
SPARK: A FLEXIBLE POINTS-TO ANALYSIS FRAMEWORKFOR JAVAbyOnd�rej Lhot�akShool of Computer SieneMGill University, MontrealDeember 2002
A thesis submitted to MGill Universityin partial fulfillment of the requirements of the degree ofMaster of Siene

Copyright 2003 by Ond�rej Lhot�ak

AbstratMany ompiler analyses and optimizations require preise information about thebehaviour of pointers in order to be e�etive. Points-to analysis is a tehnique foromputing this information that has been studied extensively over the last deade.Most of this researh has foused on points-to analyses for C. The behaviour of points-to analysis on higher-level languages suh as Java appears very di�erent than on C.Moreover, most proposed points-to analysis tehniques were evaluated in disparateanalysis systems and benhmarks, making it diÆult to ompare their e�etiveness.To address these issues, this thesis introdues Spark, a exible framework forexperimenting with points-to analyses for Java. Spark is intended to be a universalframework within whih di�erent points-to analyses an be easily implemented andompared in a ommon ontext. Currently, Spark supports equality- and subset-based analyses, variations in �eld sensitivity, respet for delared types, variations inall graph onstrution, o�-line simpli�ation, and several points-to set propagationalgorithms.A substantial study of fators a�eting preision and eÆieny of points-to anal-yses has been performed as a demonstration of Spark in ation. The results showthat Spark is not only exible and modular, but also very eÆient ompared to otherpoints-to analysis implementations.Two lient analyses that use the points-to information are desribed, all graphonstrution and side-e�et analysis. The side-e�et information an be enodedin Java lass �le attributes, so that it an later be used for optimization by otherompilers and virtual mahines.Spark has been demonstrated to be a exible and eÆient framework for Javapoints-to analysis. Several experiments that ould be performed with it are suggested.i

ii

R�esum�e
A�n d'être eÆaes, beauoup d'analyses et optimisations de ompilateur exigentdes informations pr�eises sur le omportement des pointeurs. L'analyse dite points-to(pointe sur) est une tehnique visant �a aluler ette information qui a �et�e �etudi�eeintensivement au ours de la derni�ere d�eennie. La majeure partie de ette reherhes'est onentr�ee sur les analyses pour C. Le omportement de l'analyse points-toappliqu�ee �a des langages de plus haut niveau tels que Java semble tr�es di��erent deelui observ�e pour C. D'ailleurs, la plupart des tehniques d'analyse points-to qui ont�et�e propos�ees ont �et�e �evalu�ees dans des syst�emes d'analyse divers et sur les di��erentsprogrammes d'�evaluation, e qui rend diÆile la omparaison de leur eÆait�e.Pour r�epondre �a es probl�emes, ette th�ese pr�esente Spark, un adre d'appli-ation exible pour exp�erimenter ave des analyses points-to pour Java. Spark estdestin�e �a être un adre universel dans lequel peuvent être failement implant�ees dedi��erentes analyses points-to, a�n de pouvoir être ompar�ees dans un ontexte om-mun. Atuellement, Spark supporte des analyses bas�ees sur les ontraintes d'�egalit�eainsi que de sous-ensemble, des variations en le traitement des hamps, en le respetpour les types d�elar�es, et en la m�ethode de onstrution du graphe des appels, unalgorithme de simpli�ation des ontraintes, et plusieurs algorithmes de propagationdes ensembles points-to.Une �etude importante sur les fateurs inuant la pr�eision et l'eÆait�e desanalyses points-to a �et�e e�etu�ee omme d�emonstration de l'utilisation de Spark.Les r�esultats d�emontrent que Spark est non seulement exible et modulaire, mais�egalement tr�es eÆae ompar�e �a d'autres r�ealisations d'analyse points-to.Deux analyses lientes qui pro�tent de l'information points-to sont d�erites, laiii

onstrution du graphe d'appel et l'analyse d'e�ets seondaires. L'information sur lese�ets seondaires peut être od�e en des attributs dans les �hiers de ode objet Java,pour qu'elle puisse être employ�ee �a des �ns d'optimisation par d'autres ompilateurset mahines virtuelles.Il a �et�e d�emontr�e que Spark est un adre exible et eÆae pour l'analysepoints-to de Java. Plusieurs exp�erienes qui pourraient être e��etu�ees ave Sparksont sugg�er�ees.

iv

AknowledgmentsI am very grateful to my advisor, Laurie Hendren, for leading the Sable researhgroup so well. Her suggestions for my work were plentiful, and always resulted in asigni�ant improvement. Her enouragement and enthusiasm kept me going.The Sable group has been a pleasant environment in whih to work, thanks toall its members. In partiular, I want to thank the pointer group of Feng Qian,John Jorgensen, Felix Kwok, Mar Berndl, and Navindra Umanee for the many dis-ussions, Sable group alumni Rhodes Brown, Patrik Lam, Etienne Gagnon, JeromeMieznikowski, and Derek Rayside for all the bits of advie, and Bruno Dufour foralways being eager to help with whatever needs to be done.I learned a lot during my M.S. work, in my ourses as well as in my researh.Thanks to Karel Driesen, Doina Preup, Laurie Hendren, Xiao-Wen Chang, andPrakash Panangaden for teahing them.This work was supported �nanially by the taxpayers of Canada through NSERC,and by a Rihard H. Tomlinson fellowship.I annot forget my time in Waterloo, where I gained the bakground to start thiswork. I am thankful to everyone at UW, in the CEMC, and at Watom.My family ontinues to be supportive, even though they are far away. I amespeially grateful to my wife Jennifer for oming with me to Montreal, and for heronstant friendship, patiene, and love.
v

vi

Contents
Abstrat iR�esum�e iiiAknowledgments vContents viiList of Figures xiList of Tables xiii1 Introdution 11.1 Motivation . 11.2 Contributions . 31.2.1 Design . 31.2.2 Implementation . 41.2.3 Experiments . 51.3 Thesis Organization . 62 Related Work 72.1 Early Work on Alias and Points-To Analysis 72.2 Improving Analysis EÆieny . 92.3 Points-To Analysis for Java . 122.4 Appliations of Points-To Analysis 14vii

2.4.1 Side-E�et Information . 152.4.2 Call Graph Constrution . 162.4.3 Esape Analysis . 163 Spark in the Context of Soot 193.1 Soot Overview . 193.2 Spark within Soot . 234 Pointer Analysis Engine 274.1 Pointer Assignment Graph . 294.1.1 Alloation Nodes . 294.1.2 Variable Nodes . 304.1.3 Field Referene Nodes . 304.1.4 Conrete Field Nodes . 314.1.5 Alloation Edges . 314.1.6 Assignment Edges . 314.1.7 Store Edges . 324.1.8 Load Edges . 324.1.9 Example . 324.2 Building the Graph . 354.2.1 Design . 354.2.2 Parameters and Options . 364.3 Simplifying the Graph . 394.3.1 Merging Nodes . 394.3.2 Strongly Conneted Components 424.3.3 Single Entry Subgraphs . 434.4 Flowing Points-to Sets . 464.4.1 Iterative Propagation Algorithm 464.4.2 Worklist Propagation Algorithm 484.4.3 Inremental Worklist Propagation Algorithm 524.4.4 Alias Edge Propagation Algorithm 56viii

4.4.5 Inremental Alias Edge Propagation Algorithm 614.5 Points-to Set Implementations . 664.5.1 Hash Set . 664.5.2 Sorted Array Set . 674.5.3 Bit Set . 674.5.4 Hybrid Set . 675 Experimental Results 695.1 Benhmarks . 695.2 Fators A�eting Preision . 715.2.1 Respeting Delared Types . 715.2.2 Call Graph Constrution . 745.2.3 Field Dereferene Expressions 745.3 Fators A�eting Performane . 745.3.1 Set Implementation . 745.3.2 Points-To Set Propagation Algorithms 765.3.3 Graph Simpli�ation . 795.4 Overall Results . 816 Client Analyses 836.1 Call Graph Constrution . 836.2 Side-e�et Analysis . 856.2.1 Bakground . 856.2.2 Representation of Side-E�et Information 876.2.3 Implementation of Side-E�et Analysis 896.2.4 Attribute Enoding . 906.2.5 Side-E�et Example . 926.2.6 Experimental Results . 966.2.7 Future Work on Side-E�et Analysis 997 Conlusions and Future Work 1017.1 Conlusions . 101ix

7.2 Future Work . 1037.2.1 Preision of Data Flow Analyses 1037.2.2 Using Side-E�et Information in Just-In-Time Compilers . . . 1037.2.3 Points-To Analysis Algorithms and Set Implementations . . . 1047.2.4 Context-Sensitivity . 1047.2.5 Preision of Call Graph Constrution 105A Using Spark 107A.1 Obtaining Spark . 107A.2 Spark Options . 108A.2.1 General Options . 108A.2.2 Pointer Assignment Graph Building Options 109A.2.3 Pointer Assignment Graph Simpli�ation Options 111A.2.4 Points-To Set Flowing Options 112A.2.5 Output Options . 114Bibliography 115

x

List of Figures3.1 How Spark Interats with Soot . 244.1 Spark Overview . 284.2 Example to Illustrate Pointer Assignment Graphs 334.3 Example Illustrating Merging of Field Referene Nodes 414.4 Algorithm for Reduing Single Entry Subgraphs 454.5 Iterative Propagation Algorithm . 474.6 Worklist Propagation Algorithm (part 1 of 2) 504.7 Worklist Propagation Algorithm (part 2 of 2) 514.8 Inremental Worklist Propagation Algorithm (part 1 of 2) 544.9 Inremental Worklist Propagation Algorithm (part 2 of 2) 554.10 Field Representation in Standard (a) and Alias Edge (b) Algorithms . 564.11 Alias Edge Propagation Algorithm (part 1 of 2) 584.12 Alias Edge Propagation Algorithm (part 2 of 2) 594.13 Inremental Alias Edge Propagation Algorithm (part 1 of 4) 624.14 Inremental Alias Edge Propagation Algorithm (part 2 of 4) 634.15 Inremental Alias Edge Propagation Algorithm (part 3 of 4) 644.16 Inremental Alias Edge Propagation Algorithm (part 4 of 4) 656.1 Code Example for Side-E�et Analysis 866.2 Optimized Version of Code Example 866.3 Java Code for Side-E�et Example 926.4 Jimple Code for Side-E�et Example 946.5 Byteode for Side-E�et Example . 95xi

xii

List of Tables5.1 Benhmark Charateristis . 705.2 Analysis Preision . 725.3 Set Implementation . 755.4 Propagation Algorithms . 775.5 Simpli�ation . 805.6 Overall Results . 826.1 Call Graph Preision . 856.2 Attribute Size as Perentage of Original Class File Size 976.3 Perentage of Dependenes Ruled Out by Side-E�et Analysis 98

xiii

xiv

Chapter 1Introdution
1.1 MotivationAurate information about the behaviour of pointers is a prerequisite for many anal-yses and optimizations of programs written in languages with pointers. The exatruntime values of eah pointer in a program are, in general, unomputable [Lan92℄.Various approximation algorithms have therefore been the subjet of ative researhfor over a deade. Unfortunately, these variations were implemented within di�erentompiler frameworks, making them diÆult to ompare. Moreover, pointer analysisresearhers have not yet agreed on an objetive metri of the preision of a pointeranalysis. Although muh work has been done, the problem of eÆiently and au-rately prediting the behaviour of pointers is far from solved.In reent years, Java, and other similar languages with dynami dispath andstrong typing, have been growing in popularity. These language features make thedevelopment of software easier and less error-prone, but have signi�ant osts inperformane and ompiler omplexity. Pointer analyses must be adapted to dealwith new features not present in simpler languages like C. On the other hand, thetype-safety properties of these languages should be exploited to improve eÆienyand auray of the analysis. 1

IntrodutionThis thesis aims to address these problems by introduing Spark, a exible frame-work for points-to analysis of Java programs, and by reporting on an extensive studyof Java points-to analysis variations that was performed using Spark.All features of Java are onsidered by Spark, making it an ideal framework forexperimenting with di�erent representations of these features in pointer analyses.Spark is designed to be modular, in that di�erent implementations of its variousomponents an be interhanged. This allows experimentation with spei� imple-mentation details of pointer analysis algorithms, an area whih has been largely ne-gleted in reent pointer analysis researh. By setting various parameters withinSpark, and possibly by implementing additional Spark modules, researhers aneasily instantiate eÆient implementations of many of the variations of pointer anal-ysis that have been proposed, as well as new variations. This allows the di�erentanalyses to be ompared within the ontext of the same framework.Spark is a omponent of the Soot byteode analysis and optimization frame-work [Soot, VRGH+00℄. The pointer information omputed by Spark an be usedby various lient analyses within Soot, or it an be enoded in attributes for useby other optimizers, virtual mahines, or native ompilers. This large olletion ofpossible lient analyses provides many di�erent measures of the e�etiveness of thepointer analysis.In addition to desribing the Spark framework itself, this thesis reports the re-sults of a substantial experimental study of Java points-to analyses and the tradeo�sbetween analysis eÆieny and auray. These experiments reveal several variationsappropriate for Java that provide both preise information and fast analysis times.Furthermore, the experimental results demonstrate that Spark is not only modu-lar, but its eÆieny is very ompetitive ompared to other Java points-to systemsdesribed in previously published work. 2

1.2. Contributions1.2 ContributionsThe work reported in this thesis onsists of the design of the Spark pointer analysisframework, its implementation, and results of experiments performed with it. Thesethree ontributions are desribed in the following subsetions.1.2.1 DesignPointer Assignment GraphSpark introdues the notion of a pointer assignment graph (desribed in detail inSetion 4.1), a single model in whih very di�erent pointer analyses an be expressedand eÆiently implemented. This is in ontrast to the many inomparable represen-tations typially used to present di�erent pointer analyses in the literature.The pointer assignment graph allows the following variations of pointer analysesto be expressed:� subset-based [And94℄ or equality-based [Ste96b℄;� varying levels of ontext-sensitivity;1� �eld and array referenes merged for all objet instanes (�eld-based analysis),or onsidered separately for eah instane (�eld-sensitive analysis);� variables in SSA form [AWZ88℄, split along UD-DU webs [Mu97, Setion 8.10℄,or as in original soure;� whih delared types and asts (if any) are respeted;� whether an initial approximation to the all graph is used, or whether the allgraph is onstruted as the pointer information is omputed; and1Although urrently only ontext-insenstive analyses are implemented, Spark is designed tofailitate experimentation with ontext-sensitivity.3

Introdution� if an initial all graph is used, whih approximation (suh as lass hierarhy anal-ysis [DGC95℄, rapid type analysis [BS96℄, or variable type analysis [SHR+00℄)is used to ompute it.Staged AnalysisThe pointer analysis in Spark proeeds in three stages.1. The pointer assignment graph is built based on the program being analyzed.2. The pointer assignment graph is simpli�ed.3. The simpli�ed pointer assignment graph is used to ompute points-to informa-tion.This division into stages is key to the exibility of Spark. A large number ofombinations of di�erent implementations of eah stage are possible, leading to manyvariations in the pointer analysis. The stages of Spark are desribed in detail inChapter 4.1.2.2 ImplementationThe urrent version of Spark inludes the following implementations of its ompo-nents.� A ontext-insensitive implementation of the pointer assignment graph builderwith many parameters whih determine how language features are represented.The pointer assignment graph builder is desribed in detail in Setion 4.2.� Implementations of simpli�ation algorithms to merge strongly onneted om-ponents and single-entry subgraphs. Simpli�ation of the pointer assignmentgraph is desribed in detail in Setion 4.3.� Five di�erent implementations of points-to set propagation algorithms: a simpleiterative algorithm, an eÆient worklist-based algorithm, a new, spae-eÆient4

1.2. Contributionsalias edge algorithm, and inremental versions of the worklist and alias edgealgorithms. These algorithms are presented in Setion 4.4.� Four di�erent implementations of points-to sets: an implementation based onhash tables, an implementation based on bit vetors, an implementation basedon sorted arrays, and a hybrid implementation whih represents the elements ofsmall sets expliitly, but swithes to bit vetors to represent larger sets. Theseimplementations of points-to sets are desribed in more detail in Setion 4.5.� Two lient analyses that use the results of Spark have been implemented: a allgraph trimmer, and a side-e�et analysis. The results of these lient analyses arefurther used by other analyses within Soot, or they an be enoded in attributesfor use by other optimizing ompilers. These lient analyses are desribed inChapter 6.1.2.3 ExperimentsThe Spark framework was used for an extensive empirial study of fators a�etingpreision and eÆieny of subset-based Java points-to algorithms. The followingfators were studied:� respeting delared types and asts during the analysis;� onstruting an initial all graph prior to the analysis, or onstruting it duringthe analysis as points-to sets beome available;� modelling of �eld dereferene expressions in a �eld-sensitive or �eld-based man-ner;� implementation of points-to set data strutures;� several points-to set propagation algorithms; and� o�-line simpli�ation of the pointer assignment graph prior to propagation.5

IntrodutionFrom the results of these experiments, three analysis variations were seleted asappropriate ompromises between analysis preision and eÆieny. The experimentsshowed the performane of Spark on these variations to be very ompetitive om-pared to other Java points-to analyses that have been desribed in the literature.1.3 Thesis OrganizationThe rest of this thesis is organized as follows. The next hapter is a survey of relatedwork. Chapter 3 provides an overview of the overall design of Spark, and of theSoot framework of whih it is a part. Chapter 4 gives a detailed desription of thedesign of the pointer analysis engine, the ore of Spark. A desription of the pointerassignment graph is given �rst, followed by desriptions of the stages whih Sparkuses to ompute pointer information. Results of experiments onduted with Sparkare reported in Chapter 5. Client analyses that use the results omputed by Sparkare desribed in Chapter 6. Finally, Chapter 7 onludes this work, and providesmany examples of researh to whih Spark ould be applied in the future.

6

Chapter 2Related Work
This hapter presents previous work on points-to analysis. The �rst setion oversearly work leading to points-to analysis. The seond setion is an overview of thetehniques that have been used in the past to improve the eÆieny and preisionof points-to analyses. The third setion explains the work that has been done so farto adapt points-to analyses designed for C to Java. The fourth setion disusses theappliations for whih points-to information has been used, onentrating primarily onappliations related to Java. An extensive survey of points-to analysis researh, witha partiular fous on the problems that remain unsolved, is given by Hind [Hin01℄.2.1 Early Work on Alias and Points-To AnalysisThe earliest work [Wei80, CR82, Cou86, LR92, CBC93℄ on estimating the sets ofloations to whih pointers ould point used an alias set representation. This repre-sentation enodes the set of pairs of variables whih ould point to the same memoryloation. One suh set of alias relationships an be omputed for the program as awhole, or a separate alias set an be omputed for eah program point. One diÆultywith this representation is that its size an be quadrati in the number of variables inthe program. Another drawbak is that alias sets do not give information about theobjets to whih pointers point, suh as their type; rather, they only speify whihpairs of variables may point to the same objets.7

Related WorkTo address these problems, Emami, Ghiya and Hendren [EGH94℄ introduedpoints-to analysis. A points-to analysis divides memory into onrete loations. Then,for eah variable, it omputes the set of onrete loations to whih that variable maypoint. Alias sets an be reovered from points-to sets: a pair of variables is aliasedwhenever their points-to sets have a non-empty intersetion. However, for many ap-pliations, it is more onvenient to use points-to sets without �rst onstruting aliassets.Emami, Ghiya and Hendren's implementation used a separate onrete loationfor eah stak variable, and modelled the entire heap as a single onrete loation.The analysis was ontext-sensitive and ow-sensitive. For stak-direted pointers, itomputed not only may points-to information, but also must points-to information,and used it to improve the preision of the ow-sensitive analysis by removing oldpoints-to relationships when a variable was known to be overwritten. When analyz-ing C, funtion pointers present a hallenge beause they make it diÆult to determinethe targets of alls through them. The points-to analysis treated eah funtion as aonrete loation, so the set of possible targets of a all through a funtion pointerwas simply the points-to set.Andersen [And94℄ proposed a ow-insensitive, ontext-insensitive version ofpoints-to analysis that did not ompute must points-to information. However, hisanalysis modelled the heap more preisely, using a separate onrete loation to rep-resent all memory alloated at a given dynami alloation site. The implementationexpressed the analysis using subset onstraints, and then solved the onstraints.Solving a system of set onstraints suh as those generated by Andersen's anal-ysis is equivalent to �nding the transitive losure of the onstraint graph, and atypial implementation may therefore take time ubi in the size of the program.Steensgaard [Ste96b℄ proposed a more onservative analysis by replaing eah subsetonstraint with a set equality onstraint. The advantage of this approah is that itredues the problem to one of �nding onneted omponents in the onstraint graph,whih an be done in almost linear time using a fast union-�nd algorithm [Tar75℄.However, the stronger onstraints make the analysis muh less preise. In fat, forJava programs, the onstraint graph is fully onneted, beause every objet is passed8

