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Abstra
tMany 
ompiler analyses and optimizations require pre
ise information about thebehaviour of pointers in order to be e�e
tive. Points-to analysis is a te
hnique for
omputing this information that has been studied extensively over the last de
ade.Most of this resear
h has fo
used on points-to analyses for C. The behaviour of points-to analysis on higher-level languages su
h as Java appears very di�erent than on C.Moreover, most proposed points-to analysis te
hniques were evaluated in disparateanalysis systems and ben
hmarks, making it diÆ
ult to 
ompare their e�e
tiveness.To address these issues, this thesis introdu
es Spark, a 
exible framework forexperimenting with points-to analyses for Java. Spark is intended to be a universalframework within whi
h di�erent points-to analyses 
an be easily implemented and
ompared in a 
ommon 
ontext. Currently, Spark supports equality- and subset-based analyses, variations in �eld sensitivity, respe
t for de
lared types, variations in
all graph 
onstru
tion, o�-line simpli�
ation, and several points-to set propagationalgorithms.A substantial study of fa
tors a�e
ting pre
ision and eÆ
ien
y of points-to anal-yses has been performed as a demonstration of Spark in a
tion. The results showthat Spark is not only 
exible and modular, but also very eÆ
ient 
ompared to otherpoints-to analysis implementations.Two 
lient analyses that use the points-to information are des
ribed, 
all graph
onstru
tion and side-e�e
t analysis. The side-e�e
t information 
an be en
odedin Java 
lass �le attributes, so that it 
an later be used for optimization by other
ompilers and virtual ma
hines.Spark has been demonstrated to be a 
exible and eÆ
ient framework for Javapoints-to analysis. Several experiments that 
ould be performed with it are suggested.i
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R�esum�e
A�n d'être eÆ
a
es, beau
oup d'analyses et optimisations de 
ompilateur exigentdes informations pr�e
ises sur le 
omportement des pointeurs. L'analyse dite points-to(pointe sur) est une te
hnique visant �a 
al
uler 
ette information qui a �et�e �etudi�eeintensivement au 
ours de la derni�ere d�e
ennie. La majeure partie de 
ette re
her
hes'est 
on
entr�ee sur les analyses pour C. Le 
omportement de l'analyse points-toappliqu�ee �a des langages de plus haut niveau tels que Java semble tr�es di��erent de
elui observ�e pour C. D'ailleurs, la plupart des te
hniques d'analyse points-to qui ont�et�e propos�ees ont �et�e �evalu�ees dans des syst�emes d'analyse divers et sur les di��erentsprogrammes d'�evaluation, 
e qui rend diÆ
ile la 
omparaison de leur eÆ
a
it�e.Pour r�epondre �a 
es probl�emes, 
ette th�ese pr�esente Spark, un 
adre d'appli-
ation 
exible pour exp�erimenter ave
 des analyses points-to pour Java. Spark estdestin�e �a être un 
adre universel dans lequel peuvent être fa
ilement implant�ees dedi��erentes analyses points-to, a�n de pouvoir être 
ompar�ees dans un 
ontexte 
om-mun. A
tuellement, Spark supporte des analyses bas�ees sur les 
ontraintes d'�egalit�eainsi que de sous-ensemble, des variations en le traitement des 
hamps, en le respe
tpour les types d�e
lar�es, et en la m�ethode de 
onstru
tion du graphe des appels, unalgorithme de simpli�
ation des 
ontraintes, et plusieurs algorithmes de propagationdes ensembles points-to.Une �etude importante sur les fa
teurs in
uant la pr�e
ision et l'eÆ
a
it�e desanalyses points-to a �et�e e�e
tu�ee 
omme d�emonstration de l'utilisation de Spark.Les r�esultats d�emontrent que Spark est non seulement 
exible et modulaire, mais�egalement tr�es eÆ
a
e 
ompar�e �a d'autres r�ealisations d'analyse points-to.Deux analyses 
lientes qui pro�tent de l'information points-to sont d�e
rites, laiii




onstru
tion du graphe d'appel et l'analyse d'e�ets se
ondaires. L'information sur lese�ets se
ondaires peut être 
od�e en des attributs dans les �
hiers de 
ode objet Java,pour qu'elle puisse être employ�ee �a des �ns d'optimisation par d'autres 
ompilateurset ma
hines virtuelles.Il a �et�e d�emontr�e que Spark est un 
adre 
exible et eÆ
a
e pour l'analysepoints-to de Java. Plusieurs exp�erien
es qui pourraient être e��e
tu�ees ave
 Sparksont sugg�er�ees.
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Chapter 1Introdu
tion
1.1 MotivationA

urate information about the behaviour of pointers is a prerequisite for many anal-yses and optimizations of programs written in languages with pointers. The exa
truntime values of ea
h pointer in a program are, in general, un
omputable [Lan92℄.Various approximation algorithms have therefore been the subje
t of a
tive resear
hfor over a de
ade. Unfortunately, these variations were implemented within di�erent
ompiler frameworks, making them diÆ
ult to 
ompare. Moreover, pointer analysisresear
hers have not yet agreed on an obje
tive metri
 of the pre
ision of a pointeranalysis. Although mu
h work has been done, the problem of eÆ
iently and a

u-rately predi
ting the behaviour of pointers is far from solved.In re
ent years, Java, and other similar languages with dynami
 dispat
h andstrong typing, have been growing in popularity. These language features make thedevelopment of software easier and less error-prone, but have signi�
ant 
osts inperforman
e and 
ompiler 
omplexity. Pointer analyses must be adapted to dealwith new features not present in simpler languages like C. On the other hand, thetype-safety properties of these languages should be exploited to improve eÆ
ien
yand a

ura
y of the analysis. 1



Introdu
tionThis thesis aims to address these problems by introdu
ing Spark, a 
exible frame-work for points-to analysis of Java programs, and by reporting on an extensive studyof Java points-to analysis variations that was performed using Spark.All features of Java are 
onsidered by Spark, making it an ideal framework forexperimenting with di�erent representations of these features in pointer analyses.Spark is designed to be modular, in that di�erent implementations of its various
omponents 
an be inter
hanged. This allows experimentation with spe
i�
 imple-mentation details of pointer analysis algorithms, an area whi
h has been largely ne-gle
ted in re
ent pointer analysis resear
h. By setting various parameters withinSpark, and possibly by implementing additional Spark modules, resear
hers 
aneasily instantiate eÆ
ient implementations of many of the variations of pointer anal-ysis that have been proposed, as well as new variations. This allows the di�erentanalyses to be 
ompared within the 
ontext of the same framework.Spark is a 
omponent of the Soot byte
ode analysis and optimization frame-work [Soot, VRGH+00℄. The pointer information 
omputed by Spark 
an be usedby various 
lient analyses within Soot, or it 
an be en
oded in attributes for useby other optimizers, virtual ma
hines, or native 
ompilers. This large 
olle
tion ofpossible 
lient analyses provides many di�erent measures of the e�e
tiveness of thepointer analysis.In addition to des
ribing the Spark framework itself, this thesis reports the re-sults of a substantial experimental study of Java points-to analyses and the tradeo�sbetween analysis eÆ
ien
y and a

ura
y. These experiments reveal several variationsappropriate for Java that provide both pre
ise information and fast analysis times.Furthermore, the experimental results demonstrate that Spark is not only modu-lar, but its eÆ
ien
y is very 
ompetitive 
ompared to other Java points-to systemsdes
ribed in previously published work. 2



1.2. Contributions1.2 ContributionsThe work reported in this thesis 
onsists of the design of the Spark pointer analysisframework, its implementation, and results of experiments performed with it. Thesethree 
ontributions are des
ribed in the following subse
tions.1.2.1 DesignPointer Assignment GraphSpark introdu
es the notion of a pointer assignment graph (des
ribed in detail inSe
tion 4.1), a single model in whi
h very di�erent pointer analyses 
an be expressedand eÆ
iently implemented. This is in 
ontrast to the many in
omparable represen-tations typi
ally used to present di�erent pointer analyses in the literature.The pointer assignment graph allows the following variations of pointer analysesto be expressed:� subset-based [And94℄ or equality-based [Ste96b℄;� varying levels of 
ontext-sensitivity;1� �eld and array referen
es merged for all obje
t instan
es (�eld-based analysis),or 
onsidered separately for ea
h instan
e (�eld-sensitive analysis);� variables in SSA form [AWZ88℄, split along UD-DU webs [Mu
97, Se
tion 8.10℄,or as in original sour
e;� whi
h de
lared types and 
asts (if any) are respe
ted;� whether an initial approximation to the 
all graph is used, or whether the 
allgraph is 
onstru
ted as the pointer information is 
omputed; and1Although 
urrently only 
ontext-insenstive analyses are implemented, Spark is designed tofa
ilitate experimentation with 
ontext-sensitivity.3



Introdu
tion� if an initial 
all graph is used, whi
h approximation (su
h as 
lass hierar
hy anal-ysis [DGC95℄, rapid type analysis [BS96℄, or variable type analysis [SHR+00℄)is used to 
ompute it.Staged AnalysisThe pointer analysis in Spark pro
eeds in three stages.1. The pointer assignment graph is built based on the program being analyzed.2. The pointer assignment graph is simpli�ed.3. The simpli�ed pointer assignment graph is used to 
ompute points-to informa-tion.This division into stages is key to the 
exibility of Spark. A large number of
ombinations of di�erent implementations of ea
h stage are possible, leading to manyvariations in the pointer analysis. The stages of Spark are des
ribed in detail inChapter 4.1.2.2 ImplementationThe 
urrent version of Spark in
ludes the following implementations of its 
ompo-nents.� A 
ontext-insensitive implementation of the pointer assignment graph builderwith many parameters whi
h determine how language features are represented.The pointer assignment graph builder is des
ribed in detail in Se
tion 4.2.� Implementations of simpli�
ation algorithms to merge strongly 
onne
ted 
om-ponents and single-entry subgraphs. Simpli�
ation of the pointer assignmentgraph is des
ribed in detail in Se
tion 4.3.� Five di�erent implementations of points-to set propagation algorithms: a simpleiterative algorithm, an eÆ
ient worklist-based algorithm, a new, spa
e-eÆ
ient4



1.2. Contributionsalias edge algorithm, and in
remental versions of the worklist and alias edgealgorithms. These algorithms are presented in Se
tion 4.4.� Four di�erent implementations of points-to sets: an implementation based onhash tables, an implementation based on bit ve
tors, an implementation basedon sorted arrays, and a hybrid implementation whi
h represents the elements ofsmall sets expli
itly, but swit
hes to bit ve
tors to represent larger sets. Theseimplementations of points-to sets are des
ribed in more detail in Se
tion 4.5.� Two 
lient analyses that use the results of Spark have been implemented: a 
allgraph trimmer, and a side-e�e
t analysis. The results of these 
lient analyses arefurther used by other analyses within Soot, or they 
an be en
oded in attributesfor use by other optimizing 
ompilers. These 
lient analyses are des
ribed inChapter 6.1.2.3 ExperimentsThe Spark framework was used for an extensive empiri
al study of fa
tors a�e
tingpre
ision and eÆ
ien
y of subset-based Java points-to algorithms. The followingfa
tors were studied:� respe
ting de
lared types and 
asts during the analysis;� 
onstru
ting an initial 
all graph prior to the analysis, or 
onstru
ting it duringthe analysis as points-to sets be
ome available;� modelling of �eld dereferen
e expressions in a �eld-sensitive or �eld-based man-ner;� implementation of points-to set data stru
tures;� several points-to set propagation algorithms; and� o�-line simpli�
ation of the pointer assignment graph prior to propagation.5



Introdu
tionFrom the results of these experiments, three analysis variations were sele
ted asappropriate 
ompromises between analysis pre
ision and eÆ
ien
y. The experimentsshowed the performan
e of Spark on these variations to be very 
ompetitive 
om-pared to other Java points-to analyses that have been des
ribed in the literature.1.3 Thesis OrganizationThe rest of this thesis is organized as follows. The next 
hapter is a survey of relatedwork. Chapter 3 provides an overview of the overall design of Spark, and of theSoot framework of whi
h it is a part. Chapter 4 gives a detailed des
ription of thedesign of the pointer analysis engine, the 
ore of Spark. A des
ription of the pointerassignment graph is given �rst, followed by des
riptions of the stages whi
h Sparkuses to 
ompute pointer information. Results of experiments 
ondu
ted with Sparkare reported in Chapter 5. Client analyses that use the results 
omputed by Sparkare des
ribed in Chapter 6. Finally, Chapter 7 
on
ludes this work, and providesmany examples of resear
h to whi
h Spark 
ould be applied in the future.

6



Chapter 2Related Work
This 
hapter presents previous work on points-to analysis. The �rst se
tion 
oversearly work leading to points-to analysis. The se
ond se
tion is an overview of thete
hniques that have been used in the past to improve the eÆ
ien
y and pre
isionof points-to analyses. The third se
tion explains the work that has been done so farto adapt points-to analyses designed for C to Java. The fourth se
tion dis
usses theappli
ations for whi
h points-to information has been used, 
on
entrating primarily onappli
ations related to Java. An extensive survey of points-to analysis resear
h, witha parti
ular fo
us on the problems that remain unsolved, is given by Hind [Hin01℄.2.1 Early Work on Alias and Points-To AnalysisThe earliest work [Wei80, CR82, Cou86, LR92, CBC93℄ on estimating the sets oflo
ations to whi
h pointers 
ould point used an alias set representation. This repre-sentation en
odes the set of pairs of variables whi
h 
ould point to the same memorylo
ation. One su
h set of alias relationships 
an be 
omputed for the program as awhole, or a separate alias set 
an be 
omputed for ea
h program point. One diÆ
ultywith this representation is that its size 
an be quadrati
 in the number of variables inthe program. Another drawba
k is that alias sets do not give information about theobje
ts to whi
h pointers point, su
h as their type; rather, they only spe
ify whi
hpairs of variables may point to the same obje
ts.7



Related WorkTo address these problems, Emami, Ghiya and Hendren [EGH94℄ introdu
edpoints-to analysis. A points-to analysis divides memory into 
on
rete lo
ations. Then,for ea
h variable, it 
omputes the set of 
on
rete lo
ations to whi
h that variable maypoint. Alias sets 
an be re
overed from points-to sets: a pair of variables is aliasedwhenever their points-to sets have a non-empty interse
tion. However, for many ap-pli
ations, it is more 
onvenient to use points-to sets without �rst 
onstru
ting aliassets.Emami, Ghiya and Hendren's implementation used a separate 
on
rete lo
ationfor ea
h sta
k variable, and modelled the entire heap as a single 
on
rete lo
ation.The analysis was 
ontext-sensitive and 
ow-sensitive. For sta
k-dire
ted pointers, it
omputed not only may points-to information, but also must points-to information,and used it to improve the pre
ision of the 
ow-sensitive analysis by removing oldpoints-to relationships when a variable was known to be overwritten. When analyz-ing C, fun
tion pointers present a 
hallenge be
ause they make it diÆ
ult to determinethe targets of 
alls through them. The points-to analysis treated ea
h fun
tion as a
on
rete lo
ation, so the set of possible targets of a 
all through a fun
tion pointerwas simply the points-to set.Andersen [And94℄ proposed a 
ow-insensitive, 
ontext-insensitive version ofpoints-to analysis that did not 
ompute must points-to information. However, hisanalysis modelled the heap more pre
isely, using a separate 
on
rete lo
ation to rep-resent all memory allo
ated at a given dynami
 allo
ation site. The implementationexpressed the analysis using subset 
onstraints, and then solved the 
onstraints.Solving a system of set 
onstraints su
h as those generated by Andersen's anal-ysis is equivalent to �nding the transitive 
losure of the 
onstraint graph, and atypi
al implementation may therefore take time 
ubi
 in the size of the program.Steensgaard [Ste96b℄ proposed a more 
onservative analysis by repla
ing ea
h subset
onstraint with a set equality 
onstraint. The advantage of this approa
h is that itredu
es the problem to one of �nding 
onne
ted 
omponents in the 
onstraint graph,whi
h 
an be done in almost linear time using a fast union-�nd algorithm [Tar75℄.However, the stronger 
onstraints make the analysis mu
h less pre
ise. In fa
t, forJava programs, the 
onstraint graph is fully 
onne
ted, be
ause every obje
t is passed8



2.2. Improving Analysis EÆ
ien
yto the initializer of java.lang.Obje
t, so an unmodi�ed version of Steensgaard's al-gorithm would produ
e the worst-
ase assumption that every variable may point toevery obje
t.2.2 Improving Analysis EÆ
ien
ySin
e the introdu
tion of subset-based and equality-based points-to analysis, re-sear
hers have worked on improving the eÆ
ien
y of the former, and the pre
ision ofthe latter.Wilson and Lam [WL95℄ implemented a 
ow-sensitive, 
ontext-sensitive subset-based analysis using partial transfer fun
tions to summarize the e�e
t of ea
h fun
tionon points-to sets. This meant that their analysis did not have to analyze ea
h fun
tionfor every 
alling 
ontext; rather, it only had to apply the partial transfer fun
tionin ea
h 
alling 
ontext. The analysis 
ould therefore be more eÆ
ient than the 
ow-sensitive, 
ontext-sensitive analysis of Emami, Ghiya, and Hendren.Ruf [Ruf95℄ advo
ated abandoning 
ontext-sensitivity altogether. He implementedboth 
ontext-insensitive and maximally 
ontext-sensitive versions of a subset-basedanalysis. On his ben
hmark suite, the 
ontext-insensitive version produ
ed only asmall number of spurious points-to relationships 
ompared to the 
ontext-sensitiveversion. Moreover, when he applied the points-to results to 
omputing side-e�e
tinformation, the few spurious points-to relationships introdu
ed even fewer spuriousside-e�e
ts.Shapiro and Horwitz [SH97b℄ studied 
ow-insensitive, 
ontext-insensitive points-to analyses. They presented empiri
al results demonstrating that an equality-basedanalysis is 
onsiderably less pre
ise than a subset-based analysis, but that the subset-based analysis is mu
h slower on larger programs. In addition, they presented apoints-to analysis algorithm with a parameter whi
h 
ould be adjusted to make theanalysis faster at the expense of pre
ision. The idea was to separate the variables inthe program into k 
ategories. When two variables were in the same 
ategory, 
on-straints between them were treated as equality 
onstraints; only variables in di�erent9
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ategories 
ould have subset 
onstraints between them. Using a separate 
ategory forea
h variable resulted in a fully subset-based analysis, while assigning all variables toa single 
ategory resulted in a fully equality-based analysis. The analysis 
ould betuned between these two extremes by using an intermediate number of 
ategories.Hasti and Horwitz [HH98℄ used stati
 single assignment (SSA) form [AWZ88℄ toobtain pre
ision 
omparable to a 
ow-sensitive points-to analysis from a mu
h faster,
ow-insensitive points-to analysis. The main bene�t of a 
ow-sensitive analysis isstrong update: when a variable is overwritten, the analysis 
an infer that after beingoverwritten, the variable no longer points to the obje
ts it used to point to. A 
ow-insensitive analysis ignores the order in whi
h assignments are exe
uted; it has noway to distinguish between \before" and \after" the assignment. When a programis 
onverted into SSA form, its variables are split so that ea
h variable is assignedat only one point in the program. This means that in SSA form, no variable is everoverwritten. A variable whi
h is overwritten in the original program is representedby two or more separate variables in SSA form. In Spark, all analyses are 
ow-insensitive, but before starting the analysis, Spark uses the Soot framework to splitvariables along UD-DU webs [Mu
97, Se
tion 8.10℄, a slight relaxation of SSA form.A Soot transformation to true SSA form has been written, and is expe
ted to soonbe merged into the publi
ly available version of Soot.Diwan, M
Kinley, and Moss [DMM98℄ applied points-to analysis to Modula-3,whi
h enfor
es de
lared types, unlike C. They studied three simple alias analyses.The �rst analysis was to treat variables as possibly aliased whenever the type ofone variable is a subtype of the other. The se
ond analysis added the 
onstraintthat a �eld of an obje
t may only be aliased to that same �eld of another obje
t.Finally, the third was an equality-based analysis similar to Steensgaard's. The resultsof the alias analysis were used to 
ompute side-e�e
t information, whi
h was usedto remove redundant loads. Their analysis was able to remove between 37% and87% of the redundant loads in the program, resulting in a 1% to 8% speedup. Thesimplest analysis whi
h 
onsidered only de
lared types managed to dete
t nearly allof the redundant loads dete
ted by the other two more pre
ise analyses. Experiments
ondu
ted using Spark show that information provided by de
lared types su
h as10



