPUs spend
signi cant amounts of time waiting for the worker segment CPU to retrieve data from
disks via one of the retriever tasks. During this wait, a representative segment CPU

either spins or goesto sleepdepending upon the spin time con guration 2 and the actual

3Setting the spin time appropriately involves a trade-off between CPU and elapsed times. If the spin
time is too small, the CPU may go to sleeptoo frequently resulting in lower CPU times but higher elapsed
times caused by the costinvolved in waking a CPU up. On the other hand, an excessivelylarge value of
spin time canresultin wasted CPU cycles. For the experiment presentedin this dissertation, the spin time

158 Experimental Analysis of EPD File Structures
waiting time.
Primary Memory Size10%of DatabaseSize
Round Robin SeegerlLarson
Number of Disks = 4 Partitioning Partitioning
Number | CPUson Total Num || Total Num
Worker Rep Total | CPU | Elapsed | Page || CPU | Elapsed | Page
Segments| Segment| CPUs || Time | Time Faults || Time | Time | Faults
0 1 1 259 438 13655 256 424 13623
2 2 297 296 13545 290 263 13639
3 3 454 262 13754 || 372 252 13646
4 4 491 325 13650 || 454 262 13754
1 1 2 533 430 13720 || 533 362 1371
2 3 743 506 14030 || 755 433 14090
2 1 3 338 361 13152 || 337 301 13131
4 1 5 304 426 1318 || 303 416 13137

Table 4.5: Effect of Extra Worker Segmentson Concurrent B -TreeRetrievals

As can be seenfrom table 4.5,using a single worker segmentwith one CPU on the

representative segment (rows 5-6) generatesapproximately the same number of page

faults as using no worker segments (rows 1-4) becauseall the retriever tasks are still

sharing the same segment. It is not clear why a slight increasein the number of page

faults occurs with two CPUs on the representative segment when a single worker seg-

ment is employed (row 6). At the sametime, the use of a single worker segment (rows

5-6) substantially increasesthe total amount of CPU time becauseof the spinning of the

CPU(s) mentioned before. As well, the elapsedtime (rows 5-6) increasesbecauseof the

loss of data parallelism caused by reducing the number of CPUs available for the re-

triever tasks. When the number of worker segmentsis increasedto 2 (row 7), there are

was setto 1 ms, which is the costof waking up a UNIX processon the testbed used.

4 5Partitioned B -Tree 159

indeed fewer page faults generated, thus con rming the hypothesis about the interfer -
ence among different retriever tasks. The total CPU time is reduced becausenow the
representative segment CPU communicatesin parallel with two worker segmentCPUs,
and therefore, spends signi cantly lesstime spinning. The elapsedtime (row 7) also
comesdown becauseof the two fold data parallelism made possible by the two worker
segment CPUs to executethe retriever tasks. Finally, when the number of worker seg-
ments is further increasedto 4 (row 8), data parallelism increasesso that retrieval re-
guestsgenerated by the taskson the representative segmentare processedfaster; hence,
the representative segment CPU(s) have higher utilization, which meansless spinning,
and hence,alower CPUtime. The elapsedtime doesnot reduce any further becausethe
amount of data parallelism is restricted by the number of available disk controllers.
Thus, the reduction in the number of page faults afforded by the extra worker seg-
ments is not substantial and does not offset the overhead intr oduced by the additional
segments, as is evident from comparing the elapsed times in table 4.5 when the total
number of CPUs employed is taken into account. For example, faster elapsedtime is
achieved by employing three CPUs on the representative segment instead of splitting
the CPUs across one representative and two worker segmentsin spite of the slightly
reduced number of page faults causedby the extra worker segmentsin the latter case.
Theseresults seemto disfavour the use of additional segmentsfor retriever tasks.
Hardwar e systems with more advanced virtual memory capabilities might make this
approachviable in the futur e. What is noteworthy is that Database allows for all these

different options to take advantage of available hardwar e.

160 Experimental Analysis of EPD File Structures

4.6 Partitioned R-Tree

The R-Tree le structure (seesection4.3.2)was modi ed and partitioned to achieve par-
allel execution of queries. Note that point queries as well as window queries on an
R-Treeare range queries capableof bene ting from parallel execution. Devising ef cient

partitioning algorithms for the R-Treeis much more complicated than for the B -Treebe-
causethereis a signi cant amount of computation that takes placein the index nodes of
an R-Treeduring traversal. The nature of computation dependsupon the query being ex-

ecuted and in uences how the treeshould be partitioned to achieve good performance.

4.6.1 Partitioning Algorithms

For partitioning an R-Tree across multiple disks in the EPD environment and for ex-
ecuting queries (point, enclosure, intersection, containment) in parallel, a round-robin
partitioning algorithm was used. For the purposes of this study, data rectangles,as op-
posedto pointers to data rectangles,are stored in leaf nodes of the R-Tree. This structure
trivially ensuresthat the data portion of the R-Treeis spread over various disks without
requiring any special attention and does not affect the outcome or the validity of the
experiments.

As in the caseof the B -Tree, the round robin partitioning algorithm is used for
striping the R-Tree: when a node needsto be split, the next round robin disk is chosen
for storing the new node. On average,the round robin algorithm is expectedto provide

reasonableperformance and hasminimal computational costduring partitioning.

4.6.2 Modied File Structure

The only modi cation made to Guttman's Linear R-Tree [Gut84] is the addition of an

extra eld to the next node pointer in eachindex entry. The extra eld consistsof the disk

4 6Partitioned R-Tree 161

number containing the referent node and allows the LRA (seesection 3.3.4)to determine,
by analyzing an index entry, the disk on which a leaf node is stored. The resulting
reduction in fan out of the R-Treeis not signi cant, becausethe extra spacetaken by the
new eld is small compared to the total size of an entry containing a multi-dimensional

rectangle.

4.6.3 Concurrent Retrieval Algorithm

For retrievals, a specialized form of the generic concurrent retrieval algorithm described
in section 3.3.4is used. During execution of a query on the R-Tree, processingof index
nodesis very computation intensive. Therefore,instead of using a single task to traverse
the index portion of the R-Tree, provision is made to employ multiple le structure tra-
verser (FST)tasks (see gur e 3.6). The effect, on performance, of varying the number of

thesetasksis studied in the experiments conducted on the partitioned R-Tree.

4.6.4 Experimental Analysis

The round robin partitioning algorithm was implemented and studied. The experimen-
tal structure used is analogous to that used for the B -Tree partitioning experiments
described in section 4.5.4. In all the experiments described in the rest of this section,
the primary memory size is 5% of the databasesize. The results presentedin Figure 4.8
provide a measured comparison of the single-disk R-Tree with a four-disk partitioned
R-Tree. For all of theseexperiments 4 FSTtaskswere employed.

Expectedly, the partitioned R-Treesperform much better than a single-disk R-Tree.
Another point to note about the results is the fact that, unlike for the B -Tree, elapsed
time goesdown for the single disk casewhen the number of CPUsis increasedfrom one

to two becauseof the CPU parallelism for processingthat takes place at the dir ectory

162

Experimental Analysis of EPD File Structures

500

450
Elapsed400
Time 350
(sec) 200
250

200

Primary Memory Size5% of DatabaseSize
Number of File Structure Traverser Tasks= 4

Single Disk - - - -
Round Robin —

1 2 3 4
Number of CPUs

(a) Window Queries - Elapsed Time

200

180

Elapsed160 B

Time 140
(sec)

120

100

1 2 3 4
Number of CPUs

(c) Point Queries - Elapsed Time

440
420

400
CPU 1380
Time

360
(5e0) 340

320
300
280

1 2 3 4
Number of CPUs

(b) Window Queries - CPU Time

230
220
210
200
190
180
170
160
150
140

CPU
Time
(sec)

1 2 3 4
Number of CPUs

(d) Point Queries - CPU Time

Figure 4.8: Comparison of Single Disk R-Treewith Four Disk R-Trees

4 6Partitioned R-Tree 163

nodes of an R-Tree.
The performance gain parameter, asde ned in section 4.5.4,is also computed for the

R-Treepatrtitioning algorithm. Theseresults are presentedin Table 4.6.

Primary Memory Size5% of DatabaseSize
Num Leaf Disk Counts Perf.
Disks | Count | DO | D1 | D2 | D3 | Max | Gain
Window Queries
1 32359 | 32359| - - - 32359| 1.000
32359 | 7752 | 8291 | 7678 | 8638 | 10662 | 3.035
Point Queries
1 11491 || 11491 - - - 11491 | 1.000
11491 || 2513 | 2986 | 2556 | 3436 | 4741 | 2.424

Table 4.6: Theoretical Effectivenessof Round-Robin R-Tree Partitioning Algorithm

Further experiments were conducted to investigate the effect of employing multiple
FSTtasks. In the caseof the B -Tree,thereis very little computation carried out in the
index nodes during execution of a query. Therefore, a single task is able to traverse the
index without creating a bottleneck. On the other hand, an R-Treeindex search involves
asigni cant amount of computation within eachindex node starting from the root of the
tree. This computation raisesthe possibility that using a single task to traverse the index
portion of the treemay createa bottleneck if the single task is unable to generatethe list
of leaf nodes for the LRA at a high enough speed. One solution is to divide the work
of traversing the index portion among a number of tasks. For example, two concurrent
tasks canbe made to work on odd and even entries of an index node respectively. Figure
4.9 contains the results obtained by varying the number of tasks that search the index.
In addition, tables 4.7 and 4.8 also tabulate the actual number of page faults generated

in eachcase.

164 Experimental Analysis of EPD File Structures

Primary Memory Size5% of DatabaseSize
Number of Disks = 4

1CPU - -
2CPUs —
4CPUs -
450 7 - 200 —
400 - - 180 |
Elapsedsgg |- | Elapsed160 B]
Time | Time 140 L~ |
(sec) 300 ™ : (sec) N
120 + :
250 - .
100 - o
200 W l l i l l l l
1 2 3 4 1 2 3 4
Number of Index Search Tasks Number of Index Search Tasks
(a) Window Queries - Round Robin (b) Point Queries - Round Robin

Figure 4.9: Using Multiple Index Search Tasksto Perform Parallel Queries

In all cases,where more than one processoris employed, an improvement in the
elapsedtime is obtained by using multiple index searching tasks. With only one CPU,
there is not much to be gained by increasing the number of FSTS; indeed, the extra
contention can even deteriorate performance slightly. With multiple CPUs, the results
clearly establish that using multiple FSTsis bene cial. The most bene t is derived by
increasing the number of FSTs from one to two, which causesan increasein the speed
at which leaf node referencesare presentedto the LRA for processing. A more detailed
explanation of theseresultsis provided later in this section.

As canbe seenfrom tables4.7and 4.8,the number of page faults is not affected by an
increasein the number of FSTsin most casesbecausethe amount of I/O to be done is still

the same. However, an apparent anomaly occurs for some cases(e.qg.,for the single disk

4 6Partitioned R-Tree

165

Primary Memory Size5% of DatabaseSize

Num
CPU | Elapsed | Page
Time Time Faults

282 446 14275

291 470 1361

295 473 12919

394 453 15073

375 428 13934

383 435 13597

Round Robin
Partitioning

283 439 13464

285 438 12737

290 440 12403

339 313 13520

314 269 13045

320 257 12815

431 295 13547

379 239 13538

368 217 13825

570 314 14261

489 247 14206

Num | Index
Rep | Seach
CPUs | Tasks
Single Disk
1 1
2
4
2 1
2
4
4 Disks
1 1
2
4
2 1
2
4
3 1
2
4
4 1
2
4

445 21 14292

Table 4.7: Using Multiple Index Search Tasksfor Parallel Window Queries

casein table 4.7)whereby the number of page faults decreasesslightly asthe number of

FSTsis increasedfrom one. The causeof this anomaly needsto be investigated further.

Experiments were also conducted to study the effect of interferenceamong retrieval

tasksworking on the samesegment. Theseresults are presentedin tables4.9and 4.10.In

order to analyze the results presentedin tables 4.7 through 4.10,the algorithm of gur e

166 Experimental Analysis of EPD File Structures

Primary Memory Size5% of DatabaseSize

Num | Index Num
Rep | Seach | CPU | Elapsed | Page
CPUs | Tasks || Time | Time Faults
Single Disk
1 1 143 178 3318
2 145 186 3259
4 147 191 3309
2 1 187 174 3822
2 173 149 3522
4 178 152 3467
4 Disks Round Robin
Partitioning
1 1 143 179 3252
2 143 189 3273
4 147 186 3278
2 1 173 142 3410
2 158 119 3345
4 162 112 3426
3 1 221 143 3621
2 190 112 3623
4 186 99 3651
4 1 284 149 3967
2 240 110 3920
4 222 98 3982

Table 4.8: Using Multiple Index Search Tasksfor Parallel Point Queries

3.6is reduced to a queueing systemasshown in gur e4.10.

The LRA acceptsleaf node referencesfrom the FST(s)and queuesthem up for the
retriever tasks. The retriever tasks dereferencethe pointers and queue the resulting data
for the iterator task to fetch on demand. The interface betweenthe LRA and the FSTs can

be considered a producer-consumer interface with a bounded buffer of size M, where M

4 6Partitioned R-Tree

167

Primary Memory Size5% of DatabaseSize

Round Robin

Number of Disks = 4 Partitioning
Num Num | Index Num
Worker Rep | Seach || CPU | Elapsed | Page
Segments| CPUs | Tasks || Time | Time Faults
1 1 1 361 441 15562
2 379 462 15485
4 383 473 15526
2 1 481 454 15809
2 452 435 15841
4 455 441 15756
2 1 1 377 340 14315
2 394 338 14203
4 406 344 14374
2 1 498 349 14730
2 462 306 14729
4 473 305 14719
4 1 1 414 307 14962
2 438 290 15004
4 444 272 14978
2 1 534 314 15310
2 493 251 15344
4 514 231 15306

Table 4.9: Using Multiple Representative Segmentsfor Parallel Window Queries

o8

t

Retrievers———

Figure 4.10:Queueing Systemfor the Generic Concurrent Retrieval Algorithm

168 Experimental Analysis of EPD File Structures

Primary Memory Size5% of DatabaseSize

Round Robin

Number of Disks = 4 Partitioning
Num Num | Index Num
Worker Rep | Seach || CPU | Elapsed | Page
Segments| CPUs | Tasks || Time | Time Faults
1 1 1 171 177 4585
2 179 191 4601
4 184 196 4573
2 1 226 184 4783
2 207 168 4776
4 21 170 4773
2 1 1 181 152 4029
2 194 161 4107
4 194 165 4074
2 1 235 156 4188
2 214 134 4245
4 220 134 4187
4 1 1 189 145 4042
2 204 151 3054
4 209 151 3068
2 1 249 153 4285
2 226 123 4236
4 235 120 4338

Table 4.10:Using Multiple Representative Segmentsfor Parallel Point Queries

is the number of FST, i.e., eachFSTactslike a node in a buffer after it has computed a
requestbut blocks becausethe LRA is busy. The rate, a at which items are placed in the
buffer for the LRA is alinear function of M, i.e.,doubling the number of FSTsdoubles the
rate of arrival atthe buffer. A similar producer-consumer relationship exists betweenthe
LRA and the retriever tasks, and between the retriever tasks and the iterator task. The

number of effective consumersfor the data generatedby the LRA is the number of CPUs

4 6Partitioned R-Tree 169

(or the number of worker segments)executing the retriever irr espective of the number
of retriever tasks becausea retriever task is blocked on 1/0 most of the time, which
correspondingly blocks the CPU it is executing on. This situation is analogousto having
a single consumer whose rate of consumption, t, is a linear function of the number of
worker segments, N. Finally, the LRA, all the FST tasks and the iterator share the P
CPU(s) available on the representative segment.

An informal analysis of the queueing systemin gur e 4.10is employed to explain
the results. There are threecontrol variables, M, N and P. The effect of changing eachof

thesevariables is discussednext.

Effect of changing N, the number of worker segments: Increasing N makes more
CPUs available for performing parallel 1/0 from the disks resulting in reduced
elapsed time. The reduction in elapsed time diminishes as the number of seg-
ments approachesthe number of available disk controllers. Also, in order for the
parallelism to be fully exploited, the rate of production, g for the LRA must be
high enough to ensure that the queue for the retriever tasks is kept non-empty,
which in turn implies that a must be high enough to ensure that the LRA's input
queue is non-empty. Thus, in order for the algorithm to benet optimally from an
increasein N, the representative segment must have matching resources. Finally,
if the matching is not perfect, an increasein total CPU time is expected from the

increasein the number of CPUsemployed due to spinning.