2.2. Improving Analysis EÆienyto the initializer of java.lang.Objet, so an unmodi�ed version of Steensgaard's al-gorithm would produe the worst-ase assumption that every variable may point toevery objet.2.2 Improving Analysis EÆienySine the introdution of subset-based and equality-based points-to analysis, re-searhers have worked on improving the eÆieny of the former, and the preision ofthe latter.Wilson and Lam [WL95℄ implemented a ow-sensitive, ontext-sensitive subset-based analysis using partial transfer funtions to summarize the e�et of eah funtionon points-to sets. This meant that their analysis did not have to analyze eah funtionfor every alling ontext; rather, it only had to apply the partial transfer funtionin eah alling ontext. The analysis ould therefore be more eÆient than the ow-sensitive, ontext-sensitive analysis of Emami, Ghiya, and Hendren.Ruf [Ruf95℄ advoated abandoning ontext-sensitivity altogether. He implementedboth ontext-insensitive and maximally ontext-sensitive versions of a subset-basedanalysis. On his benhmark suite, the ontext-insensitive version produed only asmall number of spurious points-to relationships ompared to the ontext-sensitiveversion. Moreover, when he applied the points-to results to omputing side-e�etinformation, the few spurious points-to relationships introdued even fewer spuriousside-e�ets.Shapiro and Horwitz [SH97b℄ studied ow-insensitive, ontext-insensitive points-to analyses. They presented empirial results demonstrating that an equality-basedanalysis is onsiderably less preise than a subset-based analysis, but that the subset-based analysis is muh slower on larger programs. In addition, they presented apoints-to analysis algorithm with a parameter whih ould be adjusted to make theanalysis faster at the expense of preision. The idea was to separate the variables inthe program into k ategories. When two variables were in the same ategory, on-straints between them were treated as equality onstraints; only variables in di�erent9

Related Workategories ould have subset onstraints between them. Using a separate ategory foreah variable resulted in a fully subset-based analysis, while assigning all variables toa single ategory resulted in a fully equality-based analysis. The analysis ould betuned between these two extremes by using an intermediate number of ategories.Hasti and Horwitz [HH98℄ used stati single assignment (SSA) form [AWZ88℄ toobtain preision omparable to a ow-sensitive points-to analysis from a muh faster,ow-insensitive points-to analysis. The main bene�t of a ow-sensitive analysis isstrong update: when a variable is overwritten, the analysis an infer that after beingoverwritten, the variable no longer points to the objets it used to point to. A ow-insensitive analysis ignores the order in whih assignments are exeuted; it has noway to distinguish between \before" and \after" the assignment. When a programis onverted into SSA form, its variables are split so that eah variable is assignedat only one point in the program. This means that in SSA form, no variable is everoverwritten. A variable whih is overwritten in the original program is representedby two or more separate variables in SSA form. In Spark, all analyses are ow-insensitive, but before starting the analysis, Spark uses the Soot framework to splitvariables along UD-DU webs [Mu97, Setion 8.10℄, a slight relaxation of SSA form.A Soot transformation to true SSA form has been written, and is expeted to soonbe merged into the publily available version of Soot.Diwan, MKinley, and Moss [DMM98℄ applied points-to analysis to Modula-3,whih enfores delared types, unlike C. They studied three simple alias analyses.The �rst analysis was to treat variables as possibly aliased whenever the type ofone variable is a subtype of the other. The seond analysis added the onstraintthat a �eld of an objet may only be aliased to that same �eld of another objet.Finally, the third was an equality-based analysis similar to Steensgaard's. The resultsof the alias analysis were used to ompute side-e�et information, whih was usedto remove redundant loads. Their analysis was able to remove between 37% and87% of the redundant loads in the program, resulting in a 1% to 8% speedup. Thesimplest analysis whih onsidered only delared types managed to detet nearly allof the redundant loads deteted by the other two more preise analyses. Experimentsonduted using Spark show that information provided by delared types suh as10

2.2. Improving Analysis EÆienythat used by Diwan, MKinley, and Moss an signi�antly improve analysis preisionand eÆieny of more ompliated analyses.Aiken, F�ahndrih, Foster, and Su [AFFS98, FFSA98, SFA00℄ developed a frame-work alled BANE for solving general subset onstraint problems. In partiular, theframework an be used to solve points-to analysis problems that an be expressedusing set onstraints. Their framework is able to detet and ollapse yles in theonstraint graph as it is solving it, improving the eÆieny of subset-based analyses.Rountev and Chandra [RC00℄ observed that the initial subset onstraint graphmay ontain yles or subgraphs with a single entry point, and that when analyzingC programs, the points-to sets of all nodes in a yle or in a single entry subgraphwill be equal.1 They therefore proposed simplifying the graph by merging variablesknown to have equal points-to sets before starting to solve the onstraints. On their Cbenhmarks, they found that simplifying the onstraint graph before solving it im-proved the solution time and memory requirements by about 50%. Spark inludes asimilar algorithm to simplify its pointer assignment graph, and empirial results fromSpark agree with those of Rountev and Chandra.Das [Das00℄ notied that in C programs, many pointers are only used to implementall-by-referene, and that it is relatively inexpensive to analyze these pointers with asubset-based analysis. He therefore proposed an analysis that uses subset onstraintsbetween stak variables that do not have their address taken, and equality onstraintsbetween other variables. The pointers used to implement all-by-referene rarelyhave their address taken, so they are analyzed quikly with great preision by asubset-based analysis. The remaining pointers, whih ould slow down a subset-based analysis, are analyzed using the impreise but inexpensive equality onstraints.Using this analysis, Das was able to analyze a large program onsisting of about twomillion lines of ode.Heintze and Tardieu [HT01a, HT01b, Hei99℄ report analyzing huge programs witha fully subset-based analysis. This eÆieny appears to be due to three main fators.First, their analysis is demand-driven, produing only those points-to sets needed by1In an analysis for Java, it is not neessarily true that the points-to sets of all nodes in a yle orsingle entry subgraph will be equal if delared types are being respeted. See Setion 4.3 for details.11

Related Worka lient of the analysis, rather than produing the entire solution at one. Seond,it uses an algorithm that detets and merges yles in the onstraint graph as theanalysis proeeds. Third, their representation of points-to sets has been arefullytuned, and is very eÆient. It is not lear whih of these three fators ontributemost signi�antly to the speed of their system; however, their work shows that aombination of the three makes it feasible to perform subset-based analyses for verylarge programs.
2.3 Points-To Analysis for JavaWith the exeption of the work by Diwan, MKinley, and Moss, the points-to analysesdisussed so far were designed to analyze programs written in C. Java has severalfeatures not present in C that a�et points-to analysis. Spei�ally, Java disallowsonly stak-direted pointers, it enfores delared types, and it uses virtual dispath,so a stati all graph is not immediately available, as it is in C in the absene offuntion pointers. This is espeially problemati beause Java inludes a very largestandard lass library whih annot be left out of the all graph, making even trivialprograms appear very large from the point of view of whole-program analysis. Severalresearhers have tried to adapt points-to analyses to reet these features spei� toJava.Liang, Pennings and Harrold [LPH01℄ performed a omparison of several di�erentanalyses adapted to Java. All of their analyses were ow-insensitive and ontext-insensitive. Beause their implementation ould not sale to analyzing the ompletestandard library of version 1.1.8 of the JDK, they used hand-oded summaries ofthe pointer-related e�ets of the library. They studied both �eld-sensitive and �eld-based analysis of �eld expressions. In a �eld-sensitive approah, a separate points-to set is omputed for eah �eld of eah onrete loation, while in a �eld-basedapproah, only a single points-to set is omputed for eah �eld. A �eld-sensitiveapproah an distinguish between the same �eld of two di�erent objets, while a12

2.3. Points-To Analysis for Java�eld-based approah annot. They also ompared both equality-based and subset-based analyses. After notiing that a ompletely equality-based analysis appliedto Java produes the worst-ase information that every pointer may point to everyobjet, they modi�ed the equality-based analysis to be subset-based in the areasthat degraded preision the most. Finally, they also ompared using a all graphpreomputed using lass hierarhy analysis [DGC95℄ to onstruting a all graph on-the-y from the points-to information as it was omputed. The preision of theseanalyses was measured by its impat on the preision of the all graph that ould beonstruted from the points-to information, and the preision of esape informationthat ould be omputed. They found the subset-based analysis to be signi�antlymore preise than even their modi�ed equality-based analysis, but they did not notiea signi�ant e�et on preision from varying the modelling of �eld referenes or themethod of all graph onstrution. In their implementation, the �eld-based analysisusing the all graph omputed using CHA was onsiderably faster than the othervariations.Rountev, Milanova and Ryder [RMR01℄ modi�ed Soot [Soot, VRGH+00℄ to out-put subset onstraints to be used as input to BANE [AFFS98℄, whih they used toompute a ow-insensitive, ontext-insensitive, �eld-sensitive points-to analysis thatomputed the all graph on-the-y. They were unsuessful in expressing an eÆient�eld-based analysis diretly in BANE, so they modi�ed BANE to allow eah subsetonstraint to be annotated with a �eld. Using these �eld annotations, their analysiswas eÆient enough to be able to analyze benhmarks with the whole standard libraryfrom version 1.1.8 of the JDK. During the analysis, the delared types of variableswere not onsidered; however, objets of inompatible type were removed from the �-nal points-to sets after the analysis ompleted. They showed using experimental datathat their analysis omputed preise side-e�et information, a preise approximationto the all graph, and preise esape information.Whaley, Rinard and Vivien [WR99, VR01℄ used a demand-driven, subset-based,ontext-sensitive, ow-sensitive, �eld-sensitive analysis to ompute esape informa-tion for deiding whih objets ould be safely alloated on the stak rather than onthe heap. As soon as an objet was determined to esape, the analysis for that objet13

Related Workterminated. This made it possible for suh a preise analysis to sale to reasonably-sized programs. Choi et al. [CGS+99℄ presented a very similar esape analysis. Theyapplied it to eliminating synhronization of thread-loal objets, in addition to allo-ating objets on the stak. Bogda and H�olzle [BH99℄ also used a points-to analysisto ompute esape information for eliminating synhronization. The intra-proeduralpart of their analysis was equality-based, while the inter-proedural part was subset-based, giving a good ompromise between analysis eÆieny and preision.Whaley and Lam [WL02℄ adapted the demand-driven algorithm of Heintze andTardieu [HT01a, HT01b℄ to Java by adding �eld-sensitivity, making it respet de-lared types, and omputing the all graph on-the-y. With this analysis, theywere able to analyze benhmarks using the standard library from version 1.3.1 ofthe JDK, whih is about three times larger than the library in version 1.1.8. How-ever, their implementation did not ome lose to mathing the salability of Heintzeand Tardieu's implementation for C, suggesting that implementation features otherthan the demand-driven algorithm a�et the eÆieny of the analysis.Reently, Milanova, Rountev and Ryder [MRR02a, MRR02b℄ proposed objet-sensitivity, an adaptation of ontext-sensitivity designed to preisely model featuresoften present in objet-oriented programs, suh as enapsulation. They applied apreliminary version of their analysis to onstruting objet relationship diagrams forprogram understanding, an appliation for whih a high level of preision is needed.
2.4 Appliations of Points-To AnalysisThis setion desribes some of the analyses that have been onstruted to make useof points-to information. Some of these lients, suh as side-e�et analysis, have beenstudied for both C and Java, while others, suh as all graph onstrution and esapeanalysis are partiularly useful for dealing with features spei� to Java.14

2.4. Appliations of Points-To Analysis2.4.1 Side-E�et InformationThe purpose of a side-e�et analysis is to approximate the set of memory loationsread and written by spei� instrutions, and to summarize this information for largerregions of the program. This information an then be used to improve the e�etivenessof a wide variety of dataow analyses and traditional ompiler optimizations in thepresene of pointers. The side-e�et analysis implemented using Spark is desribedin Setion 6.2 of this thesis.Ghiya and Hendren [GH98℄ used side-e�et information to improve preision ofommon subexpression elimination, loop-invariant hoisting, and redundant load elim-ination in a C ompiler. On their benhmarks, these improvements translated intoup to 10% speedups. They also showed how to use side-e�et information for arraydependene testing, in program understanding tools, and to automatially insert dataprefething hints into ode. A similar study was done for C programs by Hind andPioli [HP00℄. They evaluated several points-to analyses by measuring their e�etson live variable analysis, reahing de�nitions, onstant propagation, and dead odeelimination.Clausen [Cla97℄ proposed a simple side-e�et analysis for Java whih did notuse a points-to analysis; it used only information about delared types, and madeworst-ase assumptions about the possible targets of pointers. The resulting side-e�et information was applied to dead ode removal, loop invariant hoisting, onstantpropagation, and ommon subexpression elimination. On early versions of Java, theseoptimizations produed speedups of up to 25%.2The preision of side-e�et information that an be obtained has beome aommon metri of the preision of points-to information. Both Shapiro and Hor-witz [SH97a℄, and Rountev, Milanova and Ryder [RMR01, MRR02b℄ used it as oneof their main metris in omparing the preision of di�erent points-to analyses.2Early Java virtual mahines did not have aggressive just-in-time ompilers like they do today.Modern just-in-time ompilers an perform some of these optimizations based on intraproeduralanalysis. 15

Related Work2.4.2 Call Graph ConstrutionIn Java, all instane methods are invoked using virtual alls. This means that whole-program analyses require some approximation of the all graph. Some points-toanalyses require suh a all graph to be onstruted prior to the analysis. The outputof a points-to analysis an also be used to onstrut suh a all graph, or to make anexisting all graph more preise. The appliation of Spark to all graph onstrutionis overed in Setion 6.1 of this thesis.Several methods have been proposed for onstruting all graphs without usinga omplete points-to analysis. Dean, Grove, and Chambers [DGC95℄ proposed lasshierarhy analysis, whih uses only the sublass relationships in the type hierarhy toresolve method targets. Baon and Sweeney [BS96℄ introdued rapid type analysis,whih restrits lass hierarhy analysis to lasses whih appear in alloation sites inthe program. Sundaresan et al. [SHR+00℄ proposed an even more preise method,variable type analysis, a tehnique similar to subset-based points-to analysis in thatit uses subset onstraints to express the possible sets of run-time types of objetsthat eah variable may hold. All of these methods are available in Spark. Tip andPalsberg [TP00℄ studies several other variations of all graph onstrution algorithmsbased on subset onstraints.A all graph an be onstruted almost diretly from preise points-to information.It has beome ommon in studies of points-to analyses [LPH01, RMR01, WL02℄ touse the preision of the all graph that an be onstruted as one measure of thepreision of the points-to information.2.4.3 Esape AnalysisThe goal of an esape analysis is to determine whih objets an be referened bypointers in methods or threads other than the method or thread in whih they arealloated. Researh on esape analysis for Java has foused on two main appliations,stak alloation and synhronization elimination, whih are disussed in the next twoparagraphs.Java fores programmers to alloate all objets on the heap, rather than on the16

2.4. Appliations of Points-To Analysisstak. This an have adverse e�ets on the performane of Java programs, beausethese objets need to be freed by the garbage olletor. Several researhers [WR99,VR01, CGS+99℄ used esape analyses inside their ompilers to detet whih objetsould safely be alloated on the stak rather than on the heap.It is very easy to add synhronization loks to Java programs, so many programsand libraries use them extensively even when they are not neessary. Several ap-proahes [BH99, Ruf00, CGS+99℄ were independently developed to use esape infor-mation to redue the overhead of these loks. All three approahes use esape analysisto determine whih objets annot be referened by threads other than the thread inwhih they are alloated. Any loks on suh objets an be removed, beause theseobjets are only used by a single thread. Most modern implementations of Java usethin loks [BKMS98℄, whih are extremely eÆient when there is no ontention overthe lok (as is the ase for thread-loal objets), so it may appear that synhroniza-tion elimination is no longer neessary. However, even thin loks beome expensiveon multi-proessor arhitetures [KKO02℄.

17

Related Work

18

Chapter 3Spark in the Context of Soot
3.1 Soot OverviewSpark is a omponent of the Soot framework [Soot, VRGH+00℄ for analyzing, op-timizing, and annotating Java byteode. The Soot framework de�nes four di�erentintermediate representations, and inludes ode to onvert between them and Javabyteode.Baf is a stak-based representation similar to byteode.Jimple is a stak-less, three-address, typed intermediate representation suitable formany analyses.Grimp is a representation similar to Jimple, but with aggregated expressions (thatis, statements suh as d = (a + b) * are allowed, whereas in Jimple, thisomputation would be split into two statements, one to do the addition, andthe other to do the multipliation).Dava AST is a high-level, strutured representation used for deompilation.The most ommon use of Soot is for optimizing and annotating byteode. Sootreads the byteode (whih may be produed by java or any other ompiler targetting19

Spark in the Context of Sootbyteode) either for a single lass �le, or a whole program. Soot suessively onvertsthe byteode to its various intermediate representations, and applies analyses, trans-formations, and annotation generators designed for eah intermediate representation.Soot provides a mehanism [PQVR+01℄ for attahing attributes with arbitrary anal-ysis results to lasses, methods, or individual instrutions. Finally, the intermediaterepresentation is translated bak to byteode, annotated with any of the attributesthat were attahed, and written bak to lass �les.Of the intermediate representations de�ned by Soot, Jimple is the most suitablefor whole-program points-to analysis. Spark is therefore based entirely on Jimple.Jimple statements relevant to points-to analysis are explained below.Assignment statement: An assignment statement has the form p = q, and assignsthe value of one variable to another. If the variables are of pointer type, a points-to analysis must onsider that after this statement, the target of the assignmentmay point to the objet that the soure of the assignment points to.Identity statement: Jimple introdues virtual variables to represent the parame-ters of methods and the parameter of an exeption handler. These variables arepresent only impliitly in the original byteode. An identity statement is an as-signment statement with one of these virtual variables as its soure rather thanan ordinary variable. For example, every instane method ontains a statementlike p := �this, whih assigns the impliit parameter this to the variable p.Spark treats identity statements in the same way as other assignment state-ments.Alloation statement: From the point of view of a points-to analysis, an alloationstatement is any statement that auses a variable to point to some newly-alloated loation. In Jimple, this inludes statements that alloate objetsand arrays (single and multi-dimensional), and that load string onstants. InJimple, the all to a onstrutor that is assoiated with an objet being reatedis not part of the alloation statement; it is represented as a separate invoationstatement. Some examples of alloation statements are:20

3.1. Soot Overview� p = new java.lang.String,� q = newarray (int)[12℄, and� r = "Hello, World!".Field store: A �eld store has the form p.f = q, and stores the value of the variableq into the �eld f of the objet pointed to by p.Field load: A �eld load has the form p = q.f, and loads the value of the �eld f ofthe objet pointed to by q into the variable p.Stati �eld store: A stati �eld store has the form Class.field = p, and storesthe value of a variable into a stati �eld of a lass. Stati �elds are the Javaequivalent of global variables. Eah stati �eld is assoiated with a lass, andthere is a single instane of eah stati �eld in the whole program.Stati �eld load: A stati �eld load has the form p = Class.field, and loads thevalue of a stati �eld into a variable.Array store: An array store has the form p[i℄ = q, and stores the value of variableq into the ith element of the array pointed to by the variable p. In Spark,arrays are treated like objets, with a single virtual �eld representing all theelements of the array.Array load: An array load has the form p = q[i℄, and loads the value of the ithelement of the array pointed to by q.Cast statement: A ast statement has the form p = (T) q, and auses the pointerstored in the variable q to be assigned to the variable p, provided that the typeof the target of the pointer is a subtype of T. If it is not, the assignment does nottake plae, and an exeption is thrown. A points-to analysis an treat suh aast statement like an assignment from q to p, but it an also take advantage ofknowing that the pointer that is assigned must be pointing to an objet whosetype is a subtype of T. 21

Spark in the Context of SootInvoation statement: An invoation statement auses a method to be invoked.If the method is stati, the invoation statement ontains a spei�ation of themethod that will be invoked. Otherwise, the invoation statement ontains asignature of the method to be invoked, as well as a variable pointing to thereeiver objet of the method. The atual method that will be invoked is re-solved from the run-time type of the reeiver objet and the method signature.If the method aepts parameters, the invoation statement ontains variableswhose values will be passed to the parameters of the method. If the methodreturns a value, the invoation statement may optionally ontain a target vari-able to whih the return value will be assigned when the method returns. Anyof these variables may be of pointer type, so a points-to analysis must onsiderthe resulting ow of pointers. Some examples of invoation statements are:� p = statiinvoke <java.lang.String: valueOf(int)>(5),� i = virtualinvoke s.<java.lang.String: length()>(),� virtualinvoke p.<java.io.PrintStream: lose()>(),� speialinvoke this.<java.lang.Objet: void <init>()>();, and� i = interfaeinvoke .<java.util.Colletion: int size()>();.Return statement: A return statement has the form return or return p, andauses ontrol to return from a method bak to its aller, optionally passingbak a value. At the all site, the returned value may be assigned to a variable,or disarded if no target variable is spei�ed. If the value being returned isof pointer type, a points-to analysis should should take the pointer ow intoaount.Throw statement: A throw statement has the form throw p, and transfers on-trol to an exeption handler, passing it a pointer to an exeption objet (p, inthis ase). Eah exeption handler ontains an identity statement that retrievesthe exeption objet from the impliit parameter variable. A points-to anal-ysis should trak the pointer ow from the throw statement to the parameter22

3.2. Spark within Sootof the exeption handler. In Spark, this is urrently done by representing allthrown exeptions as assignments to a single variable holding all thrown exep-tion objets, and by assignments from this variable to the parameters of eahexeption handler. This method of handling exeptions is based on the onser-vative assumption that any exeption thrown may be aught by any handler inthe program. Beause exeption handlers are usually very short, and beausevery few objets are usually passed through thrown exeptions, this approxi-mation appears not to degrade the preision of the points-to information. Sootould be extended to provide more preise information about whih exeptionhandlers ath whih exeption, and this information ould then be used bySpark.
3.2 Spark within SootFigure 3.1 shows how Spark interats with other omponents within Soot. The oreomponent of Spark is the pointer analysis engine, desribed in detail in Chapter 4.It takes as its input the Jimple representation of the whole program, optionally aonservative all graph, and a simulated representation of any native methods usedby the program. The initial all graph may be reated using lass hierarhy analy-sis [DGC95℄, rapid type analysis [BS96℄, or variable type analysis [SHR+00℄. Sparkan also operate without an initial all graph, and generate one on-the-y based onthe points-to information that it omputes. The output of the pointer analysis engineis, for eah variable of referene type in the program, an abstrat set of loations towhih the variable may point.The points-to information is used by lient analyses, suh as a all graph trimmer,whih removes extraneous edges from the all graph, and a side-e�et analysis, whihomputes the loations possibly read or written by the statements and methods ofthe program. These two lient analyses are presented in more detail in Chapter 6.Other analyses, suh as esape analysis, ould be implemented.23

Spark in the Context of Soot
JimpleCode CallGraph NativeMethodSimulator

Pointer Analysis Engine
Call GraphTrimmer Side-E�etAnalysis Other ClientAnalysesTrimmedCall Graph Side-e�etInformationOther SootAnalyses AnnotationGeneratorOptimizedAnnotatedJimple OptimizedAnnotatedByteodeLegend: represents a proess represents dataFigure 3.1: How Spark Interats with Soot24

3.2. Spark within SootThe results of the lient analyses an be used by other analyses and transforma-tions within Soot. For example, the stati method binder and stati inliner use thetrimmed all graph, while the ommon subexpression eliminator and partial redun-dany eliminator use the side-e�et information.The results of the lient analyses an also be enoded as attributes in the Jimpleode, whih are transferred to lass �le attributes when the Jimple is translatedbak to Java byteode. The information in these attributes an be used by anotherompiler or interpreter reading the resulting byteode. For example, a just-in-timeompiler exeuting the byteode ould use the side-e�et information omputed bySoot. This is an important use of Spark beause points-to analysis, and the analysesthat depend on it, are generally onsidered to be too time-onsuming to be inludedin just-in-time ompilers.