2.2. Improving Analysis EÆ
ien
ythat used by Diwan, M
Kinley, and Moss 
an signi�
antly improve analysis pre
isionand eÆ
ien
y of more 
ompli
ated analyses.Aiken, F�ahndri
h, Foster, and Su [AFFS98, FFSA98, SFA00℄ developed a frame-work 
alled BANE for solving general subset 
onstraint problems. In parti
ular, theframework 
an be used to solve points-to analysis problems that 
an be expressedusing set 
onstraints. Their framework is able to dete
t and 
ollapse 
y
les in the
onstraint graph as it is solving it, improving the eÆ
ien
y of subset-based analyses.Rountev and Chandra [RC00℄ observed that the initial subset 
onstraint graphmay 
ontain 
y
les or subgraphs with a single entry point, and that when analyzingC programs, the points-to sets of all nodes in a 
y
le or in a single entry subgraphwill be equal.1 They therefore proposed simplifying the graph by merging variablesknown to have equal points-to sets before starting to solve the 
onstraints. On their Cben
hmarks, they found that simplifying the 
onstraint graph before solving it im-proved the solution time and memory requirements by about 50%. Spark in
ludes asimilar algorithm to simplify its pointer assignment graph, and empiri
al results fromSpark agree with those of Rountev and Chandra.Das [Das00℄ noti
ed that in C programs, many pointers are only used to implement
all-by-referen
e, and that it is relatively inexpensive to analyze these pointers with asubset-based analysis. He therefore proposed an analysis that uses subset 
onstraintsbetween sta
k variables that do not have their address taken, and equality 
onstraintsbetween other variables. The pointers used to implement 
all-by-referen
e rarelyhave their address taken, so they are analyzed qui
kly with great pre
ision by asubset-based analysis. The remaining pointers, whi
h 
ould slow down a subset-based analysis, are analyzed using the impre
ise but inexpensive equality 
onstraints.Using this analysis, Das was able to analyze a large program 
onsisting of about twomillion lines of 
ode.Heintze and Tardieu [HT01a, HT01b, Hei99℄ report analyzing huge programs witha fully subset-based analysis. This eÆ
ien
y appears to be due to three main fa
tors.First, their analysis is demand-driven, produ
ing only those points-to sets needed by1In an analysis for Java, it is not ne
essarily true that the points-to sets of all nodes in a 
y
le orsingle entry subgraph will be equal if de
lared types are being respe
ted. See Se
tion 4.3 for details.11



Related Worka 
lient of the analysis, rather than produ
ing the entire solution at on
e. Se
ond,it uses an algorithm that dete
ts and merges 
y
les in the 
onstraint graph as theanalysis pro
eeds. Third, their representation of points-to sets has been 
arefullytuned, and is very eÆ
ient. It is not 
lear whi
h of these three fa
tors 
ontributemost signi�
antly to the speed of their system; however, their work shows that a
ombination of the three makes it feasible to perform subset-based analyses for verylarge programs.
2.3 Points-To Analysis for JavaWith the ex
eption of the work by Diwan, M
Kinley, and Moss, the points-to analysesdis
ussed so far were designed to analyze programs written in C. Java has severalfeatures not present in C that a�e
t points-to analysis. Spe
i�
ally, Java disallowsonly sta
k-dire
ted pointers, it enfor
es de
lared types, and it uses virtual dispat
h,so a stati
 
all graph is not immediately available, as it is in C in the absen
e offun
tion pointers. This is espe
ially problemati
 be
ause Java in
ludes a very largestandard 
lass library whi
h 
annot be left out of the 
all graph, making even trivialprograms appear very large from the point of view of whole-program analysis. Severalresear
hers have tried to adapt points-to analyses to re
e
t these features spe
i�
 toJava.Liang, Pennings and Harrold [LPH01℄ performed a 
omparison of several di�erentanalyses adapted to Java. All of their analyses were 
ow-insensitive and 
ontext-insensitive. Be
ause their implementation 
ould not s
ale to analyzing the 
ompletestandard library of version 1.1.8 of the JDK, they used hand-
oded summaries ofthe pointer-related e�e
ts of the library. They studied both �eld-sensitive and �eld-based analysis of �eld expressions. In a �eld-sensitive approa
h, a separate points-to set is 
omputed for ea
h �eld of ea
h 
on
rete lo
ation, while in a �eld-basedapproa
h, only a single points-to set is 
omputed for ea
h �eld. A �eld-sensitiveapproa
h 
an distinguish between the same �eld of two di�erent obje
ts, while a12



2.3. Points-To Analysis for Java�eld-based approa
h 
annot. They also 
ompared both equality-based and subset-based analyses. After noti
ing that a 
ompletely equality-based analysis appliedto Java produ
es the worst-
ase information that every pointer may point to everyobje
t, they modi�ed the equality-based analysis to be subset-based in the areasthat degraded pre
ision the most. Finally, they also 
ompared using a 
all graphpre
omputed using 
lass hierar
hy analysis [DGC95℄ to 
onstru
ting a 
all graph on-the-
y from the points-to information as it was 
omputed. The pre
ision of theseanalyses was measured by its impa
t on the pre
ision of the 
all graph that 
ould be
onstru
ted from the points-to information, and the pre
ision of es
ape informationthat 
ould be 
omputed. They found the subset-based analysis to be signi�
antlymore pre
ise than even their modi�ed equality-based analysis, but they did not noti
ea signi�
ant e�e
t on pre
ision from varying the modelling of �eld referen
es or themethod of 
all graph 
onstru
tion. In their implementation, the �eld-based analysisusing the 
all graph 
omputed using CHA was 
onsiderably faster than the othervariations.Rountev, Milanova and Ryder [RMR01℄ modi�ed Soot [Soot, VRGH+00℄ to out-put subset 
onstraints to be used as input to BANE [AFFS98℄, whi
h they used to
ompute a 
ow-insensitive, 
ontext-insensitive, �eld-sensitive points-to analysis that
omputed the 
all graph on-the-
y. They were unsu

essful in expressing an eÆ
ient�eld-based analysis dire
tly in BANE, so they modi�ed BANE to allow ea
h subset
onstraint to be annotated with a �eld. Using these �eld annotations, their analysiswas eÆ
ient enough to be able to analyze ben
hmarks with the whole standard libraryfrom version 1.1.8 of the JDK. During the analysis, the de
lared types of variableswere not 
onsidered; however, obje
ts of in
ompatible type were removed from the �-nal points-to sets after the analysis 
ompleted. They showed using experimental datathat their analysis 
omputed pre
ise side-e�e
t information, a pre
ise approximationto the 
all graph, and pre
ise es
ape information.Whaley, Rinard and Vivien [WR99, VR01℄ used a demand-driven, subset-based,
ontext-sensitive, 
ow-sensitive, �eld-sensitive analysis to 
ompute es
ape informa-tion for de
iding whi
h obje
ts 
ould be safely allo
ated on the sta
k rather than onthe heap. As soon as an obje
t was determined to es
ape, the analysis for that obje
t13



Related Workterminated. This made it possible for su
h a pre
ise analysis to s
ale to reasonably-sized programs. Choi et al. [CGS+99℄ presented a very similar es
ape analysis. Theyapplied it to eliminating syn
hronization of thread-lo
al obje
ts, in addition to allo-
ating obje
ts on the sta
k. Bogda and H�olzle [BH99℄ also used a points-to analysisto 
ompute es
ape information for eliminating syn
hronization. The intra-pro
eduralpart of their analysis was equality-based, while the inter-pro
edural part was subset-based, giving a good 
ompromise between analysis eÆ
ien
y and pre
ision.Whaley and Lam [WL02℄ adapted the demand-driven algorithm of Heintze andTardieu [HT01a, HT01b℄ to Java by adding �eld-sensitivity, making it respe
t de-
lared types, and 
omputing the 
all graph on-the-
y. With this analysis, theywere able to analyze ben
hmarks using the standard library from version 1.3.1 ofthe JDK, whi
h is about three times larger than the library in version 1.1.8. How-ever, their implementation did not 
ome 
lose to mat
hing the s
alability of Heintzeand Tardieu's implementation for C, suggesting that implementation features otherthan the demand-driven algorithm a�e
t the eÆ
ien
y of the analysis.Re
ently, Milanova, Rountev and Ryder [MRR02a, MRR02b℄ proposed obje
t-sensitivity, an adaptation of 
ontext-sensitivity designed to pre
isely model featuresoften present in obje
t-oriented programs, su
h as en
apsulation. They applied apreliminary version of their analysis to 
onstru
ting obje
t relationship diagrams forprogram understanding, an appli
ation for whi
h a high level of pre
ision is needed.
2.4 Appli
ations of Points-To AnalysisThis se
tion des
ribes some of the analyses that have been 
onstru
ted to make useof points-to information. Some of these 
lients, su
h as side-e�e
t analysis, have beenstudied for both C and Java, while others, su
h as 
all graph 
onstru
tion and es
apeanalysis are parti
ularly useful for dealing with features spe
i�
 to Java.14



2.4. Appli
ations of Points-To Analysis2.4.1 Side-E�e
t InformationThe purpose of a side-e�e
t analysis is to approximate the set of memory lo
ationsread and written by spe
i�
 instru
tions, and to summarize this information for largerregions of the program. This information 
an then be used to improve the e�e
tivenessof a wide variety of data
ow analyses and traditional 
ompiler optimizations in thepresen
e of pointers. The side-e�e
t analysis implemented using Spark is des
ribedin Se
tion 6.2 of this thesis.Ghiya and Hendren [GH98℄ used side-e�e
t information to improve pre
ision of
ommon subexpression elimination, loop-invariant hoisting, and redundant load elim-ination in a C 
ompiler. On their ben
hmarks, these improvements translated intoup to 10% speedups. They also showed how to use side-e�e
t information for arraydependen
e testing, in program understanding tools, and to automati
ally insert dataprefet
hing hints into 
ode. A similar study was done for C programs by Hind andPioli [HP00℄. They evaluated several points-to analyses by measuring their e�e
tson live variable analysis, rea
hing de�nitions, 
onstant propagation, and dead 
odeelimination.Clausen [Cla97℄ proposed a simple side-e�e
t analysis for Java whi
h did notuse a points-to analysis; it used only information about de
lared types, and madeworst-
ase assumptions about the possible targets of pointers. The resulting side-e�e
t information was applied to dead 
ode removal, loop invariant hoisting, 
onstantpropagation, and 
ommon subexpression elimination. On early versions of Java, theseoptimizations produ
ed speedups of up to 25%.2The pre
ision of side-e�e
t information that 
an be obtained has be
ome a
ommon metri
 of the pre
ision of points-to information. Both Shapiro and Hor-witz [SH97a℄, and Rountev, Milanova and Ryder [RMR01, MRR02b℄ used it as oneof their main metri
s in 
omparing the pre
ision of di�erent points-to analyses.2Early Java virtual ma
hines did not have aggressive just-in-time 
ompilers like they do today.Modern just-in-time 
ompilers 
an perform some of these optimizations based on intrapro
eduralanalysis. 15



Related Work2.4.2 Call Graph Constru
tionIn Java, all instan
e methods are invoked using virtual 
alls. This means that whole-program analyses require some approximation of the 
all graph. Some points-toanalyses require su
h a 
all graph to be 
onstru
ted prior to the analysis. The outputof a points-to analysis 
an also be used to 
onstru
t su
h a 
all graph, or to make anexisting 
all graph more pre
ise. The appli
ation of Spark to 
all graph 
onstru
tionis 
overed in Se
tion 6.1 of this thesis.Several methods have been proposed for 
onstru
ting 
all graphs without usinga 
omplete points-to analysis. Dean, Grove, and Chambers [DGC95℄ proposed 
lasshierar
hy analysis, whi
h uses only the sub
lass relationships in the type hierar
hy toresolve method targets. Ba
on and Sweeney [BS96℄ introdu
ed rapid type analysis,whi
h restri
ts 
lass hierar
hy analysis to 
lasses whi
h appear in allo
ation sites inthe program. Sundaresan et al. [SHR+00℄ proposed an even more pre
ise method,variable type analysis, a te
hnique similar to subset-based points-to analysis in thatit uses subset 
onstraints to express the possible sets of run-time types of obje
tsthat ea
h variable may hold. All of these methods are available in Spark. Tip andPalsberg [TP00℄ studies several other variations of 
all graph 
onstru
tion algorithmsbased on subset 
onstraints.A 
all graph 
an be 
onstru
ted almost dire
tly from pre
ise points-to information.It has be
ome 
ommon in studies of points-to analyses [LPH01, RMR01, WL02℄ touse the pre
ision of the 
all graph that 
an be 
onstru
ted as one measure of thepre
ision of the points-to information.2.4.3 Es
ape AnalysisThe goal of an es
ape analysis is to determine whi
h obje
ts 
an be referen
ed bypointers in methods or threads other than the method or thread in whi
h they areallo
ated. Resear
h on es
ape analysis for Java has fo
used on two main appli
ations,sta
k allo
ation and syn
hronization elimination, whi
h are dis
ussed in the next twoparagraphs.Java for
es programmers to allo
ate all obje
ts on the heap, rather than on the16



2.4. Appli
ations of Points-To Analysissta
k. This 
an have adverse e�e
ts on the performan
e of Java programs, be
ausethese obje
ts need to be freed by the garbage 
olle
tor. Several resear
hers [WR99,VR01, CGS+99℄ used es
ape analyses inside their 
ompilers to dete
t whi
h obje
ts
ould safely be allo
ated on the sta
k rather than on the heap.It is very easy to add syn
hronization lo
ks to Java programs, so many programsand libraries use them extensively even when they are not ne
essary. Several ap-proa
hes [BH99, Ruf00, CGS+99℄ were independently developed to use es
ape infor-mation to redu
e the overhead of these lo
ks. All three approa
hes use es
ape analysisto determine whi
h obje
ts 
annot be referen
ed by threads other than the thread inwhi
h they are allo
ated. Any lo
ks on su
h obje
ts 
an be removed, be
ause theseobje
ts are only used by a single thread. Most modern implementations of Java usethin lo
ks [BKMS98℄, whi
h are extremely eÆ
ient when there is no 
ontention overthe lo
k (as is the 
ase for thread-lo
al obje
ts), so it may appear that syn
hroniza-tion elimination is no longer ne
essary. However, even thin lo
ks be
ome expensiveon multi-pro
essor ar
hite
tures [KKO02℄.
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Chapter 3Spark in the Context of Soot
3.1 Soot OverviewSpark is a 
omponent of the Soot framework [Soot, VRGH+00℄ for analyzing, op-timizing, and annotating Java byte
ode. The Soot framework de�nes four di�erentintermediate representations, and in
ludes 
ode to 
onvert between them and Javabyte
ode.Baf is a sta
k-based representation similar to byte
ode.Jimple is a sta
k-less, three-address, typed intermediate representation suitable formany analyses.Grimp is a representation similar to Jimple, but with aggregated expressions (thatis, statements su
h as d = (a + b) * 
 are allowed, whereas in Jimple, this
omputation would be split into two statements, one to do the addition, andthe other to do the multipli
ation).Dava AST is a high-level, stru
tured representation used for de
ompilation.The most 
ommon use of Soot is for optimizing and annotating byte
ode. Sootreads the byte
ode (whi
h may be produ
ed by java
 or any other 
ompiler targetting19



Spark in the Context of Sootbyte
ode) either for a single 
lass �le, or a whole program. Soot su

essively 
onvertsthe byte
ode to its various intermediate representations, and applies analyses, trans-formations, and annotation generators designed for ea
h intermediate representation.Soot provides a me
hanism [PQVR+01℄ for atta
hing attributes with arbitrary anal-ysis results to 
lasses, methods, or individual instru
tions. Finally, the intermediaterepresentation is translated ba
k to byte
ode, annotated with any of the attributesthat were atta
hed, and written ba
k to 
lass �les.Of the intermediate representations de�ned by Soot, Jimple is the most suitablefor whole-program points-to analysis. Spark is therefore based entirely on Jimple.Jimple statements relevant to points-to analysis are explained below.Assignment statement: An assignment statement has the form p = q, and assignsthe value of one variable to another. If the variables are of pointer type, a points-to analysis must 
onsider that after this statement, the target of the assignmentmay point to the obje
t that the sour
e of the assignment points to.Identity statement: Jimple introdu
es virtual variables to represent the parame-ters of methods and the parameter of an ex
eption handler. These variables arepresent only impli
itly in the original byte
ode. An identity statement is an as-signment statement with one of these virtual variables as its sour
e rather thanan ordinary variable. For example, every instan
e method 
ontains a statementlike p := �this, whi
h assigns the impli
it parameter this to the variable p.Spark treats identity statements in the same way as other assignment state-ments.Allo
ation statement: From the point of view of a points-to analysis, an allo
ationstatement is any statement that 
auses a variable to point to some newly-allo
ated lo
ation. In Jimple, this in
ludes statements that allo
ate obje
tsand arrays (single and multi-dimensional), and that load string 
onstants. InJimple, the 
all to a 
onstru
tor that is asso
iated with an obje
t being 
reatedis not part of the allo
ation statement; it is represented as a separate invo
ationstatement. Some examples of allo
ation statements are:20



3.1. Soot Overview� p = new java.lang.String,� q = newarray (int)[12℄, and� r = "Hello, World!".Field store: A �eld store has the form p.f = q, and stores the value of the variableq into the �eld f of the obje
t pointed to by p.Field load: A �eld load has the form p = q.f, and loads the value of the �eld f ofthe obje
t pointed to by q into the variable p.Stati
 �eld store: A stati
 �eld store has the form Class.field = p, and storesthe value of a variable into a stati
 �eld of a 
lass. Stati
 �elds are the Javaequivalent of global variables. Ea
h stati
 �eld is asso
iated with a 
lass, andthere is a single instan
e of ea
h stati
 �eld in the whole program.Stati
 �eld load: A stati
 �eld load has the form p = Class.field, and loads thevalue of a stati
 �eld into a variable.Array store: An array store has the form p[i℄ = q, and stores the value of variableq into the ith element of the array pointed to by the variable p. In Spark,arrays are treated like obje
ts, with a single virtual �eld representing all theelements of the array.Array load: An array load has the form p = q[i℄, and loads the value of the ithelement of the array pointed to by q.Cast statement: A 
ast statement has the form p = (T) q, and 
auses the pointerstored in the variable q to be assigned to the variable p, provided that the typeof the target of the pointer is a subtype of T. If it is not, the assignment does nottake pla
e, and an ex
eption is thrown. A points-to analysis 
an treat su
h a
ast statement like an assignment from q to p, but it 
an also take advantage ofknowing that the pointer that is assigned must be pointing to an obje
t whosetype is a subtype of T. 21



Spark in the Context of SootInvo
ation statement: An invo
ation statement 
auses a method to be invoked.If the method is stati
, the invo
ation statement 
ontains a spe
i�
ation of themethod that will be invoked. Otherwise, the invo
ation statement 
ontains asignature of the method to be invoked, as well as a variable pointing to there
eiver obje
t of the method. The a
tual method that will be invoked is re-solved from the run-time type of the re
eiver obje
t and the method signature.If the method a

epts parameters, the invo
ation statement 
ontains variableswhose values will be passed to the parameters of the method. If the methodreturns a value, the invo
ation statement may optionally 
ontain a target vari-able to whi
h the return value will be assigned when the method returns. Anyof these variables may be of pointer type, so a points-to analysis must 
onsiderthe resulting 
ow of pointers. Some examples of invo
ation statements are:� p = stati
invoke <java.lang.String: valueOf(int)>(5),� i = virtualinvoke s.<java.lang.String: length()>(),� virtualinvoke p.<java.io.PrintStream: 
lose()>(),� spe
ialinvoke this.<java.lang.Obje
t: void <init>()>();, and� i = interfa
einvoke 
.<java.util.Colle
tion: int size()>();.Return statement: A return statement has the form return or return p, and
auses 
ontrol to return from a method ba
k to its 
aller, optionally passingba
k a value. At the 
all site, the returned value may be assigned to a variable,or dis
arded if no target variable is spe
i�ed. If the value being returned isof pointer type, a points-to analysis should should take the pointer 
ow intoa

ount.Throw statement: A throw statement has the form throw p, and transfers 
on-trol to an ex
eption handler, passing it a pointer to an ex
eption obje
t (p, inthis 
ase). Ea
h ex
eption handler 
ontains an identity statement that retrievesthe ex
eption obje
t from the impli
it parameter variable. A points-to anal-ysis should tra
k the pointer 
ow from the throw statement to the parameter22



