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Run-time Evaluation of Opportunities for Objet Inlining in JavaOnd�rej Lhot�ak and Laurie Hendrenfolhotak,hendreng�s.mgill.aSable Researh Group, Shool of Computer Siene, MGill University7 June 2002AbstratObjet-oriented languages, like Java, enourage the use of many small objets linked together by �eldreferenes, instead of a few monolithi strutures. While this pratie is bene�ial from a program designperspetive, it an slow down program exeution by inurring many pointer indiretions. One solutionto this problem is objet inlining: when the ompiler an safely do so, it fuses small objets together,thus removing the reads/writes to the removed �eld, saving the memory needed to store the �eld andobjet header, and reduing the number of objet alloations.The objetive of this paper is to measure the potential for objet inlining by studying the run-timebehavior of a omprehensive set of Java programs. We study the traes of program exeutions in orderto determine whih �elds behave like inlinable �elds. Sine we are using dynami information instead ofa stati analysis, our results give an upper bound on what ould be ahieved via a stati ompiler-basedapproah. Our experimental results measure the potential improvements attainable with objet inlining,inluding redutions in the numbers of �eld reads and writes, and redued memory usage.Our study shows that some Java programs an bene�t signi�antly from objet inlining, with lose toa 10% speedup. Somewhat to our surprise, our study found one ase, the db benhmark, where the mostimportant inlinable �eld was the result of unusual program design, and �xing this small aw led to bothbetter performane and learer program design. However, the opportunities for objet inlining are highlydependent on the individual program being onsidered, and are in many ases very limited. Furthermore,�elds that are inlinable also have properties that make them potential andidates for other optimizationssuh as removing redundant memory aesses. The memory savings possible through objet inlining aremoderate.1 IntrodutionObjet-oriented programs organize data in objets linked together with pointers. While this enhanes modu-larity, making programs easier to understand and maintain, it has a run-time ost due to the pointers whihtake up memory, and must be dereferened to aess the data.Objet inlining onsists of �nding sets of objets whih an be eÆiently fused into larger objets, andfusing them. This redues the time and spae overhead assoiated with pointers, beause pointers betweenobjets whih are fused together are no longer needed; the pointers are said to be inlined.Figure 1(a) shows a trivial program that an bene�t from objet inlining. The Complex lass is used tostore omplex numbers, and the NormFinder manipulates them. In its original form, this program requiresfour reads of the �eld z for every all to its normSq() funtion. Also, every NormFinder objet alloates aComplex objet, with possibly onsiderable memory overhead. Figure 1(b) shows the program after the �eldz has been inlined. The �elds re and im that previously had to be aessed through z an now be aesseddiretly. Also, the alloation of the Complex objet z is now no longer neessary, so the memory overhead isredued.In C++, the programmer may expliitly request that an objet be inlined into another by inluding theontained objet (rather than a pointer to it) as a �eld inside the ontainer objet. The ontained objetthen beomes part of the ontainer objet. In Java, this is not allowed; �elds an ontain only referenes to1



lass Complex {double re, im;}lass NormFinder {Complex z;NormFinder( double re, double im ) {z = new Complex();z.re = re;z.im = im;}double normSq() {return z.re*z.re + z.im*z.im;}} (a) Before inlininglass NormFinder {double z_re, z_im;NormFinder( double re, double im ) {z_re = re;z_im = im;}double normSq() {return z_re*z_re + z_im*z_im;}} (b) After inliningFigure 1: Example of objet inliningnon-primitive objets, not the objets themselves. Even in C++, the burden of speifying whih objets areto be inlined is on the programmer, rather than on the ompiler.Existing work desribes stati analyses and transformations for �nding inlinable pointers and inliningthem [3, 5, 4, 7, 6℄. In ontrast, this study examines run-time data about pointers whih ould be inlinedin a omprehensive olletion of benhmark programs. It therefore gives an upper bound on the amount ofinlining possible in typial programs, even if a perfetly preise ompiler analysis were used. That is, ouraim is to determine the potential