25

Spark in the Context of Soot

26

Chapter 4Pointer Analysis Engine
This hapter desribes the pointer analysis engine, the ore omponent of Spark.Figure 4.1 shows the overall organization of the pointer analysis engine. The analysisonsists of three stages: building the pointer assignment graph, simplifying it, andthen propagating the points-to sets along it to obtain the �nal solution. These stagesare desribed in more detail in the rest of this hapter. A pointer assignment graphbuilder is �rst used to onvert the input Jimple representation into the internal repre-sentation used by Spark, a pointer assignment graph. The graph builder determineshow features of the program, suh as �eld referenes, array element referenes, andparameters passed to methods are represented. It is desribed in more detail in Se-tion 4.2. The pointer assignment graph may then be simpli�ed by merging nodes thatare known to have the same points-to sets. This simpli�ation redues the amountof proessing required to ompute the points-to sets. It is desribed in more detail inSetion 4.3. Finally, the points-to set propagator omputes the points-to set for eahvariable by propagating sets along assignments in the program (whih are representedby edges in the pointer assignment graph). The points-to set propagation algorithmsimplemented in Spark are desribed in detail in Setion 4.4.By tuning parameters of the builder, simpli�er, and propagator (or by providingalternative implementations), we an ontrol the preision and eÆieny of the points-to analysis. For example, to implement a merge-based analysis, we instrut the builderto use bi-diretional edges, and the simpli�er to merge the nodes onneted by these27

Pointer Analysis EngineJimpleCode CallGraph NativeMethodSimulatorPointer AssignmentGraph BuilderPointerAssignment GraphPointer AssignmentGraph Simpli�erSimpli�ed PointerAssignment GraphPoints-To SetPropagatorPoints-ToAnalysis ResultLegend: represents a proess represents dataFigure 4.1: Spark Overview28

4.1. Pointer Assignment Graphedges, leaving a trivial amount of omputation for the propagator. On the other hand,a subset-based analysis would enable little merging in the simpli�er, leaving most ofthe omputation to be done by the propagator. Integrating all three omponents inthe Spark framework makes it feasible to implement and ompare analyses sharingharateristis of the two extremes.4.1 Pointer Assignment GraphSpark uses a pointer assignment graph as its internal representation of the programbeing analyzed. The �rst stage of Spark, the pointer assignment graph builder,onstruts the pointer assignment graph from the Jimple input. Depending on theparameters to the builder, the pointer assignment graph for the same soure odean be very di�erent, reeting varying levels of preision desired of the points-toanalysis. For example, the builder may make assignments direted for a subset-basedanalysis, or bi-diretional for an equality-based analysis. Separating the builder fromthe solver makes it possible to use the same solution algorithms and implementationsto solve di�erent variations of the points-to analysis problem.The pointer assignment graph represents the memory loations used by the pro-gram using four di�erent types of nodes, and assignments of pointers using fourdi�erent types of edges. These are presented in the following subsetions.4.1.1 Alloation Nodesnew 1An alloation node represents a set of run-time objets to whih a pointer ouldpoint. The urrent design of Spark requires the sets of run-time objets representedby alloation nodes to be disjoint; that is, eah objet at run-time is representedby exatly one alloation node. To satisfy this requirement, the builder may use analloation node to represent all objets alloated at a given alloation site (sine everyobjet is alloated at exatly one alloation site), or to represent all objets with agiven run-time type (sine every objet has exatly one run-time type).29

Pointer Analysis EngineEah alloation node has an assoiated type, and all objets that it represents areexpeted to have exatly this type at run-time (not a subtype). For the ase of analloation node representing a set of objets of multiple run-time types, or whose typeannot be determined statially, Spark introdues a speial type AnyType. Alloationnodes with this type an represent objets of any run-time type.4.1.2 Variable Nodesp A variable node represents a set of memory loations possibly holding pointersto objets. Spark eventually omputes, for eah variable node, a set of alloationnodes representing the set of objets to whih a member of the set of memory loationsrepresented by the variable node may point. The most ommon use of variable nodes isto represent loal variables and method parameters, but they are also used to representstati �elds, and they may be used to represent instane �elds if the instanes of a�eld are being modelled together in a �eld-based analysis.Depending on a parameter to the builder, eah variable node may have a delaredtype limiting the set of objets that it may point to to those of ompatible run-timetype.4.1.3 Field Referene Nodesp.fA �eld referene node represents a pointer dereferene. Eah �eld referene nodehas an assoiated variable node as its base, and an abstrat �eld. The �eld referenenode represents all memory loations used to store the given �eld of all objets pointedto by the base. The �eld may be an atual Java �eld, or the speial elements �eldused to represent elements of an array. Note that Java �eld referenes need not alwaysbe modelled using �eld referene nodes; if instanes are being modelled together, �eldreferenes are represented by variable nodes.Like the variable node, eah �eld referene node may have a delared type limitingthe set of objets to whih it may point. 30

4.1. Pointer Assignment Graph4.1.4 Conrete Field Nodesnew 1.fLater, during the propagation of points-to sets, a fourth type of node is reatedto hold the points-to set of eah �eld of objets reated at eah alloation site. Thesenodes are parameterized by alloation site and �eld. However, they are not part ofthe initial pointer assignment graph.4.1.5 Alloation Edgesnew 1 pAn alloation edge is an edge from an alloation node to a variable node, and rep-resents an assignment of pointers to the objets represented by the alloation nodeto the loation represented by the variable node. The presene of an alloation edgeonstrains the points-to information to inlude the objets represented by the allo-ation node in the points-to set of the loations represented by the variable node.Examples of Jimple statements for whih alloation edges are generated inlude allo-ation statements suh as p = new Objet(); and loads of string onstants, suh ass = "Hello";.4.1.6 Assignment Edgesp qAn assignment edge is an edge from a variable node to another variable node, andit represents an assignment from the loation represented by the �rst variable node tothe loation represented by the seond variable node. The presene of an assignmentedge from p to q onstrains the points-to set of p to be a subset of the points-toset of q . In order to onstrain two points-to sets to be equal (for an equality-basedanalysis, for example), the builder an insert assignment edges in both diretionsbetween two nodes. Assignment edges are inserted between nodes whenever thepointers an ow from one variable to another. Examples inlude expliit assignmentstatements suh as q = p;, but also interproedural ow of parameters to methods.31

Pointer Analysis EngineAt eah all site, assignment edges are added from the nodes representing the atualarguments to the nodes representing the orresponding parameters of all methodsthat may be targets of the all site, and an assignment edge is added from the returnnode of eah of these methods to the node for the variable that reeives the returnvalue (if any) at the all site.4.1.7 Store Edgesp q.fA store edge is an edge from a variable node to a �eld referene node, and it rep-resents a store from the loation represented by the variable node to the appropriate�eld of some objet pointed to by the base of the �eld referene node. Store edgesare added to the pointer assignment graph for store statements in the soure, suh asq.f = p;.4.1.8 Load Edgesp.f qA load edge is an edge from a �eld referene node to a variable node, and itrepresents a load from the appropriate �eld of some objet pointed to by the base ofthe �eld referene node to the loation represented by the variable node. Load edgesare added to the pointer assignment graph for load statements in the soure, suh asq = p.f;.4.1.9 ExampleFigure 4.2 shows a small piee of ode, and two examples of pointer assignment graphsthat ould be used to represent it. The ode is not intended to do anything spei�;it is given only as an example to illustrate how pointer assignment graphs ould bebuilt for it.The �rst example graph in Figure 4.2(b) would be onstruted for a subset-based�eld-sensitive analysis with separate alloation nodes for objets alloated at eah32

4.1. Pointer Assignment Graph
stati void foo() {a1: p = new O();q = p;a2: r = new O();p.f = r;t = bar(q);}stati O bar(O s) {return s.f;} (a) Example Codea1: new O a2: new Op rq p.fs s.ft

new Op rq fs t(b) Pointer Assignment Graphfor Subset-Based, Field-SensitiveAnalysis () Pointer Assignment Graphfor Equality-Based, Field-BasedAnalysisFigure 4.2: Example to Illustrate Pointer Assignment Graphs
33

Pointer Analysis Enginealloation site. The edges are therefore only present in the diretion of the assignmentsin the soure ode. For a �eld-sensitive analysis, the �eld referenes are representedusing �eld referene nodes. Objets alloated at eah of the two alloation sites arerepresented using distint alloation nodes.The alloation statements a1: p = new O() and a2: r = new O() ause thealloation edges from a1: new O to p and from a2: new O to r , respetively,to be added. The simple assignment statement p = q is modelled by the assignmentedge from p to q . The interproedural ow from q to the parameter s of the barmethod is represented by the assignment edge from q to s . The store p.f = r; isrepresented by the store edge from r to p.f , and the ow from s.f returned to thevariable t is represented by the load edge from s.f to t .At this point, it is not yet known that p and s will be aliased, so there areno edges between p.f and s.f . This ow through aliasing will be handled later,during the points-to set propagation stage, by the propagation algorithms presentedin Setion 4.4.The seond example graph in Figure 4.2() would be onstruted by a less preise,equality-based, �eld-based analysis, with alloation nodes representing all objets of agiven run-time type. Beause this is an equality-based analysis, all of the assignmentedges now go in both diretions. Field-based analysis means that the �eld referenesare represented by a single variable node f not dependent on the base objet (p ors), rather than by �eld referene nodes p.f and s.f . In a �eld-based analysis, weonservatively assume that all objets ould be aliased for the purpose of modelling�eld referenes; this is reeted by the single variable node representing the �eld fof all objets. Beause this analysis represents all objets of a given type by a singlenode, the objets alloated at the two alloation sites are represented by a single nodenew O , sine they are of the same type.34

4.2. Building the Graph4.2 Building the GraphThe pointer assignment graph builder takes as input Jimple intermediate ode, aall graph, and simulations of native methods, and produes from them a pointerassignment graph ontaining the same information in a form suitable for performingpointer analysis. This setion desribes the design of the builder.4.2.1 DesignThe task of the builder an be deomposed into two steps.1. Iterating through the Jimple input, and determining how the di�erent Jimplefeatures relate to eah other. This generally orresponds to determining whihedges will be present in the pointer assignment graph.2. Creating the appropriate pointer assignment graph node to represent eah fea-ture in the Jimple input. This is determined by some of the pointer analysisparameters listed in Setion 4.2.2, spei�ed as Soot phase options to Spark.Eah step is represented by an abstrat lass and its implementation. This makesit possible to hange the implementation of eah step, without a�eting the other.While the urrent implementation of the �rst step onstruts a graph representingontext-insensitive relationships in the Jimple soure, Spark is designed to allowexperimenting with ontext-sensitive implementations in the future. The seond stepan also have di�erent implementations, for example to hange the set of options thatdetermine whih types of nodes will be onstruted for eah feature, or to reate anentirely di�erent representation of the pointer assignment graph. Of ourse, the entirebuilder ould be replaed, so that the pointer assignment graph ould be reated froma di�erent soure representation (suh as one based on a language other than Javabyteode), or read in from a �le.The urrent implementation of the builder onstruts variable nodes for loal vari-ables and stati �elds, and a single variable node representing all thrown exeptions.Depending on options given to Spark, instane �elds, method parameters, and return35

Pointer Analysis Enginevalues are represented with either variable or �eld referene nodes. Array elementreferenes are always represented with �eld referene nodes. Alloation nodes arereated for alloation sites and string onstants, inluding ommand-line parametersto the main method.Edges are reated for all pointer-valued assignments inluding asts, for throwand ath statements, and, unless the all graph is being onstruted on the y, forpointers passed to and returned from methods. In addition, speial edges are addedfor impliit ow of pointers. If a lass has a finalize method, an edge is addedfrom the alloation node of eah alloation site alloating an objet of that lass tothe variable node representing the impliit this parameter to the finalize method.This models the eventual ow of the objet from the alloation site to its finalizemethod when it is garbage olleted. Similarly, sine the this pointer of the startmethod of java.lang.Thread impliitly ows to the this pointer of the run methodof any of its sublasses, assignment edges are added to reet this.4.2.2 Parameters and OptionsRepresenting FieldsThe following three Spark options a�et whether ertain features are represented asvariable nodes or �eld referene nodes.ignoreBaseObjets: When this option is set to true, eah referene to an instane �eldis represented by a variable node, regardless of the objet that is the base of thereferene (a �eld-based analysis, as ompared to a �eld-sensitive analysis). Thatis, all instanes of a given �eld in all objets are grouped together. This allowsfor a very fast analysis beause pointers an be propagated to variable nodesin a single pass, with no iteration. However, using variable nodes to representreferenes to instane �elds is less preise than using �eld referene nodes, be-ause it does not distinguish between �elds of provably di�erent objets. Thedefault value is false. 36

4.2. Building the GraphparmsAsFields, returnsAsFields: These two options ontrol whether method parame-ters and return values are represented with variable nodes, or with �eld referenenodes having the this pointer of the method as their base. In ombination withrespeting delared types during propagation, representing parameters and re-turn values with �eld referene nodes gives some of the bene�ts of onstrutingthe all graph on the y. Pointer ow to and from the targets of a method allis restrited to methods delared in lasses reahing the reeiver of the all andtheir superlasses, beause the reeiver of the all an only be stored in the thispointer of these methods. Construting the all graph on the y would, in addi-tion, prevent pointer ow to and from methods delared in proper superlassesof lasses reahing the reeiver. Although these options improve preision, theyintrodue very large numbers of �eld referene nodes into the pointer assign-ment graph, making the analysis very slow, and making it require unreasonableamounts of memory. The default value for both options is false.The next two options speify whih alloation nodes are reated to representalloation sites.typesForSites: Normally, eah alloation site appearing in the program is representedby a unique alloation node. When this option is set to true, however, a singlealloation node is used to represent all alloation sites alloating objets withthe same type, as in Variable Type Analysis [SHR+00℄. This redues the size ofthe graph that Spark has to proess, and therefore speeds up the analysis, atthe expense of preision (sine all objets in the program having a given typeare represented together). The default value of this option is false.mergeStringBu�er: Whenever strings are onatenated using the + operator inJava, the orresponding byteode ontains an alloation of a java.lang.StringBuffer, and the required operations on it. These operations are im-plemented in a way that prevents a ow- and ontext-insensitive analysis frombeing able to show that the uses of these java.lang.StringBuffer objets arenot aliased, resulting in large numbers of variables with many aliases. These37

Pointer Analysis Enginetake a long time to analyze, and also drastially inrease the memory require-ments for the analysis. Using a single alloation node to represent all allo-ation sites of type java.lang.StringBuffer, like with the typesForSites op-tion, does not a�et preision, beause the variables storing these objets wouldall have equal points-to sets anyway. The mergeStringBu�er option has thesame e�et as the typesForSites option, but only for alloation sites of typejava.lang.StringBuffer. Its default value is true.The next option ativates the native method simulator.simulateNatives: Soot inludes a framework for simulating the e�et on whole-programanalyses of the native methods de�ned in the standard Java library lasses.When this option is set to true, Spark uses this framework to model the e�etof these methods. The default value is true.The next option determines how simple assignment edges are represented.simpleEdgesBidiretional: Normally, when the Jimple soure ontains an assignmentof the form a = b, a direted edge is reated from the node representing b to thenode representing a, to reet the pointer ow. However, a uni�ation-basedanalysis treats the assignment as bi-diretional. When this option is set to true,simple assignment edges are always reated in both diretion. In ombinationwith merging of strongly-onneted omponents (see Setion 4.3), this allowsSpark to perform an analysis like that suggested by Steensgaard [Ste96a℄. Thedefault value for this option is false.The next option spei�es whether the all graph should be built on the y.onFlyCallGraph: Normally, the builder inserts edges into the pointer assignment graphto represent pointer ow through method parameters and return values, basedon the ative all graph found in the Soot Sene when Spark is started. Whenthis option is set to true, these edges are not initially added. Instead, thesolver adds these edges during the analysis as it propagates points-to sets tothe reeivers of method alls. The solver aomplishes this by alling bak intothe builder during solving time. The default value of this option is false.38

4.3. Simplifying the Graph4.3 Simplifying the GraphOne the pointer assignment graph has been built, we an proeed diretly to prop-agating the points-to sets. However, it may be possible to prove beforehand thatthe points-to sets of ertain variables will turn out to be equal. In this ase, we ansimplify the graph by merging the nodes orresponding to variables known to haveequal points-to sets. This results in a smaller pointer assignment graph given as inputto the points-to set propagation algorithm, hopefully making the analysis run fasterand require less memory.4.3.1 Merging NodesSpark inludes support for merging nodes using the fast union-�nd [Tar75℄ algorithmat the ore of its implementation of a pointer assignment graph. The algorithm isbased on suessively ombining pairs of nodes, and hoosing one of the two orig-inal nodes as a unique representative for the pair. At any time, for eah set ofnodes that have been ombined, one of the nodes that were ombined serves as theunique representative node for the entire set of nodes. The Node lass ontains agetReplaement() method, whih returns the unique representative node for the setontaining the node, as well as a mergeWith() method, whih merges a node withanother.Merging nodes in a pointer assignment graph is not as simple as applying theunion-�nd algorithm to them, however. Whenever two nodes are merged, the rest ofthe pointer assignment graph must be updated. In partiular, all edges to and fromthe nodes must be replaed with edges to and from the unique representative of thenew ombined node. In addition, beause eah �eld referene node has a variablenode as its base, whenever two variable nodes are merged, all �eld referene nodeshaving them as bases must be updated with the unique representative of the newombined node as their base. When this reates multiple �eld referene nodes withthe same base and �eld, these must in turn be merged. Finally, whenever two nodesare merged, their points-to sets must also be merged. The method used in Spark to39

Pointer Analysis Engineperform this merging of nodes is desribed next.Updating the Graph for Merged NodesWhenever two nodes are merged, all edges to and from the nodes must be replaedwith edges to and from the unique representative of the ombined node. This is aslow proess, beause not only do the adjaeny sets of the merged nodes need tobe merged, but the adjaeny sets of nodes adjaent to the merged nodes must beupdated as well. Even worse, this must be repeated for eah of the many pairs ofnodes that are merged.After experimenting with several methods of updating the edges in the pointer as-signment graph to reet merged nodes, a lazy approah was implemented in Spark,in keeping with the design of the union-�nd algorithm. Spei�ally, when two nodesare merged, their adjaeny sets are also merged, but the adjaeny sets of nodesadjaent to them are left alone. Instead, whenever the adjaeny set of a node isqueried, it is heked to ensure that no node in it has already been merged intoanother node. When a node that has been merged into another node is found, itis replaed with the unique representative of the ombined node. This makes eahmerge operation heap, delaying the updating of adjaeny sets until those sets areiterated over. Updates therefore need not be done to adjaeny sets that will neverbe read, and the updates due to many merges an be done all at one. Moreover,sine the updates are done when the adjaeny set is being iterated over anyway, theoverhead of having to aess eah adjaeny set to update it is avoided.This approah makes it slightly more expensive to query the adjaeny set of anode, whih ould redue performane if the sets are aessed frequently. However,determining that an adjaeny set does not require any updates is very fast. Inaddition, Spark has a global ag that is set whenever nodes are merged. Adjaenysets are only heked when this ag is set, so no heks will be performed unless mergeshave ourred. In addition, after a period of heavy merging, all the adjaeny sets anbe updated, and the ag reset, so that Spark will not have to hek for merged nodesuntil another merge ours. Spark does this after the pointer assignment graph is40