3.2. Spark within Sootof the ex
eption handler. In Spark, this is 
urrently done by representing allthrown ex
eptions as assignments to a single variable holding all thrown ex
ep-tion obje
ts, and by assignments from this variable to the parameters of ea
hex
eption handler. This method of handling ex
eptions is based on the 
onser-vative assumption that any ex
eption thrown may be 
aught by any handler inthe program. Be
ause ex
eption handlers are usually very short, and be
ausevery few obje
ts are usually passed through thrown ex
eptions, this approxi-mation appears not to degrade the pre
ision of the points-to information. Soot
ould be extended to provide more pre
ise information about whi
h ex
eptionhandlers 
at
h whi
h ex
eption, and this information 
ould then be used bySpark.
3.2 Spark within SootFigure 3.1 shows how Spark intera
ts with other 
omponents within Soot. The 
ore
omponent of Spark is the pointer analysis engine, des
ribed in detail in Chapter 4.It takes as its input the Jimple representation of the whole program, optionally a
onservative 
all graph, and a simulated representation of any native methods usedby the program. The initial 
all graph may be 
reated using 
lass hierar
hy analy-sis [DGC95℄, rapid type analysis [BS96℄, or variable type analysis [SHR+00℄. Spark
an also operate without an initial 
all graph, and generate one on-the-
y based onthe points-to information that it 
omputes. The output of the pointer analysis engineis, for ea
h variable of referen
e type in the program, an abstra
t set of lo
ations towhi
h the variable may point.The points-to information is used by 
lient analyses, su
h as a 
all graph trimmer,whi
h removes extraneous edges from the 
all graph, and a side-e�e
t analysis, whi
h
omputes the lo
ations possibly read or written by the statements and methods ofthe program. These two 
lient analyses are presented in more detail in Chapter 6.Other analyses, su
h as es
ape analysis, 
ould be implemented.23
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3.2. Spark within SootThe results of the 
lient analyses 
an be used by other analyses and transforma-tions within Soot. For example, the stati
 method binder and stati
 inliner use thetrimmed 
all graph, while the 
ommon subexpression eliminator and partial redun-dan
y eliminator use the side-e�e
t information.The results of the 
lient analyses 
an also be en
oded as attributes in the Jimple
ode, whi
h are transferred to 
lass �le attributes when the Jimple is translatedba
k to Java byte
ode. The information in these attributes 
an be used by another
ompiler or interpreter reading the resulting byte
ode. For example, a just-in-time
ompiler exe
uting the byte
ode 
ould use the side-e�e
t information 
omputed bySoot. This is an important use of Spark be
ause points-to analysis, and the analysesthat depend on it, are generally 
onsidered to be too time-
onsuming to be in
ludedin just-in-time 
ompilers.
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Chapter 4Pointer Analysis Engine
This 
hapter des
ribes the pointer analysis engine, the 
ore 
omponent of Spark.Figure 4.1 shows the overall organization of the pointer analysis engine. The analysis
onsists of three stages: building the pointer assignment graph, simplifying it, andthen propagating the points-to sets along it to obtain the �nal solution. These stagesare des
ribed in more detail in the rest of this 
hapter. A pointer assignment graphbuilder is �rst used to 
onvert the input Jimple representation into the internal repre-sentation used by Spark, a pointer assignment graph. The graph builder determineshow features of the program, su
h as �eld referen
es, array element referen
es, andparameters passed to methods are represented. It is des
ribed in more detail in Se
-tion 4.2. The pointer assignment graph may then be simpli�ed by merging nodes thatare known to have the same points-to sets. This simpli�
ation redu
es the amountof pro
essing required to 
ompute the points-to sets. It is des
ribed in more detail inSe
tion 4.3. Finally, the points-to set propagator 
omputes the points-to set for ea
hvariable by propagating sets along assignments in the program (whi
h are representedby edges in the pointer assignment graph). The points-to set propagation algorithmsimplemented in Spark are des
ribed in detail in Se
tion 4.4.By tuning parameters of the builder, simpli�er, and propagator (or by providingalternative implementations), we 
an 
ontrol the pre
ision and eÆ
ien
y of the points-to analysis. For example, to implement a merge-based analysis, we instru
t the builderto use bi-dire
tional edges, and the simpli�er to merge the nodes 
onne
ted by these27
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4.1. Pointer Assignment Graphedges, leaving a trivial amount of 
omputation for the propagator. On the other hand,a subset-based analysis would enable little merging in the simpli�er, leaving most ofthe 
omputation to be done by the propagator. Integrating all three 
omponents inthe Spark framework makes it feasible to implement and 
ompare analyses sharing
hara
teristi
s of the two extremes.4.1 Pointer Assignment GraphSpark uses a pointer assignment graph as its internal representation of the programbeing analyzed. The �rst stage of Spark, the pointer assignment graph builder,
onstru
ts the pointer assignment graph from the Jimple input. Depending on theparameters to the builder, the pointer assignment graph for the same sour
e 
ode
an be very di�erent, re
e
ting varying levels of pre
ision desired of the points-toanalysis. For example, the builder may make assignments dire
ted for a subset-basedanalysis, or bi-dire
tional for an equality-based analysis. Separating the builder fromthe solver makes it possible to use the same solution algorithms and implementationsto solve di�erent variations of the points-to analysis problem.The pointer assignment graph represents the memory lo
ations used by the pro-gram using four di�erent types of nodes, and assignments of pointers using fourdi�erent types of edges. These are presented in the following subse
tions.4.1.1 Allo
ation Nodesnew 1An allo
ation node represents a set of run-time obje
ts to whi
h a pointer 
ouldpoint. The 
urrent design of Spark requires the sets of run-time obje
ts representedby allo
ation nodes to be disjoint; that is, ea
h obje
t at run-time is representedby exa
tly one allo
ation node. To satisfy this requirement, the builder may use anallo
ation node to represent all obje
ts allo
ated at a given allo
ation site (sin
e everyobje
t is allo
ated at exa
tly one allo
ation site), or to represent all obje
ts with agiven run-time type (sin
e every obje
t has exa
tly one run-time type).29



Pointer Analysis EngineEa
h allo
ation node has an asso
iated type, and all obje
ts that it represents areexpe
ted to have exa
tly this type at run-time (not a subtype). For the 
ase of anallo
ation node representing a set of obje
ts of multiple run-time types, or whose type
annot be determined stati
ally, Spark introdu
es a spe
ial type AnyType. Allo
ationnodes with this type 
an represent obje
ts of any run-time type.4.1.2 Variable Nodesp A variable node represents a set of memory lo
ations possibly holding pointersto obje
ts. Spark eventually 
omputes, for ea
h variable node, a set of allo
ationnodes representing the set of obje
ts to whi
h a member of the set of memory lo
ationsrepresented by the variable node may point. The most 
ommon use of variable nodes isto represent lo
al variables and method parameters, but they are also used to representstati
 �elds, and they may be used to represent instan
e �elds if the instan
es of a�eld are being modelled together in a �eld-based analysis.Depending on a parameter to the builder, ea
h variable node may have a de
laredtype limiting the set of obje
ts that it may point to to those of 
ompatible run-timetype.4.1.3 Field Referen
e Nodesp.fA �eld referen
e node represents a pointer dereferen
e. Ea
h �eld referen
e nodehas an asso
iated variable node as its base, and an abstra
t �eld. The �eld referen
enode represents all memory lo
ations used to store the given �eld of all obje
ts pointedto by the base. The �eld may be an a
tual Java �eld, or the spe
ial elements �eldused to represent elements of an array. Note that Java �eld referen
es need not alwaysbe modelled using �eld referen
e nodes; if instan
es are being modelled together, �eldreferen
es are represented by variable nodes.Like the variable node, ea
h �eld referen
e node may have a de
lared type limitingthe set of obje
ts to whi
h it may point. 30



4.1. Pointer Assignment Graph4.1.4 Con
rete Field Nodesnew 1.fLater, during the propagation of points-to sets, a fourth type of node is 
reatedto hold the points-to set of ea
h �eld of obje
ts 
reated at ea
h allo
ation site. Thesenodes are parameterized by allo
ation site and �eld. However, they are not part ofthe initial pointer assignment graph.4.1.5 Allo
ation Edgesnew 1 pAn allo
ation edge is an edge from an allo
ation node to a variable node, and rep-resents an assignment of pointers to the obje
ts represented by the allo
ation nodeto the lo
ation represented by the variable node. The presen
e of an allo
ation edge
onstrains the points-to information to in
lude the obje
ts represented by the allo-
ation node in the points-to set of the lo
ations represented by the variable node.Examples of Jimple statements for whi
h allo
ation edges are generated in
lude allo-
ation statements su
h as p = new Obje
t(); and loads of string 
onstants, su
h ass = "Hello";.4.1.6 Assignment Edgesp qAn assignment edge is an edge from a variable node to another variable node, andit represents an assignment from the lo
ation represented by the �rst variable node tothe lo
ation represented by the se
ond variable node. The presen
e of an assignmentedge from p to q 
onstrains the points-to set of p to be a subset of the points-toset of q . In order to 
onstrain two points-to sets to be equal (for an equality-basedanalysis, for example), the builder 
an insert assignment edges in both dire
tionsbetween two nodes. Assignment edges are inserted between nodes whenever thepointers 
an 
ow from one variable to another. Examples in
lude expli
it assignmentstatements su
h as q = p;, but also interpro
edural 
ow of parameters to methods.31



Pointer Analysis EngineAt ea
h 
all site, assignment edges are added from the nodes representing the a
tualarguments to the nodes representing the 
orresponding parameters of all methodsthat may be targets of the 
all site, and an assignment edge is added from the returnnode of ea
h of these methods to the node for the variable that re
eives the returnvalue (if any) at the 
all site.4.1.7 Store Edgesp q.fA store edge is an edge from a variable node to a �eld referen
e node, and it rep-resents a store from the lo
ation represented by the variable node to the appropriate�eld of some obje
t pointed to by the base of the �eld referen
e node. Store edgesare added to the pointer assignment graph for store statements in the sour
e, su
h asq.f = p;.4.1.8 Load Edgesp.f qA load edge is an edge from a �eld referen
e node to a variable node, and itrepresents a load from the appropriate �eld of some obje
t pointed to by the base ofthe �eld referen
e node to the lo
ation represented by the variable node. Load edgesare added to the pointer assignment graph for load statements in the sour
e, su
h asq = p.f;.4.1.9 ExampleFigure 4.2 shows a small pie
e of 
ode, and two examples of pointer assignment graphsthat 
ould be used to represent it. The 
ode is not intended to do anything spe
i�
;it is given only as an example to illustrate how pointer assignment graphs 
ould bebuilt for it.The �rst example graph in Figure 4.2(b) would be 
onstru
ted for a subset-based�eld-sensitive analysis with separate allo
ation nodes for obje
ts allo
ated at ea
h32



4.1. Pointer Assignment Graph
stati
 void foo() {a1: p = new O();q = p;a2: r = new O();p.f = r;t = bar( q );}stati
 O bar( O s ) {return s.f;} (a) Example Codea1: new O a2: new Op rq p.fs s.ft

new Op rq fs t(b) Pointer Assignment Graphfor Subset-Based, Field-SensitiveAnalysis (
) Pointer Assignment Graphfor Equality-Based, Field-BasedAnalysisFigure 4.2: Example to Illustrate Pointer Assignment Graphs
33



Pointer Analysis Engineallo
ation site. The edges are therefore only present in the dire
tion of the assignmentsin the sour
e 
ode. For a �eld-sensitive analysis, the �eld referen
es are representedusing �eld referen
e nodes. Obje
ts allo
ated at ea
h of the two allo
ation sites arerepresented using distin
t allo
ation nodes.The allo
ation statements a1: p = new O() and a2: r = new O() 
ause theallo
ation edges from a1: new O to p and from a2: new O to r , respe
tively,to be added. The simple assignment statement p = q is modelled by the assignmentedge from p to q . The interpro
edural 
ow from q to the parameter s of the barmethod is represented by the assignment edge from q to s . The store p.f = r; isrepresented by the store edge from r to p.f , and the 
ow from s.f returned to thevariable t is represented by the load edge from s.f to t .At this point, it is not yet known that p and s will be aliased, so there areno edges between p.f and s.f . This 
ow through aliasing will be handled later,during the points-to set propagation stage, by the propagation algorithms presentedin Se
tion 4.4.The se
ond example graph in Figure 4.2(
) would be 
onstru
ted by a less pre
ise,equality-based, �eld-based analysis, with allo
ation nodes representing all obje
ts of agiven run-time type. Be
ause this is an equality-based analysis, all of the assignmentedges now go in both dire
tions. Field-based analysis means that the �eld referen
esare represented by a single variable node f not dependent on the base obje
t (p ors), rather than by �eld referen
e nodes p.f and s.f . In a �eld-based analysis, we
onservatively assume that all obje
ts 
ould be aliased for the purpose of modelling�eld referen
es; this is re
e
ted by the single variable node representing the �eld fof all obje
ts. Be
ause this analysis represents all obje
ts of a given type by a singlenode, the obje
ts allo
ated at the two allo
ation sites are represented by a single nodenew O , sin
e they are of the same type.34



4.2. Building the Graph4.2 Building the GraphThe pointer assignment graph builder takes as input Jimple intermediate 
ode, a
all graph, and simulations of native methods, and produ
es from them a pointerassignment graph 
ontaining the same information in a form suitable for performingpointer analysis. This se
tion des
ribes the design of the builder.4.2.1 DesignThe task of the builder 
an be de
omposed into two steps.1. Iterating through the Jimple input, and determining how the di�erent Jimplefeatures relate to ea
h other. This generally 
orresponds to determining whi
hedges will be present in the pointer assignment graph.2. Creating the appropriate pointer assignment graph node to represent ea
h fea-ture in the Jimple input. This is determined by some of the pointer analysisparameters listed in Se
tion 4.2.2, spe
i�ed as Soot phase options to Spark.Ea
h step is represented by an abstra
t 
lass and its implementation. This makesit possible to 
hange the implementation of ea
h step, without a�e
ting the other.While the 
urrent implementation of the �rst step 
onstru
ts a graph representing
ontext-insensitive relationships in the Jimple sour
e, Spark is designed to allowexperimenting with 
ontext-sensitive implementations in the future. The se
ond step
an also have di�erent implementations, for example to 
hange the set of options thatdetermine whi
h types of nodes will be 
onstru
ted for ea
h feature, or to 
reate anentirely di�erent representation of the pointer assignment graph. Of 
ourse, the entirebuilder 
ould be repla
ed, so that the pointer assignment graph 
ould be 
reated froma di�erent sour
e representation (su
h as one based on a language other than Javabyte
ode), or read in from a �le.The 
urrent implementation of the builder 
onstru
ts variable nodes for lo
al vari-ables and stati
 �elds, and a single variable node representing all thrown ex
eptions.Depending on options given to Spark, instan
e �elds, method parameters, and return35



Pointer Analysis Enginevalues are represented with either variable or �eld referen
e nodes. Array elementreferen
es are always represented with �eld referen
e nodes. Allo
ation nodes are
reated for allo
ation sites and string 
onstants, in
luding 
ommand-line parametersto the main method.Edges are 
reated for all pointer-valued assignments in
luding 
asts, for throwand 
at
h statements, and, unless the 
all graph is being 
onstru
ted on the 
y, forpointers passed to and returned from methods. In addition, spe
ial edges are addedfor impli
it 
ow of pointers. If a 
lass has a finalize method, an edge is addedfrom the allo
ation node of ea
h allo
ation site allo
ating an obje
t of that 
lass tothe variable node representing the impli
it this parameter to the finalize method.This models the eventual 
ow of the obje
t from the allo
ation site to its finalizemethod when it is garbage 
olle
ted. Similarly, sin
e the this pointer of the startmethod of java.lang.Thread impli
itly 
ows to the this pointer of the run methodof any of its sub
lasses, assignment edges are added to re
e
t this.4.2.2 Parameters and OptionsRepresenting FieldsThe following three Spark options a�e
t whether 
ertain features are represented asvariable nodes or �eld referen
e nodes.ignoreBaseObje
ts: When this option is set to true, ea
h referen
e to an instan
e �eldis represented by a variable node, regardless of the obje
t that is the base of thereferen
e (a �eld-based analysis, as 
ompared to a �eld-sensitive analysis). Thatis, all instan
es of a given �eld in all obje
ts are grouped together. This allowsfor a very fast analysis be
ause pointers 
an be propagated to variable nodesin a single pass, with no iteration. However, using variable nodes to representreferen
es to instan
e �elds is less pre
ise than using �eld referen
e nodes, be-
ause it does not distinguish between �elds of provably di�erent obje
ts. Thedefault value is false. 36



4.2. Building the GraphparmsAsFields, returnsAsFields: These two options 
ontrol whether method parame-ters and return values are represented with variable nodes, or with �eld referen
enodes having the this pointer of the method as their base. In 
ombination withrespe
ting de
lared types during propagation, representing parameters and re-turn values with �eld referen
e nodes gives some of the bene�ts of 
onstru
tingthe 
all graph on the 
y. Pointer 
ow to and from the targets of a method 
allis restri
ted to methods de
lared in 
lasses rea
hing the re
eiver of the 
all andtheir super
lasses, be
ause the re
eiver of the 
all 
an only be stored in the thispointer of these methods. Constru
ting the 
all graph on the 
y would, in addi-tion, prevent pointer 
ow to and from methods de
lared in proper super
lassesof 
lasses rea
hing the re
eiver. Although these options improve pre
ision, theyintrodu
e very large numbers of �eld referen
e nodes into the pointer assign-ment graph, making the analysis very slow, and making it require unreasonableamounts of memory. The default value for both options is false.The next two options spe
ify whi
h allo
ation nodes are 
reated to representallo
ation sites.typesForSites: Normally, ea
h allo
ation site appearing in the program is representedby a unique allo
ation node. When this option is set to true, however, a singleallo
ation node is used to represent all allo
ation sites allo
ating obje
ts withthe same type, as in Variable Type Analysis [SHR+00℄. This redu
es the size ofthe graph that Spark has to pro
ess, and therefore speeds up the analysis, atthe expense of pre
ision (sin
e all obje
ts in the program having a given typeare represented together). The default value of this option is false.mergeStringBu�er: Whenever strings are 
on
atenated using the + operator inJava, the 
orresponding byte
ode 
ontains an allo
ation of a java.lang.StringBuffer, and the required operations on it. These operations are im-plemented in a way that prevents a 
ow- and 
ontext-insensitive analysis frombeing able to show that the uses of these java.lang.StringBuffer obje
ts arenot aliased, resulting in large numbers of variables with many aliases. These37



Pointer Analysis Enginetake a long time to analyze, and also drasti
ally in
rease the memory require-ments for the analysis. Using a single allo
ation node to represent all allo-
ation sites of type java.lang.StringBuffer, like with the typesForSites op-tion, does not a�e
t pre
ision, be
ause the variables storing these obje
ts wouldall have equal points-to sets anyway. The mergeStringBu�er option has thesame e�e
t as the typesForSites option, but only for allo
ation sites of typejava.lang.StringBuffer. Its default value is true.The next option a
tivates the native method simulator.simulateNatives: Soot in
ludes a framework for simulating the e�e
t on whole-programanalyses of the native methods de�ned in the standard Java library 
lasses.When this option is set to true, Spark uses this framework to model the e�e
tof these methods. The default value is true.The next option determines how simple assignment edges are represented.simpleEdgesBidire
tional: Normally, when the Jimple sour
e 
ontains an assignmentof the form a = b, a dire
ted edge is 
reated from the node representing b to thenode representing a, to re
e
t the pointer 
ow. However, a uni�
ation-basedanalysis treats the assignment as bi-dire
tional. When this option is set to true,simple assignment edges are always 
reated in both dire
tion. In 
ombinationwith merging of strongly-
onne
ted 
omponents (see Se
tion 4.3), this allowsSpark to perform an analysis like that suggested by Steensgaard [Ste96a℄. Thedefault value for this option is false.The next option spe
i�es whether the 
all graph should be built on the 
y.onFlyCallGraph: Normally, the builder inserts edges into the pointer assignment graphto represent pointer 
ow through method parameters and return values, basedon the a
tive 
all graph found in the Soot S
ene when Spark is started. Whenthis option is set to true, these edges are not initially added. Instead, thesolver adds these edges during the analysis as it propagates points-to sets tothe re
eivers of method 
alls. The solver a

omplishes this by 
alling ba
k intothe builder during solving time. The default value of this option is false.38



4.3. Simplifying the Graph4.3 Simplifying the GraphOn
e the pointer assignment graph has been built, we 
an pro
eed dire
tly to prop-agating the points-to sets. However, it may be possible to prove beforehand thatthe points-to sets of 
ertain variables will turn out to be equal. In this 
ase, we 
ansimplify the graph by merging the nodes 
orresponding to variables known to haveequal points-to sets. This results in a smaller pointer assignment graph given as inputto the points-to set propagation algorithm, hopefully making the analysis run fasterand require less memory.4.3.1 Merging NodesSpark in
ludes support for merging nodes using the fast union-�nd [Tar75℄ algorithmat the 
ore of its implementation of a pointer assignment graph. The algorithm isbased on su

essively 
ombining pairs of nodes, and 
hoosing one of the two orig-inal nodes as a unique representative for the pair. At any time, for ea
h set ofnodes that have been 
ombined, one of the nodes that were 
ombined serves as theunique representative node for the entire set of nodes. The Node 
lass 
ontains agetRepla
ement() method, whi
h returns the unique representative node for the set
ontaining the node, as well as a mergeWith() method, whi
h merges a node withanother.Merging nodes in a pointer assignment graph is not as simple as applying theunion-�nd algorithm to them, however. Whenever two nodes are merged, the rest ofthe pointer assignment graph must be updated. In parti
ular, all edges to and fromthe nodes must be repla
ed with edges to and from the unique representative of thenew 
ombined node. In addition, be
ause ea
h �eld referen
e node has a variablenode as its base, whenever two variable nodes are merged, all �eld referen
e nodeshaving them as bases must be updated with the unique representative of the new
ombined node as their base. When this 
reates multiple �eld referen
e nodes withthe same base and �eld, these must in turn be merged. Finally, whenever two nodesare merged, their points-to sets must also be merged. The method used in Spark to39



