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ABSTRACT
In this paper we present Jedd, a language extension to Java that
supports a convenient way of programming with Binary Decision
Diagrams (BDDs). The Jedd language abstracts BDDs as database-
style relations and operations on relations, and provides static type
rules to ensure that relational operations are used correctly.

The paper provides a description of the Jedd language and re-
ports on the design and implementation of the Jedd translator and
associated runtime system. Of particular interest is the approach
to assigning attributes from the high-level relations to physical do-
mains in the underlying BDDs, which is done by expressing the
constraints as a SAT problem and using a modern SAT solver to
compute the solution. Further, a runtime system is defined that
handles memory management issues and supports a browsable pro-
filing tool for tuning the key BDD operations.

The motivation for designing Jedd was to support the develop-
ment of whole program analyses based on BDDs, and we have used
Jedd to express five key interrelated whole program analysesin our
Soot compiler framework. We provide some examples of this ap-
plication and discuss our experiences using Jedd.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Data types and structures; D.3.4 [Programming Languages]:
Processors; E.2 [Data]: Data Storage Representations

General Terms
Languages, Design, Experimentation

Keywords
Binary decision diagrams, relations, language design, Java, pro-
gram analysis, boolean formula satisfiability

1. INTRODUCTION
Binary Decision Diagrams (BDDs) [8] are widely used for ef-

ficiently solving problems in model checking, and recently,we
demonstrated that BDDs are very useful for defining compact and
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efficient solvers for whole program analyses like points-toanaly-
sis [5]. As BDDs have been in use for some time, there exist several
excellent libraries providing efficient representations,algorithms
and memory management techniques for BDDs, including two C-
based libraries we have been using, BuDDy [14] and CUDD [25].

Based on our very positive experience with using BDDs for pro-
gram analysis, we embarked on a project to express a number of
key, interrelated whole program analyses for Java using BDDs in-
side our Java compiler framework, Soot [27]. We still wantedto
use existing efficient C-based libraries, but now we required a clean
and efficient interface between the Java code of our compilerand
our BDD-based algorithms.

In developing our approach, it soon became apparent that a sim-
ple strategy of providing a Java wrapper to interface with a BDD
library was not a good solution, for many reasons. First, we found
that the interface provided by the existing BDD libraries isvery low
level, and as we attempted to express several complex interrelated
analyses, understanding and maintaining our code became difficult.
Moreover, programming at such a low level was error prone, and
errors in our code led to either the BDD library aborting, or worse,
to incorrect results. The implicit nature of the BDD representation
made these errors difficult to track down. Furthermore, we found
that it is quite difficult to match the memory management in Java
with the reference-counter-based schemes employed in the BDD
packages. Finally, we found that tuning a BDD-based algorithm
requires profiling information about the size and shape of the un-
derlying BDDs at each program step. We had previously developed
some ad-hoc methods for visualizing this information, but amore
automated approach was needed.

Our solution, and the topic of this paper, was the development of:
(1) Jedd, a language extension to Java, which provides a high-level
way of programming BDD-based algorithms based on relationsand
operations on relations; (2) an associated translator which automat-
ically translates Jedd to Java code that efficiently interacts with
back-end solvers; and (3) run-time support for memory manage-
ment, debugging and profiling of BDD operations. The key aspects
of our approach, and the main contributions of this paper, are:

BDDs abstracted as relations:Rather than expose BDDs and their
low-level operations directly, our Jedd language providesa
more abstract data type based on database-style relations,and
operations on those relations. In developing program analy-
ses using BDDs, we have found that this is a more appropri-
ate level of abstraction.

Static and dynamic type checking: When using a BDD library
directly, there is very little type information to help the pro-
grammer determine if BDD operations are used in a consis-
tent and correct fashion. In the Jedd approach, all operations
on relations have static type rules which help to eliminate
many programmer errors. Properties that cannot be checked
statically are enforced by runtime checks.



Code generation strategy:We provide a strategy to convert the
high-level relational operations into low-level BDD opera-
tions, and a mechanism for interfacing to several different
BDD back-ends.

Algorithm for physical domain assignment: An important issue
in programming with BDDs is how to assign physical do-
mains of BDD variables to the problem being solved. When
programming directly with BDDs, the programmer must ex-
plicitly make all of the assignments and ensure that BDD op-
erations are applied to the correct physical domains, which
is a tedious process. Furthermore, a small change in physical
domain mappings may require many changes in the program.
When specifying a program using the Jedd language, the user
specifies only the important assignments, and the translator
completes a consistent mapping for the remainder of the pro-
gram. The problem of assigning physical domains turns out
to be NP-complete. We provide an algorithm to express it
as an instance of the SAT problem, and we show that, us-
ing modern SAT solvers, the time to find a solution is very
acceptable. In cases where no solution exists, we provide in-
formation back to the programmer to help them modify the
program to make the problem solvable.