4.3. Simplifying the Graphsimpli�ed and before propagation begins, so the adjaeny sets are not heked unlessadditional merging ours during propagation.Updating Field Referene Nodes When Variable Nodes Are MergedThe updating of �eld referene nodes when the variable nodes that serve as theirbase are merged is also done lazily. Spei�ally, when the unique representative ofthe ombined node ontaining a �eld referene node p.f is requested, the followingproedure is followed (it is illustrated in Figure 4.3, whih shows the union-�nd point-ers after node p.f has been merged into node q.f , and node q has been mergedinto r). p q r
p.f q.f r.fFigure 4.3: Example Illustrating Merging of Field Referene Nodes1. The union-�nd pointers are followed to �nd the unique representative for p.f .Assume that this unique representative is q.f .2. The base node q of the unique representative q.f is examined. If q is itselfthe unique representative of the ombined node ontaining it, then q.f is theorret unique representative for p.f , and is returned.3. Otherwise, the unique representative for q is found. Assume that this uniquerepresentative is r . Then the unique representative for the original �eld ref-erene node p.f is the �eld referene node with the same �eld f and base r ,namely the node r.f . 41

Pointer Analysis EngineAfter the unique representative has been found, the union-�nd pointers are up-dated as in the standard union-�nd algorithm, so that the next time the uniquerepresentative of p.f is requested, the pointer an be followed diretly to r.f .Updating Points-to SetsWhenever two nodes are merged, the points-to set of the node hosen as the repre-sentative for the ombined node beomes the union of the two points-to sets.4.3.2 Strongly Conneted ComponentsWhen a set of variable nodes forms a strongly onneted omponent in the pointer as-signment graph, we have the onstraints points-to(ni) � points-to(nj) � points-to(ni)for any two nodes ni; nj in the set. The points-to graphs of all the nodes in theset are therefore equal, and the nodes an be merged without a�eting the resultof the points-to analysis. When the option simplifySCCs is set to true, Spark per-forms this simpli�ation of the graph before propagation begins. Strongly onnetedomponents are found using the well-known, linear-time, depth-�rst-searh-based al-gorithm desribed, for example, in [CLR90, Setion 23.5℄. The default value of thesimplifySCCs option is true.If the delared types of variables are being respeted during propagation, thenodes of a strongly onneted omponent may have di�erent points-to sets if theyhave di�erent delared types. There are two possible ways to handle this ase.1. We an merge the nodes of the strongly onneted omponent anyway, and givethe resulting node a delared type that is the nearest ommon supertype of thedelared types of all the nodes. This redues preision, but allows us to simplifythe graph as muh as if delared types were not being respeted.2. We an detet only strongly onneted omponents in whih the delared typesof all the nodes are equivalent. This is done with the normal algorithm for�nding strongly onneted omponents, but onsidering only edges joining nodeswith the property that all objets ompatible with the delared type of the42

4.3. Simplifying the Graphsoure node are also ompatible with the delared type of the destination node.In other words, the delared type of the soure is a subtype of the delaredtype of the destination. By merging only the strongly onneted omponents inwhih the delared types are equivalent, we preserve all preision, but we maysimplify the graph less than we ould if delared types were not being respeted.The value of the option ignoreTypesForSCCs determines the alternative whih is ho-sen. Beause only a small perentage of nodes appear in strongly onneted om-ponents [RC00℄, and of those, only a small perentage appear in strongly onnetedomponents with multiple delared types, the default value of this option is false.4.3.3 Single Entry SubgraphsIt is quite ommon for subgraphs to ontain hains of variable nodes, in whih eahnode exept the �rst has only one predeessor. Sine the points-to set of the �rstnode will ow to all the other nodes in the hain, the points-to sets of all the nodeswill be equal. Therefore, the nodes in the hain ould all be merged into a singlenode, and a single points-to set ould be used for all of them together. This idea anbe extended to any single entry subgraph: any subgraph for whih there is a unique\�rst" node suh that the points-to relationships in the points-to sets of any node inthe subgraph are also in the points-to set of the \�rst" node. The idea of mergingsingle entry subgraphs is very similar to the tehnique that Rountev and Chandrapropose for C [RC00℄.De�nition 1 (Single Entry Subgraph) A single entry subgraph orresponding toa given header node is a subgraph of the pointer assignment graph indued by a setof variable nodes, with eah node having the properties:1. that every path to it from a �eld referene or alloation node passes through theheader node, and2. that there exists at least one path from the header node to eah node in thesubgraph. 43

Pointer Analysis EngineThe header node need not neessarily be a variable node. Every variable node isitself a single entry subgraph, with itself as its header node.Theorem 1 The points-to set of every node n in a single entry subgraph is equal tothe points-to set of the header node h.Proof: By de�nition, there is a path from h to n, so we have the onstraintpoints-to(h) � points-to(n). Now, let a be an alloation node in the points-to setof n. This means that there is a pathn0 ! n1 ! n2 ! � � � ! nk ! nwith either n0 = a, or n0 being a �eld referene node with a in its points-to set, inorder to forefag � points-to(n0) � points-to(n1) � � � � � points-to(nk) � points-to(n)Sine n0 is a �eld referene or alloation node, there is at least one �eld referenenode or alloation node on the path of nodes n0; n1; n2; : : : ; nk. Let nl be the last�eld referene or alloation node on this path. Then, by the de�nition of a headernode, h 2 fnl; nl+1; : : : ; nk; ng. Therefore, fag � points-to(h). Beause this argumentapplies to any a 2 points-to(n), we have points-to(n) � points-to(h) � points-to(n),so the sets are equal, as required. 2In order to simplify the pointer assignment graph as muh as possible, we areinterested in �nding maximal single entry subgraphs, and reduing eah of them to asingle node. However, this is not a required ondition; reduing single entry subgraphsthat are not maximal will still orretly simplify the pointer assignment graph to someextent.When the simplifyO�ine option is set to true, Spark uses the algorithm in Fig-ure 4.4 to �nd and redue single entry subgraphs. This is a greedy algorithm whihrepeatedly looks for nodes that are in a ommon single-entry subgraph and mergesthem. Whenever a variable node has exatly one predeessor, and the predeessoris a variable node, the two nodes form a single-entry subgraph, sine every path to44

4.3. Simplifying the Graphthe suessor must pass through the predeessor. Therefore, the two nodes an bemerged. Similarly, whenever there is a pair of variable nodes with a ommon prede-essor that is a �eld referene or alloation node, and this predeessor is their onlypredeessor, then every path to eah of the variable nodes passes through this prede-essor, so the two variable nodes are in the same single-entry subgraph and an bemerged. In the absene of yles and nodes unreahable from any �eld referene oralloation node, the algorithm �nds maximal single-entry subgraphs.1: repeat2: while there exists a variable node with exatly one predeessor and this pre-deessor is a variable node do3: merge this variable node with its predeessor4: end while5: while these exists a pair of variable nodes, and a �eld referene or alloationnode suh that the �eld referene or alloation node is the only predeessorof eah of the variable nodes do6: merge the pair of variable nodes7: end while8: until no hangesFigure 4.4: Algorithm for Reduing Single Entry SubgraphsAs in the simpli�ation of strongly onneted omponents, edges where the typeof the soure node of the edge is not a subtype of the type of the target node of theedge are ignored when delared types are being respeted, to prevent nodes whihould have unequal points-to sets due to di�erent delared types from being merged.

45

Pointer Analysis Engine4.4 Flowing Points-to SetsThe �nal step of points-to analysis is propagation of points-to sets along edges inthe pointer assignment graph to �nd a �xed point solution of the subset onstraintsrepresented by those edges. Spark urrently ontains �ve algorithms1 for suh aomputation, and others an be easily added.4.4.1 Iterative Propagation AlgorithmThe algorithm2 presented in Figure 4.5 is the simplest propagation algorithm inSpark, used as a baseline, and for testing the orretness of the other, more ompli-ated algorithms. It is a diret extension of the algorithm given by Andersen [And94℄,extended to distinguish �elds in pointer dereferene expressions. The algorithm be-gins by propagating all alloation nodes to the points-to sets of their suessors. Itthen repeatedly propagates points-to sets along the pointer assignment graph untila �xed point is reahed. An assignment edge of the form p ! q indiates thatpoints-to(p) � points-to(q), so it is handled by adding the points-to set of p intothe points-to set of q . Conrete �eld nodes are introdued to model the �elds ofonrete heap objets. Suppose a store edge of the form p ! q.f is enountered.This means that the �eld f of the objet that q points to an now point to any objetthat p pointed to. We do not know exatly whih objet q will point to at run-time;we only know that it will be one of the objets in the points-to set of q . So, foreah alloation node a in the points-to set of q , we reate a onrete �eld node a.fto represent the �eld f of any objet reated at alloation site a. We then add thepoints-to set of p into the points-to set of a.f . In a similar way, when we enountera �eld load of the form p.f ! q , we know that for some a in the points-to set ofp , pointers ow from a.f to q . So, for eah suh a , we add the points-to set ofa.f into the points-to set of q .1For larity, algorithms are presented here without support for on-the-y all graph onstrution.This support is implemented in Spark, however.2In the algorithms presented in this thesis, the [= symbol is used to indiate set union andassignment. That is, x [= y indiates that the set x [y is assigned to x.46

4.4. Flowing Points-to Sets
1: proess alloations2: repeat3: proess every assignment edge4: proess every store edge5: proess every load edge6: until no hangesproedure proess alloations ()1: for eah alloation edge new 1 p do2: points-to(p) [= f new 1 g3: end forproedure proess assignment edge (p q)1: points-to(q) [= points-to(p)proedure proess store edge (p q.f)1: for eah alloation node a 2 points-to(q) do2: points-to(a.f) [= points-to(p)3: end forproedure proess load edge (p.f q)1: for eah alloation node a 2 points-to(p) do2: points-to(q) [= points-to(a.f)3: end for Figure 4.5: Iterative Propagation Algorithm

47

Pointer Analysis EngineAs has been widely noted, this algorithm runs slowly and sales poorly. Sparkinludes a slight performane improvement: prior to starting the algorithm, a topolog-ial sort is performed on the variable nodes in the pointer assignment graph.3 Then,the loop between lines 2 and 6 iterates over edges in topologial order of their sourenode. If the pointer assignment graph is yle-free, this ensures that all points-to setsof variable nodes are propagated on eah exeution of this loop. Even when the graphontains yles, onsidering edges in this order maximizes the length of the path ofnodes to whih eah points-to relationship an ow in eah iteration, greatly reduingthe number of iterations required and the time to omplete the analysis.This algorithm is seleted in Spark by setting the option propagator to the valueiter.4.4.2 Worklist Propagation AlgorithmFor non-trivial benhmarks, the Iterative propagation algorithm is muh too slow. Abetter, but more omplex solver based on worklists is also provided as part of Spark,and is presented in Figures 4.6 and 4.7.This worklist propagation algorithm maintains a worklist of variable nodes. When-ever points-to relationships are added to the points-to set of a variable node, the nodeis added to the worklist. In the inner loop of the algorithm, nodes are removed fromthe worklist, and the edges assoiated with those nodes are proessed. As before,variable nodes are removed from the worklist in topologial order. First (line 5),any assignment edges originating at the node removed from the worklist (p) areproessed, to ow the hanges in the points-to set to their suessors. Next (line 6),store edges originating at the node removed from the worklist (p) are proessed.After that (line 7), the algorithm proesses store edges q ! p.f whose destinationnode (p.f) has the node removed from the worklist (p) as its base. This is beausethe new points-to relationships in the points-to set of p require the points-to set3If the graph ontains yles, the nodes that are part of yles will obviously not be sortedin topologial order; however, all nodes that are not in yles will be ordered before any of theirsuessors. 48

4.4. Flowing Points-to Setsof q to be propagated to points-to sets of additional onrete �eld nodes, to whihthey were not propagated in previous iterations when the points-to set of p wassmaller. Finally (line 8), the algorithm proesses any load edges orresponding to�elds of objets in the points-to set of p . Sine there are new points-to relationshipsin p , there are new onrete �eld nodes whose points-to sets need to be propagatedto reet the loads.This inner loop proessing the worklist is not suÆient to obtain a omplete so-lution. Whenever a variable node p appears in the worklist (whih means that itspoints-to set has new nodes in it that need to be propagated), the algorithm propa-gates along edges that are likely to require propagation: assignment edges of the formp ! q , and load and store edges involving p . This is not enough, however. Forexample, suppose variable p has already been proessed with the alloation site ain its points-to set, so it is not in the worklist. Further suppose that a is now addedto the points-to set of q . p and q are possible aliases; that is, they may both pointto a , and stores to q.f may be loaded from p.f . This means that after proessingany store into q.f , we should proess all loads from p.f . However, p is not in theworklist, and adding all aliased nodes to the worklist after proessing a store edgewould be prohibitively expensive. To ensure that stores to q.f are propagated toloads of its alias p.f , the algorithm inludes an outer loop. In eah iteration of thisouter loop, all the load and store edges are onsidered, rather than just those assoi-ated with nodes in the worklist, in order to propagate points-to relationships ausedby aliasing that may have been missed by the inner loop. To summarize, lines 10and 11 in the outer loop are neessary for orretness; lines 6 to 8 ould be removed,but inluding them greatly redues the number of iterations of the outer loop andtherefore the analysis time.This algorithm is seleted in Spark by setting the option propagator to the valueworklist.
49

Pointer Analysis Engine

1: proess alloations2: repeat3: repeat4: remove �rst node p from worklist5: proess eah assignment edge p q6: proess eah store edge p q.f7: proess eah store edge q p.f8: proess eah load edge p.f q9: until worklist is empty10: proess every store edge11: proess every load edge12: until worklist is emptyFigure 4.6: Worklist Propagation Algorithm (part 1 of 2)

50

4.4. Flowing Points-to Sets
proedure proess alloations ()1: for eah alloation edge new 1 p do2: points-to(p) [= f new 1 g3: worklist [= f p g4: end forproedure proess assignment edge (p q)1: points-to(q) [= points-to(p)2: if points-to(q) was hanged then3: worklist [= f q g4: end ifproedure proess store edge (p q.f)1: for eah alloation node a 2 points-to(q) do2: points-to(a.f) [= points-to(p)3: end forproedure proess load edge (p.f q)1: for eah alloation node a 2 points-tonew(p) do2: points-to(q) [= points-to(a.f)3: if points-to(q) was hanged then4: worklist [= f q g5: end if6: end for Figure 4.7: Worklist Propagation Algorithm (part 2 of 2)

51

Pointer Analysis Engine4.4.3 Inremental Worklist Propagation AlgorithmIn ertain implementations of sets (hash set and sorted array set), eah set union op-eration takes time proportional to the number of elements in the sets being ombined.While iterating through an analysis, the ontents of one set are repeatedly mergedinto the ontents of another set, often adding only a small number of new elementsin eah iteration. We an improve the algorithm by noting that the elements thathave already been propagated will remain in the destination set in every subsequentiteration, so they need not be propagated again. Instead, we an propagate only thenewly-added elements.Thus, as an optional improvement, Spark inludes versions of the solvers that useinremental sets. Eah points-to set is divided into a \new" part and an \old" part.During eah iteration, elements are propagated only between the new parts, whih arelikely to be small. At the end of eah iteration, all the new parts are ushed into theirorresponding old part. An additional advantage of this is that when onstrutingthe all graph on-the-y, only the smaller, new part of the points-to set of the reeiverof eah all site needs to be onsidered in eah iteration.The worklist propagation algorithm using inremental sets is presented in Fig-ures 4.8 and 4.9. The points-to sets have been replaed by points-tonew andpoints-toold. The proedures for proessing assignment, store, and load edges havebeen hanged. In general, every propagation between points-to sets has been re-plaed by a propagation between the new portions of points-to sets. Any elementsthat already appear in the old points-to set of the destination node are exludedfrom the propagation, so that the new points-to set of the destination node truly getsonly the elements that the node did not have before. For example, ourrenes ofpoints-to(q) [= points-to(p) in the non-inremental algorithm have been replaedwith points-tonew(q) [= points-tonew(p)npoints-toold(q). This ensures that onlynew parts of points-to sets are propagated.There are now two di�erent methods used to proess store edges suh as p ! q.f ,depending on whether it is the soure node (p) or the base (q) of the destinationnode (q.f) whih was removed from the worklist (so its points-to set is known to have52

4.4. Flowing Points-to Setsnew elements). When the points-to set of the soure node p is known to have newelements, only its new points-to set is propagated to �elds of objets in both portionsof the points-to set of q , sine these new objets in p have not yet been propagatedto the �eld of of any objets pointed to by q , new or old. On the other hand,when it is the points-to set of the base of the destination node that is known to havenew elements, both parts of the points-to set of the soure node p are propagatedto the �elds of only the newly added objets of q (that is, to �elds of objets inpoints-tonew(q)).Another di�erene ompared to the original worklist propagation algorithm is theaddition of lines 9, 10, 15, and 16, whih ush the new portions of points-to sets intothe old portions.As in the non-inremental version of the algorithm, an outer loop is required toproess all stores and loads, to aount for ow due to aliasing that may have beenmissed by the inner loop. In the outer loop, both parts of eah points-to set arepropagated to ensure a omplete propagation.The inremental worklist propagation algorithm is seleted in Spark by settingthe option propagator to the value worklist, and the option setImpl to the value double.

53

Pointer Analysis Engine1: inrementally proess alloations2: repeat3: repeat4: remove �rst node p from worklist5: inrementally proess eah assignment edge p q6: inrementally proess eah store edge p q.f for soure7: inrementally proess eah store edge q p.f for destination base8: inrementally proess eah load edge p.f q9: points-toold(p) [= points-tonew(p)10: points-tonew(p) fg11: until worklist is empty12: fully proess every store edge13: fully proess every load edge14: for eah onrete �eld node a.f do15: points-toold(a.f) [= points-tonew(a.f)16: points-tonew(a.f) fg17: end for18: until worklist is emptyproedure inrementally proess alloations ()1: for eah alloation edge new 1 p do2: points-tonew(p) [= f new 1 g3: worklist [= f p g4: end forproedure inrementally proess assignment edge (p q)1: points-tonew(q) [= points-tonew(p) n points-toold(q)2: if points-tonew(q) was hanged then3: worklist [= f q g4: end ifFigure 4.8: Inremental Worklist Propagation Algorithm (part 1 of 2)54

4.4. Flowing Points-to Setsproedure inrementally proess store edge for soure (p q.f)1: for eah alloation node a 2 (points-tonew(q) [points-toold(q)) do2: points-tonew(a.f) [= points-tonew(p) n points-toold(a.f)3: end forproedure inrementally proess store edge for destination base (p q.f)1: for eah alloation node a 2 points-tonew(q) do2: points-tonew(a.f) [= (points-tonew(p)[points-toold(p))npoints-toold(a.f)3: end forproedure inrementally proess load edge (p.f q)1: for eah alloation node a 2 points-tonew(p) do2: points-tonew(q) [= (points-tonew(a.f)[points-toold(a.f))npoints-toold(q)3: if points-tonew(q) was hanged then4: worklist [= f q g5: end if6: end forproedure fully proess store edge (p q.f)1: for eah alloation node a 2 (points-tonew(q) [points-toold(q)) do2: points-tonew(a.f) [= (points-tonew(p)[points-toold(p))npoints-toold(a.f)3: end forproedure full proess load edge (p.f q)1: for eah alloation node a 2 (points-tonew(p) [points-toold(p)) do2: points-tonew(q) [= (points-tonew(a.f)[points-toold(a.f))npoints-toold(q)3: if points-tonew(q) was hanged then4: worklist [= f q g5: end if6: end forFigure 4.9: Inremental Worklist Propagation Algorithm (part 2 of 2)55

Pointer Analysis Engine4.4.4 Alias Edge Propagation AlgorithmAndersen's [And94℄ algorithm for C uses a separate points-to set for eah alloationsite to represent pointers stored into objets reated at that alloation site. Aord-ingly, the standard extension [LPH01, RMR01℄ to Java handles �eld-sensitivity usinga separate points-to set for eah �eld of the objets reated at eah alloation site.This ensures that aliased �eld referenes p.f and q.f are orretly handled, sine ifp and q both have alloation site a in their points-to sets, stores into them andloads out of them will ow into and out of, respetively, the points-to set for a.f .Unfortunately, as points-to sets grow large, this representation beomes pro-hibitively ineÆient. If points-to(p) = f a1 ; a2 ; : : : ; an g, then any stores to p.fmust be propagated to eah of the n sets points-to(ai.f) (see Figure 4.10(a)). Thespae and time requirements are quadrati in the size of the sets, sine n possiblylarge sets must be reated, where n is the size of the set for p.p.fa1.f a2.f . . . an.fq.f p.fin q.finp.fout q.fout(a) (b)Figure 4.10: Field Representation in Standard (a) and Alias Edge (b) AlgorithmsPoints-to sets were originally proposed as a ompat representation of alias rela-tionships [EGH94℄. If the average points-to set is of size n, and there are v variables,a points-to set representation takes O(nv) spae, while an alias set representationmay take �(v2) spae, sine eah variable ould be aliased to eah other variable.When n is muh smaller than v, as is usually true when analyzing C, points-to sets56