Pointer Analysis Engineperform this merging of nodes is des
ribed next.Updating the Graph for Merged NodesWhenever two nodes are merged, all edges to and from the nodes must be repla
edwith edges to and from the unique representative of the 
ombined node. This is aslow pro
ess, be
ause not only do the adja
en
y sets of the merged nodes need tobe merged, but the adja
en
y sets of nodes adja
ent to the merged nodes must beupdated as well. Even worse, this must be repeated for ea
h of the many pairs ofnodes that are merged.After experimenting with several methods of updating the edges in the pointer as-signment graph to re
e
t merged nodes, a lazy approa
h was implemented in Spark,in keeping with the design of the union-�nd algorithm. Spe
i�
ally, when two nodesare merged, their adja
en
y sets are also merged, but the adja
en
y sets of nodesadja
ent to them are left alone. Instead, whenever the adja
en
y set of a node isqueried, it is 
he
ked to ensure that no node in it has already been merged intoanother node. When a node that has been merged into another node is found, itis repla
ed with the unique representative of the 
ombined node. This makes ea
hmerge operation 
heap, delaying the updating of adja
en
y sets until those sets areiterated over. Updates therefore need not be done to adja
en
y sets that will neverbe read, and the updates due to many merges 
an be done all at on
e. Moreover,sin
e the updates are done when the adja
en
y set is being iterated over anyway, theoverhead of having to a

ess ea
h adja
en
y set to update it is avoided.This approa
h makes it slightly more expensive to query the adja
en
y set of anode, whi
h 
ould redu
e performan
e if the sets are a

essed frequently. However,determining that an adja
en
y set does not require any updates is very fast. Inaddition, Spark has a global 
ag that is set whenever nodes are merged. Adja
en
ysets are only 
he
ked when this 
ag is set, so no 
he
ks will be performed unless mergeshave o

urred. In addition, after a period of heavy merging, all the adja
en
y sets 
anbe updated, and the 
ag reset, so that Spark will not have to 
he
k for merged nodesuntil another merge o

urs. Spark does this after the pointer assignment graph is40



4.3. Simplifying the Graphsimpli�ed and before propagation begins, so the adja
en
y sets are not 
he
ked unlessadditional merging o

urs during propagation.Updating Field Referen
e Nodes When Variable Nodes Are MergedThe updating of �eld referen
e nodes when the variable nodes that serve as theirbase are merged is also done lazily. Spe
i�
ally, when the unique representative ofthe 
ombined node 
ontaining a �eld referen
e node p.f is requested, the followingpro
edure is followed (it is illustrated in Figure 4.3, whi
h shows the union-�nd point-ers after node p.f has been merged into node q.f , and node q has been mergedinto r ). p q r
p.f q.f r.fFigure 4.3: Example Illustrating Merging of Field Referen
e Nodes1. The union-�nd pointers are followed to �nd the unique representative for p.f .Assume that this unique representative is q.f .2. The base node q of the unique representative q.f is examined. If q is itselfthe unique representative of the 
ombined node 
ontaining it, then q.f is the
orre
t unique representative for p.f , and is returned.3. Otherwise, the unique representative for q is found. Assume that this uniquerepresentative is r . Then the unique representative for the original �eld ref-eren
e node p.f is the �eld referen
e node with the same �eld f and base r ,namely the node r.f . 41



Pointer Analysis EngineAfter the unique representative has been found, the union-�nd pointers are up-dated as in the standard union-�nd algorithm, so that the next time the uniquerepresentative of p.f is requested, the pointer 
an be followed dire
tly to r.f .Updating Points-to SetsWhenever two nodes are merged, the points-to set of the node 
hosen as the repre-sentative for the 
ombined node be
omes the union of the two points-to sets.4.3.2 Strongly Conne
ted ComponentsWhen a set of variable nodes forms a strongly 
onne
ted 
omponent in the pointer as-signment graph, we have the 
onstraints points-to(ni) � points-to(nj) � points-to(ni)for any two nodes ni; nj in the set. The points-to graphs of all the nodes in theset are therefore equal, and the nodes 
an be merged without a�e
ting the resultof the points-to analysis. When the option simplifySCCs is set to true, Spark per-forms this simpli�
ation of the graph before propagation begins. Strongly 
onne
ted
omponents are found using the well-known, linear-time, depth-�rst-sear
h-based al-gorithm des
ribed, for example, in [CLR90, Se
tion 23.5℄. The default value of thesimplifySCCs option is true.If the de
lared types of variables are being respe
ted during propagation, thenodes of a strongly 
onne
ted 
omponent may have di�erent points-to sets if theyhave di�erent de
lared types. There are two possible ways to handle this 
ase.1. We 
an merge the nodes of the strongly 
onne
ted 
omponent anyway, and givethe resulting node a de
lared type that is the nearest 
ommon supertype of thede
lared types of all the nodes. This redu
es pre
ision, but allows us to simplifythe graph as mu
h as if de
lared types were not being respe
ted.2. We 
an dete
t only strongly 
onne
ted 
omponents in whi
h the de
lared typesof all the nodes are equivalent. This is done with the normal algorithm for�nding strongly 
onne
ted 
omponents, but 
onsidering only edges joining nodeswith the property that all obje
ts 
ompatible with the de
lared type of the42



4.3. Simplifying the Graphsour
e node are also 
ompatible with the de
lared type of the destination node.In other words, the de
lared type of the sour
e is a subtype of the de
laredtype of the destination. By merging only the strongly 
onne
ted 
omponents inwhi
h the de
lared types are equivalent, we preserve all pre
ision, but we maysimplify the graph less than we 
ould if de
lared types were not being respe
ted.The value of the option ignoreTypesForSCCs determines the alternative whi
h is 
ho-sen. Be
ause only a small per
entage of nodes appear in strongly 
onne
ted 
om-ponents [RC00℄, and of those, only a small per
entage appear in strongly 
onne
ted
omponents with multiple de
lared types, the default value of this option is false.4.3.3 Single Entry SubgraphsIt is quite 
ommon for subgraphs to 
ontain 
hains of variable nodes, in whi
h ea
hnode ex
ept the �rst has only one prede
essor. Sin
e the points-to set of the �rstnode will 
ow to all the other nodes in the 
hain, the points-to sets of all the nodeswill be equal. Therefore, the nodes in the 
hain 
ould all be merged into a singlenode, and a single points-to set 
ould be used for all of them together. This idea 
anbe extended to any single entry subgraph: any subgraph for whi
h there is a unique\�rst" node su
h that the points-to relationships in the points-to sets of any node inthe subgraph are also in the points-to set of the \�rst" node. The idea of mergingsingle entry subgraphs is very similar to the te
hnique that Rountev and Chandrapropose for C [RC00℄.De�nition 1 (Single Entry Subgraph) A single entry subgraph 
orresponding toa given header node is a subgraph of the pointer assignment graph indu
ed by a setof variable nodes, with ea
h node having the properties:1. that every path to it from a �eld referen
e or allo
ation node passes through theheader node, and2. that there exists at least one path from the header node to ea
h node in thesubgraph. 43



Pointer Analysis EngineThe header node need not ne
essarily be a variable node. Every variable node isitself a single entry subgraph, with itself as its header node.Theorem 1 The points-to set of every node n in a single entry subgraph is equal tothe points-to set of the header node h.Proof: By de�nition, there is a path from h to n, so we have the 
onstraintpoints-to(h) � points-to(n). Now, let a be an allo
ation node in the points-to setof n. This means that there is a pathn0 ! n1 ! n2 ! � � � ! nk ! nwith either n0 = a, or n0 being a �eld referen
e node with a in its points-to set, inorder to for
efag � points-to(n0) � points-to(n1) � � � � � points-to(nk) � points-to(n)Sin
e n0 is a �eld referen
e or allo
ation node, there is at least one �eld referen
enode or allo
ation node on the path of nodes n0; n1; n2; : : : ; nk. Let nl be the last�eld referen
e or allo
ation node on this path. Then, by the de�nition of a headernode, h 2 fnl; nl+1; : : : ; nk; ng. Therefore, fag � points-to(h). Be
ause this argumentapplies to any a 2 points-to(n), we have points-to(n) � points-to(h) � points-to(n),so the sets are equal, as required. 2In order to simplify the pointer assignment graph as mu
h as possible, we areinterested in �nding maximal single entry subgraphs, and redu
ing ea
h of them to asingle node. However, this is not a required 
ondition; redu
ing single entry subgraphsthat are not maximal will still 
orre
tly simplify the pointer assignment graph to someextent.When the simplifyO�ine option is set to true, Spark uses the algorithm in Fig-ure 4.4 to �nd and redu
e single entry subgraphs. This is a greedy algorithm whi
hrepeatedly looks for nodes that are in a 
ommon single-entry subgraph and mergesthem. Whenever a variable node has exa
tly one prede
essor, and the prede
essoris a variable node, the two nodes form a single-entry subgraph, sin
e every path to44



4.3. Simplifying the Graphthe su

essor must pass through the prede
essor. Therefore, the two nodes 
an bemerged. Similarly, whenever there is a pair of variable nodes with a 
ommon prede-
essor that is a �eld referen
e or allo
ation node, and this prede
essor is their onlyprede
essor, then every path to ea
h of the variable nodes passes through this prede-
essor, so the two variable nodes are in the same single-entry subgraph and 
an bemerged. In the absen
e of 
y
les and nodes unrea
hable from any �eld referen
e orallo
ation node, the algorithm �nds maximal single-entry subgraphs.1: repeat2: while there exists a variable node with exa
tly one prede
essor and this pre-de
essor is a variable node do3: merge this variable node with its prede
essor4: end while5: while these exists a pair of variable nodes, and a �eld referen
e or allo
ationnode su
h that the �eld referen
e or allo
ation node is the only prede
essorof ea
h of the variable nodes do6: merge the pair of variable nodes7: end while8: until no 
hangesFigure 4.4: Algorithm for Redu
ing Single Entry SubgraphsAs in the simpli�
ation of strongly 
onne
ted 
omponents, edges where the typeof the sour
e node of the edge is not a subtype of the type of the target node of theedge are ignored when de
lared types are being respe
ted, to prevent nodes whi
h
ould have unequal points-to sets due to di�erent de
lared types from being merged.
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Pointer Analysis Engine4.4 Flowing Points-to SetsThe �nal step of points-to analysis is propagation of points-to sets along edges inthe pointer assignment graph to �nd a �xed point solution of the subset 
onstraintsrepresented by those edges. Spark 
urrently 
ontains �ve algorithms1 for su
h a
omputation, and others 
an be easily added.4.4.1 Iterative Propagation AlgorithmThe algorithm2 presented in Figure 4.5 is the simplest propagation algorithm inSpark, used as a baseline, and for testing the 
orre
tness of the other, more 
ompli-
ated algorithms. It is a dire
t extension of the algorithm given by Andersen [And94℄,extended to distinguish �elds in pointer dereferen
e expressions. The algorithm be-gins by propagating all allo
ation nodes to the points-to sets of their su

essors. Itthen repeatedly propagates points-to sets along the pointer assignment graph untila �xed point is rea
hed. An assignment edge of the form p ! q indi
ates thatpoints-to( p ) � points-to( q ), so it is handled by adding the points-to set of p intothe points-to set of q . Con
rete �eld nodes are introdu
ed to model the �elds of
on
rete heap obje
ts. Suppose a store edge of the form p ! q.f is en
ountered.This means that the �eld f of the obje
t that q points to 
an now point to any obje
tthat p pointed to. We do not know exa
tly whi
h obje
t q will point to at run-time;we only know that it will be one of the obje
ts in the points-to set of q . So, forea
h allo
ation node a in the points-to set of q , we 
reate a 
on
rete �eld node a.fto represent the �eld f of any obje
t 
reated at allo
ation site a. We then add thepoints-to set of p into the points-to set of a.f . In a similar way, when we en
ountera �eld load of the form p.f ! q , we know that for some a in the points-to set ofp , pointers 
ow from a.f to q . So, for ea
h su
h a , we add the points-to set ofa.f into the points-to set of q .1For 
larity, algorithms are presented here without support for on-the-
y 
all graph 
onstru
tion.This support is implemented in Spark, however.2In the algorithms presented in this thesis, the [= symbol is used to indi
ate set union andassignment. That is, x [= y indi
ates that the set x [ y is assigned to x.46



4.4. Flowing Points-to Sets
1: pro
ess allo
ations2: repeat3: pro
ess every assignment edge4: pro
ess every store edge5: pro
ess every load edge6: until no 
hangespro
edure pro
ess allo
ations ()1: for ea
h allo
ation edge new 1 p do2: points-to( p ) [= f new 1 g3: end forpro
edure pro
ess assignment edge ( p q )1: points-to( q ) [= points-to( p )pro
edure pro
ess store edge ( p q.f )1: for ea
h allo
ation node a 2 points-to( q ) do2: points-to( a.f ) [= points-to( p )3: end forpro
edure pro
ess load edge ( p.f q )1: for ea
h allo
ation node a 2 points-to( p ) do2: points-to( q ) [= points-to( a.f )3: end for Figure 4.5: Iterative Propagation Algorithm
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Pointer Analysis EngineAs has been widely noted, this algorithm runs slowly and s
ales poorly. Sparkin
ludes a slight performan
e improvement: prior to starting the algorithm, a topolog-i
al sort is performed on the variable nodes in the pointer assignment graph.3 Then,the loop between lines 2 and 6 iterates over edges in topologi
al order of their sour
enode. If the pointer assignment graph is 
y
le-free, this ensures that all points-to setsof variable nodes are propagated on ea
h exe
ution of this loop. Even when the graph
ontains 
y
les, 
onsidering edges in this order maximizes the length of the path ofnodes to whi
h ea
h points-to relationship 
an 
ow in ea
h iteration, greatly redu
ingthe number of iterations required and the time to 
omplete the analysis.This algorithm is sele
ted in Spark by setting the option propagator to the valueiter.4.4.2 Worklist Propagation AlgorithmFor non-trivial ben
hmarks, the Iterative propagation algorithm is mu
h too slow. Abetter, but more 
omplex solver based on worklists is also provided as part of Spark,and is presented in Figures 4.6 and 4.7.This worklist propagation algorithm maintains a worklist of variable nodes. When-ever points-to relationships are added to the points-to set of a variable node, the nodeis added to the worklist. In the inner loop of the algorithm, nodes are removed fromthe worklist, and the edges asso
iated with those nodes are pro
essed. As before,variable nodes are removed from the worklist in topologi
al order. First (line 5),any assignment edges originating at the node removed from the worklist ( p ) arepro
essed, to 
ow the 
hanges in the points-to set to their su

essors. Next (line 6),store edges originating at the node removed from the worklist ( p ) are pro
essed.After that (line 7), the algorithm pro
esses store edges q ! p.f whose destinationnode ( p.f ) has the node removed from the worklist ( p ) as its base. This is be
ausethe new points-to relationships in the points-to set of p require the points-to set3If the graph 
ontains 
y
les, the nodes that are part of 
y
les will obviously not be sortedin topologi
al order; however, all nodes that are not in 
y
les will be ordered before any of theirsu

essors. 48



4.4. Flowing Points-to Setsof q to be propagated to points-to sets of additional 
on
rete �eld nodes, to whi
hthey were not propagated in previous iterations when the points-to set of p wassmaller. Finally (line 8), the algorithm pro
esses any load edges 
orresponding to�elds of obje
ts in the points-to set of p . Sin
e there are new points-to relationshipsin p , there are new 
on
rete �eld nodes whose points-to sets need to be propagatedto re
e
t the loads.This inner loop pro
essing the worklist is not suÆ
ient to obtain a 
omplete so-lution. Whenever a variable node p appears in the worklist (whi
h means that itspoints-to set has new nodes in it that need to be propagated), the algorithm propa-gates along edges that are likely to require propagation: assignment edges of the formp ! q , and load and store edges involving p . This is not enough, however. Forexample, suppose variable p has already been pro
essed with the allo
ation site ain its points-to set, so it is not in the worklist. Further suppose that a is now addedto the points-to set of q . p and q are possible aliases; that is, they may both pointto a , and stores to q.f may be loaded from p.f . This means that after pro
essingany store into q.f , we should pro
ess all loads from p.f . However, p is not in theworklist, and adding all aliased nodes to the worklist after pro
essing a store edgewould be prohibitively expensive. To ensure that stores to q.f are propagated toloads of its alias p.f , the algorithm in
ludes an outer loop. In ea
h iteration of thisouter loop, all the load and store edges are 
onsidered, rather than just those asso
i-ated with nodes in the worklist, in order to propagate points-to relationships 
ausedby aliasing that may have been missed by the inner loop. To summarize, lines 10and 11 in the outer loop are ne
essary for 
orre
tness; lines 6 to 8 
ould be removed,but in
luding them greatly redu
es the number of iterations of the outer loop andtherefore the analysis time.This algorithm is sele
ted in Spark by setting the option propagator to the valueworklist.
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Pointer Analysis Engine

1: pro
ess allo
ations2: repeat3: repeat4: remove �rst node p from worklist5: pro
ess ea
h assignment edge p q6: pro
ess ea
h store edge p q.f7: pro
ess ea
h store edge q p.f8: pro
ess ea
h load edge p.f q9: until worklist is empty10: pro
ess every store edge11: pro
ess every load edge12: until worklist is emptyFigure 4.6: Worklist Propagation Algorithm (part 1 of 2)
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4.4. Flowing Points-to Sets
pro
edure pro
ess allo
ations ()1: for ea
h allo
ation edge new 1 p do2: points-to( p ) [= f new 1 g3: worklist [= f p g4: end forpro
edure pro
ess assignment edge ( p q )1: points-to( q ) [= points-to( p )2: if points-to( q ) was 
hanged then3: worklist [= f q g4: end ifpro
edure pro
ess store edge ( p q.f )1: for ea
h allo
ation node a 2 points-to( q ) do2: points-to( a.f ) [= points-to( p )3: end forpro
edure pro
ess load edge ( p.f q )1: for ea
h allo
ation node a 2 points-tonew( p ) do2: points-to( q ) [= points-to( a.f )3: if points-to( q ) was 
hanged then4: worklist [= f q g5: end if6: end for Figure 4.7: Worklist Propagation Algorithm (part 2 of 2)
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Pointer Analysis Engine4.4.3 In
remental Worklist Propagation AlgorithmIn 
ertain implementations of sets (hash set and sorted array set), ea
h set union op-eration takes time proportional to the number of elements in the sets being 
ombined.While iterating through an analysis, the 
ontents of one set are repeatedly mergedinto the 
ontents of another set, often adding only a small number of new elementsin ea
h iteration. We 
an improve the algorithm by noting that the elements thathave already been propagated will remain in the destination set in every subsequentiteration, so they need not be propagated again. Instead, we 
an propagate only thenewly-added elements.Thus, as an optional improvement, Spark in
ludes versions of the solvers that usein
remental sets. Ea
h points-to set is divided into a \new" part and an \old" part.During ea
h iteration, elements are propagated only between the new parts, whi
h arelikely to be small. At the end of ea
h iteration, all the new parts are 
ushed into their
orresponding old part. An additional advantage of this is that when 
onstru
tingthe 
all graph on-the-
y, only the smaller, new part of the points-to set of the re
eiverof ea
h 
all site needs to be 
onsidered in ea
h iteration.The worklist propagation algorithm using in
remental sets is presented in Fig-ures 4.8 and 4.9. The points-to sets have been repla
ed by points-tonew andpoints-toold. The pro
edures for pro
essing assignment, store, and load edges havebeen 
hanged. In general, every propagation between points-to sets has been re-pla
ed by a propagation between the new portions of points-to sets. Any elementsthat already appear in the old points-to set of the destination node are ex
ludedfrom the propagation, so that the new points-to set of the destination node truly getsonly the elements that the node did not have before. For example, o

urren
es ofpoints-to( q ) [= points-to( p ) in the non-in
remental algorithm have been repla
edwith points-tonew( q ) [= points-tonew( p )npoints-toold( q ). This ensures that onlynew parts of points-to sets are propagated.There are now two di�erent methods used to pro
ess store edges su
h as p ! q.f ,depending on whether it is the sour
e node ( p ) or the base ( q ) of the destinationnode ( q.f ) whi
h was removed from the worklist (so its points-to set is known to have52



4.4. Flowing Points-to Setsnew elements). When the points-to set of the sour
e node p is known to have newelements, only its new points-to set is propagated to �elds of obje
ts in both portionsof the points-to set of q , sin
e these new obje
ts in p have not yet been propagatedto the �eld of of any obje
ts pointed to by q , new or old. On the other hand,when it is the points-to set of the base of the destination node that is known to havenew elements, both parts of the points-to set of the sour
e node p are propagatedto the �elds of only the newly added obje
ts of q (that is, to �elds of obje
ts inpoints-tonew( q )).Another di�eren
e 
ompared to the original worklist propagation algorithm is theaddition of lines 9, 10, 15, and 16, whi
h 
ush the new portions of points-to sets intothe old portions.As in the non-in
remental version of the algorithm, an outer loop is required topro
ess all stores and loads, to a

ount for 
ow due to aliasing that may have beenmissed by the inner loop. In the outer loop, both parts of ea
h points-to set arepropagated to ensure a 
omplete propagation.The in
remental worklist propagation algorithm is sele
ted in Spark by settingthe option propagator to the value worklist, and the option setImpl to the value double.
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Pointer Analysis Engine1: in
rementally pro
ess allo
ations2: repeat3: repeat4: remove �rst node p from worklist5: in
rementally pro
ess ea
h assignment edge p q6: in
rementally pro
ess ea
h store edge p q.f for sour
e7: in
rementally pro
ess ea
h store edge q p.f for destination base8: in
rementally pro
ess ea
h load edge p.f q9: points-toold( p ) [= points-tonew( p )10: points-tonew( p ) fg11: until worklist is empty12: fully pro
ess every store edge13: fully pro
ess every load edge14: for ea
h 
on
rete �eld node a.f do15: points-toold( a.f ) [= points-tonew( a.f )16: points-tonew( a.f ) fg17: end for18: until worklist is emptypro
edure in
rementally pro
ess allo
ations ()1: for ea
h allo
ation edge new 1 p do2: points-tonew( p ) [= f new 1 g3: worklist [= f p g4: end forpro
edure in
rementally pro
ess assignment edge ( p q )1: points-tonew( q ) [= points-tonew( p ) n points-toold( q )2: if points-tonew( q ) was 
hanged then3: worklist [= f q g4: end ifFigure 4.8: In
remental Worklist Propagation Algorithm (part 1 of 2)54