usefulness of objet inlining optimizations for typial Java programs.In order to handle the existing approahes to objet inlining, we propose three ategories for inlinable�elds: simply one-to-one, �eld-spei� one-to-one and unique-store. The inlining approah suggested byDolby and Chien [3, 5, 4℄ orresponds to the �rst two ategories, whereas the approah suggested by Laud [7℄handles the �rst and third ategories.Our experimental approah onsists of olleting dynami traes of Java programs and ategorizing eah�eld as one of the three kinds of inlinable �elds, or as non-inlinable. We then study the dynami behaviourof the program in order to determine how many reads/writes ould be eliminated if the inlinable �elds wereinlined, and how muh memory ould be saved. Based on these results, we determine whih benhmarks aremost likely to bene�t from inlining, and we perform the inlining of the most important �elds by hand. Thisallows us to determine the atual speedup that ould be obtained for those benhmarks.The following are our main �ndings:� On some benhmarks, most notably ompress, objet inlining ould eliminate up to 90% of �eld reads,and produe signi�ant speedups (lose to 10%).� Our dynami numbers indiate that one inlinable �eld in the db benhmark is very important. To our2



surprise, when we studied the soure ode for this �eld, we found that it was the result of unusualprogram design, and when this design aw was �xed by e�etively inlining the �eld, both the programdesign and the program performane improved.� However, in general, opportunities for objet inlining are highly dependent on the benhmark, and areoften very limited.� The main bene�t from objet inlining is the redution in the number of �eld reads; the potentialredution in the number of �eld writes is relatively minor.� Objet inlining potentially saves moderate amounts of memory (up to 6MB of alloations during theexeution of most benhmarks).This paper is organized as follows. First, we desribe other work related to objet inlining in Setion 2.In Setion 3, we present the riteria used to determine whether a given �eld ould be inlined. In Setion 4,we explain our experimental setup. We report our results in Setion 5. Finally, we onlude in Setion 6.2 Related WorkThe most well-known work on objet inlining is by Dolby and Chien [3, 5, 4℄. They formulate a de�nition ofdynami one-to-one �elds, and show that suh �elds an be inlined in a way that preserves semantis. Theyalso desribe an implementation of their transformation in ICC, a ompiler for a language similar to bothJava and C++, and evaluate its ost and e�etiveness on several C++ benhmarks ported to their ompiler.They do not provide experimental results for Java benhmarks, so one goal of our study is to measure thepotential impat of their approah when applied to Java.Laud [7℄ gives a slightly di�erent de�nition of inlinable �elds, and explains the details that would berequired in a Java ompiler implementing the optimization. He does not provide an implementation orexperimental results. Our study measures the opportunities for inlining that are possible via Laud's approah,but not possible via Dolby and Chien's approah and vie versa.Ghemawat, Randall and Sales [6℄ desribe objet inlining as one appliation of their �eld analysis. Theiranalysis is ontext-insensitive, and takes advantage of aess modi�ers to limit the amount of ode that needsto be analyzed for eah �eld. This makes their analysis less aggressive, but muh faster, than Dolby andChien's.Shuf et al. [9℄ measure run-time data behaviour in typial Java programs, as does our study. However,they do not address the spei� issue of objet inlining.3 De�nitionsIn this setion, we desribe ways in whih a �eld ould be inlined, and the behaviours that the �eld mustexhibit to be inlinable in these ways. We start with a simple de�nition, and then extend it in two di�erentways. Although other de�nitions of �elds suitable for inlining are oneivable, our fous is on determiningthe e�etiveness of the inlining approahes whih have already been proposed [3, 5, 4, 7℄.Before proeeding, we will make expliit some of the terminology used throughout this paper. By theterm objet, we mean a single spei� instane, at run-time, of some lass. By the term �eld, we mean asingle delaration of a �eld in some lass. As suh, a �eld is uniquely identi�ed by its name and the lass inwhih it is delared.3.1 Simply one-to-one �eldDe�nition 1 (Simply one-to-one �eld) A simply one-to-one �eld f is a �eld for whih:3