Run-time support for memory management: BDD solvers make
use of reference counter memory management techniques
to efficiently reclaim the BDD data structures. These re-
quire the programmer to explicitly manipulate the reference
counts, which is error-prone and does not fit with the Java
memory management model. Jedd frees the programmer
from this task by automatically managing all reference counts,
and freeing BDDs as soon as it is safe to do so.

BDD profiler: In our previous and current work with BDDs, we
found that tuning the BDD-based algorithms required profil-
ing the size and shape of the BDD data structures at each pro-
gram point. Our Jedd system allows the user to automatically
generate profiling information that can be browsed using any
HTML browser, and which provides both counts of the num-
ber of operations applied, and graphical figures showing the
size and shape of the underlying BDD data structures at each
program point.

Proof of concept applications: In order to verify that our approach
works, we have implemented several interrelated whole pro-
gram analyses using the Jedd system. We found that the al-
gorithms were quite easy to specify, compact, and that the
resulting BDD solvers were efficient. We also found that the
physical domain assignment algorithm worked well, ran in
acceptable times, and provided good mappings of attributes
to physical domains.

A high-level overview of the complete Jedd system is given in
Figure 1. Jedd programs are written in our extension to Java,and
are provided as input to thejeddc compiler. Thejeddc compiler
is composed of a front-end (parser and semantic analysis) and a
back-end (physical domain assignment and code generation). The
physical domain assignment module calls an external SAT solver
tool. The output ofjeddc is in the form of standard Java files
which can be incorporated into any Java project. The Java files
produced byjeddc , along with other ordinary Java source mak-
ing up a project, are compiled to class files using a standard Java
compiler such asjavac . Unless the code written in Jedd is mod-
ified, jeddc is not needed when recompiling the Java part of the
project. The resulting class files contain calls to the Jedd runtime
library, which interfaces using JNI to a BDD package. A JVM is
used to execute the classes along with the Jedd runtime. The run-
time also includes a profiler, which writes profile information into
a SQL database. When combined with CGI scripts accessing the
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Figure 1: Overview of Jedd system

database, an HTML browser can be used to navigate profiler views
of BDD operations.

The remainder of this paper is structured as follows. In Section 2,
we give an introduction to the Jedd language, along with someillus-
trative examples from our application of Jedd to program analysis.
In Section 3, we explain the key aspects of thejeddc compiler,
with a particular emphasis on how we handle code generation and
physical domain assignment. In Section 4, we describe the impor-
tant elements of the design of our runtime system and profiler, and
in Section 5, we briefly report on our experiences with using Jedd
to implement five interrelated whole program analyses in theSoot
compiler framework. Finally, in Section 6, we discuss related work,
and in Section 7, we conclude and suggest future work.

2. JEDD LANGUAGE
In this section, we describe the Jedd language, and illustrate key

concepts with examples. These examples are taken from exten-
sions to the Soot framework that we have written in Jedd. These
extensions perform interrelated whole-program analyses such as
points-to analysis, call graph construction, and side-effect analy-
sis in BDDs, and together they form a significant applicationof
Jedd. Figure 2 shows an overview of the five main modules that
have been implemented in Jedd and how they communicate with
each other. In Figure 4, we show a simplified version of the core
of the Virtual Call Resolution module to give an idea of what Jedd
code looks like.

Hierarchy Virtual Call
Resolution Call Graph

Points-to
Analysis

Side-effect
Analysis

Figure 2: BDD-based analyses in Soot

The remainder of this section is structured as follows. In Sec-
tion 2.1, we introduce a new data type, relations, and in Section 2.2,
we describe the new operations provided for relations. The gram-
mar for the extensions is given in Figure 5 and the type rules in
Figure 6. In Section 2.3, we describe how objects can be extracted
from relations back to Java.

2.1 Relations
Jedd extends the Java language with a new data type, database-

style relations. Informally, a relation is just a set of tuples. For
example, the top part of Figure 3 shows a relation that contains



type signature method
A foo() A.foo()
B bar() B.bar()

// declaring a relation with three attributes
<type, signature, method> implementsMethod;

// declaring a relation with explicit mappings
// to physical domains
<type:T1, signature:S1, method:M1>

implementsMethodMapped;

Figure 3: Relations

two tuples, and each tuple contains values for the attributes type,
signatureandmethod. An attribute is just a nameddomain, where
a domain is a set of Java objects such as the set of all types in a
program being analyzed, or the set of all methods. All tuplesin a
relation must have the same set of attributes, and we call theset
of attributes for a relation itsschema. The relations in Jedd are
high-level abstractions for BDDs, and there must exist someway
of mapping the attributes of the higher-level Jedd relationto the
underlying BDDs. Aphysical domain is a set of BDD variables
used to represent an attribute of a relation.

The bottom part of Figure 3 shows two different ways of declar-
ing a relation in Jedd. The first example declares theimplements-
Method relation which has three attributes. In this case, no phys-
ical domain mapping is given for the attributes and it is leftto the
Jedd compiler to find a mapping. However, sometimes the pro-
grammer does want to expose the mapping of attributes to physical
domains, and the declaration ofimplementsMethodMapped de-
clares another relation with the same schema as before, but with
explicit mappings to the physical domainsT1, S1 andM1. The de-
tails of physical domains and the algorithm to perform the mapping
of attributes to physical domains are described in Section 3.