4.4. Flowing Points-to Setspro
edure in
rementally pro
ess store edge for sour
e ( p q.f )1: for ea
h allo
ation node a 2 (points-tonew( q ) [ points-toold( q )) do2: points-tonew( a.f ) [= points-tonew( p ) n points-toold( a.f )3: end forpro
edure in
rementally pro
ess store edge for destination base ( p q.f )1: for ea
h allo
ation node a 2 points-tonew( q ) do2: points-tonew( a.f ) [= (points-tonew( p )[points-toold( p ))npoints-toold( a.f )3: end forpro
edure in
rementally pro
ess load edge ( p.f q )1: for ea
h allo
ation node a 2 points-tonew( p ) do2: points-tonew( q ) [= (points-tonew( a.f )[points-toold( a.f ))npoints-toold( q )3: if points-tonew( q ) was 
hanged then4: worklist [= f q g5: end if6: end forpro
edure fully pro
ess store edge ( p q.f )1: for ea
h allo
ation node a 2 (points-tonew( q ) [ points-toold( q )) do2: points-tonew( a.f ) [= (points-tonew( p )[points-toold( p ))npoints-toold( a.f )3: end forpro
edure full pro
ess load edge ( p.f q )1: for ea
h allo
ation node a 2 (points-tonew( p ) [ points-toold( p )) do2: points-tonew( q ) [= (points-tonew( a.f )[points-toold( a.f ))npoints-toold( q )3: if points-tonew( q ) was 
hanged then4: worklist [= f q g5: end if6: end forFigure 4.9: In
remental Worklist Propagation Algorithm (part 2 of 2)55



Pointer Analysis Engine4.4.4 Alias Edge Propagation AlgorithmAndersen's [And94℄ algorithm for C uses a separate points-to set for ea
h allo
ationsite to represent pointers stored into obje
ts 
reated at that allo
ation site. A

ord-ingly, the standard extension [LPH01, RMR01℄ to Java handles �eld-sensitivity usinga separate points-to set for ea
h �eld of the obje
ts 
reated at ea
h allo
ation site.This ensures that aliased �eld referen
es p.f and q.f are 
orre
tly handled, sin
e ifp and q both have allo
ation site a in their points-to sets, stores into them andloads out of them will 
ow into and out of, respe
tively, the points-to set for a.f .Unfortunately, as points-to sets grow large, this representation be
omes pro-hibitively ineÆ
ient. If points-to( p ) = f a1 ; a2 ; : : : ; an g, then any stores to p.fmust be propagated to ea
h of the n sets points-to( ai.f ) (see Figure 4.10(a)). Thespa
e and time requirements are quadrati
 in the size of the sets, sin
e n possiblylarge sets must be 
reated, where n is the size of the set for p.p.fa1.f a2.f . . . an.fq.f p.fin q.finp.fout q.fout(a) (b)Figure 4.10: Field Representation in Standard (a) and Alias Edge (b) AlgorithmsPoints-to sets were originally proposed as a 
ompa
t representation of alias rela-tionships [EGH94℄. If the average points-to set is of size n, and there are v variables,a points-to set representation takes O(nv) spa
e, while an alias set representationmay take �(v2) spa
e, sin
e ea
h variable 
ould be aliased to ea
h other variable.When n is mu
h smaller than v, as is usually true when analyzing C, points-to sets56



4.4. Flowing Points-to Setsare more eÆ
ient. However, in handling aliases in Java, we are only interested inaliased variables dereferen
ed with the same �eld, be
ause a �eld in Java 
an only bea

essed by a �eld expression spe
ifying that �eld. This is in 
ontrast to C, whereone 
an take the address of a �eld of an obje
t, use unsafe 
asts, or even use pointerarithmeti
 to 
reate other aliases to the �eld of an obje
t. Most �elds in Java aredereferen
ed few times, and therefore with few variables. Therefore, in Java, for anygiven �eld, our n is mu
h greater than v, so the �(v2) representation based on aliassets 
an be more eÆ
ient.One way to implement su
h a representation is to eliminate the 
on
rete �eldnodes, and add edges dire
tly between �eld referen
e nodes that are determined tobe aliased. However, the may-alias relationship is not transitive. If p and q arealiased (that is, the interse
tion of their points-to sets is not empty), we 
annot simplyadd pointer assignment edges in both dire
tions between p.f and q.f , be
ause thesetwo �eld referen
es may not have the same points-to sets. For example, supposepoints-to( p ) = f a1 ; a2 g and points-to( q ) = f a1 g. Then p and q are possiblyaliased, but p.f may point to obje
ts in points-to( a2.f ) that q.f may not point to.To get around this diÆ
ulty, we split all �eld referen
e nodes into two halves, an inhalf used as the destination of �eld stores, and an out half used as the sour
e of �eldloads, and add edges only from the in half of a node to the out half of other nodes,as shown in Figure 4.10(b). This allows us to represent the alias relationship withoutmaking it transitive, while ensuring that anything stored into p.f 
an be loaded fromq.f and vi
e-versa.The alias edge propagation algorithm is presented in Figures 4.11 and 4.12. Thisalgorithm uses three worklists:worklist stores variable nodes whose points-to sets have 
hanged and must be prop-agated along assignment and store edges, like in the worklist propagation algo-rithm.aliasWorklist stores variable nodes after their points-to sets have been propagatedso that they 
an be 
onsidered for possible aliasing with other nodes, and the
orresponding alias edges 
an be added.57



Pointer Analysis Engine1: pro
ess allo
ations2: repeat3: pro
ess worklist4: pro
ess aliasWorklist5: pro
ess �eldRefWorklist6: until worklist is emptypro
edure pro
ess allo
ations ()1: for ea
h allo
ation edge new 1 p do2: points-to( p ) [= f new 1 g3: worklist [= f p g4: end forpro
edure pro
ess worklist ()1: while worklist is not empty do2: remove �rst node p from worklist3: aliasWorklist [= f p g4: for ea
h assignment edge p q do5: points-to( q ) [= points-to( p )6: if points-to( q ) was 
hanged then7: worklist [= f q g8: end if9: end for10: for ea
h store edge p q.f do11: points-to( q.fin ) [= points-to( p )12: if points-to( q.fin ) was 
hanged then13: �eldRefWorklist [= f q.fin g14: end if15: end for16: end whileFigure 4.11: Alias Edge Propagation Algorithm (part 1 of 2)58



4.4. Flowing Points-to Sets
pro
edure pro
ess aliasWorklist ()1: while aliasWorklist is not empty do2: remove �rst node p from aliasWorklist3: for ea
h p.f with p as its base do4: for ea
h q whi
h is dereferen
ed with �eld f as q.f do5: if points-to( p ) \ points-to( q ) 6= ; then6: aliasEdges [= f p.fin q.fout ; q.fin p.fout g7: �eldRefWorklist [= f p.fin ; q.fin g8: end if9: end for10: end for11: end whilepro
edure pro
ess �eldRefWorklist ()1: while �eldRefWorklist is not empty do2: remove �rst node p.fin from �eldRefWorklist3: for ea
h edge p.fin q.fout 2 aliasEdges do4: points-to( q.fout ) [= points-to( p.fin )5: end for6: end while7: for ea
h �eld referen
e node p.f do8: for ea
h load edge p.f q do9: points-to( q ) [= points-to( p.fout )10: if points-to( q ) was 
hanged then11: worklist [= f q g12: end if13: end for14: end forFigure 4.12: Alias Edge Propagation Algorithm (part 2 of 2)59



Pointer Analysis Engine�eldRefWorklist stores �eld referen
e nodes whose points-to sets have 
hanged andmust be propagated along alias edges.The points-to sets of nodes removed from worklist are propagated along assignmentand store edges originating at those nodes. Whenever a points-to relationship isadded to the points-to set of a variable node or �eld referen
e node, that node isadded to the worklist or the �eldRefWorklist, respe
tively, so that the new points-to relationship will be propagated further along edges originating at that node. Inaddition, ea
h node that is removed from the worklist is added to the aliasWorklist,so that it will later be pro
essed for any new aliasing relationships that may havearisen from the new elements in its points-to set. To �nd these relationships (inthe \pro
ess aliasWorklist" pro
edure), for ea
h node p , we �nd all the �elds withwhi
h it is dereferen
ed, and for ea
h su
h �eld, we �nd all other nodes q that aredereferen
ed with the same �eld. If the points-to sets of p and q have a non-empty interse
tion, then their �elds are aliased, so we add the appropriate edgesbetween them ( p.fin ! q.fout and q.fin ! p.fout ), and add the nodes to the�eldRefWorklist, so that points-to sets will be propagated along these new edges.The �eldRefWorklist keeps tra
k of in �eld referen
e nodes whose points-to sets havenew elements that must be propagated. When it is pro
essed, these points-to sets arepropagated to the points-to sets of out �eld referen
e nodes along alias edges. Finally,all load edges are pro
essed, propagating points-to sets of out �eld referen
e nodes tothe points-to sets of the 
orresponding variable nodes.The alias edge propagation algorithm is sele
ted in Spark by setting the optionpropagator to the value alias.
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4.4. Flowing Points-to Sets4.4.5 In
remental Alias Edge Propagation AlgorithmLike the worklist propagation algorithm, the alias edge propagation algorithm 
an bemade in
remental. The in
remental version is presented in Figures 4.13 through 4.16.Overall, this algorithm is very similar to the non-in
remental version. The maindi�eren
e is that points-to sets are again divided into two parts, and only the newparts are propagated. After ea
h variable node from the worklist has been pro
essed,its new part is 
ushed into the old part. Similarly, after ea
h in �eld referen
e nodefrom the �eldRefWorklist is pro
essed, its new points-to set is 
ushed into its oldpoints-to set. The points-to sets for the out �eld referen
e nodes are 
ushed when allthe loads are pro
essed (in the \in
rementally pro
ess �eldRefWorklist" pro
edure).The in
remental alias edge propagation algorithm is sele
ted in Spark by settingthe option propagator to the value alias, and the option setImpl to the value double.
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Pointer Analysis Engine

1: in
rementally pro
ess allo
ations2: repeat3: in
rementally pro
ess worklist4: in
rementally pro
ess aliasWorklist5: in
rementally pro
ess �eldRefWorklist6: until worklist is emptypro
edure in
rementally pro
ess allo
ations ()1: for ea
h allo
ation edge new 1 p do2: points-tonew( p ) [= f new 1 g3: worklist [= f p g4: end forFigure 4.13: In
remental Alias Edge Propagation Algorithm (part 1 of 4)
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4.4. Flowing Points-to Sets
pro
edure in
rementally pro
ess worklist ()1: while worklist is not empty do2: remove �rst node p from worklist3: aliasWorklist [= f p g4: for ea
h assignment edge p q do5: points-tonew( q ) [= points-tonew( p ) n points-toold( q )6: if points-tonew( q ) was 
hanged then7: worklist [= f q g8: end if9: end for10: for ea
h store edge p q.f do11: points-tonew( q.fin ) [= points-tonew( p ) n points-toold( q.fin )12: if points-tonew( q.fin ) was 
hanged then13: �eldRefWorklist [= f q.fin g14: end if15: end for16: points-toold( p ) [= points-tonew( p )17: points-tonew( p ) fg18: end whileFigure 4.14: In
remental Alias Edge Propagation Algorithm (part 2 of 4)
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Pointer Analysis Engine

pro
edure in
rementally pro
ess aliasWorklist ()1: while aliasWorklist is not empty do2: remove �rst node p from aliasWorklist3: for ea
h p.f with p as its base do4: for ea
h q whi
h is dereferen
ed with �eld f as q.f do5: if points-to( p ) \ points-to( q ) 6= ; then6: aliasEdges [= f p.fin q.fout ; q.fin p.fout g7: �eldRefWorklist [= f p.fin ; q.fin g8: points-tonew( q.fout ) [= points-toold( p.fin ) n points-toold( q.fout )9: points-tonew( p.fout ) [= points-toold( q.fin ) n points-toold( p.fout )10: end if11: end for12: end for13: end whileFigure 4.15: In
remental Alias Edge Propagation Algorithm (part 3 of 4)
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4.4. Flowing Points-to Sets
pro
edure in
rementally pro
ess �eldRefWorklist ()1: while �eldRefWorklist is not empty do2: remove �rst node p.fin from �eldRefWorklist3: for ea
h edge p.fin q.fout 2 aliasEdges do4: points-tonew( q.fout ) [= points-tonew( p.fin ) n points-toold( q.fout )5: end for6: points-toold( p.fin ) [= points-tonew( p.fin )7: points-tonew( p.fin ) fg8: end while9: for ea
h �eld referen
e node p.f do10: for ea
h load edge p.f q do11: points-tonew( q ) [= points-tonew( p.fout ) n points-toold( q )12: if points-tonew( q ) was 
hanged then13: worklist [= f q g14: end if15: end for16: points-toold( p.fout ) [= points-tonew( p.fout )17: points-tonew( p.fout ) fg18: end forFigure 4.16: In
remental Alias Edge Propagation Algorithm (part 4 of 4)
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Pointer Analysis Engine4.5 Points-to Set ImplementationsOne purpose of Spark is to enable experimentation with di�erent implementations ofpoints-to sets. There are 
urrently four implementations of points-to sets, and more
an be added by implementing a sub
lass of the PointsToSetInternal abstra
t 
lass.This 
lass 
ontains default implementations of the required set operations in termsof three basi
 operations:add adds an element to the set.forall exe
utes a given method on
e for ea
h element, passing the element as aparameter.
ontains returns a boolean value indi
ating whether a given element is in the set.This makes it very easy to try out new set representations, sin
e only these threefun
tions must be implemented. However, the set implementations 
urrently in
ludedin Spark implement 
ustom versions of the other set operations for eÆ
ien
y. Theseother operations are:addAll adds all elements of one set into another.hasNonEmptyInterse
tion returns a boolean value indi
ating whether the interse
-tion of the set with another given set is empty.possibleTypes returns a set of the types of all obje
ts 
ontained in the set.Ea
h set may optionally have a de
lared type. In this 
ase, the set ignores inser-tions of allo
ation nodes with a type that is not a subtype of the de
lared type.4.5.1 Hash SetThe hash set is a simple wrapper around java.util.HashSet from the standard 
lasslibrary. It is provided as a baseline against whi
h other set implementations 
an be
ompared, and for testing of more 
ompli
ated implementations.66



4.5. Points-to Set Implementations4.5.2 Sorted Array SetThe sorted array set is a representation of a points-to set using an array whi
h isalways kept in sorted order. Membership testing is implemented using a binarysear
h, whi
h exe
utes in time logarithmi
 in the number of elements in the set.Element insertion takes time linear in the number of elements in the set, be
ause theelements that 
ome after the element being inserted must be shifted to make roomfor the new element. However, using the merge step of the well-known merge sortalgorithm, the very 
ommon operation of 
omputing the union of two sets takes timelinear in the size of the sets. When the array be
omes full, it is 
opied to a new arraytwi
e as large as the original. Merging two sets is always done into a new array largeenough to hold both sets, to avoid having to resize the array during this very 
ommonoperation.4.5.3 Bit SetThe bit set represents a points-to set as a bit ve
tor. All of the allo
ation nodes in thepointer assignment graph are numbered sequentially. To insert the node numbered iinto the set, we set the ith bit. Both testing membership and inserting an elementtake 
onstant time. Merging a pair of sets takes time linear in the total numberof allo
ation nodes, rather than the number of elements in the sets. However, theproportionality 
onstant is very small, be
ause the sets are merged 32 bits at a time.In addition, when the set is large, ea
h element takes only a single bit, 
ompared to32 bits in the sorted array set. The drawba
k is that sets with few elements use asmu
h memory as sets with many elements.4.5.4 Hybrid SetThe hybrid set is a hybrid representation of a points-to set. It uses expli
it pointers tothe set elements in arbitrary order when the set 
ontains 16 elements or fewer. Whenthe set grows larger, this implementation swit
hes to the bit ve
tor representation.The hybrid set implementation was introdu
ed to redu
e memory requirements. In67



Pointer Analysis Engineearly experiments on large ben
hmarks, the analysis en
ountered very large numbersof small sets, along with signi�
ant numbers of very large sets. Using the sorted arrayset implementation, the very large sets used more memory than was available. Onthe other hand, with the bit set implementation, ea
h of the small sets required asmu
h memory as a large set, and there were so many small sets that, on
e again, allavailable memory was exhausted. As we will see from the experimental results, thehybrid sets turned out to be most eÆ
ient not only in terms of memory requirements,but also in terms of analysis time.
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Chapter 5Experimental Results
This 
hapter reports on an extensive empiri
al study of a variety of subset-basedpoints-to analyses. This study demonstrates that Spark provides a general ande�e
tive means to express di�erent points-to analyses. Many di�erent variations wereexpressed within the same framework, making it possible to 
ompare both pre
isionand 
ost of the analyses.5.1 Ben
hmarksSpark was evaluated on ben
hmarks from the SPECjvm [Spe
℄ suite, along withsable

 and soot from the Ashes [Ashe℄ suite, and jedit [Jedi℄, a full-featurededitor written in Java. The last three were sele
ted be
ause they are non-trivialJava appli
ations used in the real world, and they were also used in other points-toanalysis studies [RMR01, WL02, LPH01℄. All ben
hmarks were analyzed with theSun JDK 1.3.1 01 standard 
lass library, on a 1.67 GHz AMD Athlon with 2GB ofmemory running Linux 2.4.18. In addition, the java
 ben
hmark was also evaluatedwith the Sun JDK 1.1.8 standard 
lass library for 
omparison with other studies.The 
omplete list of ben
hmarks appears in the summary in Table 5.1. The �rst
olumn gives the ben
hmark name (java
 is listed twi
e: on
e with the 1.3.1 01 JDK
lass library, and on
e with the 1.1.8 JDK 
lass library). The next two 
olumns69



Experimental Resultsgive the number of methods determined to be rea
hable, and the number of Jimple1statements in these methods. Note that be
ause of the large 
lass library, these arethe largest Java ben
hmarks for whi
h a subtype-based points-to analysis has so farbeen reported. The fourth 
olumn gives the number of distin
t types en
ountered bythe subtype tester.Detailed experiments on individual fa
tors a�e
ting pre
ision and eÆ
ien
y ofpoints-to analysis were performed on a sele
tion of four of the ben
hmarks. 
ompress(Lempel-Ziv 
ompression) was 
hosen as a small SPECjvm ben
hmark, java
 (Java
ompiler) as a large SPECjvm ben
hmark, and sable

 (parser generator) and jedit(text editor) as large non-SPECjvm ben
hmarks written by distin
t groups of people.The other ben
hmarks exhibited similar trends.methods stmts typesBen
hmark (CHA) (CHA)
ompress 15183 278902 2770db 15185 278954 2763ja
k 15441 288142 2816java
 (1.1.8) 4602 86454 874java
 (1.3.1) 16307 301801 2940jess 15794 288831 2917mpegaudio 15385 283482 2782raytra
e 15312 281587 2789sable

 16977 300504 3070soot 17498 310935 3435jedit 19621 367317 3395Table 5.1: Ben
hmark Chara
teristi
s1Jimple is the three-address typed intermediate representation used by Soot.70



5.2. Fa
tors A�e
ting Pre
ision5.2 Fa
tors A�e
ting Pre
isionThis se
tion analyzes three fa
tors that a�e
t not only the eÆ
ien
y of the analysis,but also the pre
ision of its result. These fa
tors are: (1) how types are used inthe analysis, (2) whether the analysis uses a CHA-based 
all graph or builds the 
allgraph on the 
y, and (3) whether the analysis is �eld-based or �eld-sensitive.Table 5.2 gives the results. Ea
h analysis is named by a triple of the form xx-yyy-zz whi
h spe
i�es the setting for ea
h of the three fa
tors (a 
omplete explanationof ea
h fa
tor is given in the subse
tions below). For ea
h ben
hmark and points-toanalysis 
ombination, the table gives a summary of the pre
ision for dereferen
e sitesand 
all sites.For dereferen
e sites, the table gives the per
entage of �eld dereferen
e sites of theform p.f with 0, 1, 2, 3-10, 11-100, 101-1000 and more than 1000 elements in theirpoints-to sets. Dereferen
e sites with 0 items in the set 
orrespond to statementsthat 
annot be rea
hed (i.e. the CHA 
all graph 
onservatively indi
ates that thedereferen
e was in a rea
hable method, but no allo
ation ever 
ows to the statement).For 
all sites, the table reports the per
entage of all invokevirtual andinvokeinterfa
e 
all sites with 0, 1, 2, and more than two target methods, wherethe target methods are found using the types of the allo
ation sites pointed to by there
eiver of the method 
all. For example, for a 
all of the form o.m(), the types ofallo
ation sites pointed to by o would be used to �nd the target methods. Calls with0 targets 
orrespond to unrea
hable 
alls, and 
alls with 1 target are guaranteed tobe monomorphi
 at run-time.5.2.1 Respe
ting De
lared TypesUnlike in C, variables in Java are strongly-typed, limiting the possible set of obje
tsto whi
h a pointer 
ould point. However, many points-to analyses adapted from C donot take advantage of this. For example, the analyses des
ribed in [RMR01, SHR+00℄ignore de
lared types as the analysis pro
eeds; however, obje
ts of in
ompatible typeare removed after the analysis 
ompletes.71