� [ontains-unique℄ every ontainer objet having the �eld f ontains only one ontained objet through fthroughout its lifetime,� [unique-ontainer-same-�eld℄ none of these ontained objets are ever stored in this same �eld f of anyother objet,� [unique-ontainer-di�erent-�eld℄ none of these ontained objets are ever stored in any �eld other thanf of any objet, and� [not-globally-reahable℄ none of these ontained objets are ever stored in any stati �eld, or as elementsof any array.Simply one-to-one �elds an be inlined by both the transformations suggested by Dolby and Chien [3, 5, 4℄,and by Laud [7℄.Figure 2 depits suh a �eld. The ontainer objets p and q, throughout their lifetimes, eah orrespondto exatly one ontained objet through the �eld f :  and d, respetively. These ontained objets are notstored anywhere else. p q df f
Figure 2: Simply one-to-one �eldIn order to inline a simply one-to-one �eld, a ompiler must gather additional information in addition toproving that the �eld is simply one-to-one. First, it must determine the ow of the ontainer and ontainedobjets from their alloation sites to the point where the ontained objet is written to the �eld. Seond,it must �nd all uses of the �eld in the program. The alloation sites of the two objets are replaed by asingle site alloating a ombined objet. This ombined objet ontains the �elds and methods of both theontainer and ontained objets, but not the inlined �eld. Eah load of the �eld (y = x.f) in the program isonverted to a opy (y = x), sine the objet x now has all the �elds of x.f. Issues related to the methodsof the objets and their types are disussed in detail in Dolby and Chien's papers; we do not disuss themhere.In Figure 3, we see the e�et of inlining the �eld from Figure 2. The ontents of the ontained objets, and d, have been merged into the ontainer objets, p and q, respetively. For eah inlined �eld, we save,at run-time, all the loads and stores that would be performed through that �eld. Also, for eah pair ofontainer and ontained objet alloated, we save one objet alloation (beause the objets are alloatedtogether), and an amount of memory equal to the size of a pointer, plus the objet header overhead of theontained objet. p qdFigure 3: Simply one-to-one �eld after inlining
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3.2 Field-spei� extensionThe de�nition of simply one-to-one �elds just presented does not apture relationships like the one in Figure 4,in whih more than two objets are reated together, and onneted by pointers. In order to inline suh ases,we extend the de�nition by removing the unique-ontainer-di�erent-�eld and not-globally-reahable onditions.De�nition 2 (Field-spei� one-to-one �eld) A �eld-spei� one-to-one �eld f is a �eld for whih:� [ontains-unique℄ every ontainer objet having the �eld f ontains only one ontained objet through fthroughout its lifetime, and� [unique-ontainer-same-�eld℄ none of these ontained objets are ever stored in this same �eld f of anyother objet.Field-spei� one-to-one �elds an be inlined by the transformation suggested by Dolby and Chien [3, 5, 4℄,but not by the one suggested by Laud [7℄.The �elds f and g in Figure 4 are both �eld-spei� one-to-one. Eah ontainer objet (p and q) ontainsonly one objet () throughout its lifetime through the �eld. The ontained objet is not stored through the�eld f into any objet other than p, and it is not stored through the �eld g into any objet other than q.The �elds therefore satisfy the onditions for being �eld-spei� one-to-one.p q f gFigure 4: Field-spei� one-to-one �eldField-spei� one-to-one �elds an be inlined one by one in the same way as simply one-to-one �elds,by merging the alloation sites of the ontainer and ontained objet, and by replaing referenes to theontained objet with referenes to the ontainer objet. Figure 5 shows the e�et of inlining �eld f fromFigure 4. Notie how the �eld g, whih was referring to the objet  ontained in f, now refers to the ontainerobjet, p. p qgFigure 5: Field-spei� one-to-one �eld after inlining fSine p has beome a single objet, the �eld g is now simply one-to-one, and an therefore be inlined ina seond inlining step, as shown in Figure 6. qpFigure 6: Field-spei� one-to-one �eld after inlining f and g5