Note that in our example, we have just used names for attributes
(i.e. type , signature andmethod ). These names must be de-
fined by the Jedd programmer by defining special Java classes that
implement the interfacejedd.Attribute to specify the domain
and the name. Similarly, each domain is defined by implementing
the jedd.Domain interface, and each physical domain is defined
by implementing thejedd.PhysicalDomain interface. Each do-
main specifies the maximum number of objects in it, and provides
a mapping from Java objects to integers and vice versa. The integer
associated with an object is used to represent the object in BDDs.
Jedd’s type checker ensures that any use of an interface, domain or
physical domain is a subclass of the correct interface.

Only relations with the same schema are assignable and com-
parable. Like other primitive Java types, relations are passed by
value, not by reference. Jedd defines two constants,0B and1B, the
empty relation and the full relation (containing all possible tuples),
respectively. These constants have a special type that makes them
comparable and assignable to any relation type, much like Java’s
null constant. Jedd also provides an easy way to create new tuples
from Java objects. For example, in Soot, we use the followingcode
to add a tuple to theimplementsMethod relation:

void addMethod( Type newType, Signature newSig,
SootMethod newMethod ) {

implementsMethod |= new { newType=>type,
newSignature=>signature, newMethod=>method };

}

The new expression constructs a relation of a single tuple with
the Java objectsnewType , newSignature , andnewMethod in at-
tributes type, signature, and method, respectively. This relation of
a single tuple is then added into theimplementsMethod relation.

2.2 Operations on Relations

2.2.1 Set Operations and Comparison
The set union, intersection, and difference operations on rela-

tions viewed as sets of tuples are written in Jedd using the operators
| , &, and- , respectively. These operations make sense only when
their arguments have the same schema, and this is enforced bythe
static type checking. Jedd also defines the expected shorthand as-
signment operators|= , &=, and-= . In the example above, the|=
operator is used to add the new tuple to theimplementsMethod
relation. The== and != operators are used to compare relations
for equality, an operation that takes only constant time in BDDs.

2.2.2 Projection and Attribute Operations
Jedd provides three operations on the attributes of a relation. A

projection removes an attribute from the relation, along with the
objects associated with the attribute in each tuple. Recallthat re-
lations are sets of tuples with no duplicates. Since removing an
attribute from two tuples that differ only in that attributemakes the
tuples equal, a projection may reduce the number of tuples ina
relation. Attribute renaming substitutes one attribute for another,
without changing the objects stored in tuples.Attribute copying
adds a new attribute to a relation. In each tuple, the new attribute is
mapped to the same object as the attribute being copied.

To illustrate how these operations are used, we will walk through
the problem of resolving virtual method calls given the actual types
of the receivers. Given a receiver type and a method signature, the
algorithm must search for a class implementing a method withthe
signature, starting from the receiver type and moving up theclass
hierarchy. In Jedd, this is done for an entire relation at once, rather
than one signature and receiver type at a time.

The Jedd code for this algorithm is shown in Figure 4. It starts
with the relationreceiverTypes , with each tuple specifying a
receiver type and a method signature at some call site. An example
of such a relation is shown in Figure 4(a), specifying the receiver
type B at two call sites with signatures foo() and bar(). Before
starting to walk up the hierarchy starting from the receivertype,
the algorithm first saves a copy of the original receiver typein each
tuple using the attribute copying operation in line 3. In theresulting
toResolve relation, each tuple contains the method signature and
two copies of the receiver type (see Figure 4(b)). The next step
will be to determine whether the current class implements a method
with the required signature. Before explaining how to do this, we
must pause to introduce the join and composition operations.

2.2.3 Join and Composition
The join and composition operations combine the information

from two relations into a single relation. In addition to a pair of
relations, they require a list of zero or more attributes from the left
relation to compare with a corresponding list of attributesfrom the
right relation. The new relation is constructed from all pairs of
tuples from the two relations which match in the attributes being
compared. Each such pair of tuples is merged into a single tuple
in the final relation. The difference between a composition and
join is in the attributes which are included in the final relation. A
composition (denoted<>) projects away all of the attributes being
compared. A join (denoted><) keeps the attributes being com-
pared, but only those from the left relation, since their values are
equal to those from the right relation. Although a composition is
equivalent to a join followed by a projection, Jedd includesboth
operations because both are commonly used, and a composition is
implemented more efficiently than a join followed by a projection.