Effect of changing P, the number of CPUs on the representative segment: The goal of
increasing resourceson the representative segmentis to increaseg, which can be
exploited by the retriever tasks assuming they are not blocked on I/O. Sincethe
LRA does not do much work, gcan only be increasedby ensuring that the LRA's

input queue is non-empty, i.e., by increasinga. With one FST, increasingthe num-

170

Experimental Analysis of EPD File Structures

ber of CPUsdoesnot provide any bene ts becausethe FSTblocks after generating
arequestif the LRA is busy becausethere is no actual buffer between them, i.e.,
the FST makes synchronous calls to the LRA to deliver arequest. In fact, perfor-
mance may deteriorate a little due to the extra scheduling contention of multiple

CPUs trying to executea single task. With multiple FSTs, increasing the number
of CPUs helps becausethe FSTs can exploit the extra processingpower to increase
a, soareduction in elapsedtime is expected. In all cases,ncreasingthe number of
CPUs on the representative segmentshould result in increasedCPU times caused

by spinning.

Effect of changing M, the number of FSTs: For elapsed time, there are two distinct

phenomena that need consideration. As stated earlier, increasing the number of
FSTsincreasesa, which should resultin reduced elapsedtime aslong asthe LRA is
not blocked waiting for retriever tasks. On the other hand, the extra FSTs increase
the average length of the ready queue for the representative segment cluster, and
therefore, the iterator task runs a little slower becauseit has to contend with an
increasednumber of tasksfor the available CPUs. A slowing down of the iterator
task hasthe effect of increasing elapsedtime. In order for the overall elapsedtime
for the algorithm to decrease,the increasedelapsedtime of the iterator task must

be offset by areduction in elapsedtime causedby anincreasedg.

With one worker segment, there is a bottleneck at the disks (i.e., no data par-
allelism), and as such, no gain can be made by increasing g Consequently, the
increasedelapsedtime due to the iterator is not offset and there is an overall in-
creasein elapsed time. With multiple worker segments, an increasein g causes
an impr ovement until the retriever CPUs once again becomethe bottleneck. Thus,

when M is increasedthe elapsedtime reducesinitially , levels off when the retriever

4.7 Summary 171

tasks becomethe bottleneck, and eventually increasesdue to a slowing of the iter-
ator task (asmentioned above). The leveling off point depends upon the number
of worker segments— with more worker segmentsthe bottleneck is achieved at a

higher number of FST.

For CPU time, thereare two distinct components: time during which computa-
tion is done and time when the CPU(s) spin waiting for work before going to sleep.
Becausethere is a xed amount of work to be performed by the FST(s),when M
is increased, the total amount of computation actually increasesslightly because
of the overhead of the extra task(s). However, the spinning time is affected by the
total elapsedtime —in general, an increasein elapsed time (such asthe onesde-
scribed above) resultsin anincreasein the CPU time becauseof the extra spinning
in between computation. Thus, with anincreasein M, CPU time follows the same
pattern aselapsedtime. An exception occurs when M becomesmore than P and

thereis an extra increasein CPU time that | am unable to explain.

As with the B -Tree,it was found that the effect on page faults of using the worker
segmentsis only marginal and doesnot impr ove performance to any signi cant degree.
The reduction in page faults is not signi cant enough to offset the extra overhead of

using additional segmentsasevidenced by the large increasein CPU and elapsedtimes.

4.7 Summary

This chapter demonstrated the feasibility and viability of the EPD approachto memory
mapping by comparing EPD le structureswith their traditional counterparts. The ex-
periments were conducted on a custom designed testbed and clearly showed that, for a
variety of accesgatterns, the EPD environment provides performance that is compara-

ble to that of a traditional LRU buffer manager. Subsequentchapterswill show that the

172 Experimental Analysis of EPD File Structures

EPD approach requires special page replacement support to be competitive in certain
situations, but in most casesthis is unnecessary In addition, it was demonstrated that
the EPD approachworks particularly well when EPD le structurescompete with other
applications at execution time becauseall memory management is supervised by the
operating system. This chapter further investigated the issue of parallelism in an EPD

system by conducting experiments with parallel accessmethods.

Chapter 5

Application and Validation of the Analytical
Model

This chapter presentsthe design and analysis of three new parallel join algorithms in
the EPD system. The analysis is done according to the general procedure described in
section 3.5.3and validated by conducting experiments described later in this chapter.
The validationof the model, aswith other costmodels, is an attempt to establishcon -
dencein the accuracyof the model and is done by the following method. An algorithm is
chosenfor validation purposesand an analysis of the algorithm is performed within the
context of the analytical model of the system. The analysis of the algorithm, the values
of the parameters of the model and a description of a chosendata setis used to predict
performance behaviour of the algorithm on the speci ed physical machine. The results
of the analysis are compared against the performance measurements obtained by run-
ning experiments with the algorithm on the speci ed machine and with the chosendata
set. A close match between prediction and actual behaviour establishesthe accuracy of
the model for that particular environment and the model can be used with a degree of
con dence for predicting the behaviour of the algorithm under varying circumstances.
Further, it needsto be emphasized that the goal of this work is to develop a new

model for the EPD system becausenone of the existing models apply, and to use the

173

174 Application and Validation of the Analytical Model

new model to study new algorithms in the EPD system by being able to predict their
performance on a physical machine. It is not the goal of this work to contrast the perfor-

mance of algorithms in the EPD to other systems.

5.1 Parallel Pointer-BasedJoin Algorithms

In order to validate the analytical model of the EPD system, parallel pointer-basedver-
sions of threejoin algorithms were designed, implemented and analyzed: nestedloops,
sort-merge, and a variation of Grace [KTM083]. “Becauseany data model supporting
setsand lists requires at least intersection, union, and difference operations for large
sets, | believe that [the discussion of join algorithms] is relevant to relational, extensi-
ble, and object-oriented databasesystemsalike.” [Gra94] In eachcase,a complete join
of one relation, R, with another, S is considered. The prediction from the analysis was
compared against results obtained through experiments conducted with the parallel join
algorithms.

The use of (location) pointers in an EPD environment provides a uniqgue advantage
with respectto joins and other algorithms. To demonstrate this advantage, the tradi-
tional join algorithms were modi ed so that the join attribute embedded in an object
stored in the Rrelation is a pointer to an objectin the Srelation. Suchalgorithms, called
pointer -basedjoin algorithms, areideal for an EPD environment and result in signi cant
performance advantages; the most important being that a pointer provides the order-
ing of objectsin S which can be exploited to eliminate the usual sorting or hashing of
Sin sort-merge and hash-basedjoins, respectively. Note that in the conventional join
algorithms the ordering of the two joining relations is not important, i.e., either of the
two relations can be joined with the other producing with the sameresult. This feature

is no longer available for pointer-based join algorithms, unless the Srelation contains

5.1Parallel Pointer-Based Join Algorithms 175

back-pointers to objectsin the Rrelation.

Further, eachjoin algorithm is parallelized sothat the data is partitioned acrosssev-
eral disks and the join performed in parallel on individual disks. It is assumedthat S
is initially partitioned on D disks into equal-sized partitions $; S and that the par-
tition in which a particular object of Sresidescan be computed from a pointer to that
object. The time for computing this mapping is denoted by map®. In addition, Ris also
assumedto bedivided into equal-sized partitions Ry Rp. Excellent partitioning algo-
rithms exist for different kinds of data structures(seesections4.5and 4.6). It is assumed
that join attributes are randomly distributed in R. Finally, eachrelation is managed by a
process(Rproc and Sproc, respectively), which is aware of the structure of the relations,
and in particular, Rprocis capable of carrying out the join itself.

The following parameters are de ned for various relations and their subsets. X
denotes the number of objectsin X, Py is the number of pagesin X, and x denotes the
size of a single objectin relation X.

For the algorithms, private memory is viewed asbeing divided into D pieces,where
the i-th pieceis associatedwith partition R;. An algorithm is described asit progresses
on the i-th piece, with the understanding that work on the remaining D 1 piecesis
progressingin an analogous fashion in parallel. Each Rprog is a lightweight task; the
number of real processorsavailable for thesetasksis a control parameter; D processors
eachfor Rand Sare usually employed to achieve maximum parallelism (see gur e5.1).
The partitions of Rare conceptually divided into sub-partitions basedon the partitions of
Sto which the join attributes refer; the subsetof R; with join attributes referring to objects

in partition Sj is called R j. Rs; denotes the set of all objectsin R that have pointers

1Such a computation is feasible in the EPD environment where multiple le structure partitions are
mapped into a single segmentand the mapping of eachpartition consistsof a distinct range of virtual ad-
dresses.For other schemes the join attribute could be made a composite eld with an embedded partition
number.

176 Application and Validation of the Analytical Model

to objectsin §j, i.e., Ry PR j. This substructure is illustrated in the gur es for
subsequentalgorithms. For agiven i, the R j sub-partitions may have someskew in size
becauseobjectsin R, may contain more referencesto some S; and fewer to others; the

Rij

R D - Skew is important asit affectsthe

amount of skew is de ned asskew ma>éj3 1
performance of certain algorithms.

All the parameters intr oduced in this section are tabulated in table 5.1, which also
contains two parameters, sptr and G, to be described later. Additional parameters are
de ned for eachspecic algorithm as needed. Finally, becauseevery algorithm forms
and outputs the samejoin, the analysis doesnot count the time to perform this step, nor

doesit assumethat the join results are generatedin any particular order.

Rprocp

contiguous
R segment

Figure 5.1: SegmentPartitioning Structure

The analysesof join algorithms computes quantities of time that can be summed to

give the total elapsedtime for Rprog. Becausethere s little or no contention during the

5.1Parallel Pointer-Based Join Algorithms 177

Description H

H Variable

RS two joining relations
Ry Rp | partitions of RacrossD disks
S S | partitions of SacrossD disks
Rproc processto manage R
Sproc processto manage S
Rprog light-weight taskto manageR,
Sprog light-weight task to manage S
Rij subsetof R; with join attributes pointing to S
subsetof Rwith join attributes pointing to S;

H Parameter | Description H

map time to map ajoin attribute to the referent Spartition
X number of objectsin relation X
Px number of pagesin relation X
X size of a single objectin relation X
skew skew in relative sizesof R; sub-partitions
sptr the size of a pointer to an S-object
G size of the shared buffer used for transferring data out of S

Table 5.1: Variables and ParametersUsed for all Joins

D-fold parallelism?, the total elapsedtime for Rprog also representsthe total time for the
entire join. To account for the effect of skew, the maximum of the elapsedtime for the
various Rprog is taken to be the time for the join.

While it is convenient to speak of data being read or written in the algorithms, input
and output is not explicitly requestedby any of the algorithms. When speaking of read-
ing a block of data, the implementation actually accesses location in virtual memory

mapped to that block. If the block is not in primary memory, it is read in by means of

2The contention for Sis eliminated by the scheduled reading of objectsfrom S, asexplained later in this
chapter.

178 Application and Validation of the Analytical Model

a page fault; otherwise, no disk accesstakes place. Similarly, when speaking of writing
a le, no explicit action, other than to write cells of virtual memory, occurs in the im-
plementation; the writing of a (dirty) block of data takes place when the corresponding
pageis replaced by the operating system. Theseactions are similar to what occursin an
explicitly managed buffer pool, where objectsare fetched from already read buffers and

written only when the buffer is written, albeit with more user control than in memory

mapping.

5.2 Parallel Pointer-Based Nested Loops

Nested loops performs a join by sequentially traversing R. For each object in R, the
algorithm accessedhe S-objectpointed to by the embedded join attribute. R is called
the outer relation and Sthe inner. The resulting random accesseso Ssigni cantly slow
nestedloops. A naive parallel version may partition Rand Ssothat eachR; can perform
its join in parallel with other Rpartitions, accessingdifferent S; partitions simultaneously.
However, parallelism in this caseis severely inhibited by contention when several R;
referencethe sameS;; this contention can be reduced or eliminated by careful algorithm
design.

In the traditional nestedloops algorithm, it is usually the smaller of the two relations
that is used as the inner relation so that it can be kept in the buffer pool. In the EPD
algorithm, Sis always the inner relation unlessback pointers from Sto Rare available in

Sobjects.

5.2.1 Algorithm

For each partition R; in parallel, the algorithm operatesin two passes. In passO (see

gur e 5.2), R is read, one object at a time, into the private memory of Rprog, which

5.2Parallel Pointer-Based Nested Loops 179

translates, in terms of actual 1/0, to reading R; in chunks of the virtual memory page

size, B.

R RR S
(i) —
Rproc; (D,c) — Sproc;
1,9
(D,f) - (1,d),.~ | RR1 Xih
(i.e) Ri L~O@H ~RRpX |re
(1.9) - (1.9).." /45%\ ‘e
Rproco | (i.h) - Gh), ./ RRy; [NF Sproc
(D.) Roo v

PassO Pass1

Figure 5.2: Parallel Pointer-BasedNested Loops

In gur e5.2,an R-objectis representedby atuple MAP sptr sptr , where sptr is the
join attribute and MAP sptr is the number of the Spartition containing the objectpointed
to by sptr. For eachobjectin R;, the Spartition is computed from the join attribute and
the objectis copied (written) to a sub-partition inside of atemporary areaRR, which is
mapped onto the samedisk aspartition R;; all the R-objectsin R; that point to an object
in §j are grouped together in sub-partition RR j. This sub-partitioning largely eliminates

disk contention in the next pass.

180 Application and Validation of the Analytical Model

Instead of putting RR in its own segment, managed by another process,the storage
for the RR segmentis made part of the storage for Rprog. That is, R; is located at the
lowest addressof the Rprog segmentand storage for RR is located after the storage for
R.. Hence,both R, and RR are mapped to the private memory of Rprog, which eliminates
the costsof segment-to-segmenttransfer, namely copying data through shared memory.
It also eliminates the cost of creating and managing an additional processfor RR. The
drawback of this optimization is that the maximum size of R; is approximately half of
the maximum available addressspacesize.

As an optimization, the objectsin R; that point to objectsin § areimmediately joined,
in passO0, by extracting the join pointer, and having Sprog read the corresponding Sob-
ject. Sprog dereferencesthe join attribute resulting in a loading of the page of S con-
taining the referent object, if that pageis not already in memory, and makesthe Sobject
available for the join by putting it into shared memory. Rprog then doesthe join. As a
further optimization, the requestsfor objectsfrom S are grouped into a buffer of size G
to reduce context switches between Rprog and Sprog.

Passl (see gur e 5.2) eliminates disk contention by staggering accessto S through
aseriesof D 1phases,without synchronizing the phases.In phaset(t 12 D 1),
RR fisetit 1S joined with Sygsetit » Where offseti t i t 1 modD 1. Forexample,
atypical phasejoins a sub-partition RR ; with S;; becauseof the offset, S; is only accessed
by one Rprog in any one phase, assuming no skew. In the presenceof skew, there are
different numbers of objectsin eachRR j, sothere may be somecontention when multiple
Rprog accesghe samesS;. Rprog loops over objectsin RR ggsetit iN private memory; for
eachone, it extractsthe join pointer and asks Sprocyssetit fOr the corresponding Sobject.

Becausea random distribution of join attributes in Ris assumedand there is exactly
one reference to each object of S the referencesto Sobjectsin each R; are uniformly

distributed, and therefore, skew is very closeto 1.0. As a result, no synchronization

5.2Parallel Pointer-Based Nested Loops 181

is used after each phase of pass 1 for all the Rprog; any contention that does occur is
insigni cant, aswas veried by running experiments with synchronization after each
phase of pass1. In the best case,there was a 0.5%decreasein 1/0 and total time due
to reduced contention. This saving was not considered signi cant enough to warrant

complicating the algorithm and the analysis with synchronization.

5.2.2 Parameter Choices

Mrprog Should be large enough to hold, in passO, at least one block of the input R; and
at least one block for eachRR . Since§ is being read randomly, Mgproq should be as
large as possible. G should be large enough to avoid many context switches between
Rprog and Sprog, but small enough so that the volume of pending requestsdoes not
force important information out of memory. In an EPD environment, the value of G
should be, but is not required to be, a multiple of the block size, B. The implementation

used a value of B for G.

5.2.3 Analysis

Given R R Dand Rj R D skew R D? skew, for the largestof R, then
RPR is
R Ri —=— = skew

R is not adjusted by skew becausethere is no synchronization between phasesin this
algorithm; in essencethe skew in RR j is compensatedfor by the additional parallelism
resulting from the lack of synchronization among the Rproc between passesO and 1.