Beause �eld-spei� one-to-one �elds are inlined in the same way as simply one-to-one �elds, the bene�tfrom inlining them is the same. All loads and stores through them are eliminated, and for eah pair ofontainer and ontained objet, one alloation and the memory for one pointer and one objet header issaved.3.3 Unique-store extensionThe de�nition of simply one-to-one �elds an be extended in a di�erent way, by simply dropping the ontains-unique ondition.De�nition 3 (Unique-store �eld) A unique-store �eld f is a �eld suh that� [unique-ontainer-same-�eld℄ none of the objets ontained in f are ever stored in this same �eld f ofany other objet,� [unique-ontainer-di�erent-�eld℄ none of these ontained objets are ever stored in any �eld other thanf of any objet, and� [not-globally-reahable℄ none of these ontained objets are ever stored in any stati �eld, or as elementsof any array.Unique-store �elds an be inlined by the transformation suggested by Laud [7℄, but not by the onesuggested by Dolby and Chien [3, 5, 4℄.Beause a unique-store �eld of a ontainer objet may hold multiple ontained objets throughout itslifetime, it must be inlined di�erently from a one-to-one �eld. The alloation sites of ontainer and ontainedobjet are not merged. The inlined �eld is deleted from the ontainer objet, and the ontents of the ontainedobjet are inserted. The �eld store (y.f = x) is replaed by a opy of the ontents of x into the orresponding�elds that have been added to y. As before, all referenes to y.f are replaed with referenes to y. Beauseontainer objets with unique-store �elds are not reated together with their ontained objets, the ompilermust prove that at the program point where the ontained objet is stored into the �eld, there are no livealiases to it, or to the ontained objet that is being overwritten. By the de�nition of unique-store �elds,suh aliases ould only be in loal variables.Figure 7 shows an example of a unique-store �eld. The �eld f is unique-store beause the objets storedinto p through f during p's lifetime,  and d, are not stored anywhere else. The �eld would be inlinedas in Figure 8. The ontained objets  and d still exist independently before they are stored into theontainer. The rossed-out  reets the fat that the ontents of  are �rst stored into the ontainer, andlater overwritten with the ontents of d. p df f
Figure 7: Unique-store �eld3.4 Non-inlinable �eldsFigure 9 shows an example that does not �t any of these de�nitions of inlinable �elds. The �eld f is not one-to-one (neither simply nor �eld-spei�) beause the ontained objet  is stored into two ontainer objets6



p6d dFigure 8: Unique-store �eld after inliningp and q through this same �eld f. It is also not unique-store, beause the objet  stored in p through it isalso stored in q, and vie-versa. Beause suh a �eld annot be inlined aording to any of the proeduresdesribed, we onsider suh a �eld to be non-inlinable for our purposes.p q f fFigure 9: Non-inlinable �eld4 Experimental SetupWe used the Soot framework [12, 11, 10℄ to instrument the byteode of several benhmarks to generate traesof instane �eld stores and loads, and of array element and stati �eld stores. We then analyzed the traesprodued by running the benhmarks, and identi�ed �elds that satis�ed the de�nitions of simply one-to-one,�eld-spei� one-to-one, or unique-store. For eah suh �eld, we ounted the number of stores and loads ofthe �eld. These loads and stores would be eliminated if the �eld were inlined (exept for unique-store �elds,for whih only loads would be eliminated, and stores would be turned into opies).4.1 BenhmarksOur benhmarks were taken from the ommonly-used SPECjvm [2℄ benhmark suite, and from theashesJSuite portion of the Ashes [1℄ benhmark suite. The latter onsists of real-world programs of non-trivial size. Brief desriptions of the benhmarks are given in Table 1, along with the number of lasses,Jimple1 statements, and instane �elds of referene type (inluding arrays) in eah benhmark. We ountonly �elds whih are read or written at least one during exeution of the benhmark.4.2 Trae AnalysisGiven program traes ontaining all instane �eld stores (instrutions of the form p.f = ), stati �eldstores (instrutions of the form ClassName.f = ) and array stores (instrutions of the form a[i℄ = ), weanalyze the program traes using a three-step proess.First, we ompute the prediates for eah �eld. We begin by eliminating dupliate entries of instane�eld stores to redue the trae. We then ompute the prediates ontains-unique, unique-ontainer-same-�eld,1Jimple is the three-address representation used by our Soot [12, 11, 10℄ byteode manipulation framework.7



