
McGill University

School of Computer Science

Sable Research Group

Using inter-procedural side-effect information in JIT
optimizations

Sable Technical Report No. 2004-5

Anatole Le Onďrej Lhoták Laurie Hendren

October 18, 2004

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 Side-effect analysis in Soot 4

2.1 Call Graph Construction 4

2.2 Points-to Analysis 5

2.3 Side-Effect Analysis 5

2.4 Encoding Side-Effects in Class File Attributes 5

2.5 Analysis Variations 6

3 Optimizations enabled in Jikes RVM 8

3.1 Local common sub-expression elimination 8

3.2 Redundant load elimination 9

3.3 Loop-invariant code motion 10

3.4 Using side-effect information for inlined bytecode 11

4 Experiments 11

4.1 Environment and benchmarks 11

4.2 Results 12

4.2.1 Optimization level 1 13

4.2.2 Optimization level 2 13

5 Related Work 17

6 Conclusion 19

1

List of Figures

1 Code examples 6

2 Relative Precision of Analysis Variations 7

3 Local common sub-expression algorithm 8

4 Local common sub-expression example 9

5 Scalar replacement example 9

6 Redundant load elimination example (a) before (b) after . .. 10

7 Loop-invariant code motion example (a) before (b) after . .. 11

8 Inlining example (a) before (b) after 12

List of Tables

I Benchmark description and load density property 12

II Level 1 static counts for local CSE 13

III Level 1 dynamic counts 14

IV Level 1 running time (a) Intel (b) AMD 14

V Level 2 static counts for redundant load elimination 15

VI Level 2 static counts for LICM 16

VII Level 2 dynamic count for loads instructions 16

VIII Level 2 dynamic total load count 17

IX Level 2 running time (a) Intel (b) AMD 18

2

Abstract

Inter-procedural analyses such as side-effect analysis can provide information useful for performing aggressive
optimizations. We present a study of whether side-effect information improves performance in just-in-time (JIT)
compilers, and if so, what level of analysis precision is needed.

We used SPARK, the inter-procedural analysis component of the SOOT Java analysis and optimization framework,
to compute side-effect information and encode it in class files. We modified Jikes RVM, a research JIT, to make
use of side-effect analysis in local common sub-expressionelimination, heap SSA, redundant load elimination and
loop-invariant code motion. On the SpecJVM98 benchmarks, we measured the static number of memory operations
removed, the dynamic counts of memory reads eliminated, andthe execution time.

Our results show that the use of side-effect analysis increases the number of static opportunities for load elim-
ination by up to 98%, and reduces dynamic field read instructions by up to 27%. Side-effect information enabled
speedups in the range of 1.08x to 1.20x for some benchmarks. Finally, among the different levels of precision of
side-effect information, a simple side-effect analysis isusually sufficient to obtain most of these speedups.

1 Introduction

Over the past several years, just-in-time (JIT) compilers have enabled impressive improvements in the execution
of Java code, mainly through local and intra-procedural optimizations, speculative inter-procedural optimizations, and
efficient implementation techniques. However, JITs do not generally make use of whole-program analysis information,
such as conservative call graphs, points-to information, or side-effect information, because it is too costly to compute
it each time a program is executed. However, all non-trivialdata types in Java are objects always accessed through
indirect references (pointers), so one would expect optimizations using side-effect information to enable significant
further improvements in performance of Java programs.

The purpose of the study presented in this paper is to answer two key questions. First, is side-effect information
useful for the optimizations performed in a modern JIT, and can it significantly improve performance? Second, what
level of precision of the side-effect information and the underlying analyses used to compute it is required to obtain
these performance improvements?

To study these questions, we implemented a system consisting of an ahead-of-time inter-procedural side-effect
analysis, whose result is communicated to a modified JIT containing optimizations that we adapted to take advantage
of the side-effect information.

We implemented the side-effect analyses using the SPARK [15, 16] points-to analysis framework, a part of the
SOOT [27] bytecode analysis, optimization, and annotation framework. The side-effect analysis makes use of points-
to and call graph information computed by SPARK. The resulting side-effect information is encoded in classfile
attributes for use by the JIT using the annotation framework[21] included in SOOT.

We chose Jikes RVM [2] as the JIT for our study, and made several modifications to it. First, we added code to
read in the side-effect information produced in our analysis. We then modified several analyses and optimizations to
take advantage of the information, including local common subexpression elimination, heap array SSA construction,
redundant load elimination, and loop-invariant code motion. Finally, we instrumented Jikes RVM both to count the
static opportunities for performing optimizations, and toinsert instrumentation code to measure the dynamic effects
of the improved optimizations.

The contributions of this paper are the following:

• This is the first published presentation of the side-effect analysis that we have implemented in SOOT using
points-to and call graph information computed by SPARK.

• To our knowledge, this is the first study of the run-time performance improvements obtainable by taking advan-
tage of side-effect information in a range of optimizationsin a Java JIT.

• We present empirical evidence that the availability of side-effect information in a Java JIT can enable significant
performance improvements of up to 20%.

• We show that although precise analyses provide significantly more optimization opportunities when counted
statically, most of the dynamic improvement is obtainable even with relatively simple, imprecise analyses. In

3

particular, a side-effect analysis based on a call graph constructed using an inexpensive Class Hierarchy Analysis
(CHA) already provides a very significant improvement over not having any side-effect information at all.

The remainder of this paper is organized as follows. Section2 is devoted to our side-effect analysis in SOOT,
the call graph and points-to analyses that it depends on, issues with encoding its result in class file attributes, and
the precision variations that we experimented with. In Section 3, we describe how we modified the optimizations in
Jikes RVM to take advantage of side-effect information. In Section 4, we present the benchmarks that we used, our
experiments, and our empirical results. We discuss relatedwork in Section 5, and we conclude with Section 6.

2 Side-effect analysis in Soot

We implemented side-effect analysis in SOOT [27], a framework for analyzing, optimizing, and annotating Java byte-
code. The side-effect analysis depends on two other inter-procedural analyses, call graph construction and points-to
analysis. We describe how we construct a call graph in Section 2.1. An important difference from most other work
on call graph construction is that to obtain a conservative side-effect analysis, we need to ensure that our call graph
includes all methods invoked, including those invoked implicitly by the Java VM. In Section 2.2, we briefly explain
the output of SPARK, our points-to analysis framework [15, 16]. Section 2.3 explains how we put the information
from these two analyses together and produce side-effect information. In Section 2.4, we briefly note some issues with
encoding the side-effect analysis results in class file attributes to communicate them to the JIT. Finally, in Section 2.5,
we describe how variations in the precision of the call graphand points-to analyses affect the side-effect information.

2.1 Call Graph Construction

To perform an inter-procedural analysis on a Java program, information about the possible targets of method calls is
required. This information is approximated by a call graph,which maps each statements to a setcg(s) containing
every method that may be called froms. Constructing a call graph for a Java program is complicatedby the fact that
most calls in Java are virtual, so the target method of the call depends on the run-time type of the receiver object.

In our study, we compared two different methods of computingcall graphs. First, we computed call graphs using
Class Hierarchy Analysis (CHA) [8], an inexpensive method which considers only the static type of each receiver
object, and does not require any inter-procedural analysis. Second, we used a points-to analysis (discussed in the
next section) to compute the run-time types of the objects that the receiver of each call site could point to, and we
determined the target method that would be invoked for each run-time receiver type.