In pass O, R is read sequentially, RR is written (mostly) randomly, and § is read
randomly . Figure 5.3 shows the disk layout of the threepartitions.

Since each partition is accessedthe band size of disk arm movement, in the worst

182 Application and Validation of the Analytical Model

R S RR

I I I
Pr Ps PrR
Figure 5.3: Disk Layout: Parallel Pointer-BasedNested Loops

case,is the total size of all partitions:

skaw

olP
o

P
D

Rl

BandSzenas9 PR Ps Pre D

As well, becauserandom reads and writes are interspersed on the same disk, all
dtt formula are for random /O (i.e., it does not matter that some objects are read se-
quentially). The disk transfer times for R; and RR, then, are Py dtt; BandSze,.s9 and
Prp dtty, BandSze,ase , respectively.

R Sobjectsare read randomly from S, one object at a time, during the join, but
some of those objectsmay be in memory already when requested. The analysis usesa
result of Mackert and Lohman [ML89] to approximate the number of page faults, which
corresponds to disk transfers. [ML89] derives the following approximation: given a
relation of N tuples over t pages,with i distinct key values and a b-page LRU buffer, if x

key values are used to retrieve all matching tuples, then the number of page faults is

t 1 o ifx n
YLRJNtibX

t 1 g px n g ifx n

5.2Parallel Pointer-Based Nested Loops 183

where

. 1 1tNTift i
n maxj:j it 1 g b and g 1 p
1 1Nt gt

Assuming the referencesto Sare randomly distributed in R, the disk transfer time for
reading objectsfrom S, in passO,is

M)
Y.rU RS PS RS % Rii dttr Bancﬁzepas@

In passl, RR is read sequentially, and S is read randomly . Sinceonly the partitions S
and RR are used, the band size of disk arm movement, in the worst case,is the total size
of both partitions: BandSze,as¢ Ps Prp. As well, becauserandom readsand writes
are interspersed on the samedisk, all dtt formulas are again for random /0. The disk

transfer times for RR and § are, therefore,
" MSproq
Prp dtt; BandSzepase and Yy Rg Ps Rg 5 RR dtt; BandSzeyasq

respectively.

Furthermor e, in pass0, each object of R; is moved once, either to RR or to shared
memory for the join, and appropriate objectsof § are moved to shared memory for the
join. The transfers from R, to RR are simple memory transfers among areasof Rprog's
memory becauseof the organization of Rprog's memory (seesection 5.2.1). The corre-
sponding data transfer costis RR r MTpp, Rij r sptr s MTps

The transfers from § require a data movement from Sprog's private memory to
shared memory so that an object can be accessedby Rprog; this requirestwo context

switches, from Rprog to Sprog and back again sothat Sprog canperform the transfer. To

184 Application and Validation of the Analytical Model

optimize context switching, shared memory of size G is used (seesection 5.2.1). During
the sequential passof R, objectsfor R;; and their join attributes (i.e., the S-pointers) are
placed into this buffer until there is only room for the corresponding S objects. While
the Spointer is embedded in the R object, it is copied out so that Sproc, does not have
to know about the internal structure of R objects. The buffer is then given to Sprog to
copy the corresponding S-objectsinto the remaining portion of the buffer. The objects
in the buffer can now be joined. The buffer reducesthe number of context switches to
Sprog. Also, copying the R; objectinto the buffer prevents additional I/O in R; during
the join due to referencesback to previously read objects. The alternative is to join each
individual R object when found during the sequential scan, which results in a context
switch to Sprog for eachobiject.

In pass1, eachobjectof RR is moved onceto shared memory, and the referent objects
from § are moved to shared memory for the join in atotal time of RR r sptr s MTge.
The buffering technique employed in passO is also used in pass1 to retrieve S-objects.

The context switching costsfor passOand 1 are

Ri and 2 CS RR

2 CS
G r sptr s G r sptr s

respectively. The cost of mapping the join attributes to their S partitions in passO is

R map. Finally, the setup cost (seesection 3.5.2)for mapping R, § and RR is

D openMap Pz openMap P newMap Pgp

The setup time is multiplied by D becausemanipulating a mapping of a partitioned le

structure is a serial operation.

5.3Parallel Pointer-Based Sort-Merge 185

5.3 Parallel Pointer-Based Sort-Merge

In nested loops, the random accessof S slows down the join. Sort-merge changesthe
random accessof nested loops to a single sequential scanof S resulting in a signi cant
performance gain. While Shapiro's sort-merge [Sha8§ assumesonly two passes,my
algorithm permits multiple passeswriting out full records at eachpass. Also, asnoted

earlier, the use of S-pointers asthe join attribute makes sorting of Sunnecessary

5.3.1 Algorithm

The rst two passesof the parallel sort-merge algorithm are the same as for parallel
nested loops (seesection 5.2.1)except for one difference: in nestedloops, R;; in pass0
and RRj in pass1arejoined with §, whereasin sort-merge,R;; and RR j are written out
to Rs,. Fig. 5.4shows the two passesfor sort-merge.

Once the Rg partitions have been formed, the sequential sort-merge algorithm is
executedon eachpartition in parallel. The algorithm proceedsby rst sorting, in parallel,
all Rs with respectto the join attributes to allow sequential processingof S§. The sorting
of Rg is done using multi-way merge sort, with the aid of a heap and with intermediate
runs stored on disk. In the nal pass,§ is readin sequentially to perform the join.

As in nested loops, data movement is optimized by combining several partitions
in Rprog's segment. That is, R; is located at the lowest addressof the Rprog segment,
storage for RR is located after that, and then all partitions for the Rg. Hence, all these
partitions are in the private memory of Rprog. The saving in data transfers through
shared memory is signi cant and is possible becauseRR and the Rs, are temporary areas
where the data is manipulated as composite objects without the need to dereference
embedded pointers. The drawback is that the maximum size of R; is approximately D 1

times lessthan the maximum addressspacesize. If this optimization posesa problem,

186 Application and Validation of the Analytical Model

R
(ib) —
Rproc; (D,c) —
(1,a)
(D,f) - (1,d),.Z | RR1 b
Rprog | (1,d) />< e
(K3)] R ™ (D,f), ~] RPp h
(1.9 - (L9)..L [RRy1 N[Vc
Rprocp (@i,h) > (i,h), .7 | RRPyj f
(D.) Rob i

Pass0 Passl
Figure 5.4: Parallel Pointer-BasedSort-Merge

the Rg, canbe separatesegmentsand data can be copied to them through shared memory
using a buffer.

The design and analysis of Sort-Merge intr oduce a number of additional parameters,
tabulated in table 5.2, some chosenby the programmer, and some that are speci ed by
the implementation. The programmer must choose | RUN, the length of a run created
from unsorted data from pass1, and NRUN, the number of runs to be merged in a given
merging pass.In pass?2 of the sort-merge algorithm, IRUN R-objectsare readin from Rg
and a heap of pointers to thesememory-r esident objectsis createdin memory. Heapsort
is applied to the heap of pointers and the sorted list of pointers is used to sort, in place,

the corresponding R-objects. The resulting sorted run of IRUN R-objectsis eventually

5.3Parallel Pointer-Based Sort-Merge

187

written out to disk. Theseactions are repeatedto sort successiveruns until all of Rg has

beenprocessed.

H Parameter | Description

IRUN
NRUN
hp
compare

swap
transfer

length of sort runs

number of sort runs

size of an elementin a heap of pointers
time to compare two heap elements
time to exchangetwo heap elements
time to move a heap element

Table 5.2: Parametersof Sort-Merge Join

On subsequent merging passes, groups of NRUN sorted runs are merged using

delete-insert operations on a heap of NRUN pointers. The heap always contains pointers

to the next unprocessedelement from eachsorted run; when a pointer is deleted from

the heap, the corresponding objectis moved to the output run, and a pointer to the next

objectfrom the input run that contained the moved objectis inserted into the heap. The

merged run is written out to disk and becomesthe input for the next merging pass. The

processis repeateduntil all the remaining runs canbe merged in a single pass.

On the last merging pass, instead of writing out the merged R-objects, the corre-

sponding objectsfrom S are read sequentially and the join computed. The reading of

the objectsfrom § is accomplished, asin nested loops, by means of a shared memory

buffer of size G.

188 Application and Validation of the Analytical Model

5.3.2 Parameter Choices

IRJN is chosento be the largest number such that an entire run, plus spacefor the heap

of pointers, ts in available memory, i.e.,

M Rprog

IRUN —

where hpis the size, in bytes, of an elementin the heap of pointers.

Ideally, merging of runs requires at least one page of memory for eachrun; other-
wise excessivethrashing occurs becausepagesare replaced before they are completely
processed. In reality, with this minimum memory, pagesare replaced prematurely be-
causethe LRU paging schememakesthe wr ong decisionswhen replacing a page during
the merging passes. That is, when objectsin an input page have been processed,the
page is no longer needed, but it must age beforeit is nally removed; during the aging
process,a page that is still being used for the output runs gets paged out, resulting in
additional I/O. In the current implementation, the problem is avoided by reducing the
value of NRUN, which is chosento be Mgprog 3 B during all but the last pass(denoted
NRUNagL), and Mgprog 2 B during the last pass. In other words, memory is under uti-
lized to compensatefor this anomaly sothat the program behavesmore consistently. The
amount of underutilization is basedon an approximation of the working setof the pro-
gram during these passes.The sameproblem occursin the Grace algorithm, discussed
later. For the Grace algorithm, the processingis left unchanged and an analysis is done
to quantify the amount of extra I/O that occursdue to premature replacementof pages.

Thus, two alternative strategiesof attacking the problem have beeninvestigated.

5.3Parallel Pointer-Based Sort-Merge 189

5.3.3 Analysis

Given R, R Dand Rij R D skew R D? skew, for the largestof R, then
RR is
R R

R skew Rj; leew ﬁslew

R is adjusted by skew becausethereis synchronization between phasesin this algorithm,
therefore the worst casemust be considered for eachindividual pass.

In passO, R is read sequentially, RR is written mostly randomly, and Rg is written
sequentially. Figure 5.5 shows the disk layout, resulting in the band size of disk arm

movement, in the worst case,of

P
BandSzease PR Ps Pry Pre % BS % % % skew
R, S Rs RR Merge
I : I [I I
Pr Ps Prs Prr Prs

Figure 5.5:Disk Layout: Parallel Pointer-BasedSort Merge
The disk transfer times for R;, Rg and RR are
Pr dtt; BandSzeyase | PRS dtty, BandSzeyas¢ and Prp dity BandSzeyase

respectively. In pass1, RR is read sequentially, and Rg is written sequentially, giving

190 Application and Validation of the Analytical Model

BandSzepasq PRS Prr. The disk transfer times for Rg and RR are
PR51 dity BandSzepasg and Prp dit, BandSzepasq

respectively. All dtt formulas are for random /0O becauseof wide uctuations in the
disk arm between regionsread or written sequentially.

In passO0, eachobjectof R; is moved oncewithin Rprog's segment, either to RR or to
Rg, atacostof R r MTy,. In pass1, eachobjectof RR is moved oncewithin Rprog's
segment to the appropriate Rg at a costof RR r MTy,. Sinceall of the data move-
ments are with Rprog's segment,there are no context switch costsin passesOand 1. The
mapping costfor pass0, which generatea Spartition from an Spointer,is R map.

In pass2 (the heap-sorting pass),runs of size IRUN objectsfrom Rg are sequentially
readin and sorted in place. Sincethere is no explicit writing, the previous sorted run is
written back by the operating system asthe pagesagewith mostly random writes. This
pattern resultsin a disk band size that is twice the sizeof asortrun: 2 r IRUN B . The

disk transfer times for reading Rg and writing back the sorted runs are

r IRUN r IRUN
PRS dtt, 2 —5 and PRS1 dtt, 2

respectively.

As shown in table 5.2, compare is the amount of time Rprog requiresto compare
two elementsin a heap of pointers to R-objects, stored in memory. Similarly, swap is
the amount of time to swap two heap elements stored in memory, and transfer is the
amount of time to move an elementto or from the heap. Thesetimes do not count oper-
ations necessaryto restore heap discipline after moving an element. The time required

to restore heap discipline is computed separately.

5.3Parallel Pointer-Based Sort-Merge 191

In order to heap-sort eachindividual run, an array of pointers to the IRUN R-objects
in memory is converted into a heap using Floyd's heap construction algorithm (see
[GM86, GBY91]). The heapsort method outlined in [SS93 is then used with a modi -
cation suggestedby Munr o [Mun95] that allows the heapsort to complete, in the aver-
agecase,with approximately NlogN comparisons and transfers. The creation of the heap
takestime

1
177 Rg compare > Swap Rs transfer

while the cost of heap-sorting the heap by repeateddeletion of minima is
Rs loglRUN compare transfer 3

A further costof Rg r MTy, is required to permute the actual R-objects,in place, based
on the sorted list of pointers.
The choice of IRUN and NRUNag, in turn determines NPASS, the number of merging
passes,and LRUN, the number of runs on the last pass.
R

NPASS max j:j 1 . NRUN
I+ IRUN NRUNag T L

R

LRUN
IRUN NRUNpg NPASS 1

In the third and subsequent passes,groups of NRUNag_ (or LRUN in the last pass)
input runs are read in, merged into one, and written out. Rg and Merge (see gur e5.5)

alternate assourceand destination of theseruns. In the last pass,Rg (if NPASSis odd) or

3Notice the omission of a ceiling on the value of log computations here and in subsequentformulae,
which compensatesfor the fact that the heaps are not perfect and may have leaf nodes at two different
levels.

192 Application and Validation of the Analytical Model

Mergg (if NPASSis even) contains all the objectsthat are merged into a single run, which

is then joined with §. The disk band size during all but the last passis

BandSzexg, PRS Prr Puverge
and during the last merging/joining passis
BandSzga¢ Ps PRS Prr Pverge NPASS 1 mod?2

Thedisk transfer time, exceptfor the last pass,for reading and writing Rg and Merge;,

NPASS 1times are
PRS{ dtt, BandSzexgg NPASS 1 and PRS{ dtt, BandSzengg NPASS 1
respectively. During the last pass,l/O costsfor Rg and § are
PR3 dit, BandSzga.¢ and Pg dtt, BandSze sy

respectively.
During the merge, exceptfor the last pass,the delete-insert operation [GBY91, p. 214]
is used on a heap of size NRUNug, and the heap operations for eachof the NPASS 1

passestake time

NRUNagL 1 k NRUNpgL 2 2¢

2 conpare swg NRUN
ABL

2 transfer Rg

wherek logNRUNag. 1. The size of the heap used during the last merge passis

5.3Parallel Pointer-Based Sort-Merge 193

LRUN and the corresponding heap operations take time

LRUN 1 k LRUN 2 2¢
2 compare swap LRUN 2 transfer Rg

wherek logLRUN 1. The data transfer costduring the NPASS 1 merge passesand
the lastmergepassare Rg r MTpp NPASS 1 and Rg r sptr s MTgs, respectively,
with the corresponding context switching time of

Rs
G r sptr s

2 CS

Finally, the setup costfor mapping R;, S, Rg, RR and Merge is

D openMap PR openMap Ps newMap Pr; newMap Prp newMap Py

The setup time is multiplied by D becausemanipulating a mapping is a serial operation.
An additional costof deleteMap P newvMap Ps NPASS 1 isincurredin all merge
passesbut the last, to switch the sourceand destination areasfor the merge.

Figure 5.6 illustrates the progressmade by a particular run of the sort-merge join
algorithm with actual times obtained from an experiment. The gur e provides insights
into the workings of the parallel sort-merge join algorithm becauseof its complexity.
The term staggeed starts used in the gur e indicates where multiple threads perform
a brief serial operation, e.g., initialization of shared structures, before proceeding with

their individual parallel computation.