Benhmark Desription Classes Statements Fieldsompress Lempel-Ziv ompressor/deompressor 39 7322 23db Memory resident database 30 7293 11jak Parser generator 80 16792 66java Java ompiler 206 31069 170jess Expert system 175 17488 65mpegaudio MP3 deompressor 78 19585 108mtrt Multi-threaded ray-traer 53 10067 45raytrae Single-threaded ray-traer 52 10037 45javasr-p Java soure HTML pretty-printer 161 40667 82kawa- Sheme to byteode ompiler 437 33228 163rhino-a Javasript interpreter 80 26328 99sable-j Parser generator, Jimple grammar 326 26911 280sable-w Parser generator, Wig grammar 326 26911 297shroeder-m Audio editor, medium-length input 102 9713 27shroeder-s Audio editor, short input 102 9713 27soot- Byteode optimizer 621 42107 241toba-s Byteode to C ompiler 41 17504 56Table 1: Benhmarksunique-ontainer-di�erent-�eld, and not-globally-reahable for eah �eld. To do this, we start by initializingeah prediate to true for every �eld. This orresponds to initially estimating that all �elds are inlinable.Then, for all pairs of statements storei and storej from the redued trae, we hek to see if any of the fourpatterns given in the �rst two olumns of Table 2 apply. Note that in all the patterns given in the table, pand q are distint objets, as are  and d, and f and g are distint �elds. Eah suh pattern of stores reatesthe relationship depited in the third olumn of the table, ausing the violation of one of the four prediates.Therefore, for eah pair of stores mathing one of the patterns, we set the appropriate prediate(s) (given inthe fourth olumn) to false.Seond, based on the values of these prediates, we lassify eah �eld as simply one-to-one, �eld-spei�one-to-one, unique-store, or non-inlinable, aording to the de�nitions given in Setion 3. For example,for a �eld f , using De�nition 1, we would lassify f as simply one-to-one if ontains-unique(f) and unique-ontainer-same-�eld(f) and unique-ontainer-di�erent-�eld(f) and not-globally-reahable(f).Note that aording to our de�nitions, if a �eld is simply one-to-one it is also �eld-spei� one-to-oneand unique-store. However, for our ategorization, we only ount a �eld as �eld-spei� one-to-one when itis �eld-spei� one-to-one, but not simply one-to-one. Similarly, we ategorize a �eld as unique-store onlywhen it is unique-store, but not simply one-to-one.Third, for eah �eld, we ount the number of loads and stores through that �eld, and the number ofunique ontained objets that are stored in the �eld. We summarize these ounts for the four di�erentategories of �elds.5 Experimental Results5.1 Inlinable �eldsFigure 10(a) shows the proportion of �eld reads exeuted (getfield instrutions) that read from �elds thatwere determined to be inlinable. For most of the benhmarks, this is the majority of all �eld reads. We ansee that most of the �eld reads our through �elds that are either simply one-to-one, or unique-store.This measurement may be overly optimisti, beause it inludes all �elds, inluding �elds of array type.Fields of array type aount for a large proportion of �eld reads, whih is not surprising, beause in Java,8



storei storej Relationship Prediatesp.f =  p.f = d p df f ontains-unique(f) falsep.f =  q.f =  p q f f unique-ontainer-same-�eld(f) false
p.f =  p.g = orq.g = 

p f gorp q f g unique-ontainer-di�erent-�eld(f) falseunique-ontainer-di�erent-�eld(g) false
p.f =  Class.g = ora[i℄ =  p global f not-globally-reahable(f) falseTable 2: Rules for omputing prediates
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Unique-store Field-spec. one-to-one Simply one-to-one(a) all �elds (b) non-array �eldsFigure 10: Field reads through inlinable �eldsthe only way to inlude arrays in objets is as �elds. The Java language does not make it possible to inlinethe elements of an array into the objet ontaining the array. Even if this were possible (if an objet inliningoptimization were performed by the virtual mahine, for example), �elds of array type ould not be inlinedunless the size of the array were onstant and known at ompile time.Figure 10(b) shows the proportion of all �eld reads exeuted that read from �elds of non-array type9



that were determined to be inlinable. This proportion is signi�antly smaller for many of the benhmarks,and is muh more dependent on the individual benhmark, ranging from 0.5% for toba-s to 90.0% forshroeder-m.Among the �elds of non-array type, almost none are inlinable aording to the unique-store extension.This is beause many of the unique-store �elds are arrays in strutures suh as hash tables, whih are resized(replaed with larger arrays) when they beome full.When �elds of array type are ignored, �eld-spei� one-to-one �elds beome relatively more signi�ant,espeially in rhino-a, where they aount for 16.6% of all �eld reads. The most signi�ant suh �eld is ajava.lang.String that is stored in several related objets. However, in general, most inlinable �elds ouldbe found by an analysis reognizing only