4.4. Flowing Points-to Setsare more eÆient. However, in handling aliases in Java, we are only interested inaliased variables dereferened with the same �eld, beause a �eld in Java an only beaessed by a �eld expression speifying that �eld. This is in ontrast to C, whereone an take the address of a �eld of an objet, use unsafe asts, or even use pointerarithmeti to reate other aliases to the �eld of an objet. Most �elds in Java aredereferened few times, and therefore with few variables. Therefore, in Java, for anygiven �eld, our n is muh greater than v, so the �(v2) representation based on aliassets an be more eÆient.One way to implement suh a representation is to eliminate the onrete �eldnodes, and add edges diretly between �eld referene nodes that are determined tobe aliased. However, the may-alias relationship is not transitive. If p and q arealiased (that is, the intersetion of their points-to sets is not empty), we annot simplyadd pointer assignment edges in both diretions between p.f and q.f , beause thesetwo �eld referenes may not have the same points-to sets. For example, supposepoints-to(p) = f a1 ; a2 g and points-to(q) = f a1 g. Then p and q are possiblyaliased, but p.f may point to objets in points-to(a2.f) that q.f may not point to.To get around this diÆulty, we split all �eld referene nodes into two halves, an inhalf used as the destination of �eld stores, and an out half used as the soure of �eldloads, and add edges only from the in half of a node to the out half of other nodes,as shown in Figure 4.10(b). This allows us to represent the alias relationship withoutmaking it transitive, while ensuring that anything stored into p.f an be loaded fromq.f and vie-versa.The alias edge propagation algorithm is presented in Figures 4.11 and 4.12. Thisalgorithm uses three worklists:worklist stores variable nodes whose points-to sets have hanged and must be prop-agated along assignment and store edges, like in the worklist propagation algo-rithm.aliasWorklist stores variable nodes after their points-to sets have been propagatedso that they an be onsidered for possible aliasing with other nodes, and theorresponding alias edges an be added.57

Pointer Analysis Engine1: proess alloations2: repeat3: proess worklist4: proess aliasWorklist5: proess �eldRefWorklist6: until worklist is emptyproedure proess alloations ()1: for eah alloation edge new 1 p do2: points-to(p) [= f new 1 g3: worklist [= f p g4: end forproedure proess worklist ()1: while worklist is not empty do2: remove �rst node p from worklist3: aliasWorklist [= f p g4: for eah assignment edge p q do5: points-to(q) [= points-to(p)6: if points-to(q) was hanged then7: worklist [= f q g8: end if9: end for10: for eah store edge p q.f do11: points-to(q.fin) [= points-to(p)12: if points-to(q.fin) was hanged then13: �eldRefWorklist [= f q.fin g14: end if15: end for16: end whileFigure 4.11: Alias Edge Propagation Algorithm (part 1 of 2)58

4.4. Flowing Points-to Sets
proedure proess aliasWorklist ()1: while aliasWorklist is not empty do2: remove �rst node p from aliasWorklist3: for eah p.f with p as its base do4: for eah q whih is dereferened with �eld f as q.f do5: if points-to(p) \ points-to(q) 6= ; then6: aliasEdges [= f p.fin q.fout ; q.fin p.fout g7: �eldRefWorklist [= f p.fin ; q.fin g8: end if9: end for10: end for11: end whileproedure proess �eldRefWorklist ()1: while �eldRefWorklist is not empty do2: remove �rst node p.fin from �eldRefWorklist3: for eah edge p.fin q.fout 2 aliasEdges do4: points-to(q.fout) [= points-to(p.fin)5: end for6: end while7: for eah �eld referene node p.f do8: for eah load edge p.f q do9: points-to(q) [= points-to(p.fout)10: if points-to(q) was hanged then11: worklist [= f q g12: end if13: end for14: end forFigure 4.12: Alias Edge Propagation Algorithm (part 2 of 2)59

Pointer Analysis Engine�eldRefWorklist stores �eld referene nodes whose points-to sets have hanged andmust be propagated along alias edges.The points-to sets of nodes removed from worklist are propagated along assignmentand store edges originating at those nodes. Whenever a points-to relationship isadded to the points-to set of a variable node or �eld referene node, that node isadded to the worklist or the �eldRefWorklist, respetively, so that the new points-to relationship will be propagated further along edges originating at that node. Inaddition, eah node that is removed from the worklist is added to the aliasWorklist,so that it will later be proessed for any new aliasing relationships that may havearisen from the new elements in its points-to set. To �nd these relationships (inthe \proess aliasWorklist" proedure), for eah node p , we �nd all the �elds withwhih it is dereferened, and for eah suh �eld, we �nd all other nodes q that aredereferened with the same �eld. If the points-to sets of p and q have a non-empty intersetion, then their �elds are aliased, so we add the appropriate edgesbetween them (p.fin ! q.fout and q.fin ! p.fout), and add the nodes to the�eldRefWorklist, so that points-to sets will be propagated along these new edges.The �eldRefWorklist keeps trak of in �eld referene nodes whose points-to sets havenew elements that must be propagated. When it is proessed, these points-to sets arepropagated to the points-to sets of out �eld referene nodes along alias edges. Finally,all load edges are proessed, propagating points-to sets of out �eld referene nodes tothe points-to sets of the orresponding variable nodes.The alias edge propagation algorithm is seleted in Spark by setting the optionpropagator to the value alias.

60

4.4. Flowing Points-to Sets4.4.5 Inremental Alias Edge Propagation AlgorithmLike the worklist propagation algorithm, the alias edge propagation algorithm an bemade inremental. The inremental version is presented in Figures 4.13 through 4.16.Overall, this algorithm is very similar to the non-inremental version. The maindi�erene is that points-to sets are again divided into two parts, and only the newparts are propagated. After eah variable node from the worklist has been proessed,its new part is ushed into the old part. Similarly, after eah in �eld referene nodefrom the �eldRefWorklist is proessed, its new points-to set is ushed into its oldpoints-to set. The points-to sets for the out �eld referene nodes are ushed when allthe loads are proessed (in the \inrementally proess �eldRefWorklist" proedure).The inremental alias edge propagation algorithm is seleted in Spark by settingthe option propagator to the value alias, and the option setImpl to the value double.

61

Pointer Analysis Engine

1: inrementally proess alloations2: repeat3: inrementally proess worklist4: inrementally proess aliasWorklist5: inrementally proess �eldRefWorklist6: until worklist is emptyproedure inrementally proess alloations ()1: for eah alloation edge new 1 p do2: points-tonew(p) [= f new 1 g3: worklist [= f p g4: end forFigure 4.13: Inremental Alias Edge Propagation Algorithm (part 1 of 4)

62

4.4. Flowing Points-to Sets
proedure inrementally proess worklist ()1: while worklist is not empty do2: remove �rst node p from worklist3: aliasWorklist [= f p g4: for eah assignment edge p q do5: points-tonew(q) [= points-tonew(p) n points-toold(q)6: if points-tonew(q) was hanged then7: worklist [= f q g8: end if9: end for10: for eah store edge p q.f do11: points-tonew(q.fin) [= points-tonew(p) n points-toold(q.fin)12: if points-tonew(q.fin) was hanged then13: �eldRefWorklist [= f q.fin g14: end if15: end for16: points-toold(p) [= points-tonew(p)17: points-tonew(p) fg18: end whileFigure 4.14: Inremental Alias Edge Propagation Algorithm (part 2 of 4)

63

Pointer Analysis Engine

proedure inrementally proess aliasWorklist ()1: while aliasWorklist is not empty do2: remove �rst node p from aliasWorklist3: for eah p.f with p as its base do4: for eah q whih is dereferened with �eld f as q.f do5: if points-to(p) \ points-to(q) 6= ; then6: aliasEdges [= f p.fin q.fout ; q.fin p.fout g7: �eldRefWorklist [= f p.fin ; q.fin g8: points-tonew(q.fout) [= points-toold(p.fin) n points-toold(q.fout)9: points-tonew(p.fout) [= points-toold(q.fin) n points-toold(p.fout)10: end if11: end for12: end for13: end whileFigure 4.15: Inremental Alias Edge Propagation Algorithm (part 3 of 4)

64

4.4. Flowing Points-to Sets
proedure inrementally proess �eldRefWorklist ()1: while �eldRefWorklist is not empty do2: remove �rst node p.fin from �eldRefWorklist3: for eah edge p.fin q.fout 2 aliasEdges do4: points-tonew(q.fout) [= points-tonew(p.fin) n points-toold(q.fout)5: end for6: points-toold(p.fin) [= points-tonew(p.fin)7: points-tonew(p.fin) fg8: end while9: for eah �eld referene node p.f do10: for eah load edge p.f q do11: points-tonew(q) [= points-tonew(p.fout) n points-toold(q)12: if points-tonew(q) was hanged then13: worklist [= f q g14: end if15: end for16: points-toold(p.fout) [= points-tonew(p.fout)17: points-tonew(p.fout) fg18: end forFigure 4.16: Inremental Alias Edge Propagation Algorithm (part 4 of 4)

65

Pointer Analysis Engine4.5 Points-to Set ImplementationsOne purpose of Spark is to enable experimentation with di�erent implementations ofpoints-to sets. There are urrently four implementations of points-to sets, and morean be added by implementing a sublass of the PointsToSetInternal abstrat lass.This lass ontains default implementations of the required set operations in termsof three basi operations:add adds an element to the set.forall exeutes a given method one for eah element, passing the element as aparameter.ontains returns a boolean value indiating whether a given element is in the set.This makes it very easy to try out new set representations, sine only these threefuntions must be implemented. However, the set implementations urrently inludedin Spark implement ustom versions of the other set operations for eÆieny. Theseother operations are:addAll adds all elements of one set into another.hasNonEmptyIntersetion returns a boolean value indiating whether the interse-tion of the set with another given set is empty.possibleTypes returns a set of the types of all objets ontained in the set.Eah set may optionally have a delared type. In this ase, the set ignores inser-tions of alloation nodes with a type that is not a subtype of the delared type.4.5.1 Hash SetThe hash set is a simple wrapper around java.util.HashSet from the standard lasslibrary. It is provided as a baseline against whih other set implementations an beompared, and for testing of more ompliated implementations.66

4.5. Points-to Set Implementations4.5.2 Sorted Array SetThe sorted array set is a representation of a points-to set using an array whih isalways kept in sorted order. Membership testing is implemented using a binarysearh, whih exeutes in time logarithmi in the number of elements in the set.Element insertion takes time linear in the number of elements in the set, beause theelements that ome after the element being inserted must be shifted to make roomfor the new element. However, using the merge step of the well-known merge sortalgorithm, the very ommon operation of omputing the union of two sets takes timelinear in the size of the sets. When the array beomes full, it is opied to a new arraytwie as large as the original. Merging two sets is always done into a new array largeenough to hold both sets, to avoid having to resize the array during this very ommonoperation.4.5.3 Bit SetThe bit set represents a points-to set as a bit vetor. All of the alloation nodes in thepointer assignment graph are numbered sequentially. To insert the node numbered iinto the set, we set the ith bit. Both testing membership and inserting an elementtake onstant time. Merging a pair of sets takes time linear in the total numberof alloation nodes, rather than the number of elements in the sets. However, theproportionality onstant is very small, beause the sets are merged 32 bits at a time.In addition, when the set is large, eah element takes only a single bit, ompared to32 bits in the sorted array set. The drawbak is that sets with few elements use asmuh memory as sets with many elements.4.5.4 Hybrid SetThe hybrid set is a hybrid representation of a points-to set. It uses expliit pointers tothe set elements in arbitrary order when the set ontains 16 elements or fewer. Whenthe set grows larger, this implementation swithes to the bit vetor representation.The hybrid set implementation was introdued to redue memory requirements. In67

Pointer Analysis Engineearly experiments on large benhmarks, the analysis enountered very large numbersof small sets, along with signi�ant numbers of very large sets. Using the sorted arrayset implementation, the very large sets used more memory than was available. Onthe other hand, with the bit set implementation, eah of the small sets required asmuh memory as a large set, and there were so many small sets that, one again, allavailable memory was exhausted. As we will see from the experimental results, thehybrid sets turned out to be most eÆient not only in terms of memory requirements,but also in terms of analysis time.

68

Chapter 5Experimental Results
This hapter reports on an extensive empirial study of a variety of subset-basedpoints-to analyses. This study demonstrates that Spark provides a general ande�etive means to express di�erent points-to analyses. Many di�erent variations wereexpressed within the same framework, making it possible to ompare both preisionand ost of the analyses.5.1 BenhmarksSpark was evaluated on benhmarks from the SPECjvm [Spe℄ suite, along withsable and soot from the Ashes [Ashe℄ suite, and jedit [Jedi℄, a full-featurededitor written in Java. The last three were seleted beause they are non-trivialJava appliations used in the real world, and they were also used in other points-toanalysis studies [RMR01, WL02, LPH01℄. All benhmarks were analyzed with theSun JDK 1.3.1 01 standard lass library, on a 1.67 GHz AMD Athlon with 2GB ofmemory running Linux 2.4.18. In addition, the java benhmark was also evaluatedwith the Sun JDK 1.1.8 standard lass library for omparison with other studies.The omplete list of benhmarks appears in the summary in Table 5.1. The �rstolumn gives the benhmark name (java is listed twie: one with the 1.3.1 01 JDKlass library, and one with the 1.1.8 JDK lass library). The next two olumns69

Experimental Resultsgive the number of methods determined to be reahable, and the number of Jimple1statements in these methods. Note that beause of the large lass library, these arethe largest Java benhmarks for whih a subtype-based points-to analysis has so farbeen reported. The fourth olumn gives the number of distint types enountered bythe subtype tester.Detailed experiments on individual fators a�eting preision and eÆieny ofpoints-to analysis were performed on a seletion of four of the benhmarks. ompress(Lempel-Ziv ompression) was hosen as a small SPECjvm benhmark, java (Javaompiler) as a large SPECjvm benhmark, and sable (parser generator) and jedit(text editor) as large non-SPECjvm benhmarks written by distint groups of people.The other benhmarks exhibited similar trends.methods stmts typesBenhmark (CHA) (CHA)ompress 15183 278902 2770db 15185 278954 2763jak 15441 288142 2816java (1.1.8) 4602 86454 874java (1.3.1) 16307 301801 2940jess 15794 288831 2917mpegaudio 15385 283482 2782raytrae 15312 281587 2789sable 16977 300504 3070soot 17498 310935 3435jedit 19621 367317 3395Table 5.1: Benhmark Charateristis1Jimple is the three-address typed intermediate representation used by Soot.70

5.2. Fators A�eting Preision5.2 Fators A�eting PreisionThis setion analyzes three fators that a�et not only the eÆieny of the analysis,but also the preision of its result. These fators are: (1) how types are used inthe analysis, (2) whether the analysis uses a CHA-based all graph or builds the allgraph on the y, and (3) whether the analysis is �eld-based or �eld-sensitive.Table 5.2 gives the results. Eah analysis is named by a triple of the form xx-yyy-zz whih spei�es the setting for eah of the three fators (a omplete explanationof eah fator is given in the subsetions below). For eah benhmark and points-toanalysis ombination, the table gives a summary of the preision for dereferene sitesand all sites.For dereferene sites, the table gives the perentage of �eld dereferene sites of theform p.f with 0, 1, 2, 3-10, 11-100, 101-1000 and more than 1000 elements in theirpoints-to sets. Dereferene sites with 0 items in the set orrespond to statementsthat annot be reahed (i.e. the CHA all graph onservatively indiates that thedereferene was in a reahable method, but no alloation ever ows to the statement).For all sites, the table reports the perentage of all invokevirtual andinvokeinterfae all sites with 0, 1, 2, and more than two target methods, wherethe target methods are found using the types of the alloation sites pointed to by thereeiver of the method all. For example, for a all of the form o.m(), the types ofalloation sites pointed to by o would be used to �nd the target methods. Calls with0 targets orrespond to unreahable alls, and alls with 1 target are guaranteed tobe monomorphi at run-time.5.2.1 Respeting Delared TypesUnlike in C, variables in Java are strongly-typed, limiting the possible set of objetsto whih a pointer ould point. However, many points-to analyses adapted from C donot take advantage of this. For example, the analyses desribed in [RMR01, SHR+00℄ignore delared types as the analysis proeeds; however, objets of inompatible typeare removed after the analysis ompletes.71

Experimental Results Dereferene Sites (% of total) Call Sites (% of total)Benhmark 3- 11- 101-Analysis 0 1 2 10 100 1000 1001+ 0 1 2 3+ompressnt-otf-fs 35.2 23.4 6.3 14.1 5.9 0.1 14.9 53.8 42.6 1.6 1.9at-otf-fs 35.3 32.7 8.0 17.4 4.3 2.2 0.0 53.8 42.6 1.6 1.9ot-otf-fs 36.9 32.1 7.8 17.0 4.3 1.8 0.0 54.6 42.3 1.3 1.8ot-ha-fs 20.5 39.6 10.1 21.8 6.0 2.1 0.0 40.8 51.7 2.6 4.9ot-otf-fb 26.3 38.1 9.4 19.2 5.1 1.9 0.0 48.0 47.4 2.0 2.6ot-ha-fb 16.0 41.6 10.9 22.9 6.4 2.2 0.0 37.5 54.3 2.9 5.2javant-otf-fs 31.4 22.2 6.0 12.9 5.8 6.4 15.2 50.1 45.3 1.9 2.7at-otf-fs 31.6 33.9 8.7 17.7 5.7 2.4 0.0 50.1 45.3 1.9 2.7ot-otf-fs 33.0 33.3 8.6 17.3 5.7 2.0 0.0 50.8 45.2 1.5 2.5ot-ha-fs 18.4 40.0 10.5 21.5 7.2 2.3 0.0 38.0 53.9 2.6 5.5ot-otf-fb 23.6 38.6 10.0 19.2 6.5 2.1 0.0 44.6 49.9 2.1 3.3ot-ha-fb 14.5 41.7 11.3 22.5 7.6 2.4 0.0 34.9 56.3 3.0 5.8sablent-otf-fs 31.6 24.2 5.9 12.7 9.5 0.2 15.8 49.9 45.8 2.1 2.2at-otf-fs 31.7 37.9 7.4 16.2 4.9 2.0 0.0 49.9 45.8 2.1 2.2ot-otf-fs 33.1 37.4 7.3 15.7 4.9 1.6 0.0 50.8 45.5 1.6 2.0ot-ha-fs 18.4 44.1 9.2 20.1 6.4 1.9 0.0 37.9 54.2 2.9 5.0ot-otf-fb 23.6 42.6 8.7 17.7 5.7 1.7 0.0 44.7 50.3 2.2 2.8ot-ha-fb 14.4 45.8 10.0 21.0 6.8 1.9 0.0 34.9 56.6 3.3 5.2jeditnt-otf-fs 25.6 29.6 6.6 12.7 3.8 1.5 20.2 43.8 52.0 1.9 2.2at-otf-fs 25.7 42.4 9.0 16.3 4.7 2.0 0.0 43.8 52.0 1.9 2.2ot-otf-fs 27.1 42.0 8.9 15.9 4.3 1.9 0.0 44.6 51.9 1.4 2.1ot-ha-fs 14.5 47.9 10.7 19.4 5.5 2.1 0.0 33.2 59.3 2.3 5.1ot-otf-fb 18.9 46.7 10.0 17.6 4.8 2.0 0.0 38.6 56.7 1.9 2.8ot-ha-fb 12.1 49.0 11.0 20.1 5.7 2.1 0.0 30.7 61.5 2.5 5.3Table 5.2: Analysis Preision72

5.2. Fators A�eting PreisionThe �rst three lines for eah benhmark in Table 5.2 show the e�et of delaredtypes. The �rst line shows the preision of an analysis in whih delared types areignored, notypes (abbreviated nt). The seond line shows the results of the sameanalysis after objets of inompatible type have been removed after ompletion ofthe analysis, aftertypes (abbreviated at). This is the method studied in [SHR+00,RMR01℄. The third line shows the preision of an analysis in whih delared typesare respeted throughout the analysis, on-the-y types (abbreviated ot).We see that removing objets based on delared type after ompletion of theanalysis (at) ahieves almost the same preision as enforing the types during theanalysis (ot). However, notie that during the analysis (nt), between 15% and 20%of the points-to sets at dereferene sites are over 1000 elements in size. These largesets inrease memory requirements prohibitively, and slow the analysis onsiderably.These numbers show that enforing delared types as the analysis proeeds eliminatesalmost all of these large sets. Based on this observation, the rest of this hapter fouseson analyses that respet delared types.Enforing delared types during the analysis requires fast subtype testing. Forthis purpose, Spark preomputes and stores the subtype relationships in a two-dimensional bit array. Although this requires spae quadrati in the number of types,for the benhmarks used in this study, the number of types was around 3000 (seeTable 5.1), so this table takes slightly over 1MB of memory, whih is small omparedto all the information that Soot keeps about a 600KLOC program. In addition, otherparts of Soot an take advantage of fast subtype testing. More ompliated, fast,spae-eÆient subtype testing mehanisms are evaluated in [VHK97℄.Based on these results, respeting delared types during a Java points-to analy-sis is highly reommended beause it improves preision while making the analysisonsiderably more eÆient. 73