Application and Validation of the Analytical Model

194

(8[e2s 01 UMBIPIOU)SPUDDSS Ul JNIL e

"HONAS 'HONAS
dmaes
q 7 5 7 7 sunJ 7 s9| ueisal (so] ‘dway Bumas sapnjouy) JETN)
nuesp SIS TmE-wh ayew 7 dwse) dew | sdnues|d uoniued Jden
I I ”
0.S «—T'T9S : : ” €T'9¢T «—9G5°¢¢CT 808 0
| | |
/G208 '8YT ! [ZVOT | 6GTZ SY'6TT oudy
|
| | !
: : , Tooidy
,2’00€ 'T9T ' 9TV0T | TL€e 1€t 80'8
| | | |
68’8 ! ! | VASIA
: ” : oidy
2 162 | GS'T | T9'v0T | 16°€C 9'8TT
| | |
| | |
” ” ” €oidy
€8'80€ /LG'T 6L°€0T 6L°T¢C // 9G°¢¢T
Y mtmum\\\\

paiabbers

Figure 5.6: Time Line Progressof Parallel Sort-Merge

5.4Parallel Pointer-Based Grace 195

5.4 Parallel Pointer-Based Grace

Sort-merge impr oves the performance of the join by sorting R; by the Spointer, which
allows sequential reading of §. However, sorting is an expensive operation. Hash-
basedjoin algorithms replacethe sort with hashing to impr ove performance further. As
an example of the hash-basedjoin algorithms, | have chosento model a parallelized
pointer -basedversion of the Gracealgorithm.

As with sort-merge, the spatial ordering property of the Spointers makes it unnec-
essaryto hash S§. By carefully designing the hash algorithm, it can be ensured that each
hash bucket contains monotonically increasing locations in S, sothat § canbe read se-

guentially .

5.4.1 Algorithm

The rst two passesof the Gracealgorithm, shown in g. 5.7,are the sameasin parallel
nested loops, except for one difference; in nested loops, R-objects are joined with S,
whereasin Grace,the join attributes (i.e., the S-pointers) from R-objectsare hashed into
one of K sub-partitions (or buckets) that make up Rs. The value of K is chosenby the
programmer basedon the amount of memory available. The jth sub-partition of Rg is
referredto asBg j, i.€.,Rg f 1Bsg j- Figure 5.7shows thesetwo passesof the modi ed

Gracealgorithm and table 5.3 contains additional parametersfor the algorithm.

H Parameter | description H

TS ZE range of the hash function in passl
K number of hash buckets formed
fuzz hash table overhead factor

Table 5.3; Parametersfor GraceJoin

196 Application and Validation of the Analytical Model

R RR Rs
(ib) —
Rproc; (D,c) —
(1,a)
(D))
Rprog (1,d)
(i.e)
(1,9) ~Bg1
Rprocp (@i,h) - ™ Bsg, x
(D) Bk

Pass0 Passl
Figure 5.7: Parallel Pointer-BasedGrace

As in the caseof other parallel join algorithms described earlier, the parallel version
of the Grace algorithm rst repartitions eachR; into R; j sub-partitions on the basis of
the join attributes (which happen to be pointers), moves the objectsof eachR; ; to disk j
to form Rg, and then, in parallel, executesa sequential algorithm on each Rs §j pair
without disk contention.

In passO, Rprog readsR;, one object at atime, and depending upon the value of the
join attribute, either moves the objectinto an RR j or hashesthe objectinto one of the K
buckets of Rg. In pass1, Rprog readsR; j (for all j i) one R-objectat atime, and hashes
each object into one of the K sub-partitions of Rs. As for pass1 of the nested loops

algorithm, the reading and hashing of R; j in pass 1 takes place in phasesto eliminate

5.4Parallel Pointer-Based Grace 197

contention for the disks. At the end of pass1, each Rg contains K sub-partitions that
contain hashed R-objects. The hash function is chosenso asto cluster R-objectsby the
value of their join attributes. Therefore,Bg; j 1 K 1, contains R-objectswith join
attributes smaller than that of any R-objectin Bg j 1.

Inpassl j(j 12 K),for everyiin parallel, Bg j is read in, and the value of
the join attribute in each objectis used as input to another hash function that further
re nes the partitioning given by the rst hash function. The range of this hash function
is TS ZE, a parameter chosenby the programmer. Once all of Bg ; has beenhashedinto
an in-memory hashtable, the table is processedin order. Common referencesto objects
in S (i.e., referencesthat result in a collision when hashed)are in the samehash chain. If
it is assumedthat there are no more than Mgyoq S different referencesto objectsin § in
any one hash chain during the processingof that hash chain, all objectsfrom S needed
during the processingof that hashchain can t in memory; henceeachobjectreferenced
from Sneed only be read oncein order to perform the join. The reading of the objects

from § is accomplished by means of a shared memory buffer of size G, asbefore.

5.4.2 Parameter Choices

During passl j,j 12 K,Rprog readseachR-objectin Bg j into amemory resident
hashtable. The value of K should be chosensuchthat eachBsg j along with its associated
hashtable overhead ts entirely in memory.

TS ZE should be small enough to not causeexcessivehash-table overhead becauseof
underutilization of memory and large enough sothat the size of individual hash chains
is low. Theoretically, the minimum amount of memory that needsto be made available
to eachRprog, in passO0, to avoid thrashing is D fuzz R r B blocks, where fuzz
makes room for the hash table overhead. In reality, even this threshold memory results

in thrashing becausethe working set for the algorithm is greater than the theoretical

198 Application and Validation of the Analytical Model

threshold memory and the LRU paging schemethen makesthe wrong decision, remov-
ing useful pagesprematurely. See[Sha86 Sto81]for more discussion on this problem.
The next section derives an approximation for the amount of extra I/O that takes place

when memory is insuf cient.

5.4.3 Analysis

The disk band sizesduring passO and pass1 are BandSzepase Pr Ps Pry FPre
and BandSzepasq PRS Prpr, Where Prp is the same size as in sort-merge because
there is synchronization between phases. PassO involves reading objects from R;,
one object at a time, and writing each object to either RR or to one of the K buckets
in Rg. The corresponding I/O costs are Py dtt, BandSze, , Prp dtty, BandSzey, and
Pr, K dtty, BandSze . The number of pageswritten to Rg has beenincreasedby K
to account for the fact that objectsread from R;; are hashedinto K buckets in Rg. The
additional costsincurred in passOinclude R, map to map the join attributes to their
corresponding Spartition, R;; hashto hashthe R;; objectsinto one of K Rg-buckets and
R MTpp to move the R objectsin private memory to either RR or Rs.

An urn model is used to derive an approximation for the amount of extra I/O that
takes place due to lack of memory in passO. In pass0, R-objectsfrom R; are placed
in one of RR j or in one of the K buckets of Rg. The analysis computes the probability
that, just after a page belonging to Ry is hit (either in memory or causing a page fault),
that it gets hit again before it gets replaced. Once hit, a bucket page is replaced when
there are Mrprog B referencesto newer pages before it is hit again; the probability of
hashing t further objectswithout asecondhitis 1 1 K !. At any given time, some of
the pagesin memory are partially lled or read pages (current pagey and some pages
have been completely processedor lled (Il event$, but which stay around because

they are recently accessedand have not aged enough. It is assumedthat the D current

5.4Parallel Pointer-Based Grace 199

pagesfor R and RR; stay in memory until processedcompletely becausethese pages
are processedat a much faster rate than the pagesin Rg.

For convenience, divide the hashing of objects after a hit into epochs;the rst ag
objects,the next a;, and soon. The number of Il eventsthat have occurred at the begin-
ning of epoch qis arandom variable, which can be approximated asfollows. Sincethe
page replacementalgorithm prefersclean pagesover dirty pages,the Il events caused
by the processingof R, can be ignored. The Il rate for RR;is D 1 B , and for
Rsis 1 K B , the latter being negligible. Therefore, the number of Il eventsis

Hi D 1 B ,whereH; érﬁ éan is the number of objectshashedat the beginning of
epoch j.

The probability thatatmost H; D 1 B D bucketsarenot hit by the beginning
of the epoch, denoted p;, multiplied by the probability that a page gets hit again during
epoch j, denoted yj, is the probability that the page is not presentin memory during
a second hit in epoch j. Summing over all epochs and multiplying by R;; gives an
approximation to the expectednumber of times a page of Rg getsreplaced prematurely.

The probability p; can be computed by referenceto Johnsonand Kotz [JK77, p.110],
who show that the probability of exactly k urns being empty after n balls are randomly

placed into murns is
m k : '
PrX k 1 — : 11 —
' k m a k

Every premature replacement necessitatesone extra write (to replacethe page) and
one extra read (when the pageis referencedagain) for atotal costof reading and writing
of Rij &;j 1 pj y; blocks.

In pass1, objectsin RR ; are read, one objectat atime, and eachobjectis hashedinto

200 Application and Validation of the Analytical Model

one of the K bucketsin Rs . The costsof reading RR and writing Rg are
Prp dit, BandSzeg and Pgp K dtt, BandSze

respectively. Once again, the number of pageswritten to Rg; hasbeenincreasedby K. It
takesa further time of RR MTpp to move the objectsin private memory.
After pass1,the subsequentreading of the partitioned Rg, one bucket at atime, and
the corresponding S objectsrequirestime
Pre Pg ditt 1 p
S K2 &
The band size for dtt, is chosento be half the size, in blocks, of the objectsthat t in the
hash table in order to approximate the actual behaviour, which is to read sequentially
objectsfrom a sub-partition of Rg followed by the corresponding objectsin § and soon.
Eachobjectin Rg is hashedonceduring the processingof eachbucket, for time Rg
hash The costof transferring objectsto shared memory is R MTps r sptr s with
the corresponding context switching time of

Rs

2 CS
G r sptr s

Finally, the setup costsfor mapping R; and § for reading, creating the new mappings

for Rg and RR in pass0 and setting up Rg for reading in pass1is

D openMap PR openMap Ps newMap Pr; Prp OpenMap Prg

5.5Model Validation 201

5.5 Model Validation

In order to validate the model and the analysis presentedearlier, experiments were run
that performed full joins on two relations with 409,6000bjectseach. A generateddata set
was used to populate the two relations for all the experiments presentedin this chapter.
Thejoin attributes in Rwere generatedby meansof arandom number generator obtained
from the standardized testbed described in section 4.3.2.The size of data setis the same
asthat usedin [MLD94]. The objectsin eachrelation were of size 128bytes. Rand Swere
partitioned across4 disks with one Rand one Spartition on eachdisk. Table 5.4contains

the values used for various parameters of the model.

5.5.1 Experimental Testbed

The testbed described in section4.1was used to run validation experiments. The follow-

ing extensionswere made to the testbed for the validation experiments:

the operating system kernel was rebuilt sothat it put aside the minimum amount
of memory for use as DYNIX buffers. This change was made to verify the earlier
assumption that memory mapping aregular DYNIX le by-passesthe le system

buffering and doesnot benet from DYNIX buffer memory.

all the le systemsused for storing data for the experiments were rebuilt with a
le systemblock size of 4K, the size of the DYNIX virtual memory page. Thus, all
I/O took place in 4K blocks, instead of 8K blocks that were used in experiments
in chapter 4. This changein le system block size made the block size the same
asthe virtual memory system page size. A similar change could not be made for

experiments conducted earlier for historical reasons.

202 Application and Validation of the Analytical Model

H Parameter | Measured Value H

CS 145puseconds
dtt see gur e 3.12(a)
MTsp 0.31pseconds
MTss 0.31pseconds
MTps 0.31pseconds
MTpp 0.31pseconds
nevMap | see gur €3.12(b)
openMap | see gur e 3.12(b)
deleteMap | see gur e3.12(b)
map 11pseconds
skew 0.98
conpare | 5.45pseconds
swap 4.3pseconds
transfer | 2.1useconds
hash 2 yseconds

H Parameter | Assumed Value H

P 4

M variable
B 4096

D 4

R 409600
S 409600
r 128

s 128

sptr 4

hp 8

G 4096

Table 5.4: Validation Valuesof Model Parameters

5.6 Predictions 203

5.5.2 Results

Figure 5.8 shows the predicted and measured elapsedtimes for running the various join
algorithms with varying amounts of memory available. The discontinuities in the sort-
merge graph occur when additional merging phasesarerequired. The curve in the Grace
graph at low memory levels results from thrashing caused by the page replacement
algorithm.

As is evident from the graphs, the model does an excellent job of predicting perfor-
mance for the various join algorithms in almost all conditions. In particular, thereis a
closematch between prediction and actual performance for nestedloops and sort-merge.
All the experiments were repeated several times in order to factor out any small devi-
ations causedby the operating system (e.g., page replacement) behaviour and to make
sure that the results were consistent, accurateand reproducible. For Grace,the approxi-
mation for I/O causedby thrashing at low memory levels is reasonably accurate;there
is scopefor further re nement of this approximation. A major part of the differencebe-
tween prediction and actual behaviour at low memory levels comesfrom the overhead
intr oduced by the particular replacementstrategy used by the Dynix operating system.
Further re nement of modelling this aspectof the pagereplacementschemewill bedone

in futur e work.

5.6 Predictions

Oncethe model hasbeenvalidated, it canbe usedto accurately predict the performance
of ajoin algorithm for any given setof resources;Figure 5.9 depicts the predicted per-
formance of the threejoin algorithms asa function of available memory with eachof R
and Spartitioned across4 disks. All the graphs follow the samepattern asthe validated

portion of the curves.

204 Application and Validation of the Analytical Model

2200 T T

2000 Model -&— -
Experiment --.-
1800

1600 -
1400 ey -
1200} h -
1000 F .
800 a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
MRprocI RI

(a) Nested Loops
750 I I I

=0T ©o3—-

0o0=TXT

Model e—

700 Experiment - .. -]

650

00T o3—-

600
550
500

0o0=TXT

450 I I I I
0.01 0.02 0.03 0.04 0.05
IVlRproq R|

(b) Sort Merge
480 I | | I
460 - Mode| -&— -
440 L Experiment - ... |
420)
400
380 -
360 -
340 -

320 1 1 1 1 1 1
0.02 0.03 0.04 0.05 0.06 0.07
Iv'Rproq]

00=oTXy =0T 0o3——

(c) Grace

Figure 5.8: Model Validation

5.6 Predictions

205

2200

2000
1800
1600
1400
1200 -
1000 |-
800 [
600 -
400 |

=0T ©o3—-

00=TXT

200

1400

1 1
01 02 03 04 05 06 07 08 0.9 1
MRprocI]

(a) Nested Loops

iT13oo
m1200
€1100
P 1000
900
800
700
600
500 |-

=0

0o0—=TXI

400

440

0.01 0.02
IVlRproq

(b) Sort Merge

|
0.03

430 -
420 -
410 -
400 -
390
380
370
360
350

00=oTXy =0T 0o3——

340
0.01

0.02 0.03 0.04 0.05 0.06
Iv'Rproq R|

(c) Grace

Figure 5.9: Model Predictions

206 Application and Validation of the Analytical Model

5.6.1 Speedup and Scaleup

Further predictions with the model can be made to study the speedup and scaleup be-
haviours of the three parallel join algorithms. Speedupis an indication of performance
impr ovement as available physical resourcesare increasedwhile keeping the problem
size constant. Scaleupalso measuresthe effect on performance of increasingall available
resourceswhile at the sametime increasingthe problem size by the sameproportion. In
the caseof joins, the problem sizeis indicated by the size, in blocks, of Rand Sand the
relevant resourcesare CPUs, disks and physical memory. Thesepredictions signi cantly
stressthe model and should illustrate any obvious anomalies.

Figure 5.10presentsthe performance of the threejoin algorithms asthe number of
disks and other resourcesare increased;in eachcase,the size of Rand Sis kept xed at
6400blocks each. The number of CPUs s the sameasthe number of disks and absolute
memory per disk is kept xed, resulting in a corresponding increasein total memory as
the number of disks is increased,i.e., Mp increaseswhich is the total memory available
for processingof relation P. For eachjoin algorithm, therearetwo graphs; one shows the
actual reduction in time asresourcesare increasedwhereasthe secondplots the speedup
factor. The speedup factor is simply the time spentwith 1disk divided by the time taken
with D disks. The optimal speedup for an algorithm is linear speedup and is depicted in
gur e5.10for comparison.

The nested-loops algorithm displays good speedup behaviour with someinteresting
features. For nested-loops, increasing resourcesresults in a performance increasebetter
than linear speedup. This behaviour is causedby the random reading of Sobjectsin the
two passes.When the number of disks is increasedwhile keeping M; constant, the rela-
tive amount of memory available for random 1/0 substantially increaseswhich means

thereis a signi cantly greater probability that a referenced page is already in memory.