To see how these operations are used, let us return to our exam-
ple. Recall that thetoResolve relation contains, in each tuple,
a method signature and two copies of the receiver type, as shown



1 <rectype, signature, tgttype, method> answer = 0B;
2 public void resolve( <rectype, signature> receiverTypes, <subtype, supertype> extend ) {
3 <rectype, signature, tgttype> toResolve = (rectype=>rect ype tgttype) receiverTypes;
4

5 do {
6 <rectype:T1, signature:S1, tgttype:T2, method:M1> resol ved =
7 toResolve{tgttype, signature} >< declaresMethod{type, s ignature};
8 answer |= resolved;
9 toResolve -= (method=>) resolved;

10 toResolve = (supertype=>tgttype) (toResolve {tgttype} <> extend {subtype});
11 } while( toResolve != 0B );
12 }

(a)
type signature
B foo()
B bar()

(b)
rectype signature tgttype

B foo() B
B bar() B

(c)
rectype signature tgttype method

B bar() B B.bar()

(d)
subtype supertype

B A

(e)
rectype signature tgttype

B foo() B

(f)
rectype signature supertype

B foo() A

(g)
rectype signature tgttype method

B foo() A A.foo()

Figure 4: Example of resolving virtual method calls (a)receiverTypes (b) toResolve in line 3 (c) resolved in first iteration
(d) extend (e) toResolve in line 10 (f) result of composition in line 10 (g)resolved in second iteration

in Figure 4(b). The next step is to determine whether the class of
the receiver type implements a method with the signature. This
is done using the join on line 7, which joins this relation with the
implementsMethod relation from Figure 3, matching the current
class (tgttype attribute) with the class implementing the method
(type attribute ofimplementsMethod ), and the method signature
(signature attribute) with the method signature of the implemented
method (signature attribute ofimplementsMethod ). For each class
and method signature being resolved, if the class implements a
method with a matching signature, then the resulting relation re-
solved contains a tuple with the method signature, two copies of
the receiver type, and the target method. In our example, theonly
match is type B and signature bar(), resulting in theresolved re-
lation in Figure 4(c). In general, these are the method callsthat we
have just resolved by finding a method with the desired signature,
so in line 8, we add them to our answer.

The T1, S2, T2, and M1 on line 6 are physical domains indicat-
ing how to assign the attributes to BDD variables. In this example,
the programmer supplies them for theresolved relation, and the
physical domain assignment algorithm discussed in Section3.3.2
finds a reasonable assignment for all other expressions.

The next step is to remove the resolved call sites from the set
of sites left to resolve. Theresolved relation has the method at-
tribute whichtoResolve lacks, so it is projected away in line 9
before the resolved call sites are subtracted. After doing this to our
example, we obtain thetoResolve relation in Figure 4(e).

The final step is to move up the class hierarchy by replacing each
class in the tgttype attribute with its immediate superclass. This is
done with a composition (in line 10) of thetoResolve relation
with the extend relation passed in from the hierarchy, which en-
codes the immediate superclass (extends) relationship. Inour ex-
ample, as Figure 4(d) shows, B is a subclass of A. The tgttype at-
tribute is matched with the subtype attribute in theextend relation,
and a composition rather than a join is used because the attributes
being compared (the subtype) are not needed; from theextend re-
lation, only the supertype attribute is needed. The resulting relation
has replaced each object in the tgttype attribute oftoResolve with
its immediate superclass, as shown in Figure 4(f). Before itcan be
assigned totoResolve , the supertype attribute must be renamed
to tgttype to match the schema oftoResolve . Finally, if the set
of call sites to be resolved is not yet empty, the algorithm starts an-
other iteration of the loop to resolve them. Figure 4(g) shows the
call resolved in the second iteration. Together, the relations in Fig-
ures 4(c) and (g) show the final result: the targets of callingfoo()
and bar() with a receiver of type B are A.foo() and B.bar().

2.2.4 Selection
We have not yet mentioned the common relational operationse-

lection, which returns the subset of the tuples having specified ob-
jects in certain attributes. This is most easily implemented by con-
structing a relation containing the desired objects, and joining it
with the relation of interest. Therefore, Jedd does not havea sepa-
rate selection operation.

2.3 Extracting Information from Relations
An important part of a language extension integrating relations

into Java are facilities for extracting information from relations
back to Java. Jedd provides two versions ofjava.util.Iterator
for iterating over the tuples of a relation. The first works onrela-
tions with a single attribute, and in each iteration returnsthe single
object in each tuple. The second iterator works on relationsof any
size, and iterates over the tuples, returning each tuple as an array
of objects. These iterators are used to implement atoString()
method on relations, which is very useful for debugging Jeddpro-
grams. Without such a method, it would be very difficult to inter-
pret the structure of a BDD to determine the relation it represents.

Jedd also provides asize() method that returns the number of
tuples in a relation. Jedd provides additional statistics about the
BDD representations of relations as part of its profiling framework,
which is described in Section 4.3.

3. JEDD TRANSLATOR
We have implemented a translator which converts Jedd programs

to Java programs. In Section 3.1, we discuss the key front-end is-
sues, and in Section 3.2, we describe how the high-level relational
operations are represented using lower-level BDD operations. A
key part of the code generation algorithm is the physical domain
assignment problem which is introduced in Section 3.3, and an
algorithm based on SAT is provided in Section 3.3.2. In some
cases, there exists no valid physical domain assignment, and in Sec-
tion 3.3.3, we discuss how unsatisfiable core extraction is used to
provide meaningful error messages.