Several important but subtle details of the Java virtual machine (VM) complicate the construction of a conservative
call graph suitable for side-effect analysis. In a Java program, methods may be invoked not only due to explicit
invoke instructions, but also implicitly due to various events in the VM. Whenever a new class is first used, the
VM implicitly calls its static initialization method. The set of events that may cause a static initialization method
to be called is specified in [17, section 2.17.4]. In our analysis, we assume that any of these events could cause
the corresponding static initialization method to be invoked. Each static initialization method is executed at most
once in a given run of a Java program. Therefore, we use an intra-procedural flow-sensitive analysis to eliminate
spurious calls to static initialization methods which musthave already been called on every path from the beginning
of the method. In addition, the standard class library ofteninvokes methods using thedoPrivileged methods of
java.security.AccessController. Our analysis models these with calls of therunmethod of the argument
passed todoPrivileged. Methods may also be invoked using reflection. In general, itis not possible to determine
statically which methods will be invoked reflectively, and our analysis only issues a warning if it finds a reachable
call to one of the reflection methods. However, calls to thenewInstance method ofjava.lang.Class are so
common that they merit special treatment. This method creates a new object and calls its constructor. In our analysis,
we conservatively assume that any object could be created, and therefore any constructor with no parameters could be
invoked.

To partially verify the correctness of the computed call graph, we instrumented the code to ensure that all methods
that are executed at run time were included in the call graph and reachable from the entry points. To do this, we
computed the set of methods that are not reachable from the entry points through the call graph, and modified them

4

to abort the execution of the benchmark if they do get invokedat run time. Although this does not prove that every
possible run-time call edge is included in the computed callgraph, it does guarantee that every executed method
is considered in call graph construction. To further check that our overall optimizations were conservative on the
benchmarks studied, we verified that the benchmarks produced identical output in all configurations, including with
the optimizations disabled.

2.2 Points-to Analysis

We use the SPARK [15, 16] points-to analysis framework to compute points-toinformation. For eachpointer pin the
program, it computes a setpt(p) of objectsto which it may point. The most common kind ofpointeris a local variable
of reference type in the Jimple representation of the code. Local variables appear in field read and write instructions
as pointers to the object whose field is to be read or written, and in method invocation instructions as the receiver of
the method call, which determines the method to be invoked. In addition,pointersare introduced to represent method
arguments and return values, static fields, and special values needed in simulating the effects on pointers of native
methods in the standard class library. Typically, anobjectis an allocation site; we model all run-time objects created
at a given allocation site as a single entity. In addition, wemust include specialobjectsfor run-time objects without
an allocation site, such as objects created by the VM (the argument array to the main method, the main thread, the
default class loader) and objects created using reflection.For some of these specialobjects, we may not know the exact
run-time type. Therefore, we conservatively assume that their run-time type may be any subtype of their declared type.

SPARK performs a flow-insensitive, context-insensitive, subset-based points-to analysis by propagatingobjects
from their allocation sites through allpointersthrough which they may flow. SPARK has many parameters for exper-
imenting with variations of the analysis that affect analysis efficiency and precision. In this study, we experimented
with four points-to analysis variations. We explain the variations in more detail in Section 2.5.

2.3 Side-Effect Analysis

The side-effect analysis consists of two steps, which are discussed in this section. First, we compute a read and write
set for each statement. Second, we use the read and write setsto compute dependencies between all pairs of statements
within each method.

For each statements, we compute setsread(s) andwrite(s) containing every static fields f read (written) bys, and
a pair(o, f) for every field f of object othat may be read (written) bys. These sets also include fields read (written)
by all code executed during execution ofs, including any other methods that may be called, directly ortransitively.
The read and write sets are computed in two steps. In the first step, we compute only the direct read and write sets for
each statement in the program, ignoring any code that may be called from the statement. The result of the points-to
analysis is used to determine the possible objects being pointed to by the pointer in each field read or write instruction.
In the second step, we continually aggregate the read and write sets of each method and propagate them to all call sites
of the method, until a fixed-point is reached. During the propagation, the call graph is used to determine the call sites
of each method.

Once the read and write sets for all statements have been computed, for each method, we compute an interfer-
ence relation between all the read and write sets in the method: int(m) = {(set1,set2) | set1∩set2 6= /0}. We map the
interference relation on read and write sets to four dependence relations between statements (read-read dependence,
read-write dependence, write-read dependence, write-write dependence). For example, there is a read-write depen-
dence between statementss1 ands2 if (read(s1),write(s2)) ∈ int(m). It is the dependences between statements that
we encode in class files for the JIT to use in performing optimizations.

2.4 Encoding Side-Effects in Class File Attributes

All of the analyses described in the preceding sections are performed on Jimple, the three-address intermediate repre-
sentation (IR) used in SOOT. In order to communicate the analysis results to a JIT, we must convert them to refer to
bytecode instructions during the translation of Jimple to bytecode. SOOT includes a universal tagging framework [21]
that propagates analysis information through its various IRs, and encodes it in class file attributes. An important com-
plication in this process is that one Jimple statement may beconverted to multiple bytecode instructions. However,

5

Jimple is low-level enough that whenever a Jimple instruction has side-effects, exactly one of the bytecode instructions
generated for it has those side-effects. Therefore, for each type of Jimple instruction, we identify the relevant bytecode
instruction to the tagging framework, and it attaches the side-effect information to that instruction.

Another complication in communicating the side-effect information is that some methods have a large number of
statements with side-effects. Since the dependence relations may have size quadratic in the number of instructions
with side-effects, a naive encoding of the dependence relations is sometimes unacceptably large. However, we have
observed in those cases, many of the read and write sets in themethod are identical. Therefore, we add a level of
indirection. Instead of expressing the dependence relations in terms of statements, we enumerate all distinct read and
write sets, and express the dependence relations between those sets. For each statement, we indicate which set it reads
and writes. The resulting encoding has sizeΘ(m2 +n), wheren is the number of statements, andm is the number of
unique sets. In an earlier study [15, Sections 6.2.2 and 6.2.6], we observed that this encoding limits the annotation size
to acceptable levels.

2.5 Analysis Variations

Figure 1: Code examples

1 class Box {
2 A a;
3 }
4 abstract class A {
5 int f;
6 abstract void nothing();
7 abstract void maybe();
8 abstract void setF();
9 abstract A id();

10 }
11 class B extends A {
12 void nothing() {}
13 void maybe() { this.f = 1; }
14 void setF() { this.f = 2; }
15 A id() { return this; }
16 }
17 class C extends A {
18 void nothing() {}
19 void maybe() {}
20 void setF() { this.f = 3; }
21 A id() { return this; }
22 }
23 class Main {
24 public static void main(String[] args) {
25 new Main().run(new B(), new C());
26 }
27 void run(A b, A c) {
28 b.f = 4;

29 // insert possible side-effect here

30 int n = b.f; // eliminate this load
31 System.out.println(n);
32 }
33 }

(a)

1

(b)

1 c.nothing();

(c)

1 c.maybe();

(d)

1 Box b1 = new Box();
2 b1.a = c;
3 c = b1.a;
4

5 Box b2 = new Box();
6 b2.a = b;
7 b = b2.a;
8

9 c.setF();

(e)

1 c = c.id();
2 b = b.id();
3 c.maybe();

In our empirical study presented in Section 4, we compare theeffectiveness of six variations of our analysis.
In this section, we explain the differences between these variations. In Figure 1, we present examples of code that
distinguishes the variations: it may be optimized only if the information provided by specific variations is available.