5.6 Predictions 207

T12000 | I 35 T T
i M; =50 — = ’
i I _ 30 - M; =50 — -
mlOOOO Mifloo---- |\/|i|=100-----
68000 M;=200- -- | 525— Mi=200- -~ -
P e o0l Optmal — . °
F 6000 . e -
d 15
L _ u
R 4000 \\ Y 10 L
(r) 2000 _*m_: 5
¢ 0 | | | | O | | | |
4 8 12 16 20 4 8 12 16 20
Number of Disks Number of Disks
(a) Nested Loops —Time (b) Nested Loops — Speedup
20 I I T I
M; =20 —
Mi=40 - -
s15- M;=160- -- ST
p Optimal — N
g o
q 10 - -
u
p
5 — —]
| | | |
4 8 12 16 20 4 8 12 16 20
Number of Disks Number of Disks
(c) Sort Merge—Time (d) Sort Merge — Speedup
- 1100 T T T T 20 T T T T
i 1000 M =62 —
e 800 S 15+ M|=240 T
P 700 2 Optimal —
e
r 600 e 10 _
500 d
R 400 D L
r 300 5 . ii,_'_———:
9 200 T
100 I I el I I I
4 8 12 16 20 4 8 12 16 20
Number of Disks Number of Disks
(e) Grace—Time (f) Grace— Speedup

Figure5.10:Speedup P D

208 Application and Validation of the Analytical Model

As an illustration, consider the following setup:

LR LS 409600D 1 B 409 M; 1600B r s 128 andskew 10

With one disk to work with, all the 409600Sobjectsare retrieved in asingle passand the

total number of input operations is:

Yiru 409600409600 128 409%6 40900 1600 400600 358468

Now, if the number of disks is increasedto 2, the size of each S is reduced to 204800
records and each Sprog is only responsible for retrieving 204800S records. Half of the

S records are read in passO of the nested loops becauseof the dir ect join, without con-

tention, on the samedisk and the other half are readin passlduring the low contention

staggered reading. Therefore, 102400records are retrieved in each passresulting in a
total

2 Yiru 204800204800 128 4096 204800 1600 102400 154007

disk blocks read. Thus, increasing the number of disks from 1to 2 results in a speedup

factor of 323258 2 32 ascompared to alinear speedup factor of 2. Similarly, with 8 disks

in the above example, total number of disk blocks read is

Yiru 5120051200 128 409% 51200 1600 6400 1571 in passO, and

Yiru 5120051200 128 4096 51200 1600 44800 1600 in passl

for aspeedup factor of =2 9ee. 113in the reading of Sasopposed to the corresponding

linear speedup factor of 8. This component of the total elapsedtime causesthe time to

fall rapidly .

5.6 Predictions 209

The sort-merge algorithm displays speedup behaviour that is closest to linear
speedup. It starts with a linear speedup and stays that way until reaching its satura-
tion point after which it beginsto lag off. The Gracealgorithm displays linear speedup
for portions of its curve but the speedup factor is not closeto optimal, i.e., the line has
a slope much lessthan the desired value of 1.0. This behaviour is explained by the fact
that the Gracealgorithm doesnot make use of any extra memory that is made available,
which implies that increasingresourcesdoes not succeedin impr oving the performance
of the Gracealgorithm by an equivalent proportion. Other more modern hash-basedjoin
algorithms, such asthe hybrid-hash, make better use of available memory.

Figure 5.11 on page 211 presentssimilar results for the scaleup measurements. The
sizes of R and S are increasedin conjunction with a corresponding increasein avail-
able resources. In an ideal situation, this should result in time remaining constant; in
practice, perfect scaleupis hard to achieve. In order to achieve perfect scaleup, the algo-
rithms must employ perfect parallelism. As canbe seenfrom gur e5.11, none of the al-
gorithms displays behaviour closeto the desired one. In eachcase,not only is the curve
much lower than the desired value, but it also continues to a downwar d drop, which
means that increasing parallelism achievesonly marginal speedup. To understand the
reasonfor this behavior, the total costwas broken down into its individual components
and biggest cause of the problem is the memory mapping costs associatedwith each
algorithm. The reasonis that the memory mapping for the multiple partitions of a le
structureis done in a serial manner. Therefore, asthe number of partitions is increased,
the memory mapping setup costsincreaselinearly and soon become quite signi cant.
Clearly, this behaviour negatively impacts on performance and can be solved by paral-
lelizing the initial setting up of the various partitions of the le structure. However, it is
not obvious how this parallelization can be ef ciently achieved.

In order to seethe impact of the serial mapping setup costs,the scaleup graphs were

210 Application and Validation of the Analytical Model

recomputed after subtracting the memory mapping setup costs from total costs. The
resulting graphs are presentedin gur e 5.120n page 212, and the results are clearly
much better. All the algorithms display similar scaleup behaviour. Scaleupis not very
good in the lowest part of the curve but after about 4 disks, the curves straighten out

and stay horizontal indicating near-perfect scaleup after that point.

5.7 Summary

The analytical model developed in chapter 3 was used to predict the performance of the
parallel multi-disk versions of threedatabasejoin algorithms, namely, nestedloops, sort-
merge and Grace. The parallel versions were developed as part of this work and were
especially tuned for performance in the EPD environment. A unique aspectof the algo-
rithms is the use of a virtual pointer asthe join attribute, which results in considerable
time savings by eliminating the sorting or hashing of one of the two joining relations.
Note however, that the use of pointer-basedjoins is not appropriate in all applications,
e.g.,the use of a pointer asthe join attribute makesupdates to the databasemuch more
expensive. The accuracy of the analytical model has been veri ed by conducting ex-
periments on a controlled testbed. This chapter also highlighted afundamental problem
associatedwith abrogating control to the operating systemfor making pagereplacement
decisions. In arigid operating system, this lack of control can seriously hamper perfor -
mance under speci ¢ scenarios. Therefore, to achieve the maximum performance out of
the EPD approach,the use of an operating systemsystemwith exible pagereplacement

and related support is required.

5.7Summary

211

T
i 2200 | M;j =50 —
m M; =1600- --
e
p
21800 - -
r
R
P14001 :
0
¢ | | | |

1280025600384005120064000
R S in Blocks
(a) Nested Loops —Time
| | | |

T
i 900 -
m
€ 800+ -
2 700 | -
r /

5 600}/ - -
P so0l - M; = 20 — -
0 M;=160- - -
c 400 | | | | .

1280025600384005120064000
R S in Blocks
(c) Sort Merge—Time

T 700 T | | ///‘
[P

m 600 - s]
e e
p -

e 500 P 7 -
r e
R 400 - M; =62 —
p M; = 160 -

r -

0 300
c | | | |

1280025600384005120064000

R S in Blocks

(e) Grace—Time

1
S09r- " - . =
2038 o
e 0o ©
e M; =50 —
d 0.7 M; = _160|0- -
u S
b 06| Optima |
05 .
04 | | | |
1280025600384005120064000
R S in Blocks
(b) Nested Loops — Speedup
I I I I
1
S0.9 —
p M; =20 —
e 0.8 M; =160 - - -+
e Optimal —
d 0.7 - .
u
p 0.6 .
05 e o
04 | | | |
1280025600384005120064000
R S in Blocks
(d) Sort Merge — Speedup
I I I I
1
g 09]
g 08 M =62 — |
30.7 M;i =160 -
Co6l Optimal — _|
Post .
03 | | | |

1280025600384005120064000
R S in Blocks

(f) Grace— Speedup

Figure5.11: Scaleup(P D R 3200

212

Application and Validation

of the Analytical Model

S0.9

e 0.8

e

d 0.7

u

p 0.6
0.5
0.4

M; =50 —
M; =1600- - -
Optimal — 7

1280025600384005120064000

R S in Blocks

(a) Nested Loops

1
S09+ .
p .
e08r- "0 N
: 0.7
q" M; =20 —
p 0.6 - M; =160 - -
05 L Optimal — |
04 | | | |
1280025600384005120064000
R S in Blocks
(b) Sort Merge

1
S0.9\

Pos —'@

e
e0.7+- - oL N
dost Mi =62 —
Post Oioﬁmal —]
04r- .
03 | | | |
1280025600384005120064000
R S in Blocks
(c) Grace

Figure 5.12: Scaleupwithout Mapping Overhead (P D R 3200

Chapter 6

Unresolved Issues and Future Work

As stated earlier, some aspectsof constructing a persistent system basedon the EPD ap-
proachto memory mapping have not beendealt with in this dissertation due to the size
of the undertaking. A deliberate decision was made to concentrate efforts on designing
and building an EPD basedstore that supported multiple simultaneously accessibleper-
sistent areasand on extensively measuring and analyzing the resulting store. Some of
the unresolved issueshave been dealt with by other researchers while some problems
are still open reseach issues. This chapter describesthe major unresolved problems, by

meansof a partial survey of related work, and futur e work.

6.1 Concurrency Control

Concurrency control dealswith front-end concurrency mentioned in section3.3,i.e., how
to deal with multiple simultaneous readsand writes to a persistent store while maintain-
ing the consistency of data. The concurrency control problem has been studied exten-
sively by the databasecommunity and there are excellent solutions available, e.g., see
[BK91] for a good survey of concurrency control techniques for advanced databasesys-
tems. However, the traditional concurrency control solutions are often not dir ectly appli-

cableor are inef cient for persistent systems, especially page-basedpersistent systems.

213

214 Unresolved Issues and Future Work

Most of the persistent systems built so far have been single-user systems that ig-
nore problems of concurrent accessego a persistent store by multiple users and appli-
cations. In fact most existing persistent systems provide no support for concurrency
control [RD954]. The concurrency problem asit applies to persistent systemsremains a
largely open reseach issue, although somework dealing with the problem is beginning
to appear (see[RD95b]). For example, Inohara, etal [ISU 95] have proposed a versioned
optimistic (VO) page basedschemefor memory mapped persistent systems.

One of the major problems with using conventional concurrency control schemes
is the granularity of locking. Conventional schemeswork bestfor object-grain locking
whereas persistent systems tend to be page-based;providing object level locking in a
page-basedpersistent store is quite problematic. A central issueto be resolved is to de-
termine what constitutes a unit of data for the purposes of locking, atomicity, etc. While
it might be desirable to use the individual objectsn a le structure asthe units of data
on which atomic operations are permitted, this is clearly not feasible in the proposed
architecture of Database with implicit concurrency (it is possible with explicit concur-
rency). This support requiresthe availability of an objectmanagerasin object-oriented
databasesystems/servers such as ORION [KBC 88] and GemStone[PSM87]. Further-
more, it must be possible to lock arbitrary collection of bytes in memory, a luxury not
usually available to a mapped system.

The VO schemedeveloped by Inohara, et al, derives from conventional optimistic
schemeswhile adding support for multi-version page images and a new validation al-
gorithm. Optimistic schemesusually work by letting concurrent clients work on differ-
ent versions of objects;eachclient updates its own copy of data independently of other
clients. At transaction commit time, a validation algorithm attempts to determine if the
changesmade by the speci ¢ transaction are consistent with other committed transac-

tions. If not, the transaction is aborted. Practical validation algorithms attempt to seri-

6.1 Concurrency Control 215

alize asmany aspossible (instead of all) transactions that could, in theory, be serialized;
doing otherwise has been claimed to be an NP-complete problem. Thus, sometransac-
tions that could be committed safely are aborted. The validation algorithm used by the
VO schemecommits all read-only transactions and is claimed to perform better than the

original optimistic schemesfor other transactions.

6.1.1 Integration of Concurrency, Distribution and Persistence

As part of his doctoral work Munr o [Mun93] investigated the integration of distribution

and concurrency mechanismsinto an existing orthogonal persistencesystem, Napier88
[Bro89]. Munro modied the Napier88 architecture and Brown's stable store, while
maintaining upward compatibility to the extent possible, in the processof his inves-
tigation. One of the main contributions of Munr o's work is the development of a new
layered architecture, now called Flask[MCM 94], whose principal aim isto provide sup-
port for building generic concurrency mechanismsfor persistent stores.Like Database,
Flaskrejectsthe notion of hard-wiring xed concurrency schemesinto the storeitself. In-
stead, it provides aframework on top of the storethat can be exploited to build whatever
notions of concurrency are desirable for speci ¢ applications. Future work on concur-
rency in Database can gain from an incorporation of ideas from Flask. For instance,
[MCM 94] includes a design of concurrent shadow paging mechanisms for providing

stability (seesection6.2for adiscussion of stability in persistent stores). In Flask, stability

is provided in alayer built on top of the concurrency layer.

6.1.2 Scalability

A relatedissueis that of scalability along two dimensions, namely, the number of simul-

taneously accesseddatabasesand the number of concurrent applications accessingthese

216 Unresolved Issues and Future Work

databases.Increasingthe number of databasesaccessedoy a Database application re-
quiresa linear increasein the number of representative segments(i.e., UNIX processes)
and the accompanying resourcessuch as physical memory for resident setsand swap
spaceon disk. Currently, Database does not support concurrent accessto the same
databaseby multiple applications. When such support is implemented in the futur e, an
important consideration is to ensure that multiple applications share common resources
allocated for a single database. In other words, there should not be a multiplicative ef-
fect on the amount of resourcesrequired asthe number of applications and databasesis

increased.

6.2 Recovery Control

It is important for a persistent systemto guarantee that all stored data is in a consistent
state, i.e., the system must maintain the integrity of all data. This guarantee must be
made in the face of system failur e, such as system crashesand unsuccessfuldisk writes
causedby disk failur e. Recovery control is the mechanismto guarantee integrity of data
by being able to recover from system failur es. On restart after a failur e, the recovery
processreturns the system to a previously recorded consistent state; the property of
a system to recover from failur es is also called stability. A number of proposals for
stability in persistent systemshave appeared in the literatur e (see[RHB 90Q] for alist of
references). Some of these proposals, especially the onesfor page-basedsystems, can
be adapted for the EPD system described in this dissertation. The rest of this section

provides a general description of some of the proposed recovery schemes.

6.2Recovery Control 217

6.2.1 Shadow Paging

The earliest proposal for stability in persistent storesfor databasesystems[Lor77] devel-
oped anew schemecalled shadow paging, which hassincebeenadapted by many other
proposals.

The essentialidea in a stable persistent system is to move the system from one con-
sistent stateto another asupdates are made. If the system crashesbefore fully progress-
ing to a new state, it must go back to a previous consistent state before applications are
allowed to resume after restarting. Two basic operations required to implement this fa-
cility arethe ability to perform an atomic update and the ability to distinguish the before
and the after statesof the systemwith respectto a commit or stabilize operation.

Challis's algorithm [Cha78] provides the underlying mechanism for implementing
the atomic update operation. The basic idea is that a new copy of the data stored in
the persistent system is made after each stabilize operation; each copy of the data is
assignedaversion number that distinguishes it from all other copiesand canalsobe used
to determine the temporal ordering of two copies. Eachcopy of the data also contains a
mapping table that canbe usedto locate all the data components on disk. The location of
the mapping table for a copy of the data on disk is maintained in a xed location on disk
called a root block; there are two root blocks with eachdescribing a dif ferent consistent
copy of data. The version number of the data pointed to by a root block is stored both
at the beginning and the end of the root block; if the two copies of the version number
stored in aroot block match, the data copy pointed to by the root block is consistent. All
changesto data are made to the current (or new) copy. In order to commit an update,
the root block containing the oldest version number is updated to refer to the current
updated copy of data. After a successfulwriting of the root block, the old copy of data

can beremoved. In the caseof restarting after afailur e, the status of the two root blocks

218 Unresolved Issues and Future Work

is checkedto nd the onewith the latest consistenversion number, which is then used to
revert the state of the systemto the consistent state referred to by the root block. Should
both root blocks be corrupted, it is called a catastrophic failur e and not covered by the
recovery mechanism.

The basic shadow paging scheme provides recovery control for a paged persistent
store and is an adaptation of the expensive atomic update procedure described above.
In order to implement shadow paging, a mapping between the virtual addressspaceof
the persistent store to the stored pageson disk is maintained. The mapping is called the
disk pagetable and canbe usedto locate all pagesof disk that make up avirtual address
space.At the start of an update operation, atransient copy of the disk pagetable is made
in primary memory, which is used to locate pageson disk to service page fault. When
alocation in a page in main memory needsto be changed, the paging system createsa
copy of the page being updated on disk, if acopy doesnot already exist, and changesthe
transient disk page table to refer to the new copy. The copy of the page on disk is called
a shadow page and ensuresthat a dirty page is never written back to the samelocation
where it was read from. Note that the creation of a shadow page does not involve an
actual copying of data from the original disk page to the new page. Instead, the image
of the original pagein memory is simply written backto a new location on disk.