Experimental Results Dereferen
e Sites (% of total) Call Sites (% of total)Ben
hmark 3- 11- 101-Analysis 0 1 2 10 100 1000 1001+ 0 1 2 3+
ompressnt-otf-fs 35.2 23.4 6.3 14.1 5.9 0.1 14.9 53.8 42.6 1.6 1.9at-otf-fs 35.3 32.7 8.0 17.4 4.3 2.2 0.0 53.8 42.6 1.6 1.9ot-otf-fs 36.9 32.1 7.8 17.0 4.3 1.8 0.0 54.6 42.3 1.3 1.8ot-
ha-fs 20.5 39.6 10.1 21.8 6.0 2.1 0.0 40.8 51.7 2.6 4.9ot-otf-fb 26.3 38.1 9.4 19.2 5.1 1.9 0.0 48.0 47.4 2.0 2.6ot-
ha-fb 16.0 41.6 10.9 22.9 6.4 2.2 0.0 37.5 54.3 2.9 5.2java
nt-otf-fs 31.4 22.2 6.0 12.9 5.8 6.4 15.2 50.1 45.3 1.9 2.7at-otf-fs 31.6 33.9 8.7 17.7 5.7 2.4 0.0 50.1 45.3 1.9 2.7ot-otf-fs 33.0 33.3 8.6 17.3 5.7 2.0 0.0 50.8 45.2 1.5 2.5ot-
ha-fs 18.4 40.0 10.5 21.5 7.2 2.3 0.0 38.0 53.9 2.6 5.5ot-otf-fb 23.6 38.6 10.0 19.2 6.5 2.1 0.0 44.6 49.9 2.1 3.3ot-
ha-fb 14.5 41.7 11.3 22.5 7.6 2.4 0.0 34.9 56.3 3.0 5.8sable

nt-otf-fs 31.6 24.2 5.9 12.7 9.5 0.2 15.8 49.9 45.8 2.1 2.2at-otf-fs 31.7 37.9 7.4 16.2 4.9 2.0 0.0 49.9 45.8 2.1 2.2ot-otf-fs 33.1 37.4 7.3 15.7 4.9 1.6 0.0 50.8 45.5 1.6 2.0ot-
ha-fs 18.4 44.1 9.2 20.1 6.4 1.9 0.0 37.9 54.2 2.9 5.0ot-otf-fb 23.6 42.6 8.7 17.7 5.7 1.7 0.0 44.7 50.3 2.2 2.8ot-
ha-fb 14.4 45.8 10.0 21.0 6.8 1.9 0.0 34.9 56.6 3.3 5.2jeditnt-otf-fs 25.6 29.6 6.6 12.7 3.8 1.5 20.2 43.8 52.0 1.9 2.2at-otf-fs 25.7 42.4 9.0 16.3 4.7 2.0 0.0 43.8 52.0 1.9 2.2ot-otf-fs 27.1 42.0 8.9 15.9 4.3 1.9 0.0 44.6 51.9 1.4 2.1ot-
ha-fs 14.5 47.9 10.7 19.4 5.5 2.1 0.0 33.2 59.3 2.3 5.1ot-otf-fb 18.9 46.7 10.0 17.6 4.8 2.0 0.0 38.6 56.7 1.9 2.8ot-
ha-fb 12.1 49.0 11.0 20.1 5.7 2.1 0.0 30.7 61.5 2.5 5.3Table 5.2: Analysis Pre
ision72



5.2. Fa
tors A�e
ting Pre
isionThe �rst three lines for ea
h ben
hmark in Table 5.2 show the e�e
t of de
laredtypes. The �rst line shows the pre
ision of an analysis in whi
h de
lared types areignored, notypes (abbreviated nt). The se
ond line shows the results of the sameanalysis after obje
ts of in
ompatible type have been removed after 
ompletion ofthe analysis, aftertypes (abbreviated at). This is the method studied in [SHR+00,RMR01℄. The third line shows the pre
ision of an analysis in whi
h de
lared typesare respe
ted throughout the analysis, on-the-
y types (abbreviated ot).We see that removing obje
ts based on de
lared type after 
ompletion of theanalysis (at) a
hieves almost the same pre
ision as enfor
ing the types during theanalysis (ot). However, noti
e that during the analysis (nt), between 15% and 20%of the points-to sets at dereferen
e sites are over 1000 elements in size. These largesets in
rease memory requirements prohibitively, and slow the analysis 
onsiderably.These numbers show that enfor
ing de
lared types as the analysis pro
eeds eliminatesalmost all of these large sets. Based on this observation, the rest of this 
hapter fo
useson analyses that respe
t de
lared types.Enfor
ing de
lared types during the analysis requires fast subtype testing. Forthis purpose, Spark pre
omputes and stores the subtype relationships in a two-dimensional bit array. Although this requires spa
e quadrati
 in the number of types,for the ben
hmarks used in this study, the number of types was around 3000 (seeTable 5.1), so this table takes slightly over 1MB of memory, whi
h is small 
omparedto all the information that Soot keeps about a 600KLOC program. In addition, otherparts of Soot 
an take advantage of fast subtype testing. More 
ompli
ated, fast,spa
e-eÆ
ient subtype testing me
hanisms are evaluated in [VHK97℄.Based on these results, respe
ting de
lared types during a Java points-to analy-sis is highly re
ommended be
ause it improves pre
ision while making the analysis
onsiderably more eÆ
ient. 73



Experimental Results5.2.2 Call Graph Constru
tionThe 
all graph used for an inter-pro
edural points-to analysis 
an be 
onstru
tedahead of time using, for example, CHA [DGC95℄, or on-the-
y as the analysis pro-
eeds [RMR01℄, for greater pre
ision. In Table 5.2, these variations are abbreviatedas 
ha and otf, respe
tively. As the third and fourth lines for ea
h ben
hmark show,
omputing the 
all graph on-the-
y in
reases the number of points-to sets of size zero(dereferen
e sites determined to be unrea
hable), but has a smaller e�e
t on the sizedistribution of the remaining sets.5.2.3 Field Dereferen
e ExpressionsA �eld-based (abbreviated fb) analysis ignores the base obje
ts in �eld dereferen
eexpressions, 
onsidering only the �eld, while a �eld-sensitive (abbreviated fs) param-eterizes ea
h �eld dereferen
e expression by its base obje
t for greater pre
ision.Comparing rows 3 and 5 (on-the-
y 
all graph), and rows 4 and 6 (CHA 
allgraph), for ea
h ben
hmark, we see that �eld-sensitive analysis is more pre
ise thanthe �eld-based analysis. Thus, it is probably worthwhile to do �eld-sensitive analysisif the 
ost of the analysis is reasonable. Later, in Table 5.4, we will see that with theappropriate solver, the �eld-sensitive analysis 
an be made to be quite 
ompetitivewith the �eld-based analysis.5.3 Fa
tors A�e
ting Performan
e5.3.1 Set ImplementationThis subse
tion 
ompares the performan
e of analyses with the four di�erent imple-mentations of points-to sets des
ribed in Se
tion 4.5, namely hash sets, sorted arraysets, bit sets, and hybrid sets. Table 5.3 shows the eÆ
ien
y of the implementa-tions using two of the propagation algorithms: the naive, iterative algorithm, andthe in
remental worklist algorithm. Both algorithms used a CHA 
all graph, andthe pointer assignment graph was simpli�ed before propagation by 
ollapsing 
y
les,74



5.3. Fa
tors A�e
ting Performan
eas well as single-entry subgraphs as des
ribed in Se
tion 4.3. Both algorithms re-spe
ted de
lared types during the 
omputation. The Graph spa
e 
olumn shows thespa
e needed to store the original pointer assignment graph, and the remaining spa
e
olumns show the spa
e needed to store the points-to sets. The data stru
ture stor-ing the graph is designed for 
exibility rather than spa
e eÆ
ien
y; it 
ould be madesmaller if ne
essary. In any 
ase, its size is linear in the size of the program beinganalyzed. (time in se
onds, spa
e in MB)Ben
hmark Graph Hash Array Bit HybridAlgorithm spa
e time spa
e time spa
e time spa
e time spa
e
ompressIterative 31 3448 311 1206 118 36 75 24 34In
r. Worklist 31 219 319 62 57 14 155 9 53java
Iterative 34 3791 361 1114 139 50 88 33 41In
r. Worklist 34 252 369 61 68 19 181 13 65sable

Iterative 36 4158 334 1194 132 50 93 32 42In
r. Worklist 36 244 342 54 62 17 193 11 66jeditIterative 42 6502 583 2233 229 91 168 59 77In
r. Worklist 42 488 597 135 114 38 349 24 128Table 5.3: Set ImplementationThe terrible performan
e of the hash set implementation is disappointing, as thisis the implementation provided by the language. Clearly, anyone serious about imple-menting an eÆ
ient points-to analysis in Java must write a 
ustom set representation.The sorted array set implementation is prohibitively expensive using the iterativealgorithm, but be
omes reasonable using the in
remental worklist algorithm, whi
his designed expli
itly to limit the size of the sets that must be propagated. Noti
e75



Experimental Resultsthat the memory requirements are also mu
h smaller when the in
remental worklistalgorithm is used. This is be
ause the implementation of set union 
reates an arraylarge enough to hold both sets being 
ombined. If these two sets are equal or almostequal, the resulting array ends up being twi
e as large as it would need to be. Inthe in
remental algorithm, the sets being propagated are kept small, so most unionoperations involve one large set, and one very small set.The bit set implementation is mu
h faster still than the sorted array set imple-mentation. However, espe
ially when used with the in
remental worklist algorithm,its memory usage is high, be
ause even the many very small sets are represented usingthe same size bit-ve
tor as large sets. In addition, the in
remental worklist algorithmsplits ea
h points-to set into two halves, making the bit set use twi
e the memory.Finally, the hybrid set implementation is even faster than the bit set implemen-tation, while maintaining modest memory requirements. The hybrid set implemen-tation is 
onsistently the most eÆ
ient over a wide variety of settings of the otherparameters, and it is therefore used in all the remaining experiments. It is stronglyre
ommended that implementations similar to the hybrid set implementations be usedin future points-to analysis resear
h, be
ause they are 
onsistently more eÆ
ient thanthe other implementations.5.3.2 Points-To Set Propagation AlgorithmsTable 5.4 shows the time and spa
e requirements of the propagation algorithms in-
luded in Spark. All measurements in this table were made using the hybrid setimplementation, and without any simpli�
ation of the pointer assignment graph.2Again, the Graph spa
e 
olumn shows the spa
e needed to store the original pointerassignment graph, and the remaining spa
e 
olumns show the spa
e needed to storethe points-to sets. For ea
h analysis, the best time and spa
e numbers are shown inbold.The iterative algorithm is 
onsistently slowest, and is given as a baseline only. The2The time and spa
e reported for the hybrid set implementation in Table 5.3 are di�erent thanin Table 5.4 be
ause the former were measured with o�-line pointer assignment graph simpli�
ation,and the latter without. 76



5.3. Fa
tors A�e
ting Performan
e
(time in se
onds, spa
e in MB)In
r. In
r.Ben
hmark Graph Iterative Worklist Worklist Alias AliasAnalysis spa
e time spa
e time spa
e time spa
e time spa
e time spa
e
ompressnt-otf-fs 32 1628 357 992 365 399 605 871 100 820 114ot-otf-fs 37 133 52 58 51 52 69 62 47 58 61ot-
ha-fs 36 49 68 15 63 13 91 20 62 26 83ot-otf-fb 35 158 54 86 52 66 66 93 53 73 67ot-
ha-fb 34 17 62 10 56 13 76 19 58 25 77java
nt-otf-fs 34 2316 502 1570 512 715 856 1225 142 1097 160ot-otf-fs 40 201 69 103 66 90 90 103 65 97 83ot-
ha-fs 39 64 83 22 77 18 109 27 78 34 103ot-otf-fb 37 218 70 123 66 102 84 142 68 111 85ot-
ha-fb 37 22 75 11 67 15 90 22 69 30 92sable

nt-otf-fs 35 2190 462 1382 472 635 772 3020 145 3413 163ot-otf-fs 41 274 72 104 70 95 94 114 69 107 87ot-
ha-fs 41 66 88 20 83 18 117 28 84 36 109ot-otf-fb 38 255 74 138 72 114 90 158 73 125 92ot-
ha-fb 38 52 81 14 74 18 97 27 77 36 99jeditnt-otf-fs oom oom oom oom oom oom oom 2425 283 2042 307ot-otf-fs 49 313 121 142 117 101 169 151 102 112 126ot-
ha-fs 48 107 141 59 131 38 196 44 117 56 150ot-otf-fb 47 298 104 178 99 111 126 225 102 127 127ot-
ha-fb 45 28 109 21 98 27 128 36 100 49 129Table 5.4: Propagation Algorithms77



Experimental Resultsworklist algorithm is usually about twi
e as fast as the iterative algorithm. For theCHA-based, �eld-based analysis, this algorithm is 
onsistently the fastest, faster eventhan the in
remental worklist algorithm. This is be
ause the in
remental worklistalgorithm is designed to propagate only the newly-added part of the points-to sets inea
h iteration, but the CHA-based, �eld-based analysis requires only a single iteration.Therefore, any bene�t from its being in
remental is outweighed by the overhead ofmaintaining two parts of every set.However, both �eld-sensitivity and on-the-
y 
all graph 
onstru
tion require it-eration, so for these, the in
remental worklist algorithm is 
onsistently fastest. Notethat this speedup 
omes with a 
ost in the memory required to maintain two partsof every set.Noti
e also that while the �eld-based analysis is faster than the �eld-sensitiveanalysis with a CHA 
all graph, it is slower when the 
all graph is 
onstru
ted on the
y (with all propagation algorithms). This is be
ause although a �eld-based analysiswith a CHA 
all graph 
ompletes in one iteration, 
onstru
ting the 
all graph on-the-
y requires iterating regardless of the �eld representation. The less pre
ise �eld-basedrepresentation 
auses more methods to be found rea
hable, in
reasing the number ofiterations required.The nt-otf-fs line shows how mu
h ignoring de
lared types hurts spa
e eÆ
ien
y(the \oom" for jedit signi�es that the analysis ex
eeded the 1700MB of memoryallotted). The alias edge algorithm is the only one that 
an handle the resultinglarge sets with reasonable memory requirements. This algorithm spends a signi�
antamount of time building alias edges rather than propagating points-to sets, so thebene�t from the in
remental version is mu
h smaller. In fa
t, for the analyses requir-ing few iterations (ot-
ha-fs and ot-
ha-fb), the overhead of the in
remental versionoutweighs the redu
tion in the size of sets to be propagated, and is even slightlyslower than the non-in
remental version.In summary, Table 5.4 demonstrates the following key points about the tradeo�between analysis time and spa
e.� The in
remental worklist algorithm is the fastest for most analyses, ex
ept78



5.3. Fa
tors A�e
ting Performan
efor the �eld-based analysis using a CHA-based 
all graph, for whi
h the non-in
remental worklist algorithm is faster.� The non-in
remental algorithms require less memory than their in
remental
ounterparts.� For �eld-based analyses, the spa
e requirements of the non-in
remental versionsof the worklist and alias edge propagation algorithms are 
omparable; however,for �eld-sensitive analyses, espe
ially of the large jedit ben
hmark, the aliasedge propagation algorithm requires signi�
antly less memory.� When de
lared types are not respe
ted during the analysis, only the alias edgealgorithm 
an 
omplete in a reasonable amount of memory.5.3.3 Graph Simpli�
ationRountev and Chandra [RC00℄ showed that simplifying the pointer assignment graphby merging nodes known to have equal points-to sets speeds up the analysis. Thebehaviour of Spark agrees with their �ndings.When respe
ting de
lared types, a 
y
le 
an only be merged if all nodes in the
y
le have the same de
lared type, and a single-entry subgraph 
an only be mergedif all its nodes have de
lared types that are supertypes of the prede
essor. Sin
ethe experimental results presented earlier suggested that respe
ting de
lared typesmakes the analysis mu
h faster, as well as more pre
ise, it is useful to know howmu
h respe
ting de
lared types redu
es the opportunities for simpli�
ation. Thesemeasurements are presented in Table 5.5. On the ben
hmarks in this study, between6% and 7% of variable nodes were removed by 
ollapsing 
y
les, 
ompared to between5% and 6% when de
lared types were respe
ted. Between 59% and 62% of variablenodes were removed by 
ollapsing single-entry subgraphs, 
ompared to between 55%and 58% when de
lared types were respe
ted. Thus, the e�e
t of respe
ting de
laredtypes on simpli�
ation is minor. 79



Experimental ResultsBen
hmark SCC SESG Both
ompress nt-
ha-fs 6.7% 59.5% 60.7%ot-
ha-fs 5.3% 55.6% 56.4%ot-otf-fs 1.1% 31.5% 31.6%java
 nt-
ha-fs 7.1% 59.8% 61.4%ot-
ha-fs 5.7% 55.8% 57.0%ot-otf-fs 1.1% 32.2% 32.3%sable

 nt-
ha-fs 6.4% 60.4% 61.6%ot-
ha-fs 5.0% 56.3% 57.0%ot-otf-fs 1.0% 31.9% 32.0%jedit nt-
ha-fs 7.1% 61.7% 63.0%ot-
ha-fs 5.6% 57.8% 58.8%ot-otf-fs 1.3% 33.3% 33.5%Table 5.5: Simpli�
ation

On the other hand, when 
onstru
ting the 
all graph on-the-
y, no inter-pro
edural edges are present before the analysis begins. This means that any 
y-
les spanning multiple methods are broken, and the 
orresponding nodes 
annot bemerged. The 6%-7% of nodes removed by 
ollapsing 
y
les dropped to 1%-1.5%when the 
all graph was 
onstru
ted on-the-
y. The 59%-62% of nodes removed by
ollapsing single-entry subgraphs dropped to 31%-33%. When 
onstru
ting the 
allgraph on-the-
y, simplifying the pointer assignment graph before the analysis haslittle e�e
t, and on-the-
y 
y
le dete
tion methods should be used instead.80



5.4. Overall Results5.4 Overall ResultsBased on the experimental results reported up to this point, three analyses appearto be good 
ompromises between pre
ision and speed, with reasonable spa
e require-ments. Ea
h of the three analyses should be implemented using the hybrid set im-plementation.1. ot-otf-fs (de
lared types, on-the-
y 
all graph, �eld-sensitive) is suitable forappli
ations requiring the highest pre
ision. For this analysis, the in
rementalworklist algorithm works best.2. ot-
ha-fs (de
lared types, CHA-based 
all graph, �eld-sensitive) is mu
h faster,but with a drop in pre
ision as 
ompared to ot-otf-fs (mostly be
ause it in-
ludes signi�
antly more 
all edges). For this analysis, the in
remental worklistalgorithm works best.3. ot-
ha-fb (de
lared types, CHA-based 
all graph, �eld-based) is the fastest anal-ysis, 
ompleting in a single iteration, but it is also the least pre
ise. For thisanalysis, the non-in
remental worklist algorithm works best.Table 5.6 shows the results of these three analyses on the full set of ben
hmarks.The �rst 
olumn gives the ben
hmark name (java
 is listed twi
e: on
e with the1.3.1 01 JDK 
lass library, and on
e with the 1.1.8 JDK 
lass library). The remain-ing 
olumns give the analysis time, total spa
e, and pre
ision for ea
h of the threere
ommended analyses. The total spa
e in
ludes the spa
e used to store the pointerassignment graph as well as the points-to sets; these were reported separately in pre-vious tables. The pre
ision is measured as the per
entage of �eld dereferen
e sites atwhi
h the points-to set of the pointer being dereferen
ed has size 0 or 1; for a moredetailed measurement of pre
ision, see Table 5.2.
81



Experimental Results

(time in se
onds, spa
e in MB, pre
ision in pre
ent)ot-otf-fs ot-
ha-fs ot-
ha-fbBen
hmark time spa
e pre
. time spa
e pre
. time spa
e pre
.
ompress 52 106 69.1 13 127 60.1 10 90 57.6db 52 107 68.9 14 128 59.9 11 90 57.4ja
k 54 112 68.7 14 132 60.1 11 94 57.6java
 (1.1.8) 8 27 63.6 3 24 57.4 1 16 55.1java
 (1.3.1) 89 131 66.3 18 148 58.4 11 104 56.2jess 57 115 68.1 15 136 59.2 10 97 56.8mpegaudio 56 112 68.6 16 134 59.7 11 93 57.4raytra
e 53 107 68.5 13 129 59.6 11 91 57.1sable