3.1 Front-end
We implemented the Jedd to Java translator using Polyglot [21],

a Java front-end intended for writing language extensions.
We used the Java grammar [12, ch. 19] as a starting point for

a Jedd grammar, after applying some language preserving trans-
formations so that the extended grammar would be LALR(1). The
productions that we added and removed are given in Figure 5. Non-



Added productions:

〈Type〉 ::= ‘<’ 〈AttributePhys〉
(

‘ , ’ 〈AttributePhys〉
)

* ‘ >’

〈AttributePhys〉 ::= 〈Attribute〉 | 〈Attribute〉 ‘ : ’ 〈Attribute〉

〈Attribute〉 ::= 〈ClassOrInterfaceType〉

〈UnaryExpressionNotPlusMinus〉 ::= 〈RelExprJoin〉

〈RelExprJoin〉 ::= 〈RelExpr〉 | 〈Join〉

〈Join〉 ::= 〈RelExprJoin〉 〈AttrList〉 〈JoinSym〉 〈RelExpr〉 〈AttrList〉

〈AttrList〉 ::= ‘{ ’ 〈Attribute〉
(

‘ , ’ 〈Attribute〉
)

* ‘ } ’

〈JoinSym〉 ::= ‘>’ ‘ <’ | ‘<’ ‘ >’

〈RelExpr〉 ::= 〈Replace〉 | 〈PostfixExpression〉

〈Replace〉 ::= ‘( ’ 〈Replacement〉
(

‘ , ’ 〈Replacement〉
)

* ‘ ) ’
〈RelationExpr〉

〈Replacement〉 ::= 〈Attribute〉 ‘=>’
| 〈Attribute〉 ‘=>’ 〈Attribute〉
| 〈Attribute〉 ‘=>’ 〈Attribute〉 〈Attribute〉

〈Literal〉 ::= ‘new’ ‘ { ’ 〈LiteralPiece〉
(

‘ , ’ 〈LiteralPiece〉
)

* ‘ } ’
| ‘0B’ | ‘1B’

〈LiteralPiece〉 ::= 〈Expression〉 ‘=>’ 〈AttributePhys〉

Removed production:

〈UnaryExpressionNotPlusMinus〉 ::= 〈PostfixExpression〉

Figure 5: Jedd grammar productions

terminals from the original Java grammar appear in italics.The re-
sult is a LALR(1) grammar which extends Java in a natural way.
The syntax and symbols for all operations are intuitive and easy to
remember (the symbols for join and composition,>< and<>, were
inspired by⊲⊳ and◦, respectively, often used in relational database
literature). Attribute manipulation operations (which change the
type of expressions) use a cast-like syntax. No keywords andfew
new symbols were added.

Polyglot includes a complete semantic checker for Java. We
extended this checker to infer the schemas of relational expres-
sions from their subexpressions, and statically enforce the prop-
erties shown in Figure 6. The most important general properties
are that no relation may have more than one instance of the same
attribute, that operands of set and equality operations have compat-
ible schemas, and that attributes mentioned in attribute manipula-
tion, join, and composition expressions exist in the corresponding
operands.

3.2 Implementing Relational Operations
In this section, we describe how relations are represented in BDDs,

and how the relational operations are performed.

3.2.1 Representing Relations as BDDs
A BDD is a compact representation of a set of binary strings of

a fixed length (or, equivalently, a function from{0,1}n to {0,1}).
Jedd groups bit positions of these strings intophysical domains.
When a relation is represented in a BDD, each attribute is stored
in a separate physical domain. The physical domains are defined
and named by the user by implementing an interface included in
the Jedd runtime library. The relative bit ordering of the various
physical domains is also specified by the user. The assignment of
the attributes of each relation to specific physical domainsis subject

ai = a j ⇒ i = j ai <: jedd.Attribute

new {o1=>a1, . . . ,on=>an} : {a1, . . . ,an}
[Literal]

x : T a∈ T a<: jedd.Attribute

(a=>)x : T \{a}
[Project]

x : T a∈ T b /∈ T a,b <: jedd.Attribute

(a=>b)x : (T \{a})∪{b}
[Rename]

x : T a∈ T b,c /∈ T \{a}
b 6= c a,b,c <: jedd.Attribute

(a=>b c)x : (T \{a})∪{b,c}
[Copy]

x : T y : T
x⊙y : T where⊙ ∈ {&, | , - }

[SetOp]

x : T y : T ∨y∈ {0B,1B}

x⊙y : T where⊙ ∈ {=,&=, |= , -= }
[Assign]

x : T ∨x∈ {0B,1B} y : T ∨y∈ {0B,1B}

x⊙y : boolean where⊙∈ {==, != }
[Compare]

x : T y : U U ′ = U \{b1, . . . bn} T ∩U ′ = /0
{a1, . . . ,an} ⊆ T {b1, . . . ,bn} ⊆U
ai = a j ⇒ i = j bi = b j ⇒ i = j

ai ,bi <: jedd.Attribute

x{a1, . . . ,an}><y{b1, . . . ,bn} : T ∪U ′
[Join]

x : T y : U T ′∩U ′ = /0
T ′ = (T \{a1, . . . ,an}) U ′ = (U \{b1, . . . bn})