6

In line 28, the code writes a constant to the fieldb.f. In line 30, the constant read out again. Our goal is to optimize
away the constant field read. If we substitute each of the codesnippets(a) through(e) on the right of Figure 1 for
line 29, the resulting code will never change the value (4) loaded in line 30. However, analyses of different precision
are required to prove that the code snippets do not have side-effects affecting the value ofb.f. Figure 2 gives an
overview of the relative precision of the variations, with precision increasing from bottom to top. After each variation,
we list the subset of the code snippets that can be optimized using the information provided by the variation.

Figure 2: Relative Precision of Analysis Variations
otf-fs {abcde}

otf-fb {abcd} aot-fs {abce}

aot-fb {abc}

CHA {ab}

none {a}

For the first variation,none, we compute no side-effect information at all, and rely onlyon the internal analysis
in the Jikes RVM JIT for optimizations. In this case, Jikes RVM is able to remove the read in line 30 only when the
empty snippet (a) is inserted at line 29. The JIT determines that the field being loaded is the same as the field to which
the constant was written, and since no statements have been executed since the write, the value could not have been
affected. However, as soon as we insert any method call between the write and read (in each of the code snippets (b)
through (e)), the JIT cannot optimize the read, because it knows nothing about the side-effects of the method called.

Our second variation,CHA, is to compute side-effects using a call graph, but without performing any points-to
analysis. We construct the call graph using CHA, as described in Section 2.1. In this case, we can optimize code
snippet (b), because the analysis determines that the callc.nothing() calls the methodnothing() in either
classB or C, and neither of these methods write to fieldf. However, for the call tomaybe() in snippet (c), CHA
cannot tell which of the twomaybe() methods will be invoked. SinceB.maybe() writes to fieldf, the analysis
conservatively assumes thatb.f may be overwritten, and prevents the optimization.

The remaining variations all take advantage of points-to analysis information to compute side-effects. The differ-
ences between them are whether the points-to analysis is field-based (fb) or field-sensitive (fs), and whether it uses a
call graph computed ahead-of-time (aot), or whether it computes its own call graph on-the-fly (otf). All of the points-
to analysis variations determine thatc can only be of run-time typeB. Therefore, the call toc.maybe() does not
write to fieldf, so the read in line 30 can be optimized when code snippet (c) is inserted into line 29.

The distinction between a field-based and field-sensitive analysis defines how the points-to analysis treats pointer
flow through fields of heap objects. In a field-based analysis,each field is treated as apointerwith a single points-to
set. It is assumed that anyob jectstored into a fieldf of any object may be retrieved from fieldf of any object. On
the other hand, a field-sensitive analysis computes a separate points-to set for each pair(ob ject, f ield). Therefore,
if an ob ject is written tob1.a and read out ofb2.a, and if b1 andb2 cannot point to the same object, then the
analysis determines that theob jectwill not be read out ofb2.a. This is illustrated by code snippet (d). In the code,
c is stored and subsequently stored into and read out ofb1.a, andb undergoes a similar operation throughb2.a.
A field-based points-to analysis cannot distinguish between the fielda of the two different boxesb1 andb2, and
therefore assumes thatc andb could point to the same object, sob.f could be written to at the end of the code
snippet. A field-sensitive analysis, on the other hand, proves that theb andc read out of the two boxes are distinct
objects, so the call toc.setF() does not affect the value ofb.f.

In order to propagate points-to sets inter-procedurally, apoints-to analysis requires an approximation of the call
graph. However, we use the result of the points-to analysis to build the call graph. One solution to this circular
dependency is to build an imprecise call graph ahead-of-time using CHA, only for the use of the points-to analysis.
After the points-to analysis completes, we use the points-to information to construct a more precise call graph to be
used in the side-effect analysis. The other alternative is to build the call graph on-the-fly as the points-to analysis
proceeds: as points-to sets grow, we add edges to the call graph. Results from our prior work [16] show the latter
approach to be more costly, but to produce more precise results. The difference in precision is illustrated by code
snippet (e). In the code,c andb are passed through identity methods that return themselves. An ahead-of-time CHA-

7

based call graph says that eachid() method calls may call either of the twoid() methods, so both objects end up
in the points-to sets of bothc andb. Therefore, the analysis cannot determine that the call toc.maybe() will not
changeb.f. However, if the analysis builds the call graph on-the-fly, the call graph only contains the single correct
target method for each of theid() method calls, and the object pointed to byb does not flow into the points-to set
of c. The analysis therefore determines that the call toc.maybe() does not write tob.f, and the load may be
eliminated.

3 Optimizations enabled in Jikes RVM

The JIT compiler that we modified to make use of side-effect information is the Jikes Research Virtual Machine
(RVM) [2]. Jikes RVM is an open source research platform for executing Java bytecode. It includes three levels of
JIT optimizations (0, 1 and 2). We adapted three optimizations in Jikes RVM to make use of side-effect information:
local common sub-expression elimination (CSE), redundantload elimination (RLE) and loop-invariant code motion
(LICM). Sections 3.1 to 3.3 describe each of these optimizations and the changes that we made. Because side-effect
information refers to the original bytecode of a method, bytecodes that come from an inlined method need to be treated
specially. Section 3.4 describes how we dealt with this case.

3.1 Local common sub-expression elimination

The first optimization in Jikes RVM that we modified to make useof side-effect is local CSE. This optimization is only
performed within a basic block. The algorithm for performing CSE on fields is described in Figure 3. A cache is used
to store the available field expressions. The algorithm iterates over all instructions in a basic block, and processes them.
There are two parts in this process. The first is to try to replace eachgetfieldor getstaticinstructions encountered by an
available expression. If one is available, it is assigned toa temporary variable and thegetfieldor getstaticinstruction
is replaced by a copy of the temporary. If none is available, afield expression is added to the cache for thegetfield
or getstaticinstruction. For everyputfieldandputstaticinstruction, an associated field expression is also added tothe
cache. The second part is to update the cache according to which expressions the current instruction kills. A call or
synchronization instruction kills all expressions in the cache. Aputfieldor putstaticof some field X will remove any
expression in the cache associated with field X.

Figure 3: Local common sub-expression algorithm
1: for each basic block bbdo
2: for each instruction s in bbdo
3: if volatileField(s)then
4: continue
5: if isGetField(s) or isGetStatic(s)then
6: if if cache.availableExpression(s)then
7: replace s by available expression in cache
8: else
9: add expression(s) to cache

10: else if isPutField(s) or isPutStatic(s)then
11: add expression(s) to cache
12: if s is a store of field Xthen
13: remove all expressions with field X from cache (excluding expression(s))
14: else if s is a call or synchronizationthen
15: remove all expressions from cache

In this algorithm, we used side-effect information to reduce the set of expressions killed (lines 13 and 15 in
Figure 3). When the current instruction is a field store or a call, we only remove from the cache entries that have a
read-write or write-write dependence with the current instruction in the side-effect analysis.