 95 136 70.5 18 158 62.5 14 112 60.3soot 88 143 68.3 19 162 60.4 18 116 58.4jedit 100 218 69.1 38 244 62.3 21 143 61.1Table 5.6: Overall Results
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Chapter 6Client Analyses
6.1 Call Graph Constru
tionIn an obje
t-oriented polymorphi
 language su
h as Java, the method that is invokedat a virtual 
all site depends on the run-time type of the re
eiver obje
t. Any in-terpro
edural program analysis therefore needs some way to approximate the set oftarget methods that 
ould possibly be invoked at ea
h 
all site. That is, it needs anapproximation of the 
all graph. Making the 
all graph pre
ise is important be
auseit both improves the pre
ision, and redu
es the 
ost, of subsequent analyses. Also,for appli
ations in embedded systems, where memory is s
ar
e, a pre
ise 
all graphin whi
h fewer methods are determined to be possibly rea
hable is useful for redu
ingthe memory footprint of the 
ode.Constru
ting a 
all graph is one natural appli
ation of points-to information. Thepoints-to analysis 
omputes a set of obje
ts to whi
h ea
h variable may point. We
an dedu
e the run-time type of ea
h of these obje
ts to obtain a set of possible typesof obje
ts pointed-to by ea
h variable. Using the set for the re
eiver variable at ea
h
all site, for ea
h type, the method that will be invoked is identi�ed a

ording to themethod dispat
h spe
i�
ation of the language. This yields a list of possible targetmethods for ea
h 
all site, from whi
h the 
all graph is 
onstru
ted.83



Client AnalysesA 
all graph builder has been implemented whi
h uses the points-to sets 
omputedby Spark to 
ompute a 
all graph. The rest of this se
tion is a study of the e�e
t ofthe points-to analysis on the pre
ision of the 
all graph.Table 6.1 shows measurements of the pre
ision of the 
all graph 
onstru
ted using�ve di�erent analyses on the ben
hmarks des
ribed in Se
tion 5.1. Class Hierar
hyAnalysis [DGC95℄ and Variable Type Analysis [SHR+00℄ are two previously-published
all graph 
onstru
tion algorithms. The other three analyses are 
onstru
tions of the
all graph from the points-to information 
omputed by Spark. As before, ot-
ha-fb indi
ates a �eld-based points-to analysis starting from a CHA-based 
all graph,ot-
ha-fs indi
ates a �eld-sensitive points-to analysis starting from a CHA-based 
allgraph, and ot-otf-fs indi
ates a �eld-sensitive points-to analysis in whi
h the 
allgraph is 
onstru
ted during the analysis. For ea
h analysis, the �rst 
olumn givesthe number of methods that were determined to be possibly rea
hable in the 
allgraph, and the se
ond 
olumn gives the per
entage of 
all sites in the CHA-rea
hablemethods that were determined to have re
eiver sets of zero or one methods. These
all sites are signi�
ant be
ause their target method is uniquely determined, enablingoptimizations su
h as method inlining or 
all devirtualization.The 
all graph produ
ed from the �eld-based points-to analysis is very similar tothe one produ
ed by VTA, whi
h is to be expe
ted be
ause the analyses are verysimilar. VTA di�ers from the �eld-based points-to analysis only in that all obje
tsof a given run-time type are modelled together, rather than being distinguished bytheir allo
ation site. That is, all allo
ation sites allo
ating the same type of obje
tare modelled with a single allo
ation node, while Spark uses a separate allo
ationnode for every allo
ation site.Making the points-to analysis �eld-sensitive produ
es a moderate improvementin 
all graph pre
ision, at the 
ost of some analysis time. A mu
h more dramati
improvement is obtained by the 
all graph on-the-
y during the points-to analysis,rather than starting with a CHA-based 
all graph. Note, however, that su
h ananalysis is signi�
antly more 
ostly than the simpler analyses, like the �eld-basedanalysis or VTA, as shown in Table 5.6. This suggests that further resear
h shouldbe done into analyses that build the 
all graph on-the-
y, to make them 
ompetitive84



6.2. Side-e�e
t AnalysisCHA VTA ot-
ha-fb ot-
ha-fs ot-otf-fsBen
hmark mthds sites mthds sites mthds sites mthds sites mthds sites
ompress 15737 71.3 14042 90.2 14015 90.2 13237 90.6 10842 94.9db 15739 71.3 14042 90.2 14015 90.2 13239 90.6 10844 95.0ja
k 15995 69.8 14298 90.3 14271 90.3 13494 90.8 11099 95.0java
 16872 71.5 15167 89.7 15140 89.7 14374 90.1 11982 94.1jess 16348 71.8 14637 90.5 14610 90.5 13833 90.9 11450 95.1mpegaudio 15947 71.3 14285 90.2 14258 90.2 13489 90.6 11072 94.9raytra
e 15866 71.7 14173 90.3 14146 90.3 13362 90.7 10968 95.0sable

 17530 71.7 15826 90.0 15799 90.0 15023 90.4 12700 94.5soot 18053 71.4 16364 89.7 16337 89.7 15558 90.1 13104 94.1jedit 20199 74.0 18614 90.7 18595 90.7 18456 90.9 16267 94.1Table 6.1: Call Graph Pre
isionin eÆ
ien
y with simpler analyses, and to improve their pre
ision even further.6.2 Side-e�e
t Analysis6.2.1 Ba
kgroundSide-e�e
t analysis is an appli
ation of points-to analysis that 
an aid a 
ompilerto produ
e more aggressively optimized 
ode. The purpose of this analysis is toapproximate the sets of run-time obje
ts whi
h ea
h instru
tion and ea
h method ofthe program may read or write. Having su
h an approximation may allow a 
ompilerto eliminate redundant loads and stores in the presen
e of method 
alls. It may alsoimprove pre
ision of other intrapro
edural analyses, whi
h may in turn enable manyother optimizations.As an example, 
onsider the 
ode fragment in Figure 6.1. If we knew that bar()does not write this.a, then we 
ould move the load of this.a out of the loop,assuming no 
on
urrent writes by any other threads. We 
ould then re
ognize d as85



Client Analysesfoo() {this.a = 2;b = 0;for( int 
 = 0; 
 < 1000000; 
++ ) {d = this.a;e = this.bar();b = b + d;}System.out.println( "b = "+b );System.out.println( "e = "+e );} Figure 6.1: Code Example for Side-E�e
t Analysisa 
ompile-time 
onstant 2, and b as an indu
tion variable not used inside the loop.The additions 
ould then be turned into a single multipli
ation 2 * 1000000 outsidethe loop, whi
h 
ould be evaluated at 
ompile-time. We 
ould attempt an even moreambitious optimization if we knew that bar() performs no writes or native method
alls: we 
ould move the 
all out of the loop. The optimized 
ode resulting from theseoptimizations is shown in Figure 6.2. Note that all of these optimizations depend onknowing that bar() has no side-e�e
ts.foo() {this.a = 2;b = 2000000;e = this.bar();System.out.println( "b = "+b );System.out.println( "e = "+e );} Figure 6.2: Optimized Version of Code ExampleIn order to approximate the sets of obje
ts written at various points in the pro-gram, a side-e�e
t analysis needs information about whi
h variables point to whi
h86



6.2. Side-e�e
t Analysisobje
ts. That is, a side-e�e
t analysis depends on a points-to analysis. For thisreason, a side-e�e
t analysis has been developed based on Spark. The side-e�e
tanalysis obtains the points-to information it requires from Spark. Its output 
aneither be used dire
tly by optimizations within Soot, or it 
an be en
oded in 
lass �leattributes, where it 
an be used by other systems, su
h a just-in-time 
ompilers.This se
tion des
ribes the implementation of the side-e�e
t analysis and the en-
oding of its results in attributes. It also gives experimental eviden
e that the analysisprodu
es pre
ise approximations of side-e�e
ts 
ompared to the simple heuristi
s typ-i
ally used in just-in-time 
ompilers and in Soot, and that the en
oding is a suÆ
ientlyeÆ
ient representation of the side-e�e
t information.6.2.2 Representation of Side-E�e
t InformationSide-e�e
t information expresses dependen
es between instru
tions. For example, a
lient might want to know whether a write p.f = a; in one instru
tion may overwritethe value written in another instru
tion q.f = b;. In Java 
lass �le attributes, it isdiÆ
ult to en
ode an expression su
h as p.f, be
ause the lo
al variable p appearsin the byte
ode as an unlabeled sta
k lo
ation. Moreover, the set of heap lo
ationswhi
h an instru
tion may read or write 
an be very large. In this 
ase, it 
ould bevery 
ostly for the 
lient using the side-e�e
t information to re
over the dependen
esbetween instru
tions from the read and write sets.Instead of en
oding the �eld expressions and read and write sets in attributes,the implementation dire
tly en
odes the dependen
es between instru
tions. For ex-ample, a write to p.f overwriting the value written to q.f would be en
oded as aWrite-Write dependen
e between the two byte
ode instru
tions writing p.f and q.f.A 
lient reading the attribute 
an 
onvert this dependen
e into whatever internalrepresentation it has for p.f and q.f. For ea
h pair of statements, the attributespe
i�es whether there is a Write-Write, Write-Read, Read-Write, or Read-Read de-penden
e between them. Although the Read-Read dependen
es may not be useful toa just-in-time 
ompiler, they are in
luded for 
ompleteness; they 
ould be removed ifit were ne
essary to redu
e the spa
e required by the attributes.87



Client AnalysesThe size of this representation grows quadrati
ally as the number of inter-dependent instru
tions in the method being analyzed. Most methods are short, andeven longer methods tend to have few instru
tions that are inter-dependent. How-ever, some methods are like the 
onstru
tor of spe
.io.TableOfExistingFiles, a
lass 
ontained in the harness of all the SPECjvm [Spe
℄ ben
hmarks. This method
onsists of 633 
alls to the put method of java.util.Hashtable. Sin
e all of these
alls read and write the same lo
ations, they should all have dependen
es betweenthem en
oded, leading to �6332 � = 200028 dependen
es of ea
h type (Write-Write,Write-Read, Read-Write, and Read-Read). Furthermore, the methods 
alled fromea
h of these 
all sites possibly 
all a large number of other methods, so the 
all sitestake a long time and a large amount of memory to analyze.To limit the growth of the attribute size and amount of 
omputation required,the side-e�e
t analysis uses the following method to redu
e the size of the set of de-penden
es as it is being 
omputed. Ea
h instru
tion is assigned a pair of numbers,representing the sets of lo
ations that the instru
tion 
an read and write. Depen-den
es are then 
omputed between these numbered read and write sets, rather thanthe instru
tions themselves. The simplest su
h assignment of numbered lo
ationswould assign distin
t lo
ations to ea
h instru
tion, and the resulting dependen
egraph would be as large as the dependen
e graph between instru
tions. However,some sets of instru
tions 
an easily be determined to read or write the same lo
a-tions, and 
an therefore share the same numbered lo
ations, redu
ing the e�e
tivenumber of instru
tions to be 
onsidered. Spe
i�
ally, all method 
alls with equal setsof possible target methods share read and write lo
ations. Also, all �eld referen
eexpressions having the same base pointer and the same �eld share the same lo
ation.This redu
es the 633 method 
alls in spe
.io.TableOfExistingFiles to a singlepair of numbered lo
ations, drasti
ally redu
ing the size of the attribute and the timeand memory needed to 
ompute it. However, this approa
h makes it slightly morediÆ
ult for the 
lient to extra
t the information. In order to determine whether thereis a dependen
e between two instru
tions, it must look up the numbered lo
ationsread and written by the instru
tions, and then look in the graph for dependen
esbetween these lo
ations. This redu
ed form of the dependen
e information still has88



6.2. Side-e�e
t Analysisa worst-
ase size quadrati
 in the size of ea
h method. However, as the experimentalresults in Se
tion 6.2.6 show, in pra
ti
e, the size of this representation is a

eptable.In addition to the relationships between the lo
ations read and written by state-ments, the side-e�e
t attribute en
odes, for ea
h 
all site, whether a native methodmay be 
alled from the 
all site, or transitively from any methods that may be 
alledfrom it. This information may be useful to 
lients of the side-e�e
t analysis, and itis trivial to 
ompute while 
omputing the side-e�e
t information.6.2.3 Implementation of Side-E�e
t AnalysisThe points-to analysis produ
es, for ea
h lo
al variable of pointer type, an abstra
t setof the possible lo
ations to whi
h it 
ould point. From this information, the side-e�e
tanalysis 
omputes abstra
t sets of lo
ations read and written by ea
h instru
tion.These lo
ations in
lude instan
e �elds, stati
 �elds, and array elements. The abstra
tsets for ea
h instru
tion are 
ombined into larger abstra
t sets for whole methods.These sets 
ontain all lo
ations a

essed within the method, but not those a

essedin other methods that it may 
all. Finally, the sets for ea
h method are 
ombinedinto even larger sets that en
ode, for ea
h 
all site, the set of lo
ations a

essed in allthe methods possibly 
alled from the 
all site, and other methods transitively 
alledfrom them. This yields a read and write set for every instru
tion, in
luding methodinvoke instru
tions. These read and write sets are then used to determine whetherdependen
es exist between them.A naive implementation of this re
ursive de�nition of read and write sets of 
allsites would be intra
table, be
ause many 
all sites have large numbers of transitivetargets, and the sets for ea
h target would have to be re
omputed at ea
h 
all site.A natural optimization would be to use memoization to avoid 
omputing points-tosets of ea
h method and of ea
h 
all site more than on
e. Unfortunately, su
h animplementation has prohibitive memory requirements to store all the read and writesets, even for medium-sized programs. The 
urrent implementation therefore makesa 
ompromise between memory requirements and running time: it memoizes the readand write sets a

essed by ea
h statement and method, but not the read and write89



Client Analysessets a

essed by ea
h 
all site.6.2.4 Attribute En
odingThe side-e�e
t information is en
oded in Java 
lass �le attributes using the anno-tation framework in
luded in Soot [PQVR+01℄. This se
tion des
ribes in detail theformat of these attributes. The side-e�e
t information for ea
h method is en
oded intwo attributes: a 
ode attribute with the name SideE�e
tAttribute, and a methodattribute with the name Dependen
eGraph.SideE�e
tAttributeThis attribute maps statements to abstra
t lo
ations read and written, and alsoindi
ates whi
h invoke statements may transitively 
all native methods.0 1re
ord
ount 0 1 2 3 4 5 6byte
ode read write 
allso�set set set native � � �The �rst two bytes of the attribute are a big-endian integer spe
ifying the numberof re
ords that follow.Ea
h re
ord that follows 
onsists of seven bytes:� The �rst two bytes are a big-endian integer spe
ifying the byte
ode o�set of theinstru
tion that this re
ord des
ribes.� The third and fourth bytes are the number of the numbered lo
ation read bythe instru
tion that this re
ord des
ribes.� The �fth and sixth bytes are the number of the numbered lo
ation written bythe instru
tion that this re
ord des
ribes.� The least signi�
ant bit of the seventh byte is one if the instru
tion that thisre
ord des
ribes invokes a method that may be a native method, and zerootherwise. The remaining bits are reserved for future use.90



6.2. Side-e�e
t AnalysisThe spe
ial numbered lo
ation 0xffff indi
ates a non-existent lo
ation, and isused to indi
ate that an instru
tion does not read or write anything. For example,the re
ord for a getfield byte
ode instru
tion will spe
ify the lo
ation that theinstru
tion reads, and 0xffff for the lo
ation that it writes, sin
e this instru
tionperforms no writes.Dependen
eGraphThis attribute spe
i�es dependen
es between numbered lo
ations.0 1 2 3set set � � �It 
onsists of a number of re
ords, ea
h four bytes in length. The �rst two bytesand the last two bytes of ea
h re
ord ea
h spe
ify a numbered lo
ation. If a numberedlo
ation may overlap another numbered lo
ation, then the two lo
ations will appearas a re
ord in this attribute. Note that ea
h unordered pair of lo
ations is en
oded inthe attribute only on
e, with the lower-numbered lo
ation listed �rst, but the relationis symmetri
.
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Client Analyses6.2.5 Side-E�e
t ExampleThe format of the side-e�e
t attributes will now be demonstrated using a more 
om-plete example than the one presented in the introdu
tion to this se
tion. First, theJava 
ode for the example is presented in Figure 6.3. Then, the 
omputed side-e�e
tinformation is presented as 
omments in a Jimple version of the 
ode for the mainmethod in Figure 6.4. Finally, a disassembled representation of the resulting byte
odefor the main method is presented in Figure 6.5.
lass Example {int x = 0;publi
 void bar() {this.x = 5;}publi
 stati
 final void main( String[℄ argv ) {Example s1 = new Example();Example s2 = new Example();Example s3 = s2;int sum = 0;s1.x = 1;s3.x = 1;for( int i = 0; i < 1000000; i++ ) {sum += s1.x;s2.x = 0;s3.bar();}}} Figure 6.3: Java Code for Side-E�e
t Example
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6.2. Side-e�e
t AnalysisAfter ea
h statement that may read or write to memory, the Jimple representationin Figure 6.4 
ontains a 
omment of the form // SEReads : 1. These indi
ate thenumbered lo
ations that are read and written by the statement. The two 
alls to the
onstru
tor <init> read and write the same lo
ations, 0 and 1, respe
tively. The storeto �eld x of r2 writes lo
ation 2, whi
h is then read by the load in the line immediatelyafter label0:. At the beginning of the 
ode, the dependen
e graph 
omment showswhi
h pairs of lo
ations may overlap. The lo
ation 0, whi
h represents the read setof the 
onstru
tor overlaps nothing, be
ause the 
onstru
tor does not read anything.The lo
ation 1 representing the write set of the 
onstru
tor overlaps lo
ations 2,3, 4, and 5, be
ause these all refer to the �eld x of some obje
t, and this �eld iswritten by the 
onstru
tor. Lo
ations 2, 3, and 4 refer to the �eld x of s1, s3,and s2, respe
tively, of the original Java program. The dependen
e graph shows thatlo
ations 3 and 4 overlap, be
ause s2 and s3 are aliased; however, lo
ation 2 does notoverlap with lo
ations 3 or 4, be
ause s1 is not aliased to either s3 or s2. Similarly,lo
ation 5 representing the write set of the bar() method overlaps with lo
ations 3and 4 but not with 2, be
ause the bar() method writes the �eld x of the obje
t thats3 and s2 point to, but not the obje
t that s1 points to.In the byte
ode presented in Figure 6.5, the side-e�e
t information has beenen
oded in two attributes: Dependen
eGraph at the top of the 
ode, andSideEffe
tAttribute at the bottom. The Dependen
eGraph attribute en
odes thepairs that appeared in the dependen
e graph 
omment in the Jimple 
ode. TheSideEffe
tAttribute en
odes the read and write sets of individual statements. The�rst and se
ond entries 
orrespond to the 
alls to the <init> method at byte
odeo�sets 4 (00 04) and 12 (00 0
). They show that ea
h of these statements reads lo
a-tion 0 (00 00) and writes lo
ation 1 (00 01). The �eld stores (putfield) at byte
odeo�sets 22 (00 16), 27 (00 1b), and 45 (00 2d) read nothing (ff ff), and write lo-
ations 2 (00 02), 3 (00 03), and (00 04), respe
tively. The �eld load (getfield)at byte
ode o�set 38 (00 26) reads lo
ation 2 (00 02) and writes nothing (ff ff).Finally, the 
all to bar() at byte
ode o�set 49 (00 31) reads lo
ation 0 (00 00) andwrites lo
ation 5 (00 05). 93
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publi
 stati
 final void main(java.lang.String[℄ )// Dependen
e Graph// (1,2), (1,3), (1,4), (1,5), (3,4), (3,5), (4,5){ java.lang.String[℄ r0;Example $r1, r2, r3, r4, $r5;int i0, i1, $i2;r0 := �parameter0: java.lang.String[℄;$r1 = new Example;spe
ialinvoke $r1.<Example: void <init>()>();// SEReads : 0// SEWrites: 1r2 = $r1;$r5 = new Example;spe
ialinvoke $r5.<Example: void <init>()>();// SEReads : 0// SEWrites: 1r3 = $r5;r4 = r3;i0 = 0;r2.<Example: int x> = 1;// SEWrites: 2r4.<Example: int x> = 1;// SEWrites: 3i1 = 0;goto label1;label0:$i2 = r2.<Example: int x>;// SEReads : 2i0 = i0 + $i2;r3.<Example: int x> = 0;// SEWrites: 4virtualinvoke r4.<Example: void bar()>();// SEReads : 0// SEWrites: 5i1 = i1 + 1;label1:if i1 < 1000000 goto label0;return;}Figure 6.4: Jimple Code for Side-E�e
t Example94



6.2. Side-e�e
t Analysispubli
 stati
 final void main(String[℄ arg0)[(attribute Dependen
eGraph:00 01 00 0200 01 00 0300 01 00 0400 01 00 0500 03 00 0400 03 00 0500 04 00 05)℄Code(max_sta
k = 2, max_lo
als = 5, 
ode_length = 63)0: new <Example> (21)3: dup4: invokespe
ial Example.<init> ()V (24)7: astore_08: new <Example> (21)11: dup12: invokespe
ial Example.<init> ()V (24)15: astore_116: aload_117: astore_218: i
onst_019: istore_320: aload_021: i
onst_122: putfield Example.x I (18)25: aload_226: i
onst_127: putfield Example.x I (18)30: i
onst_031: istore %433: goto #5536: iload_337: aload_038: getfield Example.x I (18)41: iadd42: istore_343: aload_144: i
onst_045: putfield Example.x I (18)48: aload_249: invokevirtual Example.bar ()V (20)52: iin
 %4 155: iload %457: ld
 1000000 (23)59: if_i
mplt #3662: returnAttribute(s) =(attribute SideEffe
tAttribute:00 07 00 04 00 00 00 01 0000 0
 00 00 00 01 0000 16 ff ff 00 02 0000 1b ff ff 00 03 0000 26 00 02 ff ff 0000 2d ff ff 00 04 0000 31 00 00 00 05 00) Figure 6.5: Byte
ode for Side-E�e
t Example95