{a1, . . . ,an} ⊆ T {b1, . . . ,bn} ⊆U
ai = a j ⇒ i = j bi = b j ⇒ i = j

ai ,bi <: jedd.Attribute

x{a1, . . . ,an}<>y{b1, . . . ,bn} : T ′ ∪U ′
[Compose]

Figure 6: Typing rules

to many constraints, and we leave the discussion of this important
problem to Section 3.3. Once a physical domain assignment has
been determined, Jedd ensures that each physical domain consists
of enough bits to store the maximum number of objects that canbe
stored in each attribute assigned to it.

Each domain can convert objects in the domain to integers and
vice versa. We use the binary representation of the integer to en-
code the object. To encode a tuple, we construct the BDD contain-
ing all strings such that for each attribute, the bits in the physical
domain assigned to that attribute match the binary representation
of the object stored in that attribute. Note that we have no require-
ment of the bits in physical domains not used by any attribute; these
bits can be viewed to have a wildcard value. For example, suppose
we want to encode the tuple{o1=>A, o2=>B }, where the binary
representation ofo1 is 01, and the binary representation ofo2 is
10, A is assigned to the physical domain consisting of the first two
bits,B is assigned to the physical domain consisting of the next two
bits, and a third, unused physical domain exists, consisting of the
last two bits. This tuple would be encoded by the BDD for the set
of binary strings{0110??} = {011000,011001,011010,011011}.
Although this means that the BDD encoding of a single tuple can
be a set of many strings, this does not affect the size of the BDD
because BDDs represent such regular sets compactly. More specif-
ically, the number of nodes in a BDD for a single tuple always
equals the total number of bits in the physical domains used to en-
code the attributes.



The BDD for a relation of multiple tuples is simply the BDD
for the union of the binary strings representing all the tuples. This
means that the set operations on relations are implemented as the
same operations on the sets of binary strings in the BDD, which are
standard in BDD libraries. Similarly, relation equality isjust BDD
equality. However, for all these operations, the physical domain
assignment must be the same for both their operands.

3.2.2 Operations at the BDD level
Projection is implemented in BDDs using the existential quan-

tification BDD operation on the physical domains assigned tothe
removed attributes. Conceptually, this operation takes all strings in
the BDD, and creates new strings by replacing each bit of the phys-
ical domain with both 0 and 1. Therefore, each tuple in the original
BDD will appear in the new BDD, but with a wildcard value for
the physical domains projected away, indicating that they are not in
use by the relation.

Attribute renaming requires no change to the underlying BDD.
Only the mapping from attribute to physical domain needs to be
updated, with the new attribute replacing the old.

To implement ajoin in BDDs, we must first carefully set up
the physical domain assignment. The attributes being compared
must be assigned to the same physical domains in the left and right
relations. The remaining attributes must be assigned to physical
domains not used by the other relation, or else their values will
overwrite each other. Assuming we have such a physical domain
assignment, the join itself is performed with an intersection oper-
ation on the sets of binary strings in the BDD. Since the attributes
being compared are mapped to the same physical domain, the set
intersection will find exactly those pairs from the two sets where
these attributes match. The remaining attributes are stored in phys-
ical domains that are unused by the other relation, so they are rep-
resented there with a wildcard value. The set intersection of each
object with the wildcard value just gives back the original object.

A composition is implemented in the same way as a join fol-
lowed by a projection (set intersection followed by existential quan-
tification), but a special function of the BDD library is usedthat
performs these two operations more efficiently in one step.

Due to the requirements of each operation on the physical do-
main assignment, it is sometimes necessary to change the physical
domain assignment of a relation (that is, construct a different BDD
representing the same relation, but under a different physical do-
main assignment). This is implemented using an operation called
replace in BuDDy, andSwapVariables in CUDD, which con-
structs a BDD containing the same strings as the original BDD, but
with the bits of each string permuted with a specified permutation.
Jedd constructs the permutation required to move the bits ofthe old
physical domain to the new physical domain, resulting in a BDD
representing the same tuples, but in different physical domains.

3.3 Assigning Physical Domains to Attributes
One important problem when implementing algorithms using

BDDs is deciding how to assign the attributes of each expression
to physical domains of BDD variables. In this section, we explain
how Jedd automates this task. First, in Section 3.3.1, we present
the objectives which motivated the design of the physical domain
assignment algorithm. Next, in Section 3.3.2, we describe the al-
gorithm itself, and explain how it achieves the objectives.Finally,
in Section 3.3.3, we present the error recovery mechanism which
provides meaningful error messages to the programmer.