An example is shown in Figure 4. Without side-effect information, the compiler would conservatively assume that
statementobj2.x = 10 could write to memory locationobj1.x and that the call tonothing() could write to

8

any memory locations. In contrast, the side-effect analysis would specify that there is no dependence between these
instructions, and thus enable the replacement of the load ofobj1.x on line 6 by an available expression (line 3).

Figure 4: Local common sub-expression example

1 A obj1 = new A();
2 A obj2 = new A();
3 i = obj1.x;
4 obj2.x = 10;
5 nothing();
6 j = obj1.x;

3.2 Redundant load elimination

The redundant load elimination algorithm relies on extended Array SSA (also known as Heap Array SSA or Heap
SSA) [10] and Global Value Numbering [3]. We explain the general idea of the algorithm below. For a detailed
description, please refer to [10].

The algorithm transforms the IR into heap SSA form. A heap array is created for each object field. The object
reference is used as the index into this heap array. For example, in the code of Figure 5, there are two heap arrays,
X and Y. On line 3, ”Heap Array X [a] = ...” means that a store is performed in heap array X at indexa (the object
reference).

Figure 5: Scalar replacement example

1 a = new A();
2 b = new A();
3 a.x = ... -> heap Array X [a] = ...
4 a.y = ... -> heap Array Y [a] = ...
5 b.x = ... -> heap Array X [b] = ...
6 n = a.x -> n = heap Array X [a]

After the transformation to heap SSA form is completed, global value numbers are computed. The global value
numbering computes definitely-different (DD) and definitely-same (DS) relations for object references. TheDD rela-
tion distinguishes two object references coming from different allocation sites, or when one is a method parameter and
the other one is the result of a new statement. TheDS relation returns true when two object references have the same
value number (one is a copy of the other). In Figure 5, sincea andb are the results of different allocation sites (line 1
and 2),DD(a, b) = true andDS(a, b) = false.

Once global value numbers are computed, index propagation is performed. The index propagation solution holds
the available indices into heap arrays at each use of a heap array. Scalar replacement is performed using the sets
of available indices. Note that in the algorithm, these setsactually contain value numbers of available indices. For
simplicity, we consider sets of available indices.

In Figure 5, aftera.x is assigned on line 3, the set of available indices for heap Array X is{a}. Similarly,{a} is
available for heap Array Y after the assignment toa.y on line 4. For the store ofb.x on line 5, since global value
numbering tells us thatDD(a, b) = true, we have{a, b} available for heap Array X after line 5. IfDD(a, b) had
returned false, we would have conservatively assumed that astore to heap Array X [b] could have overwritten heap
Array X [a], and thus, only{b} would be available after line 5. On line 6, heap Array X is usedat indexa. Sincea is
available, a new temporary is introduced and scalar replacement is performed.

For increasing the number of opportunities for load elimination, we used side-effect information during the heap
SSA transformation and in theDD relation. During the heap SSA construction, without side-effect information, each
call instruction is annotated with a definition and a use of every heap array. With side-effect information we annotate

9

a call with a definition of a heap array, say X, only if there is awrite-read or write-write dependence between the call
and the instruction using heap array X. Similarly we annotate a call with a use of a heap array if there is a read-read
or read-write dependence. We also use side-effect information when theDD relation returns false. Two instructions
having no data dependence is equivalent toDD(a, b) = true, wherea andb are the object references used in the
instructions.

In Figure 6(a), without side-effect information, sincea andb are method parameters,DD(a, b) = false. Thus,
only {b} is available after line 3. This allows the load ofb.x on line 9 to be eliminated. Since it is conservatively
assumed that calls can write to any memory location, the available index set afternothing() on line 10 is the empty
set. Line 12 represents a merge point of the available index sets after line 7 and 10. The intersection of these two sets
is the empty set. After the load ofa.x on line 14,{a} is available. SinceDS(a, b) = false, the load ofb.x on line 15
cannot be eliminated.

Figure 6: Redundant load elimination example (a) before (b)after

(a)
1 int foo(A a, A b, int n) {
2 a.x = 2;
3 b.x = 3;
4

5 int i;
6 if(n > 0) {
7 i = a.x;
8 } else {
9 i = b.x;

10 nothing();
11 }
12 // Merging point: a phi is
13 // placed here in heap SSA
14 int j = a.x;
15 int k = b.x;
16 return i + j + k;
17 }
18

19 public static void
20 main(String[] args) {
21 foo(new A(), new A(), 1);
22 }

(b)
1 int foo(A a, A b, int n) {
2 t1 = 2;
3 a.x = t1;
4 t2 = 3;
5 b.x = t2;
6

7 int i;
8 if(n > 0) {
9 i = t1;

10 } else {
11 i = t2;
12 nothing();
13 }
14 // Merging point: a phi is
15 // placed here in heap SSA
16 int j = t1;
17 int k = t2;
18 return i + j + k;
19 }
20

21 public static void
22 main(String[] args) {
23 foo(new A(), new A(), 1);
24 }

Using side-effect analysis, sincea.x has no dependence withb.x (line 2 and 3) the available index set after line 3
is {a, b}. Thus, loads ofa.x andb.x on line 7 and 9 can be eliminated. The available index set after line 7 is{a, b},
and after line 10, it is also{a, b}, sincenothing() has no side-effect. The intersection at the merge point (line 12)
results in the set{a, b}. The load ofa.x can then be removed on line 14. The available index set after line 14 is
{a, b}, allowing load elimination ofb.x on line 15. The resulting code after performing load elimination is shown in
Figure 6(b).

3.3 Loop-invariant code motion

The LICM algorithm in Jikes RVM is an implementation of the Global Code Motion algorithm introduced by Click [7]
and is adapted to handle memory operations. As such, it requires the IR to be in heap SSA form. We provide the basic
idea of the algorithm below. For more details, see [7].

The algorithm schedules each intruction early, i.e. finds the earliest legal basic block that an instruction could
be moved to (all of the instruction’s inputs must dominate this basic block). Similarly, it finds the latest legal basic
block for each instruction (this block must dominate all uses of the instruction’s result). Instructions such asphi,

10

branch or return cannot be moved due to control dependences. Between the earliest and latest legal basic blocks,
the heuristic to choose which basic block to place the instruction is to pick the one with the smallest loop depth. Global
Code Motion differs from standard loop-invariant code motion techniques in that it moves instructions after as well as
before loops.

In Figure 7(a), the compiler first transforms the code into heap SSA form and without side-effect information
assumes that methodnothing() can read and write any memory location. As a result, the compiler will be unable to
move the loads ofa.x anda.y outside of the loop. With side-effect information, knowingthat methodnothing()
does not read or write toa.x ora.y, the loads ofa.x anda.y will be moved before and after the loop respectively,
resulting in the code in Figure 7(b).

Figure 7: Loop-invariant code motion example (a) before (b)after

(a)
1 do {
2 i = i + a.x;
3 j = i + a.y;
4 nothing();
5 } while(i < n);

(b)
1 t = a.x;
2 do {
3 i = i + t;
4 nothing();
5 } while(i < n);
6 j = i + a.y;

3.4 Using side-effect information for inlined bytecode

The side-effect attribute provides information about datadependences between instructions and refers to a bytecode
by using its offset. In Figure 8(a), let’s assume that calls to foo() andbar() are inlined, resulting in the code
in Figure 8(b). Since an inlined bytecode is associated withits original offset in the IR, it is in general incorrect to
retrieve side-effect information for an inlined bytecode in the current method. For example, in the side-effect attribute
of methodmain() in Figure 8(b), information about offset0 is associated with bytecodeb0, notb1 or b2.