Shadow paging makes copies of only those pagesof data that are actually modi ed
as opposed to copying all data as is done in the atomic update operation. In order
to perform the stabilize operation, the system writes back all dirty pagesin primary
memory to the shadow disk pages, copies the transient disk table to the disk in a new
location, and then updates the root block of the systemin a manner similar to the atomic
update operation. The above is a high-level description of the shadow paging scheme;
see[RHB 90] for more details.

It is non-trivial to implement a shadow paging schemeon top of an existing paging

6.2Recovery Control 219

mechanism; some operating system support is necessary

6.2.2 Write Ahead Logging

Conventional write ahead logging schemes(e.g., see[RM89]) can be used for paged
persistent stores provided the paging mechanism can be modi ed to defer the writing

back of dirty pagesuntil explicitly requested. The essentialidea is to let the persistent
data bemodi ed in placeduring updates and to make copiesof all changesmade to data
in a separate persistent log. The actual persistent data is not written back to disk until

after the changeshave beensafely written into the log. In caseof failur e, the system can
berestoredto aconsistentstateby meansof the logs written sincethe last checkpoint. An
earlier version of Texas[SKW92] used a write-ahead logging scheme. Again, operating

system support is essential.

6.2.3 PageDif ng

One problem with logging entire pagesis the inef ciency caused by saving too much
unchanged data, e.g., changing a single byte results in the entire containing page be-
ing logged. What is needed is the ability to checkpoint subsetsof pages,or sub-pages.
Dirty bits for sub-pagesis one possible solution but it requiresspecial hardwar e and/or

software support. A simpler solution that requiresvirtually no hardware and software
support is to save only the changed portions of a page by performing a wor d-by-wor d
comparison of the modi ed page with a clean copy. This technique is called pagedif ng

and has been use by Texas, QuickStore and others. Write protection traps are usually
employed in page dif ng; when the paging system detects a write fault exception, it
copies the contents of the faulted page into a separate clean pages buffer, un-pr otects

the original page and lets the execution continue. At the time of committing (or, when

220 Unresolved Issues and Future Work

adirty page needsto written back due to paging), the current dirty pagesare compared
against their respective clean copies and the differencesare used to generatelogs. The
dirty pagesthemselvesare not written back to the disk until after logging is complete.
A spacesaving optimization used by Texasemploys a bounded buffer for storing clean
copiesof dirty buffers; when the buffer lls up, somedirty pagesare written out.
Finally, the problems of concurrency and recovery control becomeeven more dif cult
when the persistent store is distributed; [RD95b] contains some early work to deal with

the problem on distribution in persistent systems.

6.3 Support for Virtual Pointers

Recall, the current version of Database does not support virtual pointers for persis-
tent objects. Virtual pointers are used internally by C+ to implement virtual member
functions and virtual baseclasses,two important reuse mechanismsin C+. This sec-
tion assumesa basic understanding of the C+ virtual pointer implementation. Virtual
pointers embedded in an object are stored as part of the object memory storage and are
initialized by the compiler when the objectis rst createdduring program execution.
As shown in gur e 6.1(a),a virtual pointer embedded in an objectrefersto the ap-
propriate virtual function table(V.ET.), which is stored in transient memory in the text
segment. Thereis exactly one virtual function table created by the compiler for eachtype
declared in an application. Sincethe exactlocation in memory of virtual function tables
is determined only at the program linking/loading time, the values of virtual pointers
stored in an object have a meaning only during the life of the program. This restriction
does not causeany problems for transient objects becausethe objectsalso vanish when
the program terminates, and are recreated and reinitialized when the program is run

again.

6.3 Support for Virtual Pointers 221

members
‘ / / / TEXT ‘ / / / TEXT
A segment A segment
| | | | | | (Shared)
] VMRT] I S L EN
transient P i persistent
segment r segment
transient persistent persistent
object to transient object
pointer
(a) Object stored in transient area (b) Objectstored in persistent area

Figure 6.1: Embedded Virtual Pointer Problem

However, asshown in gur e 6.1(b),once an object with embedded virtual pointers
is made persistent, a problem occurs becausethe objecton disk now contains areference
to atransient object,and assuch, the integrity of embedded virtual pointers is no longer
guaranteed by the compiler acrossprogram invocations. It is up to the persistent system
to ensure that the virtual pointers embedded in a persistent object are properly initial-
ized at object loading time to refer to the current locations of the corresponding virtual
function tables.

A solution adapted in O++ [BDG93] to support virtual pointers works by modifying
all user-de ned constructors to perform an initialization of embedded virtual pointers
if a special global condition is true; otherwise, the normal constructor code is executed.
When a persistent pointer to a non-memory-r esident objectis dereferenced, the system
loads the disk page(s)containing the objectinto memory and invokes a constructor after
asserting the special global condition mentioned earlier. This special invocation of the

constructor results in the virtual pointer(s) embedded in the newly loaded object being

222 Unresolved Issues and Future Work

initialized; the special global condition is resetafter the invocation to allow subsequent
calls to the sameconstructor to proceednormally .

The O++ solution can be easily implemented for Database with the help of a front-
end translator. However, this solution violates the Database design objective of elimi-
nating pointer modi cation every time an objectis reloaded. While some pointer modi -
cation is unavoidable in order to support virtual pointers, the restof this section outlines
a possible solution that signi cantly reducesthe extent of such modi cations. The basic
ideaisillustrated in gur e6.2and is basedon the observation that in a persistent system
the total number of different typesof objectsis much smaller than the total numberof

objects.

members members members
SRR,

e TEXT
L segment
(shared)

persistent
segment

Figure 6.2: Ef ciently Supporting Virtual Pointers

When the representativefor asegmentis rst created,it queriesthe run-time system
to locate all virtual function tables (VFTs) and copies them into xed locations in the

persistent area. It is important to note that the VFT for a given type is always copied

6.4Implementation of Inter-Database Pointers 223

to the samelocation in the persistent area so that any existing persistent pointers to the
VFT stay valid. With the VFT copiesin place, when a new persistent object of a type
with virtual membersis created, its embedded virtual pointers are initialized to refer to
the persistent copies of the VFTs instead of the transient VFTs. When such an objectis
reused during a subsequentexecution, the integrity of its embedded virtual pointers is
guaranteed. This scheme,therefore, avoids the costof pointer modi cation eachtime an
objectis reloaded. Instead, the schemeincurs a onetime initialization costof copying the
VFTswhen the persistent segmentis rst made accessible.This solution would require
some compiler support to ensure the correct initialization of VFT pointer for an object,

or some compiler-level maodi cations by Database.

6.3.1 Persistent Code

Database does not contain any mechanisms for storing compiled code in the persis-
tent store becauseof the size of the undertaking and due to an inherent con ict with
the Database design goal to eliminate swizzling of pointers. As with virtual pointers,
futur e versions of Database may have to compromise this goal to make code persist
but still retain the performance bene ts of not having to swizzle pointers relating data.
Someof the basicissuesin persistent code are similar to persistent virtual pointers dis-
cussedin the previous section. In essencejoading and linking of code is just a complex
form of pointer swizzling. A detailed discussion of theseissuesis beyond the scope of

this work; see[BDBV94] for somerelevant material.

6.4 Implementation of Inter -Database Pointers

As discussed earlier, a system that supports simultaneous accessto multiple persistent

areashasto deal with inter- aswell asintra-database pointers. Providing a uniform in-

224 Unresolved Issues and Future Work

terface for the two types of pointers, while desirable, results in very poor performance
becauseof the extra costinvolved with dereferencing inter-database pointers. Conse-
guently, most systemssettle on a dif ferent representation for the two types of pointers.
Recall,in ObjectStore, a user hasto explicitly declare inter-databasepointers.

An inter-databasepointer, by de nition, hastwo logical components: a referenceto
adatabaseor persistent area,and the location of the referent objectwithin the persistent
area. The current version of Database does not support inter-database pointers but
doesallow inter-databasepointers to be passedamong segments,i.e., the entity derefer-
encing an intra-database pointer from another segment hasto use its knowledge about
the missing component and get the pointer dereferencedwithin the addressspaceof the
segment's representative. This lack of support is a clearly unacceptable situation and
futur e work must concentrate on a suitable implementation of inter-databasepointers.
The restof this section discussessome related issues.

Inter-databasepointers can be implemented by means of smartor long pointers. A
smart pointer is an abstractdata type(ADT) that encapsulatesthe information neededto
representan inter-databasepointer: the name of the containing database,the virtual ad-
dressof the referent objectwithin the corresponding persistent areaand any other perti-
nent information (e.g.,accesdnformation for the object). In addition, a smart pointer has
a method that is invoked when an instance is deefeenced For Database, this method
can create a representative for the database, establish a mapping, causethe virtual ad-
dressof the objectto be dereferencedwithin the addressspace,and the data copied out
of the representativesegment. After the dereferencing hasbeencompleted, the represen-
tative can be destroyed. The per dereferencemapping costsin this procedure represent
a high cost,and yet, it is the only probable solution if the semanticsof the inter-database
pointers have to be kept invisible at the user level. What is needed is a mechanism to

savethe context at the rst dereferenceuntil after the last pointer that needsto be deref-

6.5Modelling 225

erencedin the same context has been processed. If the inter-database pointers can be
made visible at the program level (e.g.,asin the with clausein PASCAL), it is possible

to implement the above solution at a reasonablecost.

6.5 Modelling

The analytical model developed as part of this work does an excellent job of predicting
performance but there are several areaswhere new work or re nement of existing work

canbe done:

Modelling disk contention: When multiple disk requestsarrive at a disk at the same
time, the current model leavesthe disk arbitration mechanism unspeci ed, which
canresult in some error, especially for algorithms that causesigni cant disk con-
tention. It is possible to model the contention at the disk analytically or changethe

DTT measurementsto include amortized disk contention costs.

More hash-based algorithms: There is scopeto investigate more hash-basedjoin algo-
rithms given the importance of these algorithms; the more modern hash-based
algorithms make much better use of available memory than the Grace algorithm.
Also, thereis a need to develop new pointer-basedalgorithms that further exploit

the EPD environment.

Better modelling of the page replacement strategy: In the analysis of the Grace algo-
rithm an attempt has been made to model the thrashing that occurs when the
underlying page replacement algorithm makes non-optimal choices. While the
attempted modelling produced acceptableresults, thereis scopefor further re ne-

ment.

Chapter 7

Conclusions

Chapter 6 outlines some unresolved issuesand much work that still needsto be done.

In this chapter, | summarize what hasbeendone.

7.1 Review of Work Done

A number of objectives that were set out have been achieved. The work done as part
of this dissertation has been made available to the reseach community as three pub-
lished articles, [BGW92], [BGNR96b] and [BGNR964]. The achievementscan be broadly

classi ed into the following categories.

7.1.1 Static Type Safety

One of the fundamental motivations behind pursuing a single-level store is the desire
to ensure type safety for accessingpersistent data just like for transient programming

language data. An attempt to achieve statically type checked accessto a databasehas
been partially successful. Currently, static type safety cannot be guaranteed for access
to the UNIX le systemand the storage managementof a le structure's addressspace.
However, oncethesetwo aspectsof a le structure are speci ed correctly, all subsequent

accesgo the database le structure are statically type-checked. The latter constitutes the

227

228 Conclusions

majority of referencesto atypical le structure.

7.1.2 Development of the EPD Approach

The rationale for the EPD approach to memory mapping was developed based on an
extensive survey of other related work. Using the EPD approachin conjunction with a
world view, which is not at and envisions persistent data objectsbeing stored in col-
lections of related objects, posesspecial challengesand problems. A working solution
to these problems was investigated, developed and painstakingly measured. The solu-
tion has beenshown to work remarkably well in spite of several outstanding problems
some of which may indeed defy solution within the software non-architectural platform.
The methodology that has been developed allows dir ect use of virtual memory point-
erswithout any modi cation for referring to persistent and transient objectsalike while

allowing simultaneous accesso multiple persistent areasor databases.

7.1.3 Experimental Work

Extensive experimentation is a novel and important part of this work. No other project
has documented experimental results obtained from real or prototypical programs run
on a memory mapped single-level store. Experiments were conducted to demonstrate
the feasibility and viability of the EPD approach, to study the behaviour of parallel al-
gorithms in an EPD environment, and for validating an analytical model of the system.
In order to conduct all theseexperiments, atightly controlled testbed was designed and
developed. The testbed provided instrumentation support and allowed consistent ex-

periments to be conducted with precision.

7.1Review of Work Done 229

7.1.4 Feasibility Studies

| have shown that the EPD approach to memory mapping is an attractive alternative
for implementing traditional le structures,both sequential and parallel, for databases.
| have also presenteda convincing casefor using the EPD based databasesin complex
design environments such as CAD/CAM, text management and GIS. EPD based le
structures are simpler to code, debug and maintain, while giving comparable perfor-
mance when used stand-alone or on aloaded systemthan for traditional le structures.
Further, buffer management supplied through the page replacement schemeof the op-
erating system seemsto provide excellent performance for many, though not all, access
patterns. Finally, thesebene ts can be made available in toolkit form on any UNIX sys-
tem that supports the mmap system call.

Signi cant work was also done towards the study of parallel multi-disk le struc-
tures. Data partitioning is an important strategy essential for improving performance
of persistent storesin the face of a primary to secondary storage speed disparity . Parti-
tioned le structuresand parallel accesanethods werefound to work remarkably well in
the EPD environment. The work on parallel structuresincluded the design of a generic

concurrent retrieval algorithm and related tools.

7.1.5 Analytical Modelling

I have designed and validated a quantitative analytical model for databasecomputing
in an EPD environment. The model is successfully used to make accurate predictions
about the realtime behaviour of threedifferent parallel join algorithms, namely, nested-
loops, sort-merge and a variation of Grace. The EPD methodology allows the use of
virtual pointers asthe join attributes, which intr oducessigni cant performance gain by

eliminating the need to sort/hash one of the two relations. The analysis of the join al-

230 Conclusions

gorithms also highlighted an inherent drawback in single-level stores: the lack of con-
trol over buffer management on the part of the databaseapplication resultsin incorrect
decisions being made at times by the underlying page replacement strategy. While ac-
cepting this inef ciency, | have demonstrated two approachesto achieving predictable
behaviour, an essentialproperty in a databasesystem. With single-level storesbecoming
more common, it is my hope that futur e research and development in operating system
architecture will make it feasible for databaseapplications to exercise more control over
the replacement strategiesused [AL91]. There is scopefor further improvement in the
design of the model, especially in the modelling of the underlying paging behaviour.
Future work will involve extending the model to other memory mapped environments
in order to perform comparative studies. It will alsobe an interesting exerciseto explore

the applicability of the model to traditional join algorithms.

Bibliography

[AACSS87]

[ABC 83]

[AC88]

[ACFS94]

[ACS87]

[ACS89]

[AHU83]

[AL91]

[AM85]

Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A Model
for Hierar chical Memory. In ACM STOC, pages305-314May 1987.

M. P. Atkinson, P.J.Bailey, K. J.Chisholm, P. W. Cockshott, and R. Morrison.
An Appr oachto Persistent Programming. The ComputerJourna) 26(4):360—
365,November 1983.

Alok Aggarwal and Ashok K. Chandra. Communication Complexity of
PRAMs. In ICALP, pages1-17,1988.

B. Alpern, L. Carter, E. Feig, and T. Selker. Uniform Memory Hierar chies.
Algorithmicag 12(2/3):72-109,August/September 1994.

Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Hierarchical Memory
with Block Transfer. In IEEEFOCS pages204—-217,1987.

Alok Aggarwal, Ashok K. Chandra, and Marc Snir. On Communication
Latency in PRAM Computations. In ACM SPAA, pages11-21,1989.

A. V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structuresand Algorithms
Addison-W esley, Reading, Massachusetts,1983.

Andrew W. Appel and Kai Li. Virtual Memory Primitives for User Pro-
grams. In 4th International Confeenceon Architectural Supportfor Program-
ming Languagesand Operating Systemspages 96—107,Santa Clara, Califor -
nia, U. S.A., April 1991.

Malcolm P. Atkinson and Ronald Morrison. Procedures as Persistent Data
Objects. ACM Transaction®n ProgrammingLanguagesind Systems7(4):539—
559, October 1985.

231

232

BIBLIOGRAPHY

[Atw90]

[AV8S]

[BAC 90]

[BCD72]

[BDBV94]

[BDGO3]

[BDS 92]

[BDZ89]

[BFCO5]

Thomas Atwood. Two Approachesto Adding Persistenceto C++. In
A. Dearle et al, editor, ImplementingPersistentObject Bases:Principlesand
Practise,Proceedings of the Fourth International Workshop on Persistent
Object Systems,pages369-383Mor gan Kaufmann, 1990.