simply one-to-one �elds, without the �eld-spei� and unique-storeextensions.For many of the benhmarks, a small number of inlinable �elds aount for a majority of the reads viainlinable �elds at run-time. Table 3 shows the number of inlinable �elds aounting for 50%, 75%, 90%,99% and 100% of the run-time reads via inlinable �elds. For example, for the ompress benhmark, the twomost important inlinable �elds aount for at least 50% of all reads of inlinable �elds, whereas the sevenmost important �elds aount for 99% of the reads and nine inlinable �elds aount for 100% of the reads.The olumn labeled Total gives all inlinable �elds in the benhmark and the di�erene between the olumns100% and total is due to some inlinable �elds that are never read. In the ase of ompress, there are four�elds whih are inlinable, but never read.Note that 50% of the reads are due to a very small number of �elds (usually � 3) and even 90% ofthe reads an usually be aounted for by fewer than 10 �elds. The exeptions (kawa-, sable-j andsable-w and soot), where more than 10 �elds are needed, orrespond to those benhmarks where thereare relatively few reads via inlined �elds, and these benhmarks are unlikely to show muh improvement inany ase. Benhmark 50% 75% 90% 99% 100% Totalompress 2 5 6 7 9 13db 1 1 1 1 7 8jak 2 5 7 12 41 45java 1 3 8 25 61 64javasr-p 2 4 6 15 35 38jess 2 4 5 11 37 41kawa- 6 12 20 37 49 60mpegaudio 2 3 4 22 66 72mtrt 1 3 5 10 27 29raytrae 1 3 5 10 28 30rhino-a 2 2 3 5 37 43sable-j 2 6 12 42 220 221sable-w 2 5 11 34 233 235shroeder-m 2 3 4 4 13 17shroeder-s 2 3 4 4 13 17soot- 3 8 20 52 122 144toba-s 3 4 6 10 12 15Table 3: Number of �elds aounting for a perentage of reads of inlinable �eldsIn many benhmarks (ompress, jak, java, javasr-p, shroeder-m, and shroeder-s), some of themost important inlinable �elds ontain objets used for input and output, and the �elds are read for everyunit of data input or output. Many of these �eld reads ould probably be eliminated by methods other than�eld inlining, suh as hoisting invariant loads out of loops.In many other benhmarks (notably db, java, jess, kawa-, mtrt, raytrae, rhino-a, sable-j,10



sable-w, and soot-), the most important inlinable �elds are used to store data being manipulated bythe benhmark. Aross almost all benhmarks, �elds ontaining objets from the Java standard lass libraryaount for a majority of the non-array inlinable �eld reads. In this study, �elds ontained in objets de�nedin the standard lass library were not onsidered, but in an earlier study [8℄, we found nearly all non-array�elds delared in the standard lass library to be aessed a negligible number of times.In many ases, objets ontained in inlinable �elds are either reated in the onstrutor of the ontainerobjet, or are passed as arguments to the onstrutor. This should make it relatively easy for a stati analysisto �nd these �elds. In some of the benhmarks, some of these �elds are even delared private.Table 4 shows the atual numbers of �elds found to be inlinable, as well as the number of reads, writes,and unique writes (that is, the number of unique ontained objets) through them. Some of the benhmarksstore slightly over half a million unique ontained objets in inlinable �elds. For eah one-to-one �eld inlined,the memory for the objet header of the ontained objet is saved, as well as the memory used by the �eld.Assuming 32-bit words, and two-word objet headers, this amounts to a savings of 6MB of alloations forhalf a million ontained objets inlined. When unique-store �elds are inlined, the word of memory storingthe �eld is saved, but the objet header is not, beause the ontained objet is still alloated separately.In addition, memory for the ontents of the ontained objet must be alloated in the ontainer objet.We therefore expet an inlined unique-store �eld to use more memory than it would if it were not inlined.However, sine the number of objets stored in unique-store �elds is small, this overhead should be small.5.2 SpeedupThe relative number of �eld reads through inlinable �elds is not neessarily preditive of the speedupsattainable by �eld inlining, beause di�erent programs may perform very di�erent numbers of �eld reads.Figure 11 shows the absolute numbers of �eld reads through inlinable non-array �elds per seond of exeutionof eah benhmark. Note that the value for ompress is muh higher than for the other benhmarks, anddid not �t on the graph; the atual value is 8:3 � 106. As this graph shows, the number of inlinable �eldreads, and therefore the potential speedup, is highly variable between benhmarks.