To handle this case, we keep track of inlining sequences for each instruction. When comparing two bytecodes, we
retrieve the least common method ancestor of the two bytecode inlining sequences, and use the side-effect information
associated with that method. If a bytecode originally comesfrom that common method, we use its offset. Otherwise,
we retrieve theinvokebytecode that it comes from in the common method, and use the offset associated with this
invokebytecode.

For example, in Figure 8(b), the least common method ancestor for bytecodesb0 andb1 is main(). Sinceb0
originally comes frommain(), we use its offset (i.e. 0). Sinceb1 was not originally part ofmain(), we retrieve
the invokebytecode that it comes from inmain(), i.e. invokefoo. We then use the offset associated with this
invokebytecode (i.e.1). Thus, when inquiring about data dependences between bytecodesb0 andb1, we lookup
information for offsets0 and1 in the side-effect attribute for methodmain(). Similarly, for bytecodesb1 andb2
we lookup offsets0 and1 in the side-effect attribute of methodfoo() (same result forb1 andb3). For bytecodes
b2 andb3, we lookup offsets0 and1 in the side-effect attribute ofbar().

4 Experiments

4.1 Environment and benchmarks

We modified Jikes RVM version 2.3.0.1 to use side-effect information in the optimizations described in the previous
section. We used the production configuration (namely FastAdaptiveCopyMS) in Jikes RVM with the JIT-only option
(every method is compiled on first invocation and no recompilation occurs thereafter). We ran the SpecJVM98 [1]
benchmarks (size 100) with Jikes RVM at optimization level 1and 2 using the six side-effect variations described
in section 2. A description of the benchmarks is given in Table I. For each benchmark and at each optimization
level, we show the number of memory reads per second performed (load density). This shows how important memory
operations are in each benchmark. We expect the benchmarks with high load densities, compress, raytrace, mtrt and

11

Figure 8: Inlining example (a) before (b) after
(a)

1 Offset main() {
2 0 b0
3 1 invoke foo
4 }
5 foo() {
6 0 b1
7 1 invoke bar
8 }
9 bar() {

10 0 b2
11 1 b3
12 }

(b)
1 Offset
2 main() {
3 0 b0
4 0 b1
5 0 b2
6 1 b3
7 }

mpegaudio, to benefit most from side-effect analysis. We used the development version of SOOT (revision 1621) to
compute side-effect information.

Load density
1000’s

Benchmark Description Level 1 Level 2

compress Lempel-Ziv compressor/uncompressor 207383 138570
jess A Java expert shell system based on NASA’s CLIPS system 56371 68353
raytrace Ray tracer application 106271 127806
db Performs several database functions on a memory-resident database 7140 11776
javac JDK 1.0.2 Java compiler 21645 19208
mpegaudio MPEG-3 audio file compression application 82137 179070
mtrt Dual-threaded version of raytrace 92599 122821
jack A Java parser generator with lexical analyzers (now Java CC) 14632 15240

Table I: Benchmark description and load density property

We ran our benchmarks on two different architectures to see whether we would get similar trends in our results.
The first system that we used runs Linux Debian on an Intel Pentium 4 1.80GHz CPU with 512Mb of RAM. The
second one also runs Linux Debian on an dual processor AMD Athlon MP 2000+ 1.66GHz CPU with 2Gb of RAM.
For our experiment, Jikes RVM was configured to run on a singleprocessor machine.

4.2 Results

Our primary goal for this study was to see whether side-effect information could improve performance in JITs, and
if so, our secondary objective was to determine the level of precision of side-effect information required. To obtain
accurate answers to these questions, we measured for each run the static number of loads removed in local CSE and
in the redundant load elimination optimization, and the static number of instructions moved in the loop-invariant code
motion phase. These numbers provide us details on how much improvement each optimization achieves statically
using side-effect information. We also measured dynamic counts of memory load operations eliminated and execution
times (best of four runs, not including compilation time). The architecture-independent dynamic counts help us see
whether a direct correlation exists between a reduction in memory operations performed and speedups.

It should be noted that although we used the JIT-only option in Jikes RVM where no method recompilation is
expected, some optimizations such as inlining can cause invalidation and recompilation. In this case, for our static
numbers, we only counted the number of static loads eliminated (in local CSE or load elimination) or instructions
moved (in LICM) in the last method compilation before execution.

To examine the effect of side-effect analysis in both local and global optimizations, we ran our benchmarks using
Jikes RVM at optimization level 1 and 2. For level 1, only local CSE uses side-effect information. For level 2, local

12

CSE, redundant load elimination and loop-invariant code motion use side-effect analysis. We present in the next two
sections our results for level 1 and level 2 optimizations.

4.2.1 Optimization level 1

Level 1 optimizations in Jikes RVM include standard optimizations such as local copy propagation, local constant
propagation, local common sub-expression elimination, null check elimination, type propagation, constant folding,
dead code elimination, inlining, etc. Among these, only local CSE uses our side-effect analysis for eliminatinggetfield
andgetstaticinstructions.

When running our benchmarks with Jikes RVM at optimization level 1 (which also includes all level 0 optimiza-
tions), the use of the five side-effect variations (CHA, aot-fb, aot-fs, otf-fb andotf-fs) produced identical static and
dynamic counts, and similar runtimes. To avoid repeating identical results, we grouped these five side-effect varia-
tions under the nameany in the side-effect column of Tables II and III. As expected, the execution times of runs using
these five side-effect variations are almost identical. We thus also grouped them underany in the second column of
Table IV, and reported the average execution times of runs using these five side-effect variations.

Benchmark Side-Effect
Local CSE performed

getfield getstatic total

compress
none
any

108 1 109
112 (3.70 %) 2 (100.00 %) 114 (4.59 %)

jess
none
any

229 0 229
245 (6.99 %) 1 246 (7.42 %)

raytrace
none
any

166 0 166
188 (13.25 %) 1 189 (13.86 %)

db
none
any

130 0 130
133 (2.31 %) 3 136 (4.62 %)

javac
none
any

415 0 415
431 (3.86 %) 1 432 (4.10 %)

mpegaudio
none
any

340 174 514
347 (2.06 %) 176 (1.15 %) 523 (1.75 %)

mtrt
none
any

166 0 166
188 (13.25 %) 1 189 (13.86 %)

jack
none
any

470 1 471
663 (41.06 %) 2 (100.00 %) 665 (41.19 %)

Table II: Level 1 static counts for local CSE

Table II shows that using side-effect information in local CSE increased the number of static opportunities for load
elimination by 2% to 41%, but only resulted in a decrease of upto 0.87% of dynamicgetfieldandgetstaticinstructions
(Table III). As a result, most benchmarks have similar execution times with or without side-effect analysis. However,
the use of side-effect information produced speedups of 1.08x and 1.06x for mpegaudio on our Intel and AMD systems,
and 1.02x for raytrace on both systems (Table IV).

These results show that the simplest side-effect analysis,CHA, is sufficient for level 1 optimizations in Jikes
RVM. Only local CSE uses side-effect analysis, and since it is only performed on basic blocks (typically small in Java
programs), the effect is minimal.