Experimental Results5.2.2 Call Graph ConstrutionThe all graph used for an inter-proedural points-to analysis an be onstrutedahead of time using, for example, CHA [DGC95℄, or on-the-y as the analysis pro-eeds [RMR01℄, for greater preision. In Table 5.2, these variations are abbreviatedas ha and otf, respetively. As the third and fourth lines for eah benhmark show,omputing the all graph on-the-y inreases the number of points-to sets of size zero(dereferene sites determined to be unreahable), but has a smaller e�et on the sizedistribution of the remaining sets.5.2.3 Field Dereferene ExpressionsA �eld-based (abbreviated fb) analysis ignores the base objets in �eld derefereneexpressions, onsidering only the �eld, while a �eld-sensitive (abbreviated fs) param-eterizes eah �eld dereferene expression by its base objet for greater preision.Comparing rows 3 and 5 (on-the-y all graph), and rows 4 and 6 (CHA allgraph), for eah benhmark, we see that �eld-sensitive analysis is more preise thanthe �eld-based analysis. Thus, it is probably worthwhile to do �eld-sensitive analysisif the ost of the analysis is reasonable. Later, in Table 5.4, we will see that with theappropriate solver, the �eld-sensitive analysis an be made to be quite ompetitivewith the �eld-based analysis.5.3 Fators A�eting Performane5.3.1 Set ImplementationThis subsetion ompares the performane of analyses with the four di�erent imple-mentations of points-to sets desribed in Setion 4.5, namely hash sets, sorted arraysets, bit sets, and hybrid sets. Table 5.3 shows the eÆieny of the implementa-tions using two of the propagation algorithms: the naive, iterative algorithm, andthe inremental worklist algorithm. Both algorithms used a CHA all graph, andthe pointer assignment graph was simpli�ed before propagation by ollapsing yles,74

5.3. Fators A�eting Performaneas well as single-entry subgraphs as desribed in Setion 4.3. Both algorithms re-speted delared types during the omputation. The Graph spae olumn shows thespae needed to store the original pointer assignment graph, and the remaining spaeolumns show the spae needed to store the points-to sets. The data struture stor-ing the graph is designed for exibility rather than spae eÆieny; it ould be madesmaller if neessary. In any ase, its size is linear in the size of the program beinganalyzed. (time in seonds, spae in MB)Benhmark Graph Hash Array Bit HybridAlgorithm spae time spae time spae time spae time spaeompressIterative 31 3448 311 1206 118 36 75 24 34Inr. Worklist 31 219 319 62 57 14 155 9 53javaIterative 34 3791 361 1114 139 50 88 33 41Inr. Worklist 34 252 369 61 68 19 181 13 65sableIterative 36 4158 334 1194 132 50 93 32 42Inr. Worklist 36 244 342 54 62 17 193 11 66jeditIterative 42 6502 583 2233 229 91 168 59 77Inr. Worklist 42 488 597 135 114 38 349 24 128Table 5.3: Set ImplementationThe terrible performane of the hash set implementation is disappointing, as thisis the implementation provided by the language. Clearly, anyone serious about imple-menting an eÆient points-to analysis in Java must write a ustom set representation.The sorted array set implementation is prohibitively expensive using the iterativealgorithm, but beomes reasonable using the inremental worklist algorithm, whihis designed expliitly to limit the size of the sets that must be propagated. Notie75

Experimental Resultsthat the memory requirements are also muh smaller when the inremental worklistalgorithm is used. This is beause the implementation of set union reates an arraylarge enough to hold both sets being ombined. If these two sets are equal or almostequal, the resulting array ends up being twie as large as it would need to be. Inthe inremental algorithm, the sets being propagated are kept small, so most unionoperations involve one large set, and one very small set.The bit set implementation is muh faster still than the sorted array set imple-mentation. However, espeially when used with the inremental worklist algorithm,its memory usage is high, beause even the many very small sets are represented usingthe same size bit-vetor as large sets. In addition, the inremental worklist algorithmsplits eah points-to set into two halves, making the bit set use twie the memory.Finally, the hybrid set implementation is even faster than the bit set implemen-tation, while maintaining modest memory requirements. The hybrid set implemen-tation is onsistently the most eÆient over a wide variety of settings of the otherparameters, and it is therefore used in all the remaining experiments. It is stronglyreommended that implementations similar to the hybrid set implementations be usedin future points-to analysis researh, beause they are onsistently more eÆient thanthe other implementations.5.3.2 Points-To Set Propagation AlgorithmsTable 5.4 shows the time and spae requirements of the propagation algorithms in-luded in Spark. All measurements in this table were made using the hybrid setimplementation, and without any simpli�ation of the pointer assignment graph.2Again, the Graph spae olumn shows the spae needed to store the original pointerassignment graph, and the remaining spae olumns show the spae needed to storethe points-to sets. For eah analysis, the best time and spae numbers are shown inbold.The iterative algorithm is onsistently slowest, and is given as a baseline only. The2The time and spae reported for the hybrid set implementation in Table 5.3 are di�erent thanin Table 5.4 beause the former were measured with o�-line pointer assignment graph simpli�ation,and the latter without. 76

5.3. Fators A�eting Performane
(time in seonds, spae in MB)Inr. Inr.Benhmark Graph Iterative Worklist Worklist Alias AliasAnalysis spae time spae time spae time spae time spae time spaeompressnt-otf-fs 32 1628 357 992 365 399 605 871 100 820 114ot-otf-fs 37 133 52 58 51 52 69 62 47 58 61ot-ha-fs 36 49 68 15 63 13 91 20 62 26 83ot-otf-fb 35 158 54 86 52 66 66 93 53 73 67ot-ha-fb 34 17 62 10 56 13 76 19 58 25 77javant-otf-fs 34 2316 502 1570 512 715 856 1225 142 1097 160ot-otf-fs 40 201 69 103 66 90 90 103 65 97 83ot-ha-fs 39 64 83 22 77 18 109 27 78 34 103ot-otf-fb 37 218 70 123 66 102 84 142 68 111 85ot-ha-fb 37 22 75 11 67 15 90 22 69 30 92sablent-otf-fs 35 2190 462 1382 472 635 772 3020 145 3413 163ot-otf-fs 41 274 72 104 70 95 94 114 69 107 87ot-ha-fs 41 66 88 20 83 18 117 28 84 36 109ot-otf-fb 38 255 74 138 72 114 90 158 73 125 92ot-ha-fb 38 52 81 14 74 18 97 27 77 36 99jeditnt-otf-fs oom oom oom oom oom oom oom 2425 283 2042 307ot-otf-fs 49 313 121 142 117 101 169 151 102 112 126ot-ha-fs 48 107 141 59 131 38 196 44 117 56 150ot-otf-fb 47 298 104 178 99 111 126 225 102 127 127ot-ha-fb 45 28 109 21 98 27 128 36 100 49 129Table 5.4: Propagation Algorithms77

Experimental Resultsworklist algorithm is usually about twie as fast as the iterative algorithm. For theCHA-based, �eld-based analysis, this algorithm is onsistently the fastest, faster eventhan the inremental worklist algorithm. This is beause the inremental worklistalgorithm is designed to propagate only the newly-added part of the points-to sets ineah iteration, but the CHA-based, �eld-based analysis requires only a single iteration.Therefore, any bene�t from its being inremental is outweighed by the overhead ofmaintaining two parts of every set.However, both �eld-sensitivity and on-the-y all graph onstrution require it-eration, so for these, the inremental worklist algorithm is onsistently fastest. Notethat this speedup omes with a ost in the memory required to maintain two partsof every set.Notie also that while the �eld-based analysis is faster than the �eld-sensitiveanalysis with a CHA all graph, it is slower when the all graph is onstruted on they (with all propagation algorithms). This is beause although a �eld-based analysiswith a CHA all graph ompletes in one iteration, onstruting the all graph on-the-y requires iterating regardless of the �eld representation. The less preise �eld-basedrepresentation auses more methods to be found reahable, inreasing the number ofiterations required.The nt-otf-fs line shows how muh ignoring delared types hurts spae eÆieny(the \oom" for jedit signi�es that the analysis exeeded the 1700MB of memoryallotted). The alias edge algorithm is the only one that an handle the resultinglarge sets with reasonable memory requirements. This algorithm spends a signi�antamount of time building alias edges rather than propagating points-to sets, so thebene�t from the inremental version is muh smaller. In fat, for the analyses requir-ing few iterations (ot-ha-fs and ot-ha-fb), the overhead of the inremental versionoutweighs the redution in the size of sets to be propagated, and is even slightlyslower than the non-inremental version.In summary, Table 5.4 demonstrates the following key points about the tradeo�between analysis time and spae.� The inremental worklist algorithm is the fastest for most analyses, exept78

5.3. Fators A�eting Performanefor the �eld-based analysis using a CHA-based all graph, for whih the non-inremental worklist algorithm is faster.� The non-inremental algorithms require less memory than their inrementalounterparts.� For �eld-based analyses, the spae requirements of the non-inremental versionsof the worklist and alias edge propagation algorithms are omparable; however,for �eld-sensitive analyses, espeially of the large jedit benhmark, the aliasedge propagation algorithm requires signi�antly less memory.� When delared types are not respeted during the analysis, only the alias edgealgorithm an omplete in a reasonable amount of memory.5.3.3 Graph Simpli�ationRountev and Chandra [RC00℄ showed that simplifying the pointer assignment graphby merging nodes known to have equal points-to sets speeds up the analysis. Thebehaviour of Spark agrees with their �ndings.When respeting delared types, a yle an only be merged if all nodes in theyle have the same delared type, and a single-entry subgraph an only be mergedif all its nodes have delared types that are supertypes of the predeessor. Sinethe experimental results presented earlier suggested that respeting delared typesmakes the analysis muh faster, as well as more preise, it is useful to know howmuh respeting delared types redues the opportunities for simpli�ation. Thesemeasurements are presented in Table 5.5. On the benhmarks in this study, between6% and 7% of variable nodes were removed by ollapsing yles, ompared to between5% and 6% when delared types were respeted. Between 59% and 62% of variablenodes were removed by ollapsing single-entry subgraphs, ompared to between 55%and 58% when delared types were respeted. Thus, the e�et of respeting delaredtypes on simpli�ation is minor. 79

Experimental ResultsBenhmark SCC SESG Bothompress nt-ha-fs 6.7% 59.5% 60.7%ot-ha-fs 5.3% 55.6% 56.4%ot-otf-fs 1.1% 31.5% 31.6%java nt-ha-fs 7.1% 59.8% 61.4%ot-ha-fs 5.7% 55.8% 57.0%ot-otf-fs 1.1% 32.2% 32.3%sable nt-ha-fs 6.4% 60.4% 61.6%ot-ha-fs 5.0% 56.3% 57.0%ot-otf-fs 1.0% 31.9% 32.0%jedit nt-ha-fs 7.1% 61.7% 63.0%ot-ha-fs 5.6% 57.8% 58.8%ot-otf-fs 1.3% 33.3% 33.5%Table 5.5: Simpli�ation

On the other hand, when onstruting the all graph on-the-y, no inter-proedural edges are present before the analysis begins. This means that any y-les spanning multiple methods are broken, and the orresponding nodes annot bemerged. The 6%-7% of nodes removed by ollapsing yles dropped to 1%-1.5%when the all graph was onstruted on-the-y. The 59%-62% of nodes removed byollapsing single-entry subgraphs dropped to 31%-33%. When onstruting the allgraph on-the-y, simplifying the pointer assignment graph before the analysis haslittle e�et, and on-the-y yle detetion methods should be used instead.80

5.4. Overall Results5.4 Overall ResultsBased on the experimental results reported up to this point, three analyses appearto be good ompromises between preision and speed, with reasonable spae require-ments. Eah of the three analyses should be implemented using the hybrid set im-plementation.1. ot-otf-fs (delared types, on-the-y all graph, �eld-sensitive) is suitable forappliations requiring the highest preision. For this analysis, the inrementalworklist algorithm works best.2. ot-ha-fs (delared types, CHA-based all graph, �eld-sensitive) is muh faster,but with a drop in preision as ompared to ot-otf-fs (mostly beause it in-ludes signi�antly more all edges). For this analysis, the inremental worklistalgorithm works best.3. ot-ha-fb (delared types, CHA-based all graph, �eld-based) is the fastest anal-ysis, ompleting in a single iteration, but it is also the least preise. For thisanalysis, the non-inremental worklist algorithm works best.Table 5.6 shows the results of these three analyses on the full set of benhmarks.The �rst olumn gives the benhmark name (java is listed twie: one with the1.3.1 01 JDK lass library, and one with the 1.1.8 JDK lass library). The remain-ing olumns give the analysis time, total spae, and preision for eah of the threereommended analyses. The total spae inludes the spae used to store the pointerassignment graph as well as the points-to sets; these were reported separately in pre-vious tables. The preision is measured as the perentage of �eld dereferene sites atwhih the points-to set of the pointer being dereferened has size 0 or 1; for a moredetailed measurement of preision, see Table 5.2.
81

Experimental Results

(time in seonds, spae in MB, preision in preent)ot-otf-fs ot-ha-fs ot-ha-fbBenhmark time spae pre. time spae pre. time spae pre.ompress 52 106 69.1 13 127 60.1 10 90 57.6db 52 107 68.9 14 128 59.9 11 90 57.4jak 54 112 68.7 14 132 60.1 11 94 57.6java (1.1.8) 8 27 63.6 3 24 57.4 1 16 55.1java (1.3.1) 89 131 66.3 18 148 58.4 11 104 56.2jess 57 115 68.1 15 136 59.2 10 97 56.8mpegaudio 56 112 68.6 16 134 59.7 11 93 57.4raytrae 53 107 68.5 13 129 59.6 11 91 57.1sable 95 136 70.5 18 158 62.5 14 112 60.3soot 88 143 68.3 19 162 60.4 18 116 58.4jedit 100 218 69.1 38 244 62.3 21 143 61.1Table 5.6: Overall Results

82

Chapter 6Client Analyses
6.1 Call Graph ConstrutionIn an objet-oriented polymorphi language suh as Java, the method that is invokedat a virtual all site depends on the run-time type of the reeiver objet. Any in-terproedural program analysis therefore needs some way to approximate the set oftarget methods that ould possibly be invoked at eah all site. That is, it needs anapproximation of the all graph. Making the all graph preise is important beauseit both improves the preision, and redues the ost, of subsequent analyses. Also,for appliations in embedded systems, where memory is sare, a preise all graphin whih fewer methods are determined to be possibly reahable is useful for reduingthe memory footprint of the ode.Construting a all graph is one natural appliation of points-to information. Thepoints-to analysis omputes a set of objets to whih eah variable may point. Wean dedue the run-time type of eah of these objets to obtain a set of possible typesof objets pointed-to by eah variable. Using the set for the reeiver variable at eahall site, for eah type, the method that will be invoked is identi�ed aording to themethod dispath spei�ation of the language. This yields a list of possible targetmethods for eah all site, from whih the all graph is onstruted.83

Client AnalysesA all graph builder has been implemented whih uses the points-to sets omputedby Spark to ompute a all graph. The rest of this setion is a study of the e�et ofthe points-to analysis on the preision of the all graph.Table 6.1 shows measurements of the preision of the all graph onstruted using�ve di�erent analyses on the benhmarks desribed in Setion 5.1. Class HierarhyAnalysis [DGC95℄ and Variable Type Analysis [SHR+00℄ are two previously-publishedall graph onstrution algorithms. The other three analyses are onstrutions of theall graph from the points-to information omputed by Spark. As before, ot-ha-fb indiates a �eld-based points-to analysis starting from a CHA-based all graph,ot-ha-fs indiates a �eld-sensitive points-to analysis starting from a CHA-based allgraph, and ot-otf-fs indiates a �eld-sensitive points-to analysis in whih the allgraph is onstruted during the analysis. For eah analysis, the �rst olumn givesthe number of methods that were determined to be possibly reahable in the allgraph, and the seond olumn gives the perentage of all sites in the CHA-reahablemethods that were determined to have reeiver sets of zero or one methods. Theseall sites are signi�ant beause their target method is uniquely determined, enablingoptimizations suh as method inlining or all devirtualization.The all graph produed from the �eld-based points-to analysis is very similar tothe one produed by VTA, whih is to be expeted beause the analyses are verysimilar. VTA di�ers from the �eld-based points-to analysis only in that all objetsof a given run-time type are modelled together, rather than being distinguished bytheir alloation site. That is, all alloation sites alloating the same type of objetare modelled with a single alloation node, while Spark uses a separate alloationnode for every alloation site.Making the points-to analysis �eld-sensitive produes a moderate improvementin all graph preision, at the ost of some analysis time. A muh more dramatiimprovement is obtained by the all graph on-the-y during the points-to analysis,rather than starting with a CHA-based all graph. Note, however, that suh ananalysis is signi�antly more ostly than the simpler analyses, like the �eld-basedanalysis or VTA, as shown in Table 5.6. This suggests that further researh shouldbe done into analyses that build the all graph on-the-y, to make them ompetitive84

6.2. Side-e�et AnalysisCHA VTA ot-ha-fb ot-ha-fs ot-otf-fsBenhmark mthds sites mthds sites mthds sites mthds sites mthds sitesompress 15737 71.3 14042 90.2 14015 90.2 13237 90.6 10842 94.9db 15739 71.3 14042 90.2 14015 90.2 13239 90.6 10844 95.0jak 15995 69.8 14298 90.3 14271 90.3 13494 90.8 11099 95.0java 16872 71.5 15167 89.7 15140 89.7 14374 90.1 11982 94.1jess 16348 71.8 14637 90.5 14610 90.5 13833 90.9 11450 95.1mpegaudio 15947 71.3 14285 90.2 14258 90.2 13489 90.6 11072 94.9raytrae 15866 71.7 14173 90.3 14146 90.3 13362 90.7 10968 95.0sable 17530 71.7 15826 90.0 15799 90.0 15023 90.4 12700 94.5soot 18053 71.4 16364 89.7 16337 89.7 15558 90.1 13104 94.1jedit 20199 74.0 18614 90.7 18595 90.7 18456 90.9 16267 94.1Table 6.1: Call Graph Preisionin eÆieny with simpler analyses, and to improve their preision even further.6.2 Side-e�et Analysis6.2.1 BakgroundSide-e�et analysis is an appliation of points-to analysis that an aid a ompilerto produe more aggressively optimized ode. The purpose of this analysis is toapproximate the sets of run-time objets whih eah instrution and eah method ofthe program may read or write. Having suh an approximation may allow a ompilerto eliminate redundant loads and stores in the presene of method alls. It may alsoimprove preision of other intraproedural analyses, whih may in turn enable manyother optimizations.As an example, onsider the ode fragment in Figure 6.1. If we knew that bar()does not write this.a, then we ould move the load of this.a out of the loop,assuming no onurrent writes by any other threads. We ould then reognize d as85

Client Analysesfoo() {this.a = 2;b = 0;for(int = 0; < 1000000; ++) {d = this.a;e = this.bar();b = b + d;}System.out.println("b = "+b);System.out.println("e = "+e);} Figure 6.1: Code Example for Side-E�et Analysisa ompile-time onstant 2, and b as an indution variable not used inside the loop.The additions ould then be turned into a single multipliation 2 * 1000000 outsidethe loop, whih ould be evaluated at ompile-time. We ould attempt an even moreambitious optimization if we knew that bar() performs no writes or native methodalls: we ould move the all out of the loop. The optimized ode resulting from theseoptimizations is shown in Figure 6.2. Note that all of these optimizations depend onknowing that bar() has no side-e�ets.foo() {this.a = 2;b = 2000000;e = this.bar();System.out.println("b = "+b);System.out.println("e = "+e);} Figure 6.2: Optimized Version of Code ExampleIn order to approximate the sets of objets written at various points in the pro-gram, a side-e�et analysis needs information about whih variables point to whih86

6.2. Side-e�et Analysisobjets. That is, a side-e�et analysis depends on a points-to analysis. For thisreason, a side-e�et analysis has been developed based on Spark. The side-e�etanalysis obtains the points-to information it requires from Spark. Its output aneither be used diretly by optimizations within Soot, or it an be enoded in lass �leattributes, where it an be used by other systems, suh a just-in-time ompilers.This setion desribes the implementation of the side-e�et analysis and the en-oding of its results in attributes. It also gives experimental evidene that the analysisprodues preise approximations of side-e�ets ompared to the simple heuristis typ-ially used in just-in-time ompilers and in Soot, and that the enoding is a suÆientlyeÆient representation of the side-e�et information.6.2.2 Representation of Side-E�et InformationSide-e�et information expresses dependenes between instrutions. For example, alient might want to know whether a write p.f = a; in one instrution may overwritethe value written in another instrution q.f = b;. In Java lass �le attributes, it isdiÆult to enode an expression suh as p.f, beause the loal variable p appearsin the byteode as an unlabeled stak loation. Moreover, the set of heap loationswhih an instrution may read or write an be very large. In this ase, it ould bevery ostly for the lient using the side-e�et information to reover the dependenesbetween instrutions from the read and write sets.Instead of enoding the �eld expressions and read and write sets in attributes,the implementation diretly enodes the dependenes between instrutions. For ex-ample, a write to p.f overwriting the value written to q.f would be enoded as aWrite-Write dependene between the two byteode instrutions writing p.f and q.f.A lient reading the attribute an onvert this dependene into whatever internalrepresentation it has for p.f and q.f. For eah pair of statements, the attributespei�es whether there is a Write-Write, Write-Read, Read-Write, or Read-Read de-pendene between them. Although the Read-Read dependenes may not be useful toa just-in-time ompiler, they are inluded for ompleteness; they ould be removed ifit were neessary to redue the spae required by the attributes.87