3.3.1 Objectives
Our objectives for the design of the physical domain assignment

algorithm fall into three main categories. First, we aimed to mini-
mize the amount of work required of the programmer. Second, we

wanted to make it possible to experiment with different physical
domain assignments, with the ultimate goal of finding assignments
that make the analysis execute efficiently. Third, we wantedan al-
gorithm which could be practically implemented in a useabletool.
In the rest of this section, we explain these objectives in more de-
tail.

The first two objectives may seem contradictory, since a very
flexible system can be produced by requiring the user to specify ev-
ery detail, while an automatic system offering no choices requires
little from the user. Therefore, one of the challenges was tofind a
reasonable compromise between these two extremes.

A programmer using a BDD library directly must assign attributes
to physical domains by hand, and write the program in terms of
physical domains, rather than attributes. For simple programs of
several BDD expressions with two or three attributes, this is accept-
able; however, for more complicated programs,1 assigning a valid
physical domain to each attribute of every subexpression isboth
tedious and error-prone. It is tedious because there are so many
attributes to which physical domains must be assigned, and it is
error-prone because the many replace operations which movedata
to the assigned physical domains must be inserted by hand, with
no automatic verification of their correctness. Therefore,we would
like Jedd to relieve the user from having to perform the full assign-
ment by automatically generating a reasonable assignment from a
minimum amount of user input. To prevent errors, we would like
Jedd to automatically insert the correct replace operations to imple-
ment the assignment.

Since Jedd is a tool designed mainly for research into imple-
menting program analyses using BDDs, it should make it possible
to experiment with different physical domain assignments.It has
been widely noted that the ordering of bits in a BDD determines
its size, and therefore the speed of operations performed onit. The
bit ordering is closely related to the physical domain assignment,
since physical domains are groups of bit positions; the combination
of the assignment of attributes to physical domains and the order-
ing of the bits of those physical domains together determinethe
relative ordering of the bits of attributes. Therefore, thephysical
domain assignment chosen has an important effect on the perfor-
mance of algorithms implemented with BDDs. Unfortunately,with
our currently limited knowledge of implementing program analy-
ses using BDDs, we do not know of any easy ways to determine a
near-optimal physical domain assignment even by hand, let alone
automatically. Some input from the programmer about the desired
physical domain assignment is therefore necessary. Indeed, it is de-
sirable to allow the researcher to specify the assignment, to make
it possible to experiment with different assignments. These exper-
iments are necessary to improve our knowledge of what makes a
good assignment, and will hopefully one day lead to a fully auto-
mated physical domain assignment algorithm. However, we must
remember to balance flexibility with ease of specification. Ideally,
Jedd would allow the program to initially contain a minimum of
physical domain information, and would automatically generate a
reasonable complete assignment. Later, based on profiling infor-
mation, the programmer would tune the critical parts of the pro-
gram and specify the assignment for those parts in more detail.

In order for the physical domain assignment algorithm to be use-
ful, it must be implemented in a practical tool that is useable by
programmers. When the programmer-specified part of the physical
domain assignment contains errors (i.e., part of the physical do-
main assignment is inconsistent), the algorithm should be able to
indicate the source of the error with meaningful error messages. In
the absence of errors, the algorithm should always find a reason-

1Our current implementation of whole-program analyses contains
613 BDD subexpressions with a total of 1586 attributes.



able assignment; it should not be a heuristic that fails for certain
difficult inputs, since these difficult problems are likely to also be
difficult for the programmer to solve by hand. Since Jedd willbe
run each time the program is compiled, and since the point of Jedd
is to make it easier to implement non-trivial program analyses us-
ing BDDs, the algorithm should be able to process these non-trivial
programs in a reasonable amount of time.

Jedd addresses these objectives in the following ways. For each
attribute of each expression, the programmer may optionally spec-
ify a physical domain assignment, and Jedd automatically inserts
the correct replace operations to implement the assignment. This
makes it easy to tweak the assignment without having to rewrite
the replace operations. When the programmer specifies physical
domains for only a small subset of the attributes, Jedd automat-
ically completes the assignment using the algorithm described in
the next section. Should the programmer not be satisfied withspe-
cific parts of the automatically generated assignment, physical do-
mains may be specified for these expressions explicitly, andJedd
will find a reasonable assignment for the rest of the program.If the
programmer-specified portion of the physical domain assignment
contains an error and an assignment cannot be found, Jedd reports
the specific expression and attributes to which physical domains
cannot be assigned, as described in section 3.3.3. In section 5, we
provide some experimental results showing that the physical do-
main assignment algorithm is sufficiently fast for the problems for
which Jedd was intended.

3.3.2 Physical Domain Assignment Algorithm
We call a physical domain assignment for a Jedd programvalid

if a BDD implementation using the assignment correctly computes
the relational algebra expressions in the program. In orderfor a
physical domain assignment to be valid, it is necessary and suffi-
cient for it to satisfy the following constraints between attributes of
expressions:

1. [conflict] All attributes of each expression must be assigned
to distinctphysical domains.