4.2.2 Optimization level 2

The more advanced and expensive analyses and optimizationsin Jikes RVM are level 2 optimizations. They include
redundant branch elimination, heap SSA, redundant load elimination, coalescing after heap SSA, expression folding,
loop-invariant code motion, global CSE, and tranforming while into until loops. As described in section 3, we made
use of side-effect information in the heap SSA construction, redundant load elimination, and loop-invariant code
motion.

13

Benchmark Side-Effect getfield getstatic total

compress
none
any

1871398009
1871397929 (0.00 %)

33418641
33418641

1904816650
1904816570 (0.00 %)

jess
none
any

209404162
209402840 (0.00 %)

2326905
2326905

211731067
211729745 (0.00 %)

raytrace
none
any

287993152
287979508 (0.00 %)

1359
1359

287994511
287980867 (0.00 %)

db
none
any

160088294
160087709 (0.00 %)

96012
96012

160184306
160183721 (0.00 %)

javac
none
any

149595624
149407295 (0.13 %)

4028976
4028946 (0.00 %)

153624600
153436241 (0.12 %)

mpegaudio
none
any

456136442
455026631 (0.24 %)

52215347
52215346 (0.00 %)

508351789
507241977 (0.22 %)

mtrt
none
any

291501667
291474379 (0.01 %)

2063
2063

291503730
291476442 (0.01 %)

jack
none
any

50029731
49579043 (0.90 %)

1534965
1534977 (0.00 %)

51564696
51114020 (0.87 %)

Table III: Level 1 dynamic counts

(a)
Benchmark Side-Effect Time(s) Speedup

compress
none
any

9.215
9.395 0.98x

jess
none
any

4.583
4.615 0.99x

raytrace
none
any

4.276
4.198 1.02x

db
none
any

22.023
22.054 1.00x

javac
none
any

11.047
11.215 0.99x

mpegaudio
none
any

8.874
8.219 1.08x

mtrt
none
any

4.744
4.727 1.00x

jack
none
any

6.095
6.108 1.00x

(b)
Benchmark Side-Effect Time(s) Speedup

compress
none
any

9.185
9.184 1.00x

jess
none
any

3.756
3.77 1.00x

raytrace
none
any

2.71
2.662 1.02x

db
none
any

22.434
22.453 1.00x

javac
none
any

7.097
7.177 0.99x

mpegaudio
none
any

6.189
5.85 1.06x

mtrt
none
any

3.148
3.087 1.02x

jack
none
any

3.524
3.509 1.00x

Table IV: Level 1 running time (a) Intel (b) AMD

14

Our benchmarks were run at optimization level 2 in Jikes RVM (all level 0 and 1 optimizations are also performed),
and produced identical counts and similar runtimes for the side-effect variationsaot-fb, aot-fs, otf-fb andotf-fs (except
for one case in compress, where the static number of loads eliminated is 388 foraot-fb andaot-fs, and 389 forotf-fb
andotf-fs). Thus, we grouped these four variations of side-effects that are based on points-to analysis under the name
PTA in Tables V to IX. In Table IX, the time underPTA is the average runtime of these four variations.

Benchmark Side-Effect
Load Elimination performed

getfield getstatic aload total

compress
none
CHA
PTA

359 4 0 363
386 (7.52 %) 5 (25.00 %) 0 391 (7.71 %)
388 (8.08 %) 5 (25.00 %) 0 393 (8.26 %)

jess
none
CHA
PTA

722 1 129 852
1050 (45.43 %) 2 (100.00 %) 149 (15.50 %) 1201 (40.96 %)
1106 (53.19 %) 3 (200.00 %) 196 (51.94 %) 1305 (53.17 %)

raytrace
none
CHA
PTA

342 1 32 375
613 (79.24 %) 2 (100.00 %) 84 (162.50 %) 699 (86.40 %)
613 (79.24 %) 2 (100.00 %) 127 (296.88 %) 742 (97.87 %)

db
none
CHA
PTA

243 1 2 246
274 (12.76 %) 4 (300.00 %) 2 280 (13.82 %)
274 (12.76 %) 4 (300.00 %) 3 (50.00 %) 281 (14.23 %)

javac
none
CHA
PTA

1519 26 90 1635
1842 (21.26 %) 30 (15.38 %) 101 (12.22 %) 1973 (20.67 %)
1847 (21.59 %) 30 (15.38 %) 108 (20.00 %) 1985 (21.41 %)

mpegaudio
none
CHA
PTA

706 212 367 1285
804 (13.88 %) 216 (1.89 %) 370 (0.82 %) 1390 (8.17 %)
804 (13.88 %) 216 (1.89 %) 426 (16.08 %) 1446 (12.53 %)

mtrt
none
CHA
PTA

342 1 32 375
613 (79.24 %) 2 (100.00 %) 84 (162.50 %) 699 (86.40 %)
613 (79.24 %) 2 (100.00 %) 127 (296.88 %) 742 (97.87 %)

jack
none
CHA
PTA

678 2 69 749
999 (47.35 %) 16 (700.00 %) 69 1084 (44.73 %)
999 (47.35 %) 16 (700.00 %) 69 1084 (44.73 %)

Table V: Level 2 static counts for redundant load elimination

Table V shows that using side-effect information in RLE increased static opportunities for load removal by 7% to
98%. There were very few improvements for removinggetstaticinstructions, but the increase was large for removing
getfieldandaload (array load) instructions for some benchmarks (jess, raytrace, mtrt and jack). Interestingly,PTA
improved overCHA for all benchmarks except jack.

In Table VI, we show static counts of instructions moved during LICM. The last two columns are the total in-
structions moved when LICM is performed on high-level (HIR)and low-level (LIR) intermediate representation in
Jikes RVM. Note that memory operations are not moved during LICM on LIR; interestingly, the use of side-effect in
HIR optimizations enabled some other transformations thatallowed some instructions to be moved during LICM on
LIR. We see in Table VI that side-effect analysis increased the number of movedgetfield(up to 18%), in one case of
a putfield, and the total during HIR (up to 14%). For only one benchmark (jess), usingPTA side-effect information
allowed more instructions to be moved thanCHA. There were noputstatic, aloador astoreinstructions moved. Note
that since RLE is performed before LICM, improved side-effect information can cause loads that would have been
moved in LICM to be removed in RLE. Therefore, to measure the impact of side-effect information on LICM, we
disabled RLE when collecting the static LICM counts. We do not show static counts for local CSE, which are minimal
because redundant load elimination is performed before local CSE.

Level 2 optimizations using side-effect information reduced total dynamic load operations in the range of 1%
to 19% (Table VIII). Side-effect analysis enabled a reduction in getfieldoperations (up to 27%), but only reduced
getstaticandaload instructions by up to 3% (Table VIII). For most benchmarks, usingPTA side-effect information
allowed a larger reduction of dynamic loads thanCHA.