Client AnalysesThe size of this representation grows quadratially as the number of inter-dependent instrutions in the method being analyzed. Most methods are short, andeven longer methods tend to have few instrutions that are inter-dependent. How-ever, some methods are like the onstrutor of spe.io.TableOfExistingFiles, alass ontained in the harness of all the SPECjvm [Spe℄ benhmarks. This methodonsists of 633 alls to the put method of java.util.Hashtable. Sine all of thesealls read and write the same loations, they should all have dependenes betweenthem enoded, leading to �6332 � = 200028 dependenes of eah type (Write-Write,Write-Read, Read-Write, and Read-Read). Furthermore, the methods alled fromeah of these all sites possibly all a large number of other methods, so the all sitestake a long time and a large amount of memory to analyze.To limit the growth of the attribute size and amount of omputation required,the side-e�et analysis uses the following method to redue the size of the set of de-pendenes as it is being omputed. Eah instrution is assigned a pair of numbers,representing the sets of loations that the instrution an read and write. Depen-denes are then omputed between these numbered read and write sets, rather thanthe instrutions themselves. The simplest suh assignment of numbered loationswould assign distint loations to eah instrution, and the resulting dependenegraph would be as large as the dependene graph between instrutions. However,some sets of instrutions an easily be determined to read or write the same loa-tions, and an therefore share the same numbered loations, reduing the e�etivenumber of instrutions to be onsidered. Spei�ally, all method alls with equal setsof possible target methods share read and write loations. Also, all �eld refereneexpressions having the same base pointer and the same �eld share the same loation.This redues the 633 method alls in spe.io.TableOfExistingFiles to a singlepair of numbered loations, drastially reduing the size of the attribute and the timeand memory needed to ompute it. However, this approah makes it slightly morediÆult for the lient to extrat the information. In order to determine whether thereis a dependene between two instrutions, it must look up the numbered loationsread and written by the instrutions, and then look in the graph for dependenesbetween these loations. This redued form of the dependene information still has88

6.2. Side-e�et Analysisa worst-ase size quadrati in the size of eah method. However, as the experimentalresults in Setion 6.2.6 show, in pratie, the size of this representation is aeptable.In addition to the relationships between the loations read and written by state-ments, the side-e�et attribute enodes, for eah all site, whether a native methodmay be alled from the all site, or transitively from any methods that may be alledfrom it. This information may be useful to lients of the side-e�et analysis, and itis trivial to ompute while omputing the side-e�et information.6.2.3 Implementation of Side-E�et AnalysisThe points-to analysis produes, for eah loal variable of pointer type, an abstrat setof the possible loations to whih it ould point. From this information, the side-e�etanalysis omputes abstrat sets of loations read and written by eah instrution.These loations inlude instane �elds, stati �elds, and array elements. The abstratsets for eah instrution are ombined into larger abstrat sets for whole methods.These sets ontain all loations aessed within the method, but not those aessedin other methods that it may all. Finally, the sets for eah method are ombinedinto even larger sets that enode, for eah all site, the set of loations aessed in allthe methods possibly alled from the all site, and other methods transitively alledfrom them. This yields a read and write set for every instrution, inluding methodinvoke instrutions. These read and write sets are then used to determine whetherdependenes exist between them.A naive implementation of this reursive de�nition of read and write sets of allsites would be intratable, beause many all sites have large numbers of transitivetargets, and the sets for eah target would have to be reomputed at eah all site.A natural optimization would be to use memoization to avoid omputing points-tosets of eah method and of eah all site more than one. Unfortunately, suh animplementation has prohibitive memory requirements to store all the read and writesets, even for medium-sized programs. The urrent implementation therefore makesa ompromise between memory requirements and running time: it memoizes the readand write sets aessed by eah statement and method, but not the read and write89

Client Analysessets aessed by eah all site.6.2.4 Attribute EnodingThe side-e�et information is enoded in Java lass �le attributes using the anno-tation framework inluded in Soot [PQVR+01℄. This setion desribes in detail theformat of these attributes. The side-e�et information for eah method is enoded intwo attributes: a ode attribute with the name SideE�etAttribute, and a methodattribute with the name DependeneGraph.SideE�etAttributeThis attribute maps statements to abstrat loations read and written, and alsoindiates whih invoke statements may transitively all native methods.0 1reordount 0 1 2 3 4 5 6byteode read write allso�set set set native � � �The �rst two bytes of the attribute are a big-endian integer speifying the numberof reords that follow.Eah reord that follows onsists of seven bytes:� The �rst two bytes are a big-endian integer speifying the byteode o�set of theinstrution that this reord desribes.� The third and fourth bytes are the number of the numbered loation read bythe instrution that this reord desribes.� The �fth and sixth bytes are the number of the numbered loation written bythe instrution that this reord desribes.� The least signi�ant bit of the seventh byte is one if the instrution that thisreord desribes invokes a method that may be a native method, and zerootherwise. The remaining bits are reserved for future use.90

6.2. Side-e�et AnalysisThe speial numbered loation 0xffff indiates a non-existent loation, and isused to indiate that an instrution does not read or write anything. For example,the reord for a getfield byteode instrution will speify the loation that theinstrution reads, and 0xffff for the loation that it writes, sine this instrutionperforms no writes.DependeneGraphThis attribute spei�es dependenes between numbered loations.0 1 2 3set set � � �It onsists of a number of reords, eah four bytes in length. The �rst two bytesand the last two bytes of eah reord eah speify a numbered loation. If a numberedloation may overlap another numbered loation, then the two loations will appearas a reord in this attribute. Note that eah unordered pair of loations is enoded inthe attribute only one, with the lower-numbered loation listed �rst, but the relationis symmetri.

91

Client Analyses6.2.5 Side-E�et ExampleThe format of the side-e�et attributes will now be demonstrated using a more om-plete example than the one presented in the introdution to this setion. First, theJava ode for the example is presented in Figure 6.3. Then, the omputed side-e�etinformation is presented as omments in a Jimple version of the ode for the mainmethod in Figure 6.4. Finally, a disassembled representation of the resulting byteodefor the main method is presented in Figure 6.5.lass Example {int x = 0;publi void bar() {this.x = 5;}publi stati final void main(String[℄ argv) {Example s1 = new Example();Example s2 = new Example();Example s3 = s2;int sum = 0;s1.x = 1;s3.x = 1;for(int i = 0; i < 1000000; i++) {sum += s1.x;s2.x = 0;s3.bar();}}} Figure 6.3: Java Code for Side-E�et Example
92

6.2. Side-e�et AnalysisAfter eah statement that may read or write to memory, the Jimple representationin Figure 6.4 ontains a omment of the form // SEReads : 1. These indiate thenumbered loations that are read and written by the statement. The two alls to theonstrutor <init> read and write the same loations, 0 and 1, respetively. The storeto �eld x of r2 writes loation 2, whih is then read by the load in the line immediatelyafter label0:. At the beginning of the ode, the dependene graph omment showswhih pairs of loations may overlap. The loation 0, whih represents the read setof the onstrutor overlaps nothing, beause the onstrutor does not read anything.The loation 1 representing the write set of the onstrutor overlaps loations 2,3, 4, and 5, beause these all refer to the �eld x of some objet, and this �eld iswritten by the onstrutor. Loations 2, 3, and 4 refer to the �eld x of s1, s3,and s2, respetively, of the original Java program. The dependene graph shows thatloations 3 and 4 overlap, beause s2 and s3 are aliased; however, loation 2 does notoverlap with loations 3 or 4, beause s1 is not aliased to either s3 or s2. Similarly,loation 5 representing the write set of the bar() method overlaps with loations 3and 4 but not with 2, beause the bar() method writes the �eld x of the objet thats3 and s2 point to, but not the objet that s1 points to.In the byteode presented in Figure 6.5, the side-e�et information has beenenoded in two attributes: DependeneGraph at the top of the ode, andSideEffetAttribute at the bottom. The DependeneGraph attribute enodes thepairs that appeared in the dependene graph omment in the Jimple ode. TheSideEffetAttribute enodes the read and write sets of individual statements. The�rst and seond entries orrespond to the alls to the <init> method at byteodeo�sets 4 (00 04) and 12 (00 0). They show that eah of these statements reads loa-tion 0 (00 00) and writes loation 1 (00 01). The �eld stores (putfield) at byteodeo�sets 22 (00 16), 27 (00 1b), and 45 (00 2d) read nothing (ff ff), and write lo-ations 2 (00 02), 3 (00 03), and (00 04), respetively. The �eld load (getfield)at byteode o�set 38 (00 26) reads loation 2 (00 02) and writes nothing (ff ff).Finally, the all to bar() at byteode o�set 49 (00 31) reads loation 0 (00 00) andwrites loation 5 (00 05). 93

Client Analyses
publi stati final void main(java.lang.String[℄)// Dependene Graph// (1,2), (1,3), (1,4), (1,5), (3,4), (3,5), (4,5){ java.lang.String[℄ r0;Example $r1, r2, r3, r4, $r5;int i0, i1, $i2;r0 := �parameter0: java.lang.String[℄;$r1 = new Example;speialinvoke $r1.<Example: void <init>()>();// SEReads : 0// SEWrites: 1r2 = $r1;$r5 = new Example;speialinvoke $r5.<Example: void <init>()>();// SEReads : 0// SEWrites: 1r3 = $r5;r4 = r3;i0 = 0;r2.<Example: int x> = 1;// SEWrites: 2r4.<Example: int x> = 1;// SEWrites: 3i1 = 0;goto label1;label0:$i2 = r2.<Example: int x>;// SEReads : 2i0 = i0 + $i2;r3.<Example: int x> = 0;// SEWrites: 4virtualinvoke r4.<Example: void bar()>();// SEReads : 0// SEWrites: 5i1 = i1 + 1;label1:if i1 < 1000000 goto label0;return;}Figure 6.4: Jimple Code for Side-E�et Example94

6.2. Side-e�et Analysispubli stati final void main(String[℄ arg0)[(attribute DependeneGraph:00 01 00 0200 01 00 0300 01 00 0400 01 00 0500 03 00 0400 03 00 0500 04 00 05)℄Code(max_stak = 2, max_loals = 5, ode_length = 63)0: new <Example> (21)3: dup4: invokespeial Example.<init> ()V (24)7: astore_08: new <Example> (21)11: dup12: invokespeial Example.<init> ()V (24)15: astore_116: aload_117: astore_218: ionst_019: istore_320: aload_021: ionst_122: putfield Example.x I (18)25: aload_226: ionst_127: putfield Example.x I (18)30: ionst_031: istore %433: goto #5536: iload_337: aload_038: getfield Example.x I (18)41: iadd42: istore_343: aload_144: ionst_045: putfield Example.x I (18)48: aload_249: invokevirtual Example.bar ()V (20)52: iin %4 155: iload %457: ld 1000000 (23)59: if_implt #3662: returnAttribute(s) =(attribute SideEffetAttribute:00 07 00 04 00 00 00 01 0000 0 00 00 00 01 0000 16 ff ff 00 02 0000 1b ff ff 00 03 0000 26 00 02 ff ff 0000 2d ff ff 00 04 0000 31 00 00 00 05 00) Figure 6.5: Byteode for Side-E�et Example95

Client Analyses6.2.6 Experimental ResultsThe setion reports results of experiments that were performed to determine thee�etiveness of the side-e�et analysis and the attribute enoding. Spei�ally, thefollowing two quantities were measured:1. The size of the attributes ompared to the size of the original byteode.2. The perentage of dependenes between instrutions within a method ruled outby the side-e�et analysis.These measurements were performed on the same benhmarks as desribed inSetion 5.1.Attribute SizeTable 6.2 gives the size of the side-e�et attributes as a perentage of the size of theoriginal lass �les. For most of the benhmarks, the attributes are between 25% and50% of the original lass �le size, and in no ase do they exeed the original size.Considering that the attributes enode all the information available to the side-e�etanalysis, the size of the enoding is aeptable.The attributes are very regular, and are therefore likely to be highly ompressiblewith standard ompression algorithms. However, the purpose of Spark is to failitateexperimentation, and use of suh an algorithm would inrease the burden on thelient reading the attributes, whih would have to deompress them. Therefore, nosuh ompression algorithm was applied. In a prodution system, ompression wouldalmost ertainly be desirable.DependenesMany ahead-of-time and just-in-time Java ompilers make the following onservativeassumptions about the side-e�ets of instrutions:� Field aesses of the same �eld of any objet may be aliased.96

6.2. Side-e�et AnalysisSizeBenhmark inreaseompress 24.5db 30.1jak 46.0java 35.7jess 41.2mpegaudio 33.2raytrae 41.0sable 96.4soot 49.8jedit 37.5Table 6.2: Attribute Size as Perentage of Original Class File Size� Methods other than the method being analyzed may read and write any �eldson the heap.This means that in these systems, for eah �eld, there are dependenes betweenall reads and writes of it, and there are dependenes between method invoation in-strutions and all instrutions that aess the heap. Table 6.3 presents measurementsof the perentage of these dependenes that are ruled out by the side-e�et analysis.That is, it shows how muh preision the side-e�et analysis adds to these ommononservative assumptions. As before, ot-ha-fb indiates a �eld-based points-to analy-sis starting from a CHA-based all graph, ot-ha-fs indiates a �eld-sensitive points-toanalysis starting from a CHA-based all graph, and ot-otf-fs indiates a �eld-sensitivepoints-to analysis in whih the all graph is onstruted during the analysis.The numbers reet the relative omplexity of the benhmarks. On the very simplebenhmarks, suh as ompress and db, the onservative assumption is suessful inminimizing the number of dependenes, leaving little room for the side-e�et analysisto show improvement. On the other hand, on the highly objet-oriented benhmarks,97

Client Analyses ot-ha-fb ot-ha-fs ot-otf-fsBenhmarkompress 2.5 2.6 2.6db 2.8 2.9 2.9jak 13.1 13.1 13.1java 19.4 19.4 19.4jess 14.3 14.4 14.5mpegaudio 5.9 5.9 6.0raytrae 18.8 18.8 18.8sable 56.1 56.2 56.2soot 64.8 65.3 65.3jedit 34.1 34.1 35.3Table 6.3: Perentage of Dependenes Ruled Out by Side-E�et Analysis
suh as sable and soot, the side-e�et analysis manages to rule out more than halfof the dependenes that the �eld-based assumption ould not. The di�erenes dueto varying the preision of the points-to analysis are very small; only for the jeditbenhmark is the di�erene between the most preise, �eld-sensitive on-the-y allgraph analysis and the least preise, �eld-based CHA all graph analysis more thanone perent of the dependenes.Note that the number of dependenes ruled out does not tell us whether thosedependenes that were ruled out are important to optimizations. It is thereforediÆult to predit from this data the e�et of side-e�et analysis on the e�etivenessof optimizations. However, the high numbers of dependenes ruled out suggest thatside-e�et analysis ould have a signi�ant e�et. Also, it appears that the fast, �eld-based points-to analysis using a CHA-based all graph is preise enough to produethis e�et. 98

6.2. Side-e�et Analysis6.2.7 Future Work on Side-E�et AnalysisAn e�etive side-e�et analysis has been built on top of Spark. Its output is en-oded in lass �le attributes, where it an be used by other systems. An obviousarea for further experimentation is modifying optimizing ompilers to make use ofthis side-e�et information, and to study how di�erent points-to analyses a�et theoptimizations made possible by side-e�et analysis.

99

Client Analyses

100

Chapter 7Conlusions and Future Work
7.1 ConlusionsThis thesis introdued Spark, a exible framework for experimenting with points-toanalyses of Java programs. It presented the modular design of Spark, and detailsof its implementation. Spark was used to perform a substantial study of fatorsa�eting the preision and eÆieny of points-to analyses for Java, and the results ofthis study were reported. Based on these experiments, three variations of points-toanalyses were seleted as partiularly e�etive for Java, in light of the high preisionof their results ombined with eÆient exeution of the analysis. Two implementa-tions of lient analyses using the points-to information were presented: all graphonstrution and side-e�et analysis. Other lients are planned in the future.The exibility of Spark omes from its modular design. Individual implementa-tions of its omponents are designed to be interhangeable, leading to large numbersof possible ombinations of variations. The division of Spark into three stages,onneted using the pointer assignment graph, failitates the reation of and experi-mentation with additional modules implementing new points-to algorithms.Spark inludes several implementations of its main omponents. A pointer assign-ment graph builder is used to reate a representation of the program being analyzed,to be proessed by the rest of Spark. Spark inludes two simpli�ation algorithms101

Conlusions and Future Workto redue the size of the pointer assignment graph. The urrent version of Spark on-tains �ve points-to set propagation algorithms, eah of whih is partiularly suitedto spei� variations of points-to analysis. Four di�erent implementations of datastrutures for representing points-to sets are inluded with Spark.The use of Spark was demonstrated in an extensive study of the fators a�etingpreision and eÆieny of Java points-to analyses. Respet for delared types andasts was shown to be extremely important for both analysis preision and eÆieny.Construting a all graph during the points-to analysis improves preision with amoderate ost in analysis time. The improvement in preision of a �eld-sensitiveanalysis over a �eld-based analysis is moderate, and omes at little additional ostwhen an eÆient points-to set implementation and propagation algorithm is used.The hybrid points-to set implementation was shown to be onsistently more eÆientthan all other implementations studied; it is up to two orders of magnitude moreeÆient than the implementation based on the HashSet lass inluded in the Javastandard lass library. The worklist-based propagation algorithm was shown to bethe most eÆient in terms of time, while the alias edge propagation algorithm wasthe most eÆient in terms of spae when the points-to sets were allowed to grow verylarge by not making use of delared type information. The inremental versions of thealgorithms were faster than the non-inremental versions when the analysis requiredmany iterations, while for the simpler analyses requiring little iteration, the overheadof the inremental version outweighed the bene�t. O�-line simpli�ation of the pointerassignment graph was shown to be ompatible with respet for delared types: thatis, respeting delared types does not signi�antly derease the opportunities forsimpli�ation. However, o�-line simpli�ation is nearly useless if the all graph is notomputed prior to the analysis. Beause Spark is already so eÆient at analyses forwhih the all graph is omputed ahead of time, it is not lear that simplifying thepointer assignment graph ahead of time is worthwhile for Java.Spark has been used as the basis of two lient analyses. The all graph on-strution based on Spark is more general, more eÆient and more preise thanVTA [SHR+00℄, the analysis previously available in the Soot framework. Spark isalso the basis of a side-e�et analysis whose output is enoded in lass �le attributes.102

7.2. Future WorkThis side-e�et analysis has been shown to provide signi�antly more informationthan the onservative assumptions used in typial just-in-time ompilers. It thereforeshows promise in improving the optimizations performed by suh systems.Spark has been demonstrated to be a pratial, exible and eÆient frameworkon whih further point-to analysis researh an be based.7.2 Future WorkThe purpose of Spark is to serve as a framework to failitate experimentation withpoints-to analyses for Java. This setion desribes some of the areas in whih Sparkould be used.7.2.1 Preision of Data Flow AnalysesIn the absene of aurate points-to information, traditional data ow analyses usedfor optimization | suh as onstant propagation, onstant subexpression elimination,and partial redundany elimination | are fored to make onservative assumptions.This redues the preision of the analyses and the opportunities for optimization.Soot is a framework for implementing these data ow analyses and related opti-mizations. Sine Spark is a part of Soot, analyses implemented in Soot an now beimproved to take advantage of the points-to information provided by Spark. Thee�et of points-to information on these analyses an be the subjet of future researh.7.2.2 Using Side-E�et Information in Just-In-Time CompilersSetion 6.2 desribed a side-e�et analysis that has been implemented on top ofSpark, whose results are stored in attributes for the use of other ompilers, inludingjust-in-time ompilers. An interesting area of future researh would be to modifyexisting just-in-time ompilers to make use of this information, and to study thee�et that it an have on the e�etiveness of their optimizations.103

Conlusions and Future Work7.2.3 Points-To Analysis Algorithms and Set ImplementationsThis thesis inluded a study of the points-to analysis algorithms and points-to setimplementations inluded in Spark, and they were found to be very e�etive. How-ever, programs are beoming larger, and points-to information is being used in newareas, suh as program understanding and veri�ation. Beause of these hanges,more eÆient and more preise points-to analyses will ontinue to be needed. Theexibility of Spark makes it a natural platform on whih to experiment with andompare future points-to analysis algorithms.In partiular, implementing a demand-driven analysis like the one designed forC by Heintze and Tardieu [HT01b, HT01a℄ may further improve the performaneof Spark. Another interesting area to be explored is the use of binary deisiondiagrams [Bry92℄ to represent the large points-to relation that must be manipu-lated [BLQ+02, BLQ+03℄.
7.2.4 Context-SensitivityContext-sensitive points-to analyses an produe muh more preise information thanontext-insensitive ones. In an objet-oriented language that enourages enapsula-tion, suh as Java, the information lost due to ontext-insensitivity is espeially sig-ni�ant. Unfortunately, ontext-sensitive analyses are prohibitively ostly to omputefor moderately large programs, and, due to the large lass library, even trivial Javaprograms are moderately large.However, the exellent performane of Sparkmay make some ontext-sensitive al-gorithms feasible. In addition, Spark an be used to experiment with new algorithmswith only a limited degree of ontext-sensitivity, spei�ally designed for analyzingobjet-oriented languages. For example, Spark would be an ideal framework in whihto implement the objet-sensitive points-to analysis [MRR02b℄ proposed by Milanova,Rountev and Ryder. 104

7.2. Future Work7.2.5 Preision of Call Graph ConstrutionThe Java language spei�es rules with subtle e�ets on the ontrol ow of a programthat must be taken into aount by whole-program analyses suh as points-to analysis.The following are several examples.� The �rst referene to a lass auses its stati initializer method to exeute.� Finalizer methods are exeuted automatially by the system without any ex-pliit alls to them.� Methods related to thread reation an be exeuted without being expliitlyinvoked.� Reetion an be used to reate arbitrary objets and exeute arbitrary methodsthat annot be identi�ed statially.Most whole-program analyses handle these issues either using very onservativeassumptions, leading to large all graphs, or by ignoring them, leading to possiblyinorret analysis results. Although Spark is already able to produe preise allgraphs, even more preise methods of modelling these e�ets ould further improveboth the preision and eÆieny of Spark.