Client Analyses6.2.6 Experimental ResultsThe se
tion reports results of experiments that were performed to determine thee�e
tiveness of the side-e�e
t analysis and the attribute en
oding. Spe
i�
ally, thefollowing two quantities were measured:1. The size of the attributes 
ompared to the size of the original byte
ode.2. The per
entage of dependen
es between instru
tions within a method ruled outby the side-e�e
t analysis.These measurements were performed on the same ben
hmarks as des
ribed inSe
tion 5.1.Attribute SizeTable 6.2 gives the size of the side-e�e
t attributes as a per
entage of the size of theoriginal 
lass �les. For most of the ben
hmarks, the attributes are between 25% and50% of the original 
lass �le size, and in no 
ase do they ex
eed the original size.Considering that the attributes en
ode all the information available to the side-e�e
tanalysis, the size of the en
oding is a

eptable.The attributes are very regular, and are therefore likely to be highly 
ompressiblewith standard 
ompression algorithms. However, the purpose of Spark is to fa
ilitateexperimentation, and use of su
h an algorithm would in
rease the burden on the
lient reading the attributes, whi
h would have to de
ompress them. Therefore, nosu
h 
ompression algorithm was applied. In a produ
tion system, 
ompression wouldalmost 
ertainly be desirable.Dependen
esMany ahead-of-time and just-in-time Java 
ompilers make the following 
onservativeassumptions about the side-e�e
ts of instru
tions:� Field a

esses of the same �eld of any obje
t may be aliased.96



6.2. Side-e�e
t AnalysisSizeBen
hmark in
rease
ompress 24.5db 30.1ja
k 46.0java
 35.7jess 41.2mpegaudio 33.2raytra
e 41.0sable

 96.4soot 49.8jedit 37.5Table 6.2: Attribute Size as Per
entage of Original Class File Size� Methods other than the method being analyzed may read and write any �eldson the heap.This means that in these systems, for ea
h �eld, there are dependen
es betweenall reads and writes of it, and there are dependen
es between method invo
ation in-stru
tions and all instru
tions that a

ess the heap. Table 6.3 presents measurementsof the per
entage of these dependen
es that are ruled out by the side-e�e
t analysis.That is, it shows how mu
h pre
ision the side-e�e
t analysis adds to these 
ommon
onservative assumptions. As before, ot-
ha-fb indi
ates a �eld-based points-to analy-sis starting from a CHA-based 
all graph, ot-
ha-fs indi
ates a �eld-sensitive points-toanalysis starting from a CHA-based 
all graph, and ot-otf-fs indi
ates a �eld-sensitivepoints-to analysis in whi
h the 
all graph is 
onstru
ted during the analysis.The numbers re
e
t the relative 
omplexity of the ben
hmarks. On the very simpleben
hmarks, su
h as 
ompress and db, the 
onservative assumption is su

essful inminimizing the number of dependen
es, leaving little room for the side-e�e
t analysisto show improvement. On the other hand, on the highly obje
t-oriented ben
hmarks,97



Client Analyses ot-
ha-fb ot-
ha-fs ot-otf-fsBen
hmark
ompress 2.5 2.6 2.6db 2.8 2.9 2.9ja
k 13.1 13.1 13.1java
 19.4 19.4 19.4jess 14.3 14.4 14.5mpegaudio 5.9 5.9 6.0raytra
e 18.8 18.8 18.8sable

 56.1 56.2 56.2soot 64.8 65.3 65.3jedit 34.1 34.1 35.3Table 6.3: Per
entage of Dependen
es Ruled Out by Side-E�e
t Analysis
su
h as sable

 and soot, the side-e�e
t analysis manages to rule out more than halfof the dependen
es that the �eld-based assumption 
ould not. The di�eren
es dueto varying the pre
ision of the points-to analysis are very small; only for the jeditben
hmark is the di�eren
e between the most pre
ise, �eld-sensitive on-the-
y 
allgraph analysis and the least pre
ise, �eld-based CHA 
all graph analysis more thanone per
ent of the dependen
es.Note that the number of dependen
es ruled out does not tell us whether thosedependen
es that were ruled out are important to optimizations. It is thereforediÆ
ult to predi
t from this data the e�e
t of side-e�e
t analysis on the e�e
tivenessof optimizations. However, the high numbers of dependen
es ruled out suggest thatside-e�e
t analysis 
ould have a signi�
ant e�e
t. Also, it appears that the fast, �eld-based points-to analysis using a CHA-based 
all graph is pre
ise enough to produ
ethis e�e
t. 98



6.2. Side-e�e
t Analysis6.2.7 Future Work on Side-E�e
t AnalysisAn e�e
tive side-e�e
t analysis has been built on top of Spark. Its output is en-
oded in 
lass �le attributes, where it 
an be used by other systems. An obviousarea for further experimentation is modifying optimizing 
ompilers to make use ofthis side-e�e
t information, and to study how di�erent points-to analyses a�e
t theoptimizations made possible by side-e�e
t analysis.
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Chapter 7Con
lusions and Future Work
7.1 Con
lusionsThis thesis introdu
ed Spark, a 
exible framework for experimenting with points-toanalyses of Java programs. It presented the modular design of Spark, and detailsof its implementation. Spark was used to perform a substantial study of fa
torsa�e
ting the pre
ision and eÆ
ien
y of points-to analyses for Java, and the results ofthis study were reported. Based on these experiments, three variations of points-toanalyses were sele
ted as parti
ularly e�e
tive for Java, in light of the high pre
isionof their results 
ombined with eÆ
ient exe
ution of the analysis. Two implementa-tions of 
lient analyses using the points-to information were presented: 
all graph
onstru
tion and side-e�e
t analysis. Other 
lients are planned in the future.The 
exibility of Spark 
omes from its modular design. Individual implementa-tions of its 
omponents are designed to be inter
hangeable, leading to large numbersof possible 
ombinations of variations. The division of Spark into three stages,
onne
ted using the pointer assignment graph, fa
ilitates the 
reation of and experi-mentation with additional modules implementing new points-to algorithms.Spark in
ludes several implementations of its main 
omponents. A pointer assign-ment graph builder is used to 
reate a representation of the program being analyzed,to be pro
essed by the rest of Spark. Spark in
ludes two simpli�
ation algorithms101



Con
lusions and Future Workto redu
e the size of the pointer assignment graph. The 
urrent version of Spark 
on-tains �ve points-to set propagation algorithms, ea
h of whi
h is parti
ularly suitedto spe
i�
 variations of points-to analysis. Four di�erent implementations of datastru
tures for representing points-to sets are in
luded with Spark.The use of Spark was demonstrated in an extensive study of the fa
tors a�e
tingpre
ision and eÆ
ien
y of Java points-to analyses. Respe
t for de
lared types and
asts was shown to be extremely important for both analysis pre
ision and eÆ
ien
y.Constru
ting a 
all graph during the points-to analysis improves pre
ision with amoderate 
ost in analysis time. The improvement in pre
ision of a �eld-sensitiveanalysis over a �eld-based analysis is moderate, and 
omes at little additional 
ostwhen an eÆ
ient points-to set implementation and propagation algorithm is used.The hybrid points-to set implementation was shown to be 
onsistently more eÆ
ientthan all other implementations studied; it is up to two orders of magnitude moreeÆ
ient than the implementation based on the HashSet 
lass in
luded in the Javastandard 
lass library. The worklist-based propagation algorithm was shown to bethe most eÆ
ient in terms of time, while the alias edge propagation algorithm wasthe most eÆ
ient in terms of spa
e when the points-to sets were allowed to grow verylarge by not making use of de
lared type information. The in
remental versions of thealgorithms were faster than the non-in
remental versions when the analysis requiredmany iterations, while for the simpler analyses requiring little iteration, the overheadof the in
remental version outweighed the bene�t. O�-line simpli�
ation of the pointerassignment graph was shown to be 
ompatible with respe
t for de
lared types: thatis, respe
ting de
lared types does not signi�
antly de
rease the opportunities forsimpli�
ation. However, o�-line simpli�
ation is nearly useless if the 
all graph is not
omputed prior to the analysis. Be
ause Spark is already so eÆ
ient at analyses forwhi
h the 
all graph is 
omputed ahead of time, it is not 
lear that simplifying thepointer assignment graph ahead of time is worthwhile for Java.Spark has been used as the basis of two 
lient analyses. The 
all graph 
on-stru
tion based on Spark is more general, more eÆ
ient and more pre
ise thanVTA [SHR+00℄, the analysis previously available in the Soot framework. Spark isalso the basis of a side-e�e
t analysis whose output is en
oded in 
lass �le attributes.102



7.2. Future WorkThis side-e�e
t analysis has been shown to provide signi�
antly more informationthan the 
onservative assumptions used in typi
al just-in-time 
ompilers. It thereforeshows promise in improving the optimizations performed by su
h systems.Spark has been demonstrated to be a pra
ti
al, 
exible and eÆ
ient frameworkon whi
h further point-to analysis resear
h 
an be based.7.2 Future WorkThe purpose of Spark is to serve as a framework to fa
ilitate experimentation withpoints-to analyses for Java. This se
tion des
ribes some of the areas in whi
h Spark
ould be used.7.2.1 Pre
ision of Data Flow AnalysesIn the absen
e of a

urate points-to information, traditional data 
ow analyses usedfor optimization | su
h as 
onstant propagation, 
onstant subexpression elimination,and partial redundan
y elimination | are for
ed to make 
onservative assumptions.This redu
es the pre
ision of the analyses and the opportunities for optimization.Soot is a framework for implementing these data 
ow analyses and related opti-mizations. Sin
e Spark is a part of Soot, analyses implemented in Soot 
an now beimproved to take advantage of the points-to information provided by Spark. Thee�e
t of points-to information on these analyses 
an be the subje
t of future resear
h.7.2.2 Using Side-E�e
t Information in Just-In-Time CompilersSe
tion 6.2 des
ribed a side-e�e
t analysis that has been implemented on top ofSpark, whose results are stored in attributes for the use of other 
ompilers, in
ludingjust-in-time 
ompilers. An interesting area of future resear
h would be to modifyexisting just-in-time 
ompilers to make use of this information, and to study thee�e
t that it 
an have on the e�e
tiveness of their optimizations.103



Con
lusions and Future Work7.2.3 Points-To Analysis Algorithms and Set ImplementationsThis thesis in
luded a study of the points-to analysis algorithms and points-to setimplementations in
luded in Spark, and they were found to be very e�e
tive. How-ever, programs are be
oming larger, and points-to information is being used in newareas, su
h as program understanding and veri�
ation. Be
ause of these 
hanges,more eÆ
ient and more pre
ise points-to analyses will 
ontinue to be needed. The
exibility of Spark makes it a natural platform on whi
h to experiment with and
ompare future points-to analysis algorithms.In parti
ular, implementing a demand-driven analysis like the one designed forC by Heintze and Tardieu [HT01b, HT01a℄ may further improve the performan
eof Spark. Another interesting area to be explored is the use of binary de
isiondiagrams [Bry92℄ to represent the large points-to relation that must be manipu-lated [BLQ+02, BLQ+03℄.
7.2.4 Context-SensitivityContext-sensitive points-to analyses 
an produ
e mu
h more pre
ise information than
ontext-insensitive ones. In an obje
t-oriented language that en
ourages en
apsula-tion, su
h as Java, the information lost due to 
ontext-insensitivity is espe
ially sig-ni�
ant. Unfortunately, 
ontext-sensitive analyses are prohibitively 
ostly to 
omputefor moderately large programs, and, due to the large 
lass library, even trivial Javaprograms are moderately large.However, the ex
ellent performan
e of Sparkmay make some 
ontext-sensitive al-gorithms feasible. In addition, Spark 
an be used to experiment with new algorithmswith only a limited degree of 
ontext-sensitivity, spe
i�
ally designed for analyzingobje
t-oriented languages. For example, Spark would be an ideal framework in whi
hto implement the obje
t-sensitive points-to analysis [MRR02b℄ proposed by Milanova,Rountev and Ryder. 104



7.2. Future Work7.2.5 Pre
ision of Call Graph Constru
tionThe Java language spe
i�es rules with subtle e�e
ts on the 
ontrol 
ow of a programthat must be taken into a

ount by whole-program analyses su
h as points-to analysis.The following are several examples.� The �rst referen
e to a 
lass 
auses its stati
 initializer method to exe
ute.� Finalizer methods are exe
uted automati
ally by the system without any ex-pli
it 
alls to them.� Methods related to thread 
reation 
an be exe
uted without being expli
itlyinvoked.� Re
e
tion 
an be used to 
reate arbitrary obje
ts and exe
ute arbitrary methodsthat 
annot be identi�ed stati
ally.Most whole-program analyses handle these issues either using very 
onservativeassumptions, leading to large 
all graphs, or by ignoring them, leading to possiblyin
orre
t analysis results. Although Spark is already able to produ
e pre
ise 
allgraphs, even more pre
ise methods of modelling these e�e
ts 
ould further improveboth the pre
ision and eÆ
ien
y of Spark.
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Appendix AUsing Spark
A.1 Obtaining SparkSpark is a part of the Soot byte
ode analysis and transformation framework. Soot ismaintained by the Sable Resear
h Group at M
Gill University, and is freely availableunder the Lesser General Publi
 Li
en
e.Soot 
an be downloaded from the Soot homepage:� http://www.sable.m
gill.
a/soot/Javado
 do
umentation for the Soot sour
e is available from:� http://www.sable.m
gill.
a/soot/do
/This in
ludes do
umentation for Spark, whi
h is found in the pa
kagesoot.jimple.spark and its subpa
kages.Tutorials on using Soot are available at:� http://www.sable.m
gill.
a/soot/tutorialQuestions, dis
ussions, and 
omments about Soot and Spark should be dire
ted tothe Soot mailing list. Instru
tions about subs
ribing to the list are found on the Soothomepage. Ar
hives of the list are found at:� http://www.sable.m
gill.
a/listar
hives/soot-list/107



Using SparkA.2 Spark OptionsThis se
tion des
ribes the 
ommand-line options to Spark. Values for options arespe
i�ed on the Soot 
ommand-line, following the swit
h -p wjtp.Spark. For exam-ple:java soot.Main -a --app -p wjtp.Spark disabled:false,verbose:true HelloFor the most 
urrent, automati
ally generated do
umentation of Spark options,please see the �le sr
/soot/jimple/spark/opts.ps in the Soot distribution.A.2.1 General OptionsOption verbose� Allowed values: true false� Default value: falseWhen this option is set to true, Spark prints detailed information.Option ignoreTypesEntirely� Allowed values: true false� Default value: falseWhen this option is set to true, all parts of Spark 
ompletely ignore de
lared typesof variables and 
asts.Option for
eGCs� Allowed values: true false� Default value: falseWhen this option is set to true, 
alls to System.g
() will be made at various pointsto allow memory usage to be measured. 108



A.2. Spark OptionsA.2.2 Pointer Assignment Graph Building OptionsOption VTA� Allowed values: true false� Default value: falseSetting VTA to true has the e�e
t of setting ignoreBaseObje
ts, typesForSites,and simplifySCCs to true to simulate Variable Type Analysis [SHR+00℄. Notethat the algorithm di�ers from the original VTA in that it handles array elementsmore pre
isely. To use the results of the analysis to trim the invoke graph, set thetrimInvokeGraph option to true as well.Option RTA� Allowed values: true false� Default value: falseSetting RTA to true sets typesForSites to true, and 
auses Spark to use a singlepoints-to set for all variables, giving pessimisti
 Rapid Type Analysis [BS96℄. To usethe results of the analysis to trim the invoke graph, set the trimInvokeGraph optionto true as well.Option ignoreBaseObje
ts� Allowed values: true false� Default value: falseWhen this option is set to true, �elds are represented by variable nodes, and theobje
t that the �eld belongs to is ignored (all obje
ts are lumped together). This isalso referred to as a �eld-based analysis. Otherwise, �elds are represented by �eldreferen
e nodes, and the obje
ts that they belong to are distinguished, giving a �eld-sensitive analysis. 109



Using SparkOption typesForSites� Allowed values: true false� Default value: falseWhen this option is set to true, types rather than allo
ation sites are used as theelements of the points-to sets.Option mergeStringBuffer� Allowed values: true false� Default value: trueWhen this option is set to true, all allo
ation sites 
reating obje
ts of typejava.lang.StringBuffer are grouped together as a single allo
ation site.Option simulateNatives� Allowed values: true false� Default value: trueWhen this option is set to true, e�e
ts of native methods are simulated.Option simpleEdgesBidire
tional� Allowed values: true false� Default value: falseWhen this option is set to true, all edges 
onne
ting variable nodes are made bidi-re
tional, as in Steensgaard's analysis [Ste96b℄.110



A.2. Spark OptionsOption onFlyCallGraph� Allowed values: true false� Default value: falseWhen this option is set to true, the 
all graph is 
omputed on-the-
y as points-toinformation is 
omputed. Otherwise, an initial approximation to the 
all graph isused.Option parmsAsFields� Allowed values: true false� Default value: falseWhen this option is set to true, parameters to methods are represented as �elds ofthe this obje
t; otherwise, parameters are represented as variable nodes.Option returnsAsFields� Allowed values: true false� Default value: falseWhen this option is set to true, return values from methods are represented as �eldsof the this obje
t; otherwise, return values are represented as variable nodes.A.2.3 Pointer Assignment Graph Simpli�
ation OptionsOption simplifyOffline� Allowed values: true false� Default value: falseWhen this option is set to true, variable nodes in the same single-entry subgraph aremerged together (sin
e they must have equal points-to sets).111



Using SparkOption simplifySCCs� Allowed values: true false� Default value: falseWhen this option is set to true, variable nodes whi
h form strongly-
onne
ted 
om-ponents are merged together (sin
e they must have the same points-to set).Option ignoreTypesForSCCs� Allowed values: true false� Default value: falseWhen this option is set to true, when 
ollapsing strongly-
onne
ted 
omponents,nodes forming SCCs are 
ollapsed regardless of their type. The 
ollapsed SCC isgiven the most general type of all the nodes in the 
omponent.When this option is set to false, only edges 
onne
ting nodes of the same typeare 
onsidered when dete
ting SCCs.This option has no e�e
t unless simplifySCCs is true.A.2.4 Points-To Set Flowing OptionsOption propagator� Allowed values: iter worklist alias none� Default value: worklistThis option tells Spark whi
h propagation algorithm to use.iter is a simple, iterative algorithm, whi
h propagates everything until the graphdoes not 
hange.worklist is a worklist-based algorithm that tries to do as little work as possible.This is 
urrently the fastest algorithm. 112



A.2. Spark Optionsalias is an alias-edge based algorithm. This algorithm tends to require the small-est amount of memory for very large problems, be
ause it does not represent expli
itlypoints-to sets of �elds of heap obje
ts.none means that propagation is not done; the pointer assignment graph is onlybuilt and simpli�ed. This is useful if an external propagator is to be used later onthe pointer assignment graph.Option setImpl� Allowed values: hash bit hybrid array double� Default value: doubleSele
ts an implementation of a points-to set that Spark should use.hash is an implementation based on Java's built-in hash-set.bit is an implementation using a bit ve
tor.hybrid is an implementation that keeps an expli
it list of up to 16 elements, andswit
hes to using a bit-ve
tor when the set gets larger than this.array is an implementation that keeps the elements of the points-to set in anarray that is always maintained in sorted order. Set membership is tested usingbinary sear
h, and set union and interse
tion are 
omputed using an algorithm basedon the merge step from merge sort.double is an implementation that itself uses a pair of sets for ea
h points-to set.The �rst set in the pair stores new pointed-to obje
ts that have not yet been propa-gated, while the se
ond set stores old pointed-to obje
ts that have been propagatedand need not be re
onsidered. This allows the propagation algorithms to be in
re-mental, often speeding them up signi�
antly.Option doubleSetOld� Allowed values: hash bit hybrid array� Default value: hybrid 113



Using SparkSele
ts an implementation for the new points-to sets in the double points-to set im-plementation.This option has no e�e
t unless setImpl is set to double.Option doubleSetNew� Allowed values: hash bit hybrid array� Default value: hybridSele
ts an implementation for the old points-to sets in the double points-to set im-plementation.This option has no e�e
t unless setImpl is set to double.A.2.5 Output OptionsOption dumpHTML� Allowed values: true false� Default value: falseWhen this option is set to true, a browseable HTML representation of the pointerassignment graph is output after the analysis 
ompletes. Note that this representationis typi
ally very large.Option trimInvokeGraph� Allowed values: true false� Default value: falseWhen this option is set to true, the results of the points-to analysis are used to makethe invoke graph more pre
ise after the analysis 
ompletes.
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