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Unique-store Field-spec. one-to-one Simply one-to-oneFigure 11: Number of �eld reads per seond through inlinable non-array �eldsCompared to the number of reads, the number of writes is relatively small in most of the benhmarks.Any speedup due to eliminated �eld writes is therefore likely to be small. Aside from jak, the number ofwrites to unique-store �elds is negligible, so the overhead of having to replae writes to unique-store �eldswith opies should be small.In order to study the performane improvements attainable by inlining �elds, we manually inlined theinlinable �elds of non-array type in ompress, db, and javasr-p. We hose these benhmarks beause theyhave relatively high numbers of �eld reads removable by inlining, and beause unobfusated soure ode for11
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them was available. We ompared the resulting benhmarks to the originals on an Intel Pentium II at 333MHz with 384MB of memory running Linux 2.2.20, and a Sun UltraSPARC-III at 750 MHz with 1GB ofmemory running SunOS 5.8, using the latest released versions of Java virtual mahines from Sun and IBM.The exat versions used were build 1.4.0-b92 of the Sun Client VM and build x130-20020124 of the IBMClassi VM. Table 5 shows the speedups due to inlining, averaged over �ve runs of the benhmark on eahplatform. Benhmark SpeedupPentium SPARCIBM 1.3.0 Sun 1.4.0 Sun 1.4.0ompressobjet inlining 7.8% 8.4% 10.8%loop invariant 3.5% 1.2% 5.0%dbobjet inlining 9.5% 4.0% 10.6%javasr-pobjet inlining -0.4% -0.4% -1.7%Table 5: Speedup from hand-optimizing �eldsCompress has a very simple objet hierarhy, with lasses being used to group data, but with no omplexrelationships between objets. Seven �elds aount for over 99.9995% of the reads of inlinable �elds, so weonly inlined these seven �elds.In db, a single �eld aounts for 99.5% of reads of inlinable �elds. This �eld is the only �eld in the lassEntry, whih is a wrapper lass for java.util.Vetor. Inlining the �eld is equivalent to making the Entrylass extend Vetor, rather than ontaining it. This simple transformation enables a signi�ant speedup. Infat, given that db has many fewer reads per seond than ompress (see Figure 11), we were expeting thatreduing the reads would lead to relatively little speedup. However, apparently inlining this one �eld has anenabling e�et on other optimizations and a speedup of around 10% is exhibited.The struture of javasr-p is muh more omplex than ompress and db, so we were only able to hand-inline �elds aounting for 64% of the reads of inlinable �elds. Repeated experiments showed very littlespeedup or slowdown and we onluded that the e�et of inlining �elds in this benhmark is not signi�ant.Unsurprisingly, we notied that in ompress, the inlinable �elds aounting for most of the �eld readswere read in loops with large numbers of iterations. Furthermore, all these �eld reads were also loop invariant.This is also not surprising, and in fat follows from the de�nition of one-to-one �elds (spei�ally from theontains-unique ondition). We fatored the loop invariant �eld reads out of the loops by hand. The resultingode eliminates almost all the �eld reads that ould be eliminated by objet inlining. The speedup, thoughsmaller than the speedup from objet inlining, is signi�ant. A possible reason for the smaller speedup isthat some of the loops that we optimized all other methods, so the loop invariant objet that is read mustbe passed into these other methods, inreasing the overhead of the method alls. Another possible reason isthat objet inlining may enable the virtual mahine to perform more method inlining optimizations.We emphasize that the diret bene�t of objet inlining, the redution in the number of �eld reads, ansometimes be obtained by other optimizations like loop invariant load hoisting, beause one-to-one �elds areby de�nition loop invariant, and beause �elds aounting for large numbers of reads are likely to be insideloops.6 Conlusions and Future WorkIn this paper, we have proposed a ategorization of inlinable �elds, and we have reported results of a studyof the potential usefulness of objet inlining for typial Java programs. Our analysis of exeution traes ofJava programs allows us to quantify the potential e�etiveness of objet inlining as applied to Java.13
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