105

Conlusions and Future Work

106

Appendix AUsing Spark
A.1 Obtaining SparkSpark is a part of the Soot byteode analysis and transformation framework. Soot ismaintained by the Sable Researh Group at MGill University, and is freely availableunder the Lesser General Publi Liene.Soot an be downloaded from the Soot homepage:� http://www.sable.mgill.a/soot/Javado doumentation for the Soot soure is available from:� http://www.sable.mgill.a/soot/do/This inludes doumentation for Spark, whih is found in the pakagesoot.jimple.spark and its subpakages.Tutorials on using Soot are available at:� http://www.sable.mgill.a/soot/tutorialQuestions, disussions, and omments about Soot and Spark should be direted tothe Soot mailing list. Instrutions about subsribing to the list are found on the Soothomepage. Arhives of the list are found at:� http://www.sable.mgill.a/listarhives/soot-list/107

Using SparkA.2 Spark OptionsThis setion desribes the ommand-line options to Spark. Values for options arespei�ed on the Soot ommand-line, following the swith -p wjtp.Spark. For exam-ple:java soot.Main -a --app -p wjtp.Spark disabled:false,verbose:true HelloFor the most urrent, automatially generated doumentation of Spark options,please see the �le sr/soot/jimple/spark/opts.ps in the Soot distribution.A.2.1 General OptionsOption verbose� Allowed values: true false� Default value: falseWhen this option is set to true, Spark prints detailed information.Option ignoreTypesEntirely� Allowed values: true false� Default value: falseWhen this option is set to true, all parts of Spark ompletely ignore delared typesof variables and asts.Option foreGCs� Allowed values: true false� Default value: falseWhen this option is set to true, alls to System.g() will be made at various pointsto allow memory usage to be measured. 108

A.2. Spark OptionsA.2.2 Pointer Assignment Graph Building OptionsOption VTA� Allowed values: true false� Default value: falseSetting VTA to true has the e�et of setting ignoreBaseObjets, typesForSites,and simplifySCCs to true to simulate Variable Type Analysis [SHR+00℄. Notethat the algorithm di�ers from the original VTA in that it handles array elementsmore preisely. To use the results of the analysis to trim the invoke graph, set thetrimInvokeGraph option to true as well.Option RTA� Allowed values: true false� Default value: falseSetting RTA to true sets typesForSites to true, and auses Spark to use a singlepoints-to set for all variables, giving pessimisti Rapid Type Analysis [BS96℄. To usethe results of the analysis to trim the invoke graph, set the trimInvokeGraph optionto true as well.Option ignoreBaseObjets� Allowed values: true false� Default value: falseWhen this option is set to true, �elds are represented by variable nodes, and theobjet that the �eld belongs to is ignored (all objets are lumped together). This isalso referred to as a �eld-based analysis. Otherwise, �elds are represented by �eldreferene nodes, and the objets that they belong to are distinguished, giving a �eld-sensitive analysis. 109

Using SparkOption typesForSites� Allowed values: true false� Default value: falseWhen this option is set to true, types rather than alloation sites are used as theelements of the points-to sets.Option mergeStringBuffer� Allowed values: true false� Default value: trueWhen this option is set to true, all alloation sites reating objets of typejava.lang.StringBuffer are grouped together as a single alloation site.Option simulateNatives� Allowed values: true false� Default value: trueWhen this option is set to true, e�ets of native methods are simulated.Option simpleEdgesBidiretional� Allowed values: true false� Default value: falseWhen this option is set to true, all edges onneting variable nodes are made bidi-retional, as in Steensgaard's analysis [Ste96b℄.110

A.2. Spark OptionsOption onFlyCallGraph� Allowed values: true false� Default value: falseWhen this option is set to true, the all graph is omputed on-the-y as points-toinformation is omputed. Otherwise, an initial approximation to the all graph isused.Option parmsAsFields� Allowed values: true false� Default value: falseWhen this option is set to true, parameters to methods are represented as �elds ofthe this objet; otherwise, parameters are represented as variable nodes.Option returnsAsFields� Allowed values: true false� Default value: falseWhen this option is set to true, return values from methods are represented as �eldsof the this objet; otherwise, return values are represented as variable nodes.A.2.3 Pointer Assignment Graph Simpli�ation OptionsOption simplifyOffline� Allowed values: true false� Default value: falseWhen this option is set to true, variable nodes in the same single-entry subgraph aremerged together (sine they must have equal points-to sets).111

Using SparkOption simplifySCCs� Allowed values: true false� Default value: falseWhen this option is set to true, variable nodes whih form strongly-onneted om-ponents are merged together (sine they must have the same points-to set).Option ignoreTypesForSCCs� Allowed values: true false� Default value: falseWhen this option is set to true, when ollapsing strongly-onneted omponents,nodes forming SCCs are ollapsed regardless of their type. The ollapsed SCC isgiven the most general type of all the nodes in the omponent.When this option is set to false, only edges onneting nodes of the same typeare onsidered when deteting SCCs.This option has no e�et unless simplifySCCs is true.A.2.4 Points-To Set Flowing OptionsOption propagator� Allowed values: iter worklist alias none� Default value: worklistThis option tells Spark whih propagation algorithm to use.iter is a simple, iterative algorithm, whih propagates everything until the graphdoes not hange.worklist is a worklist-based algorithm that tries to do as little work as possible.This is urrently the fastest algorithm. 112

A.2. Spark Optionsalias is an alias-edge based algorithm. This algorithm tends to require the small-est amount of memory for very large problems, beause it does not represent expliitlypoints-to sets of �elds of heap objets.none means that propagation is not done; the pointer assignment graph is onlybuilt and simpli�ed. This is useful if an external propagator is to be used later onthe pointer assignment graph.Option setImpl� Allowed values: hash bit hybrid array double� Default value: doubleSelets an implementation of a points-to set that Spark should use.hash is an implementation based on Java's built-in hash-set.bit is an implementation using a bit vetor.hybrid is an implementation that keeps an expliit list of up to 16 elements, andswithes to using a bit-vetor when the set gets larger than this.array is an implementation that keeps the elements of the points-to set in anarray that is always maintained in sorted order. Set membership is tested usingbinary searh, and set union and intersetion are omputed using an algorithm basedon the merge step from merge sort.double is an implementation that itself uses a pair of sets for eah points-to set.The �rst set in the pair stores new pointed-to objets that have not yet been propa-gated, while the seond set stores old pointed-to objets that have been propagatedand need not be reonsidered. This allows the propagation algorithms to be inre-mental, often speeding them up signi�antly.Option doubleSetOld� Allowed values: hash bit hybrid array� Default value: hybrid 113

Using SparkSelets an implementation for the new points-to sets in the double points-to set im-plementation.This option has no e�et unless setImpl is set to double.Option doubleSetNew� Allowed values: hash bit hybrid array� Default value: hybridSelets an implementation for the old points-to sets in the double points-to set im-plementation.This option has no e�et unless setImpl is set to double.A.2.5 Output OptionsOption dumpHTML� Allowed values: true false� Default value: falseWhen this option is set to true, a browseable HTML representation of the pointerassignment graph is output after the analysis ompletes. Note that this representationis typially very large.Option trimInvokeGraph� Allowed values: true false� Default value: falseWhen this option is set to true, the results of the points-to analysis are used to makethe invoke graph more preise after the analysis ompletes.
114

Bibliography
[AFFS98℄ Alexander Aiken, Manuel F�ahndrih, Je�rey S. Foster, and ZhendongSu. A toolkit for onstruting type- and onstraint-based program anal-yses. In Types in Compilation, Seond International Workshop, TIC '98,volume 1473 of Leture Notes in Computer Siene, pages 78{96, 1998.[And94℄ L. O. Andersen. Program Analysis and Speialization for the C Pro-gramming Language. PhD thesis, DIKU, University of Copenhagen, May1994. (DIKU report 94/19).[Ashe℄ Ashes Suite Colletion.URL: <http://www.sable.mgill.a/software/>.[AWZ88℄ B. Alpern, M. N. Wegman, and F. K. Zadek. Deteting equality of vari-ables in programs. In Proeedings of the 15th ACM SIGPLAN-SIGACTsymposium on Priniples of programming languages, pages 1{11, 1988.[BH99℄ Je� Bogda and Urs H�olzle. Removing unneessary synhronization inJava. In Proeedings of the 1999 ACM SIGPLAN Conferene on Objet-Oriented Programming, Systems, Languages, and Appliations, pages35{46, 1999.[BKMS98℄ David F. Baon, Ravi Konuru, Chet Murthy, and Mauriio Serrano.Thin loks: featherweight synhronization for Java. In Proeedings of115

Bibliographythe ACM SIGPLAN '98 Conferene on Programming Language Designand Inplementation, pages 258{268. 1998.[BLQ+02℄ Mar Berndl, Ond�rej Lhot�ak, Feng Qian, Laurie Hendren, and NavindraUmanee. Points-to analysis using BDDs. Tehnial Report 2002-10,MGill University, Sable Researh Group, 2002.URL: <http://www.sable.mgill.a/publiations/tehreports>.[BLQ+03℄ Mar Berndl, Ond�rej Lhot�ak, Feng Qian, Laurie Hendren, and Navin-dra Umanee. Points-to analysis using BDDs. In Proeedings of the ACMSIGPLAN 2003 Conferene on Programming Language Design and In-plementation. 2003.[Bry92℄ Randal E. Bryant. Symboli boolean manipulation with ordered binarydeision diagrams. ACM Computing Surveys, 24(3):293{318, 1992.[BS96℄ David F. Baon and Peter F. Sweeney. Fast stati analysis of C++virtual funtion alls. In OOPSLA '96 Conferene Proeedings: Objet-Oriented Programming Systems, Languages, and Appliations, pages324{341. 1996.[CBC93℄ Jong-Deok Choi, Mihael Burke, and Paul Carini. EÆient ow-sensitiveinterproedural omputation of pointer-indued aliases and side e�ets.In Proeedings of the 20th ACM SIGPLAN-SIGACT Symposium onPriniples of Programming Languages, pages 232{245. 1993.[CGS+99℄ Jong-Deok Choi, Manish Gupta, Mauriio Serrano, Vugranam C. Sreed-har, and Sam Midki�. Esape analysis for Java. In Proeedings of the1999 ACM SIGPLAN Conferene on Objet-Oriented Programming Sys-tems, Languages, and Appliations, pages 1{19. 1999.[Cla97℄ Lars R. Clausen. A Java byteode optimizer using side-e�et analy-sis. Conurreny: Pratie and Experiene, 9(11):1031{1045, November1997. 116

Bibliography[CLR90℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-dution to Algorithms. MIT Press, Cambridge, Mass., 1990.[Cou86℄ Deborah S. Coutant. Retargetable high-level alias analysis. In Proeed-ings of the 13th ACM SIGACT-SIGPLAN Symposium on Priniples ofProgramming Languages, pages 110{118. 1986.[CR82℄ Anita L. Chow and Andres Rudmik. The design of a data ow analyzer.In Proeedings of the SIGPLAN '82 Symposium on Compiler onstru-tion, pages 106{113, 1982.[Das00℄ Manuvir Das. Uni�ation-based pointer analysis with diretional as-signments. In Proeedings of the ACM SIGPLAN '00 Conferene onProgramming Language Design and Inplementation, pages 35{46. 2000.[DGC95℄ Je�rey Dean, David Grove, and Craig Chambers. Optimization ofobjet-oriented programs using stati lass hierarhy analysis. InECOOP'95|Objet-Oriented Programming, 9th European Conferene,volume 952 of Leture Notes in Computer Siene, pages 77{101, 7{11 August 1995.[DMM98℄ Amer Diwan, Kathryn S. MKinley, and J. Eliot B. Moss. Type-basedalias analysis. In Proeedings of the ACM SIGPLAN '98 Confereneon Programming Language Design and Inplementation, pages 106{117.1998.[EGH94℄ Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interproedural points-to analysis in the presene of funtionpointers. In Proeedings of the ACM SIGPLAN '94 Conferene on Pro-gramming Language Design and Implementation, pages 242{256, 1994.[FFSA98℄ Manuel F�ahndrih, Je�rey S. Foster, Zhendong Su, and Alexander Aiken.Partial online yle elimination in inlusion onstraint graphs. In Pro-eedings of the ACM SIGPLAN '98 Conferene on Programming Lan-guage Design and Inplementation, pages 85{96. 1998.117

Bibliography[GH98℄ Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work.In Proeedings of the 25th ACM SIGPLAN-SIGACT Symposium onPriniples of Programming Languages, pages 121{133. 1998.[Hei99℄ Nevin Heintze. Analysis of large ode bases: the ompile-link-analyzemodel, 1999.URL: <http://m.bell-labs.om/m/s/who/nh/la.ps>.[HH98℄ Rebea Hasti and Susan Horwitz. Using stati single assignment formto improve ow-insensitive pointer analysis. In Proeedings of the ACMSIGPLAN '98 Conferene on Programming Language Design and Inple-mentation, pages 97{105. 1998.[Hin01℄ Mihael Hind. Pointer analysis: haven't we solved this problem yet? InProeedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-gram Analysis for Software Tools and Engineering, pages 54{61. 2001.[HP00℄ Mihael Hind and Anthony Pioli. Whih pointer analysis should I use?In Proeedings of the International Symposium on Software Testing andAnalysis, pages 113{123, 2000.[HT01a℄ Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis.In Proeedings of the ACM SIGPLAN'01 Conferene on ProgrammingLanguage Design and Inplementation, pages 24{34. 2001.[HT01b℄ Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis usingCLA: a million lines of C ode in a seond. In Proeedings of the ACMSIGPLAN'01 Conferene on Programming Language Design and Inple-mentation, pages 254{263. 2001.[Jedi℄ jEdit: Open Soure programmer's text editor.URL: <http://www.jedit.org/>.[KKO02℄ Kiyokuni Kawahiya, Akira Koseki, and Tamiya Onodera. Lok reserva-tion: Java loks an mostly do without atomi operations. In Proeedings118

Bibliographyof the 17th ACM Conferene on Objet-oriented programming, systems,languages, and appliations, pages 130{141. 2002.[Lan92℄ William Landi. Undeidability of stati analysis. ACM Letters on Pro-gramming Languages and Systems (LOPLAS), 1(4):323{337, 1992.[LPH01℄ Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Extending andevaluating ow-insenstitive and ontext-insensitive points-to analyses forJava. In Proeedings of the 2001 ACM SIGPLAN-SIGSOFT Workshopon Program Analysis for Software Tools and Engineering, pages 73{79.2001.[LR92℄ William Landi and Barbara G. Ryder. A safe approximate algorithm forinterproedural aliasing. In Proeedings of the 5th ACM SIGPLAN Con-ferene on Programming Language Design and Inplementation, pages235{248. 1992.[MRR02a℄ Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Construtingpreise objet relation diagrams. In IEEE International Conferene onSoftware Maintenane (ICSM'02). Otober 2002.[MRR02b℄ Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterizedobjet sensitivity for points-to and side-e�et analyses for Java. In ACMSIGSOFT International Symposium on Software Testing and Analysis(ISSTA'02). July 2002.[Mu97℄ Steven S. Muhnik. Advaned Compiler Design and Implementation.Morgan Kaufmann Publishers, 1997.[PQVR+01℄ Patrie Pominville, Feng Qian, Raja Vall�ee-Rai, Laurie Hendren, andClark Verbrugge. A Framework for Optimizing Java Using Attributes.In Compiler Constrution, 10th International Conferene (CC 2001),volume 2027 of Leture Notes in Computer Siene, pages 334{554, 2001.119

Bibliography[RC00℄ Atanas Rountev and Satish Chandra. O�-line variable substitutionfor saling points-to analysis. In Proeedings of the ACM SIGPLAN'00 Conferene on Programming Language Design and Inplementation,pages 47{56. 2000.[RMR01℄ Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analy-sis for Java using annotated onstraints. In Proeedings of the OOPSLA'01 Conferene on Objet-Oriented Programming Systems Languages andAppliations, pages 43{55. 2001.[Ruf95℄ Erik Ruf. Context-insensitive alias analysis reonsidered. In Proeedingsof the Conferene on Programming Language Design and Inplementa-tion, pages 13{22. 1995.[Ruf00℄ Erik Ruf. E�etive synhronization removal for Java. In Proeedings ofthe ACM SIGPLAN '00 Conferene on Programming Language Designand Inplementation, pages 208{218. 2000.[SFA00℄ Zhendong Su, Manuel F�ahndrih, and Alexander Aiken. Projetionmerging: reduing redundanies in inlusion onstraint graphs. In Pro-eedings of the 27th ACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 81{95, 2000.[SH97a℄ M. Shapiro and S. Horwitz. The e�ets of the preision of pointer anal-ysis. In Proeedings of the Fourth International Symposium on StatiAnalysis (SAS'97), volume 1302 of Leture Notes in Computer Siene,pages 16{34, 1997.[SH97b℄ Mar Shapiro and Susan Horwitz. Fast and aurate ow-insensitivepoints-to analysis. In Proeedings of the 24th ACM SIGPLAN-SIGACTSymposium on Priniples of Programming Languages, pages 1{14. 1997.[SHR+00℄ Vijay Sundaresan, Laurie Hendren, Chrislain Raza�mahefa, Raja Vall�ee-Rai, Patrik Lam, Etienne Gagnon, and Charles Godin. Pratial virtual120

Bibliographymethod all resolution for Java. In Proeedings of the Conferene onObjet-Oriented Programming, Systems, Languages, and Appliations,pages 264{280, 2000.[Soot℄ Soot: a Java Optimization Framework.URL: <http://www.sable.mgill.a/soot/>.[Spe℄ SPEC JVM98 Benhmarks.URL: <http://www.spe.org/osg/jvm98/>.[Ste96a℄ Bjarne Steensgaard. Points-to analysis by type inferene of programswith strutures and unions. In Compiler Constrution, 6th InternationalConferene, volume 1060 of Leture Notes in Computer Siene, pages136{150, 24{26 April 1996.[Ste96b℄ Bjarne Steensgaard. Points-to analysis in almost linear time. In Proeed-ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Priniples ofProgramming Languages, pages 32{41. 1996.[Tar75℄ Robert Endre Tarjan. EÆieny of a good but not linear set unionalgorithm. Journal of the ACM (JACM), 22(2):215{225, 1975.[TP00℄ Frank Tip and Jens Palsberg. Salable propagation-based all graphonstrution algorithms. In Proeedings of the Conferene on Objet-Oriented Programming Systems, Languages, and Appliations, pages281{293. 2000.[VHK97℄ Jan Vitek, R. Nigel Horspool, and Andreas Krall. EÆient type inlusiontests. In Proeedings of the 1997 ACM SIGPLAN Conferene on Objet-Oriented Programming Systems, Languages and Appliations, pages 142{157. 1997.[VR01℄ Fr�ed�eri Vivien and Martin Rinard. Inrementalized pointer and es-ape analysis. In Proeedings of the ACM SIGPLAN'01 Conferene onProgramming Language Design and Inplementation, pages 35{46. 2001.121

Bibliography[VRGH+00℄ Raja Vall�ee-Rai, Etienne Gagnon, Laurie J. Hendren, Patrik Lam,Patrie Pominville, and Vijay Sundaresan. Optimizing Java byteodeusing the Soot framework: is it feasible? In Compiler Constrution, 9thInternational Conferene (CC 2000), volume 1781 of Leture Notes inComputer Siene, pages 18{34, 2000.[Wei80℄ William E. Weihl. Interproedural data ow analysis in the presene ofpointers, proedure variables, and label variables. In Proeedings of the7th ACM SIGPLAN-SIGACT Symposium on Priniples of ProgrammingLanguages, pages 83{94. 1980.[WL95℄ Robert P. Wilson and Monia S. Lam. EÆient ontext-sensitive pointeranalysis for C programs. In Proeedings of the Conferene on Program-ming Language Design and Inplementation, pages 1{12. 1995.[WL02℄ John Whaley and Monia Lam. An eÆient inlusion-based points-toanalysis for stritly-typed languages. In Stati Analysis 9th InternationalSymposium, SAS 2002, volume 2477 of Leture Notes in Computer Si-ene, pages 180{195, 2002.[WR99℄ John Whaley and Martin Rinard. Compositional pointer and esapeanalysis for Java programs. In Proeedings of the 1999 ACM SIGPLANConferene on Objet-Oriented Programming Systems, Languages, andAppliations, pages 187{206. 1999.

122