Table IX shows speedups achieved for compress, raytrace, mtrt and mpegaudio. The speedups vary from 1.08x to

15

Benchmark Side-Effect getfield getstatic putfield total HIR total LIR

compress
none
any

87
90 (3.45 %)

0
0

1
1

118
122 (3.39 %)

29
29

jess
none
CHA
PTA

139
144 (3.60 %)
161 (15.83 %)

0
0
0

0
0
0

280
287 (2.50 %)
309 (10.36 %)

250
251 (0.40 %)
255 (2.00 %)

raytrace
none
any

87
96 (10.34 %)

0
0

47
47

184
210 (14.13 %)

54
56 (3.70 %)

db
none
any

61
64 (4.92 %)

0
0

0
0

88
92 (4.55 %)

31
32 (3.23 %)

javac
none
any

44
48 (9.09 %)

0
0

5
6 (20.00 %)

116
121 (4.31 %)

479
479

mpegaudio
none
any

128
152 (18.75 %)

27
27

1
1

299
327 (9.36 %)

98
102 (4.08 %)

mtrt
none
any

87
96 (10.34 %)

0
0

47
47

184
210 (14.13 %)

55
57 (3.64 %)

jack
none
any

23
23

0
0

2
2

39
39

58
58

Table VI: Level 2 static counts for LICM

Benchmark Side-Effect getfield getstatic aload

compress
none
CHA
PTA

836681238
713879612 (14.68 %)
694156483 (17.03 %)

29585886
29585886
29585886

450569851
450569851
450569851

jess
none
CHA
PTA

193400124
177280681 (8.33 %)
141340271 (26.92 %)

2326905
2326905
2326572 (0.01 %)

74199530
74197591 (0.00 %)
74188965 (0.01 %)

raytrace
none
CHA
PTA

278990954
217369769 (22.09 %)
217369769 (22.09 %)

1359
1359
1359

70558731
70189162 (0.52 %)
70125938 (0.61 %)

db
none
CHA
PTA

160085986
154814883 (3.29 %)
154814883 (3.29 %)

96012
96012
96012

113165950
113165950
113165950

javac
none
CHA
PTA

129704466
123962720 (4.43 %)
123962933 (4.43 %)

3728755
3726381 (0.06 %)
3726306 (0.07 %)

3947221
3947158 (0.00 %)
3947133 (0.00 %)

mpegaudio
none
CHA
PTA

258084245
254421559 (1.42 %)
254421559 (1.42 %)

16092989
16075411 (0.11 %)
16075411 (0.11 %)

796126083
794492856 (0.21 %)
773557981 (2.83 %)

mtrt
none
CHA
PTA

282145314
220136202 (21.98 %)
220136202 (21.98 %)

2063
2063
2063

71578275
71124467 (0.63 %)
70998019 (0.81 %)

jack
none
CHA
PTA

46154208
42805654 (7.26 %)
42805654 (7.26 %)

1534965
1530924 (0.26 %)
1530924 (0.26 %)

5727775
5727775
5727775

Table VII: Level 2 dynamic count for loads instructions

16

Benchmark Side-Effect total

compress
none
CHA
PTA

1316836975
1194035349 (9.33 %)
1174312220 (10.82 %)

jess
none
CHA
PTA

269926559
253805177 (5.97 %)
217855808 (19.29 %)

raytrace
none
CHA
PTA

349551044
287560290 (17.73 %)
287497066 (17.75 %)

db
none
CHA
PTA

273347948
268076845 (1.93 %)
268076845 (1.93 %)

javac
none
CHA
PTA

137380442
131636259 (4.18 %)
131636372 (4.18 %)

mpegaudio
none
CHA
PTA

1070303317
1064989826 (0.50 %)
1044054951 (2.45 %)

mtrt
none
CHA
PTA

353725652
291262732 (17.66 %)
291136284 (17.69 %)

jack
none
CHA
PTA

53416948
50064353 (6.28 %)
50064353 (6.28 %)

Table VIII: Level 2 dynamic total load count

1.17x on our Intel system, and from 1.02x to 1.20x on AMD. On both systems, mpegaudio has the largest speedup.
These benchmarks are the ones with the highest load densities (Table I), and the ones that we expected would benefit
the most from side-effect information.

A higher level of precision of side-effect information madea difference in performance for compress and mpe-
gaudio. UsingPTA side-effect vsCHA increased the speedup of compress from 1.08x to 1.11x on Intel, and 1.02x to
1.05x on AMD. For mpegaudio, it went from 1.11x to 1.17x on Intel and from 1.15x to 1.20x on AMD.

These results show that using side-effect analysis in global optimizations improved opportunities for load elimina-
tion and moving instructions, reduced dynamic load operations, and improved performance in runtimes. Benchmarks
with higher load densities benefited most from side-effect information. The results also show that points-to analysis
improves side-effect information compared to only usingCHA, but that the differences between points-to analysis
variations are negligible.

5 Related Work

Early side-effect analyses for languages with pointers by Choi et. al. [4] and Landiet. al. [14] made use of may-alias
analysis to distinguish reads and writes to locations knownto be different. These analyses were mainly targeted at
analysis of C, so the call graph was assumed to be mostly static. Therefore, in comparison with our work, in that
setting, the information about pointers was most important, while the call graph was much easier to compute.

In contrast, Clausen’s [6] side-effect analysis for Java was based on a call graph constructed with a CHA-like
analysis, but it did not use any pointer information. This analysis computed read and write information for each field,
ignoring which specific object contained the field read or written. In comparison with our work, Clausen’s analysis is
most similar to our CHA-based side-effect analysis. Clausen applies his analysis results in an ahead-of-time early Java
bytecode optimizer to a similar set of optimizations as we do: dead code removal, loop invariant removal, constant
propagation, and common subexpression elimination.

17

(a)
Benchmark Side-Effect Time(s) Speedup

compress
none
CHA
PTA

10.423
9.635
9.386

1.08x
1.11x

jess
none
CHA
PTA

4.889
4.945
4.872

0.99x
1.00x

raytrace
none
CHA
PTA

4.38
3.93
3.905

1.11x
1.12x

db
none
CHA
PTA

22.625
22.605
22.471

1.00x
1.01x

javac
none
CHA
PTA

10.962
11.138
11.142

0.98x
0.98x

mpegaudio
none
CHA
PTA

9.319
8.41
7.932

1.11x
1.17x

mtrt
none
CHA
PTA

4.681
4.201
4.208

1.11x
1.11x

jack
none
CHA
PTA

6.097
6.122
6.101

1.00x
1.00x

(b)
Benchmark Side-Effect Time(s) Speedup

compress
none
CHA
PTA

9.503
9.316
9.03

1.02x
1.05x

jess
none
CHA
PTA

3.949
3.962
4.002

1.00x
0.99x

raytrace
none
CHA
PTA

2.735
2.607
2.615

1.05x
1.05x

db
none
CHA
PTA

23.212
23.222
23.141

1.00x
1.00x

javac
none
CHA
PTA

7.154
7.21
7.231

0.99x
0.99x

mpegaudio
none
CHA
PTA

5.977
5.175
4.987

1.15x
1.20x

mtrt
none
CHA
PTA

2.88
2.788
2.796

1.03x
1.03x

jack
none
CHA
PTA

3.505
3.47
3.51

1.01x
1.00x

Table IX: Level 2 running time (a) Intel (b) AMD

When evaluating the precision of points-to analyses, it is common to report the size of the points-to sets at field
read and write instructions, as in [18, 23]. Rountev and Ryder [24] evaluate their points-to analysis for precompiled
libraries in this way. Other points-to analysis work [13, 19, 25, 26] takes this evaluation one step further, by also
computing read and write sets summarizing the effects of entire methods, rather than just individual statements, and
propagating this information along the call graph. This is similar to the read and write set computation we mention
in Section 2.3. In general, these studies conclude that differences in precision of the underlying analyses do have a
significant effect on the static precision of side-effect information.