Alok Aggarwal and Jefrey Scott Vitter. The Input/Output Complexity of
Sorting and Related Problems. Communication®fthe ACM, 31(9):1116-127,
September1988.

H. Boral, W. Alexender, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Prototying Bubba, A Highly Paral-
lel Database System. IEEE Transactionson Knowledgeand Data Engineering
2(1):4-24March 1990.

A. BensoussanC. T. Clingen, and R. C. Daley. The Multics Virtual Memory:
Conceptsand Design. Communication®fthe ACM, 15(5):308—-318Vay 1972.

S.J.Bushell, A. Dearle, A.L. Brown, and FA. Vaughan. Using C as a
Compiler Target Language for Native Code Generation in Persistent Sys-
tems. In Malcom Atkinson, David Maier, and Veronique Benzaken,editors,
PersistentObject Systems pages 16—42, Tarascon, France, September 1994.
Springer-Verlag.

A. Biliris, S.Dar, and N. H. Gehani. Making C++ Obijects Persistent: the
Hidden Pointers. Softwae — Practiceand Experience23(12):1285-1303e-
cember 1993.

P. A. Buhr, Glen Ditcheld, R. A. Stroobosscher B. M. Younger, and
C. R. Zarnke. pC++: Concurrency in the Object-Oriented Language C++.
Softwae—Practiceand Experiencg22(2):137-172-ebruary 1992.

P. A. Buhr, Glen Ditcheld, and C. R. Zarnke. Basic Abstractions for a
Database Programming Language. In Richard Hull, Ron Morrison, and
David Stemple, editors, Databasd’rogrammingLanguages2nd International
Workshoppages422—-437Mor gan Kaufmann, June1989.

PeterA. Buhr, Michel Fortier, and Michael H. Cof n. Monitor Classi cation.
ACM ComputingSurveys 27(1):63—-107March 1995.

BIBLIOGRAPHY 233

[BGNR963]

[BGNR96b]

[BGW92]

[BK91]

[BKSS90]

[BOS91]

[Bro89]

[BS90]

[BU77]

Peter A. Buhr, Anil K. Goel, Naomi Nishimura, and Prabhakar Ragde.
pDatabase: Parallelism in a Memory-Mapped Environment. To appear in
the Proceedingsof the ACM Symposium on Parallel Algorithms and Ar chi-
tectures,1996.

Peter A. Buhr, Anil K. Goel, Naomi Nishimura, and Prabhakar Ragde.
Parallel Pointer-BasedJoin Algorithms in Memory Mapped Environments.
In Proceeding®sfthe 12th IEEE International Confeenceon Data Engineering
pages266—-275New Orleans, USA, February 1996.I[EEE Computer Society
Press.

Peter A. Buhr, Anil K. Goel, and Anderson Wai. pDatabase: A Toolkit
for Constructing Memory Mapped Databases.In Antonio Albano and Ron
Morrison, editors, PersistentObject Systems pages 166—185,San Miniato,
Italy, September1992.Springer-Verlag. Workshops in Computing, Ed. by
ProfessorC. J.van Rijsbergen, QA76.9.D3I59.

N. S. Barghouti and G. E. Kaiser. Concurrency Control in Advanced
DatabaseApplications. ACM ComputingSurveys 23(3):269—-317September
1991.

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger The R -Tree: An
Ef cient and Robust AccessMethod for Points and Rectangles. In ACM
SIGMOD, pages322-3311990.

P. Butterworth, A. Otis, and J. Stein. The GemStone Object Database
Management System. Communication®fthe ACM, SpecialSectionon Next-
GeneratiorDatabasé&ystems34(10):64 October 1991.

A. L. Brown. PersistentObjectStores PhD thesis, Universities of Glasgow
and St. Andr ews, Scotland, 1989. PPRR-71.

PeterA. Buhr and Richard A. Stroobosscher The uSystem: Providing Light-
Weight Concurrency on Shared-Memory Multipr ocessorComputers Run-
ning UNIX. Softwae—Practiceand Experience 20(9):929-963 September
1990.

Rudolf Bayer and Karl Unterauer. Pre x B-Trees. ACM Transactionson
Databas&ystems2(1):11-26,March 1977.

234

BIBLIOGRAPHY

[BZ86]

[BZ88]

[BZ89]

[CAC 84]

[CD85]

[CFL93]

[CFW90]

[Cha78]

P. A. Buhr and C. R. Zarnke. A Design for Integration of Files into a
Strongly Typed Programming Language. In ProceedinglEEE ComputerSoci-
ety 1986International Confeenceon ComputerLanguagespages 190-200 Mi-

ami, Florida, U.S.A, October 1986.

P. A. Buhr and C. R. Zarnke. Nesting in an Object Oriented Language is
NOT for the Birds. In S.Gjessingand K. Nygaard, editors, Proceeding®f
the EuropeanConfeenceon ObjectOrientedProgramming volume 322, pages
128-145,0slo, Norway, August 1988. Springer-Verlag. Lecture Notes in
Computer ScienceEd. by G. Goosand J.Hartmanis.

P. A. Buhr and C. R. Zarnke. Addr essingin a Persistent Environment. In
John Rosenburg and David Koch, editors, PersistentObjectSystemspages
200-217 Newcastle, New South Wales, Australia, January 1989.Springer-
Verlag. Workshops in Computing, Ed. by Professor C. J.van Rijsbergen,
QAT76.64.157.

W. P. Cockshott, M. P. Atkinson, K. J.Chisholm, P. J.Bailey, and R. Morrison.
Persistent Object Management System. Softwae — Practiceand Experience
14(1):49-711984.

Hong-Tai Chou and David J. DeWitt. An Evaluation of Buffer Manage-
ment Strategiesfor Relational DatabaseSystems. In A. Pirotte and Y. Vas-
siliou, editors, Proceeding®f the 11th International Confeenceon Very Large
DataBasespages127-141Stockholm, August 1985.

Jef Chase, Mike Feeley and Hank Levy. Some lssuesfor Single Addr ess
Space System. IEEE Workshopon Workstation Operating Systems October
1993.

George Copeland, Michael Franklin, and Gerhard Weikum. Uniform Object
Management. In Advancesn Databasdechnology- Proc.EuropearConfeence
on Databasd@echnologypages253—-268\Venice, Italy, March 1990.

M. F. Challis. DatabaseConsistency and Integrity in a Multi-user Environ-
ment. In B. Schneiderman, editor, Databasedmproving Usability andRespon-
sivenesspages245-270Academic Press,1978.

BIBLIOGRAPHY 235

[CLBHL92] Jef Chase,Hank Levy, Miche Baker-Harvey, and Ed Lazowska. Opal: A

[CLFL94]

[CLVO1]

[CM88]

[Coc85]

[CRJ8Y]

D 91]

[DAG93]

[DC90]

Single Addr ess Space System for 64-bit Architectures. IEEE Workshopon
WorkstationOperatingSystemsApril 1992.

Jefrey S.Chase,Hank M. Levy, Michael J.Feeley and Edward D. Lazowska.
Sharing and Protection in a Single Addr essSpaceOperating System. ACM
Transaction©n ComputerSystems12(4):271-307May 1994.

Neil Coburn, Per-Ake Larson, and Surendra K. Verma. A Query Processing
Architecture for Share-Memory Multipr ocessors. Technical Report CS-91-
48, University of Waterloo, Waterloo, Ontario, Canada, 1991.

A. Chang and M. Mergen. 801 Storage: Architecture and Programming.
ACM Transaction®©n ComputerSystems6(1):28-50,January 1988.

W. P. Cockshott. Addr essingMechanisms and PersistentProgramming. In
Workshopon PersistentObject Systems:their design,implementationand use
volume PPRR16, pages369-389 Appin, Scotland, August 1985.Universi-
ties of Glasgow and St. Andr ews, Scotland.

R. Campbell, V. Russo,and G. Johnston. The Design of a Multipr ocessor
Operating System. Proceedingsfthe USENIX C++ Workshoppages109-125,
November 1987.

O. Deux et al. The O2 System. Communicationof the ACM, 34(10):34-49,
October 1991.

S.Dar, R. Agrawal, and N. H. Gehani. The O++ database programming
language: implementation and experience. In Proc.IEEE International Con-
ferenceon Data Engineering pages61—70,Vienna, Austria, 1993.

Partha Dasgupta and Raymond C. Chen. Memory Semanticsin Large
Grained Persistent Objects. ImplementingPersistentObjectBasesPrinciples
and Practice,Proceedings of the Fourth International Workshop on Persis-
tent Object Systems,pages 226—238 September1990.

[DABF 94] Alan Dearle, Rex di Bona, JamesFarrow, Frans Henskens, Andr es Lind-

strom, John Rosenbeg, and Francis Vaughan. Grasshopper: An Orthogo-
nally PersistentOperating System. ComputingSystems7(3),1994.

236

BIBLIOGRAPHY

[Den70]

[DLA87]

[DRH 92]

[ES90]

[FMP 95]

[FON9O]

[FW78]

[GADV92]

[GBY91]

[GM86]

P. J. Denning. Virtual Memory. ACM Computing Surveys 2(3):153-189,
September1970.

P. Dasgupta, R. J.LeBlanc, Jr, and W. F. Appelbe. The Clouds Distributed
Operating System: Functional Descriptions, Implementation Details and
Related Work. Technical Report GIT-ICS-87/42, School of Information and
Computer Science,Georgia Institute of Technology, 1987.

Alan Dearle, JohnRosenbel, Frans Henskens, Francis Vaughan, and Kevin
Maciunas. An Examiniation of Operating System Support for Persistent
Object Systems. In Proceedingsfthe 25th Hawaii International Confeenceon
SystemSciencesvolume 1, pages 779—789,Hawaii, USA, 1992.IEEE Com-
puter Society Press.

Margaret A. Ellis and Bjarne Stroustrup. TheAnnotatedC++ RefeenceMan-
ual. Addison Wesley, rst edition, 1990.

Michael J.Feeley William E. Morgan, Frederic H. Pighin, Anna R. Karlin,
Henry M. Levy, , and Chandramohan A. Thekkath. Implementing Global
Memory Managementin aWorkstation Cluster. Proceedingefthe15th ACM
Symposiunon OperatingSystemdPrinciples December1995.

Mary Fontana, LaMott Oren, and Martin Neath. A Portable Implementa-
tion of Parameterized Templates Using A Sophisticated C++ Macro Facility.
In Proceedingsfthe C++ at Work 1990ConfeenceNJ, USA, September1990.

StevenFortune and JamesWyllie. Parallelism in Random AccessMachines.
In ACM STOC, pages114-118,1978.

Olivier Gruber, Laurent Amsaleg, Laurent Daynes, and Patrick Valduriez.

Support for PersistentObjects: Two Ar chitectures. In Proceedingsfthe 25th
Hawaii International Confeenceon SystemSciences/olume 1, pages757-768,
Hawaii, USA, 1992.IEEE Computer Society Press.

G. H. Gonnet and R. Baeza-¥ates. Handbookof Algorithms and Data Struc-
tures Addison-W esley, 1991.

Gaston H. Gonnet and J.lan Munro. Heaps on Heaps. SIAM Journalon
Computing 15(4):964-971November 1986.

BIBLIOGRAPHY 237

[GR83]

[Gra94]

[Gut84]

[HK81]

[IBM81]

[ISU 95]

[OK77]

[KBC 88]

[Kol90]

[KR8S]

A. Goldberg and D. Robson. Smalltalk-80:TheLanguageandits Implementa-
tion. Addison-W esley, 1983.

G. Graefe. Sort-Merge-Join: An Idea whose Time has(h) Passed?In IEEEIn-
ternationalConfeenceon Data Engineering page 406, Houston, TX, February
1994.

A. Guttman. R-trees: a dynamic index structure for spatial searching. In
ACM SIGMOD, pages47-57,1984.

Jia-Wei Hong and H. T. Kung. /0O Complexity: The Red-Blue PebbleGame.
In ACM STOC, pages326—3331981.

International BusinessMachines. OS and DOS PL/I RefeenceManual, rst
edition, September1981. Manual GC26-3977-0.

Shugekazu Inohara, Yoji Shigehata, Keitaro Uehara, Hajime Miyazawa,
Kouhei Yamamoto, and Takashi Masuda. Page-BasedOptimistic Concur-
rency Control for Memory Mapped Persistent Object Systems. In Proceed-
ings ofthe 28th Hawaii International Confeenceon SystemSciencegpages645—
654,Hawaii, USA, 1995.IEEE Computer Society Press.

Norman L. Johnsonand SamuelKotz. Urn Modelsandtheir Application: An
appioachto moderndiscieteprobabilitytheory JohnWiley & Sons,1977.

Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F. Garza, and Darrell Woelk.
Integrating an Object-Oriented Programming Systemwith a DatabaseSys-
tem. Proceedingsfthe OOPSLA88 Confeence pages142-1520ctober 1988.

Elliot K. Kolodner. Automatic Incremental Garbage Collection and Recov-
ery for a Large Stable Heap. In A. Dearle et al, editor, ImplementingPer-
sistentObjectBasesPrinciplesand Practise Proceedings of the Fourth Inter-
national Workshop on Persistent Object Systems’, pages 185-198 Morgan
Kaufmann, 1990.

Brian W. Kernighan and Dennis M. Ritchie. TheC ProgrammingLanguage
Prentice Hall Software Series.Prentice Hall, secondedition, 1988.

238

BIBLIOGRAPHY

[KSU91]

[KTMo083]

[LAB 81]

[Lar88]

[LDM93]

[LL82]

[LLOWO1]

[Lor77]

[MC92]

[MCM 94]

Orran Krieger, Michael Stumm, and Ron Unrau. Exploting the Advantages
of Mapped Files for Stream /0. Proceedingsfthe USENIX C++ Workshop
June1991.

M. Kitsur egawa, H. Tanaka, and T. Moto-oka. Application of Hash to Data
BaseMachine and Its Architecture. New GenerationComputing 1(1):63-74,
1983.

Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J.Craig Schaf-
fert, Robert Schei er, and Alan Snyder. CLU RefeenceManual, volume 114
of Lecture Notesin ComputerScienceSpringer-Verlag, 1981.

P. A. Larson. The Data Model and Query Language of LauRel. Data Engi-
neeringBulletin, (3):23-30,1988.

Daniel F. Lieuwen, David J.DeWitt, and Manish Mehta. Pointer-BasedJoin
Techniques for Object-Oriented Databases. In International Confeenceon
Parallel and Distributed Information Systems San Diego, CA, USA, January
1993.

Henry M. Levy and PeterH. Lipman. Virtual Memory Managementin the
VAXIVMS Operating System. IEEE Computer 15(3):35-41March 1982.

C.Lamb, G. Landis, J.Orenstein,and D. Weinreb. The Objectstore Database
System. Communication®fthe ACM, 34(10):50-630ctober 1991.

R. A. Lorie. Physical Integrity in alLarge SegmentedDatabase.ACM Trans-
actionson Database&ystems2(1):91-104March 1977.

Peter W. Madany and Roy H. Campbell. Organizing and Typing Persistent
Objects within an Object-Oriented Framework. In Proceeding®f the 25th
Hawaii International Confeenceon SystemSciences/olume 1, pages800-809,
Hawaii, USA, 1992.IEEE Computer SocietyPress.

D. S.Munr o, R. C. H. Connor, E. Morrison, S.Scheuerand D. W. Stemple.
Concurrent Shadow Paging in the Flask Ar chitecture. In Malcom Atkinson,

David Maier, and Veronique Benzaken, editors, PersistentObject Systems
pages16-42 Tarascon,France,September1994.Springer-Verlag.

BIBLIOGRAPHY 239

[MCM 95] D.S.Munro,R.C.H. Connor, R.Morrison, J.E.B.Moss,and S.J.G. Scheuer

[Mip91]

[ML89]

[MLD94]

[MM92]

[Mos90]

[Mun93]

[Mun95]

[Objo3]

[Org72]

Validating the MaStA I/O CostModel for DB Crash Recovery Mechanisms.
Proceeding®f the OOPSLA Workshopon Object DatabaseBehaviour Bench-
marksandPerformancegl995.

MIPS R4000MicroprocessotJsers Manual. MIPS Computer Systemsinc,
1991.

L. Mackert and G. Lohman. Index ScansUsing a Finite LRU Buffer: A
Validated I/O Model. ACM Transaction®on Databasé&ystems14(3):401-424,
September1989.

T. P. Martin, P-A. Larson, and V. Deshpande. Parallel Hash-Based Join
Algorithms for a Shared-Everything Environment. IEEE Transactionson
Knowledgeand Data Engineering 6(5):750—763Qctober 1994.

Ashok Malhotra and StevenJ.Munr oe. Support for PersistentObjects: Two
Architectures. In Proceeding®f the 25th Hawaii International Confeenceon
SystemSciencesvolume 1, pages 737—-746,Hawaii, USA, 1992.IEEE Com-
puter Society Press.

J.Moss. Working with Persistent Objects: To Swizzle or Not to Swizzle.
Technical Report CS 90-38, CS Department, University of Massachusetts,
May 1990.

D. S.Munro. On the Integrationof Concurtency Distribution and Persistence
PhD thesis, University of St. Andr ews, Scotland, 1993.

lan Munr o. Private communication with Prof. lan Munr o, CS Dept., Uni-
versity of Waterloo, 1995.

ObjectStoeUserGuide:DML, ObjectStoeReleas8.0for UNIX SystemsObject
Design, Inc., 25 Burlington Mall Road, Burlington, MA, U. S. A., 01803,
December1993.

E. I. Organick. The Multics System The MIT Press, Cambridge, Mas-
sachusetts,1972.

240

BIBLIOGRAPHY

[PGK88]

[PP88]

[PS-87]

[PSM87]

[PU8T]

[RC89]

[RCS93]

[RD95a]

[RD95b]

[Req80]

D. A. Patterson, G. Gibson, and R. H. Katz. A Casefor Redundant Arrays
of Inexpensive Disks(RAID). In ACM SIGMOD, pages109-16, June1988.

D. V. Pitts and Dasgupta P. ObjectMemory and StorageManagementin the
CloudsKernel. Proceeding®f the 8th International Confeenceon Distributed
ComputingSystemspages10-17,June1988.

The PS-Algol Reference Manual, 4th Ed. Technical Report PPRR 12, Uni-
versity of Glasgow and St. Andr ews, Scotland, June1987.

Alan Purdy, Bruce Schuchadt, and David Maier. Integrating an Object
Serverwith Other Worlds. ACM Transactionson Of ce Information Systems
5(1):27-47 January 1987.

Christos Papadimitriou and Jefrey D. Ullman. A Communication-Time
Tradeoff. SIAM Journalon Computing 16(4):639—-646August 1987.

Vincent F. Russo and Roy H. Campbell. Virtual Memory and Backing
Storage Management in Multipr ocessorOperating SystemsUsing Object-
Oriented Design Techniques. Technical Report UIUCDCS-R-89-1509,Uni-
versity of lllinois at Urbana-Champaign, Urbana, Illinois, April 1989.

JoelE. Richardson, Michael J.Carey, and Daniel T. Schuh. The Design of the
E Programming Language. ACM Transaction®nProgramming.anguagesnd
Systems15(3):494-534July 1993.

JohnRosenbeg and Alan Dearle. Distribution and Concurrency in Persis-
tent Systems— Intr oduction to Minitrack. In Proceedingefthe28thHawaiiIn-
ternationalConfeenceon SystemSciencegpages633—644Hawaii, USA, 1995.
IEEE Computer Society Press.

JohnRosenbeg and Alan Dearle, editors. Mintrack on Distribution andCon-
currencyin PersistenSystemsProceedingefthe28th Hawaii InternationalCon-
ferenceon SystemSciencedEEE Computer Society Press,Hawaii, USA, 1995.

Aristides A. G. Requicha. Representationsfor Rigid Solids: Theory, Meth-
ods, and Systems. ACM ComputingSurveys 12(4):437-464December 1980.

BIBLIOGRAPHY 241

[RHB 90]

[RK87]

[RKA92]

[RM89]

[R0os90]

[SCO0]

[SD89]

[Sha81]

[Shagé]

[Sit92]

John Rosenbeg, Frans Henskens, Fred Brown, Ron Morrison, and David
Munr o. Stability in a Persistent Store Basedon a Large Virtual Memory.
In Proceedingsfthe InternationalWorkshopon ComputerArchitectuesto Sup-
port SecurityandPersistencefinformation pages229-245Bremen, WestGer-
many, May 1990.Springer-Verlag.

J. Rosenbeg and J. Keedy. Object Management and Addr essing in the
MONADS Architecture. Workshopon PersistentObjectSystemstheir design,
implementatioranduse pages114-133 August 1987.

J.Rosenbeq, J.L. Keedy, and D. A. Abramson. Addr essingMechanisms for
Large Virtual Memories. TheComputerJourna) 35(4):369-375August 1992.

K. Rothermel and C. Mohan. ARIES/NT : A Recovery Method Basedon
Write-Ahead Logging for Nested Transactions. In Proceeding®f the 15th
International Confeenceon Very Large Data Basespages 337—346,Palo Alto,
Ca, August 1989.Mor gan Kaufmann Publishers Inc.

John Rosenbeg. The MONADS Architecture: A Layered View. Imple-
menting PersistentObject Bases:Principlesand Practice,Proceedings of the
Fourth International Workshop on Persistent Object Systems, pages 215—
225,September1990.

Eugene J. Shekita and Michael J. Carey. A Performance Evaluation of
Pointer-Based Joins. In ACM SIGMOD, pages 300-31, Atlantic City, NJ,
June 1990.

Donovan A. Schneiderand David J.DeWitt. A Performance Evaluation of
Four Parallel Joins Algorithms in a Shared-Nothing Multipr ocessorEnvi-
ronment. In ACM SIGMOD, pages110-121 June 19889.

Mary Shaw, editor. ALPHARD: FormandContent Springer-Verlag, 1981.

Leonard D. Shapiro. Join Processingin DatabaseSystemswith Large Main
Memories. ACM Transaction®n Databas&ystems11(3):239-264September
1986.

Richard L. Sites,editor. Alpha Architectue RefeenceManual. Digital Press,
One Burlington Woods Drive, Burlington, MA, U. S.A., 01803,1992.

242

BIBLIOGRAPHY

[SKW92]

[SL91]

[Smi85]

[SS93]

[Sto81]

[STP 87]

[SUK92]

[Sun90]

[SW92]

[Sym87]

[SZ90a]

Vivek Singhal, SheetalV. Kakkad, and Paul R. Wilson. Texas:An Ef cient,

Portable Persistent Store. In Antonio Albano and Ron Morrison, editors,
PersistentObjectSystemspages 11-33, San Miniato, Italy, September1992.
Springer-Verlag. Workshops in Computing, Ed. by ProfessorC. J.van Rijs-
bergen, QA76.9.D3I159.

Bernhard Seegerand Per-Ake Larson. Multi-Disk B-trees. In ACM SIG-
MOD , pages436—445Denver, Colorado, USA, June1991.

A. J.Smith. Disk Cache— Miss Ratio Analysis and Design Consideration.
ACM Transaction®©n ComputerSystems3(3):161-203August 1985.

Russel Schafer and Robert Sedgewick. The Analysis of Heapsort. Journal
of Algorithms, 15:76-1001993.

M. Stonebraker. Operating systemsupport for databasemanagement. Com-
municationsofthe ACM, 24(7):412-418)uly 1981.

Alfr ed Z. Spector, D. Thompson, R. F. Pausch,J.L. Eppinger, D. Duchamp,
R.Draves, D. S.Daniels, and J.L. Bloch. Camelot: A Distributed Transaction
Facility for Mach and the Internet - An Interim Report. Technical Report
CMU-CS-87-129,Carnegie Mellon University, 1987.

M. Stumm, R. Unrau, and O. Krieger. Designing a Scalable Operating
Systemfor Shared Memory Multipr ocessors. USENIX Workshopon Micro-
Kernelsand Other KernelArchitectues pages285-303April 1992.

SystemService©verview Sun Microsystems,1990.

Walter R. Smith and RobertV. Welland. A Model for Addr ess-OrientedSoft-
ware and Hardware. In Proceeding®sf the 25th Hawaii International Confer-
enceon SystemSciencesvolume 1, pages 720—729Hawaii, USA, 1992.IEEE
Computer Society Press.

SymmetryTechnicaSummary SequentComputer Systems,Inc., 1987.

Eugene Shekita and Michael Zwilling. Cricket: A Mapped, Persistent Ob-
ject Store. In A. Dearle et al., editors, ImplementingPersistentObjectBases:
Principlesand Practise,Proceedings of the Fourth International Workshop
on PersistentObject Systems’, pages89-102 Mor gan Kaufmann, 1990.

BIBLIOGRAPHY 243

[SZ90b]

[Tha86]

[TRY 87]

[VD92]

[vdBL89]

[VDT72]

[vO90]

[VS944]

[VS94b]

M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared
Memory. IEEE Computer 23(5):54—64May 1990.

Satish M. Thatte. Persistent Memory: A Storage Architecture for Object-
Oriented Database Systems. In Proceeding®f the International Workshop
on Object-OrientedDatabasespages 148-159,Pac ¢ Grove, CA, September
1986.

A. Tevanian, Jr, R. F. Rashid, M. W. Young, D. B. Golub, M. R. Thompson,
W. Bolosky, and R. Sanzi. A Unix Interface for Shared Memory and Mem-
ory Mapped Files Under Mach. In Proceedingsfthe Summerl987USENIX
Confeencepages53—67,Phoenix, Arizona, June1987.USENIX Association.

Francis Vaughan and Alan Dearle. Supporting Large Persistent Stores us-
ing Conventional Hardware. In Antonio Albano and Ron Morrison, edi-
tors, PersistentObject Systemspages 34-53,San Miniato, Italy, September
1992.Springer-Verlag. Workshops in Computing, Ed. by ProfessorC. J.van
Rijsbergen, QA76.9.D3159.

Janvan den Bos and Chris Laffra. PROCOL: A Parallel Object Language
with Protocols. SIGPLAN Notices 24(10):95-1020ctober 1989.Proceedings
of the OOPSLA89 Conference,Oct. 1-6,1989,New Orleans, Lousiana.

Andries van Dam and Frank Wm. Tompa. Software Data Paging and Seg-
mentation for Complex Systems. Information Processing_etters 1:80—86,
1972.

Petervan Oosterom. ReactiveData Structuresfor Geographi¢tnformation Sys-
tems Ph.D. Thesis,Dept. of CS,Leiden University , December1990.

Jefrey S. Vitter and Elizabeth A. M. Shriver. Algorithms for Paral-
lel Memory, I: Two-Level Memories. Algorithmica 12(2/3):110-147,Au-
gust/September 1994.

Jefrey S.Vitter and Elizabeth A. M. Shriver. Algorithms for Parallel Mem-
ory, Il: Hierarchical Multi-Level Memories. Algorithmica 12(2/3):148-169,
August/September 1994,

244

BIBLIOGRAPHY

[VSWLO1]

[Wai92]

[WD94]

[WF90]

[Wil91a]

[Wil91b]

[WZS91]

Zvonko G. Vranesic, Michael Stumm, Ron White, and David Lewis. The
Hector Multipr ocessor Computer 24(1):x—x,January 1991.

Anderson Wai. Storage Management Support for Memory Mapping. Mas-
ter's thesis, Department of Computer Science,University of Waterloo, Wa-
terloo, Ontario, Canada,N2L 3G1,1992.

Seth J. White and David J. DeWitt. QuickStore: A High Performance
Mapped Object Store. In ACM SIGMOD, pages395-406Minneapolis, MN,
U.S.A.,May 1994.

K.L. Wu and W.K. Fuchs. RecoverableDistributed Shared Virtual Memory.
IEEE Transactionon Computers39(4):460—-469April 1990.

Paul R. Wilson. Pointer Swizzling at PageFault Time: Ef ciently Support-
ing Huge Addr ess Spaceson Standard Hardware. ComputerArchitectue
News 19(4):6-13,June1991.

Paul R.Wilson. Somelssuesand Strategiesin Heap Managementand Mem-
ory Hierarchies. SIGPLAN Notices 26(3):45-52March 1991.

Gerhard Weikum, Peter Zabbak, and Peter Scheuermann. Dynamic File
Allocation in Disk Arrays. In ACM SIGMOD, pages406—415Denver, Col-
orado, USA, June1991.

Index

accessclass, 107
addressspace,81
address-orientedsoftware, 45
administrative class,103
administrative object, 102
analytical model, seemodelling

B -Tree,segprex B -Tree
B-Treeexample, 112
Brown's Stable Store, 35
Bubba, 44-45

Camelot, 49

Choices, 50

Clouds, 50

concurrency control, 213-216
concurrent access,70

concurrent retrieval, 69,71
concurrent retrieval algorithm, 74-77
CPOMS, 33-35

Cricket, 42

DCC, 135

demand paging, 24

demand segmentation, 24

dirty list, 138

disk arrays (RAIDs), 69,71

disk transfer time, 127

Dynix virtual memory, 136-138

E,36-37,42
EOS,50
EPD approach, seealso memory map-
ping, 228
persistencemodel, 10-12

245

exact positioning of data, seeEPD ap-
proach

Exodus storage manager, 36—-37,41-44

expansion baseclass,96

expansion exit, 95

expansion object, 95, seealsoheaps

feasibility studies, 140-141229
freelist, 136

generators,73-74
Grasshopper, 48

heaps, 81
expansion object, 96
nesting of, 94-98
over ow control, 95-98
Hector, 51
Hurricane, 51

IBM 801,50

IBM AS/400, 49

IBM RS6000,49
inter-databasepointers, 7,10
inter-databasepointers, 7-223
inter-segmentpointers, 7

linked list
accesslass, 107
example, 99
expansion class,103
le structureclass,104
generator, 107
wrapper, 109

load balancing, 71

246 INDEX

Mach, 4 page replacement, 24
major page fault, 138 partitioning, 71
MaStA I/O costmodel, 124 performance gain, 154
memory manager classes82 persistence
memory mapping, vii, 3,23-25 allocation-based, 36
advantagesof, 25-30 orthogonal, 32,57
disadvantages of, 31 persistent
exactpositioning of data, viii, 4—12 area, 10,57
memory transfer time, 125,128 code, 65,223
memory-r esident databases,3 data, vii, 2
CH 57 memory, 49
Database, 6 root, 11
accessorsp2—-64 storage system, 4
basic structure, 57-58 PID, 33-35
comparison with other work, 65-69 pointer swizzling, 4-6
critique of, 64—65 adhog 5
design methodology, 53-65 at page fault time, 6,37-39
design objectives,54-57 eager, 5-6
library, 85 hybrid, 5,39
representative, 58—62 lazy, 5-6
minor page fault, 138 pointer -basedjoin algorithms, 174
mmap, 4,7 grace, 195
model, seamodelling nested loops, 178
model validation, viii, 201 sort merge, 185
modelling, viii, 119,173,229 polymorphism, 78-79
MONADS, 7,45 POMS, 33-35
monitor class,86 prex B -Tree,142-143
motivation, 20 Procol, 51
Multics, 3,32 PS-Algol, 33-35
Napier, 35 query types and parallelism, 72—73
nested memory manager, 114 QuickStore, 6, 40,42-44
nested memory structure, 83
network graph, 145 R-Tree,143-145
R-Treepatrtitioning algorithms, 160
O++, 37 reachability, 11
objectdescriptor, 93 recoverablevirtual memory, 49
ObjectStore, 6,40-43 recovery control, 216—220
Ode/EOS, 37 related work
Opal, 46-47 modelling, 120-124

_ databasestudies, 122-124
pagedif ng, 219 theoretical models, 120-122

INDEX

247

single-level stores
architectural approaches,44-50
others, 50-51
software approaches,32—44
Rep, 86
RepAccess, 88
RepAdmin, 89,103
representative, 84
RepWrapper, 91
residency checks,34, 36
resident set, 136

SASOS 46-47
segment, 81
segmentbaseaddress,86, 88
segmentation, viii
shadow paging, 217
single-level store, vii, 2—4
uniform view of data, 2
speedup and scaleup, 206
static type safety, 227
storage management, 80—83,93
dynamic, 93
uniform, 93
variable, 93
striping, 71
Sun0OsS,4

testbed, 135-140201
Texas,37-39

uDynamic, 99
uExpand, 96
uUniform, 97
uVariable, 99

VAX-11/780, 136

VAXIVMS, 136

virtual function table, 220-223
virtual pointers, 220-223

wrapper class,91
wrappers, 85,91-92

write aheadlogging, 219