Chowdhuryet. al. [5] study the effect of alias analysis precision on the number of optimization opportunities for
a range of scalar optimizations. However, they only measurethe static number of optimizations performed (rather
than their run-time effect), and their benchmarks are mostly pointer-free C programs, some translated directly from
FORTRAN, so they find, unsurprisingly, that alias analysis precision has little effect.

Studies measuring the actual run-time impact of code optimized using side-effect information are surprisingly
rare. Ghiyaet. al. [11, 12] measure the effectiveness of side-effect information on the run-time efficiency of code
produced by an optimizing compiler for C. Like us, they find that some improvements are possible, and that even
simple, imprecise alias information enables most of the improvements. Diwanet. al. [9] perform a similar study in a
compiler for Modula-3, with type-based alias analyses. They perform redundant load elimination, loop invariant code
motion, and common subexpression elimination, and also findimprovements comparable to ours and Ghiyaet. al.’s.
They also agree that much of the improvement is possible evenwith simple type-based analyses. Razafimahefa [22]
performs loop invariant code motion using side-effect information on Java in an ahead-of-time bytecode optimizer,
and reports run-time speedups comparable with ours on an early-generation Java VM.

Pechtchanski and Sarkar [20] present a preliminary study ofa framework which allows programmers to provide
annotations indicating absence of side-effects. These annotations are communicated to Jikes RVM and used for opti-
mizations. Only limited, preliminary, empirical results of the effect of these annotations are provided, and verification
of the correctness of the programmer-provided annotationshas yet to be done.

In summary, existing work on other languages largely agreeswith our findings on Java. Some side-effect infor-

18

mation is useful for real run-time improvements from compiler optimizations. Although precision of the underlying
analyses tends to have large effects on static counts of optimization opportunities, the effects on dynamic behaviour
are much smaller; even simple analyses provide most of the improvement. Important distinctions of our work from
previous work are that we provide a study of run-time effectsof side-effect information on Java, and that we show how
to communicate analysis results from an off-line analyzer to a JIT.

6 Conclusion

In this study, we showed that side-effect analysis does improve performance in just-in-time (JIT) compilers, and that
relatively simple analyses are sufficient for significant improvements. On level 1 optimizations, side-effect analyses
had little impact on performance, except for one benchmark.On level 2 optimizations, however, our results showed an
increase of up to 98% of static opportunities for load removal, a reduction of up to 27% of the dynamic fields reads,
and execution time speedups ranging from 1.08x to 1.20x. As we expected, using side-effect analysis had the largest
impact on the benchmarks with high load densities.

Acknowledgments

This work was supported, in part, by NSERC and FQRNT.

References

[1] SPEC JVM98 benchmarks.http://www.spec.org/osg/jvm98/.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T.Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine.IBM
Syst. J., 39(1):211–238, 2000.

[3] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs. InProceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 1–11. ACM Press,
1988.

[4] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of pointer-induced
aliases and side effects. InProceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 232–245. ACM Press, 1993.

[5] R. A. Chowdhury, P. Djeu, B. Cahoon, J. H. Burrill, and K. S. McKinley. The limits of alias analysis for scalar
optimizations. In E. Duesterwald, editor,Compiler Construction, 13th International Conference, CC2004,
volume 2985 ofLecture Notes in Computer Science, pages 24–38. Springer, 2004.

[6] L. R. Clausen. A Java bytecode optimizer using side-effect analysis.Concurrency: Practice and Experience,
9(11):1031–1045, Nov. 1997.

[7] C. Click. Global code motion/global value numbering. InProceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementation, pages 246–257. ACM Press, 1995.

[8] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using static class hierarchy
analysis. InECOOP ’95, object-oriented programming: 9th European Conference, volume 952 ofLecture Notes
in Computer Science, pages 77–101, 1995.

[9] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis. InProceedings of the ACM SIGPLAN
’98 Conference on Programming Language Design and Implementation, pages 106–117. ACM Press, 1998.

19

[10] S. J. Fink, K. Knobe, and V. Sarkar. Unified analysis of array and object references in strongly typed languages.
In Static Analysis Symposium, pages 155–174, 2000.

[11] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. InProceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 121–133. ACM Press, 1998.

[12] R. Ghiya, D. Lavery, and D. Sehr. On the importance of points-to analysis and other memory disambiguation
methods for C programs. InProceedings of the ACM SIGPLAN’01 Conference on Programming Language
Design and Implementation, pages 47–58. ACM Press, 2001.

[13] M. Hind and A. Pioli. Which pointer analysis should I use? In Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and analysis, pages 113–123. ACM Press, 2000.

[14] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side effect analysis with pointer aliasing. In
Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation,
pages 56–67. ACM Press, 1993.

[15] O. Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s thesis, McGill University, Dec.
2002.

[16] O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In G. Hedin, editor,Compiler Con-
struction, 12th International Conference, volume 2622 ofLNCS, pages 153–169, Warsaw, Poland, Apr. 2003.
Springer.

[17] T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison-Wesley, Reading, MA, USA, second
edition, 1999.

[18] A. Milanova, A. Rountev, and B. G. Ryder. Parameterizedobject sensitivity for points-to and side-effect analyses
for Java. InProceedings of the 2002 ACM SIGSOFT international symposium on Software testing and analysis,
pages 1–11. ACM Press, 2002.

[19] G. Olivar. Fast points-to and side-effect analysis forthe McCAT C compiler. M.Sc. project, McGill University,
http://citeseer.ist.psu.edu/350797.html, Apr. 1997.

[20] I. Pechtchanski and V. Sarkar. Immutability specification and its applications. InProceedings of the 2002 Joint
ACM-ISCOPE Conference on Java Grande, pages 202–211. ACM Press, 2002.

[21] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, andC. Verbrugge. A framework for optimizing Java using
attributes. InCompiler construction: 10th International Conference, CC2001, volume 2027 ofLecture Notes in
Computer Science, pages 334–354, 2001.

[22] C. Razafimahefa. A study of side-effect analyses for Java. Master’s thesis, McGill University, Dec. 1999.

[23] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java using annotated constraints. InProceedings
of the OOPSLA ’01 Conference on Object-Oriented Programming Systems Languages and Applications, pages
43–55. ACM Press, 2001.

[24] A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs built with precompiled libraries.
In Compiler construction: 10th International Conference, CC2001, volume 2027 ofLecture Notes in Computer
Science, pages 20–36, 2001.

[25] B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang, and R. Altucher. A schema for interprocedural modifica-
tion side-effect analysis with pointer aliasing.ACM Transactions on Programming Languages and Systems,
23(2):105–186, Mar. 2001.

[26] P. A. Stocks, B. G. Ryder, W. A. Landi, and S. Zhang. Comparing flow and context sensitivity on the
modification-side-effects problem. InProceedings of ACM SIGSOFT international symposium on Software test-
ing and analysis, pages 21–31. ACM Press, 1998.

20

[27] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Optimizing Java bytecode
using the Soot framework: is it feasible? InCompiler Construction, 9th International Conference (CC 2000),
volume 1781 ofLecture Notes in Computer Science, pages 18–34, 2000.

21