2. [equality] Each operation requires certain attributes of its op-
erands to be assigned to thesamephysical domain, as de-
scribed in Section 3.2.

A valid (though not necessarily reasonable) physical domain as-
signment can be found very easily. First, introduce a fresh phys-
ical domain for each attribute of each expression, satisfying the
first requirement. Then, wrap each subexpression of a complex ex-
pression with a replace operation changing the physical domains
to satisfy the second requirement. The resulting physical domain
assignment is valid, but it requires many replace operations, slow-
ing down program execution considerably. In addition, there is no
way for the programmer to force selected attributes to be assigned
to specific physical domains.

We would like to minimize or at least reduce the number of re-
place operations, as well as give the programmer some control over
where these operations take place. A convenient way to do this
is to allow the programmer to specify physical domains for some
small subset of expressions, and constrain the physical domain as-
signment not to contain any “unnecessary” replaces. This makes
it possible for Jedd to construct a reasonable assignment with few
replaces with very little input from the programmer, while giving
the programmer the option to more completely specify a domain
assignment for specific sections of the code.

We need to formalize what we mean by “unnecessary” replaces.
To do this, we first wrap all subexpressions with dummy replace op-
erations as described above, so that theequality constraints can be
satisfied. Then, for each attribute of each replace operation, we add
anassignment edge from the attribute in the original subexpression
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Figure 7: Example of physical domain assignment constraints

to the attribute in the result of the replace. Intuitively, theseas-
signment edges connect attributes whichshouldbe assigned to the
same physical domain; if they are, the replace operation is unnec-
essary and can be removed. Because different replace operations
have unpredictably different costs, we do not try to find an assign-
ment having the minimum number ofassignment edges with dif-
ferent physical domains; instead, we are satisfied with removing
computation paths in which an attribute is replaced multiple times
without reason. More precisely, we partition the graph formed by
equality andassignment edges into connected components by po-
tentially breaking someassignment edges, such that each compo-
nent contains one attribute with a programmer-specified physical
domain, and noconflict edge has both its endpoints in components
with the same physical domain (or in the same component). Every
attribute in a component is then assigned the same physical do-
main. This ensures that every replace operation has a reason, since
replace operations only occur between attributes at the boundaries
of components with different programmer-specified physical do-
mains. Furthermore, this is consistent with the kind of behaviour
the programmer likely expects: if an attribute is involved in a com-
putation with other attributes for which physical domains have been
specified, one expects it to be assigned to one of those domains.

The constraints produced from lines 6-7 of the example in Fig-
ure 4 are shown in Figure 7.Equality constraints are shown as
solid lines andassignment constraints as dashed lines.Conflict
constraints, which are not shown, are placed between all pairs of
attributes within each expression. Replace operations have been
wrapped around the subexpressionstoResolve anddeclares-
Method , and around the entire join. In the absence of any other
constraints, the graph would be split into four connected compo-
nents (the first consisting of all rectype attributes, the second of all
signature attributes, the third of all tgttype and type attributes, and
the fourth of all method attributes), which would be assigned the
physical domains T1, S1, T2, and M1, respectively. Since thein-
put and output of each replace operation would then have the same
physical domain assignment, no replacement would be necessary,
so Jedd would remove them prior to generating Java code.

In general, finding a partitioning respecting allconflict andequal-
ity constraints and the programmer-specified physical domainsis an
NP-complete problem. An NP-completeness proof is given in [13].
Several heuristics that we implemented failed on common exam-
ple programs. More importantly, an incomplete heuristic (which
may fail to find a solution even when one exists) is undesirable for
this problem. The case when a heuristic would fail to find a solu-
tion is precisely when the programmer very much wants to know
whether a solution exists (and he should tediously look for it by
hand) or does not exist (and he should modify the code so that a
solution does exist). Therefore, the potentially very highcost of
an exhaustive search is justified, and our intuition told us that al-
though the problem in general is NP-complete, typical instances



would be relatively “easy”. However, we realized that implement-
ing a smart exhaustive solver that would handle the easy cases effi-
ciently would be difficult, and we would be duplicating much of the
work that has been done on the boolean satisfiability (SAT) prob-
lem. We therefore encode the physical domain assignment problem
as a SAT problem, and call a SAT solver to solve it for us.

Given a boolean formula over a set of variables, a SAT solver
finds a truth assignment to those variables that makes the formula
evaluate to true. We therefore encode the physical domain assign-
ment problem into a boolean formula in such a way that we can re-
cover a physical domain assignment from a truth assignment of its
variables, and such that the formula evaluates to true exactly when
the physical domain assignment satisfies our constraints. We con-
struct the formula in conjunctive normal form because most SAT
solvers require it, and it is easier to specify it directly inCNF than
to construct an arbitrary formula and convert it to CNF later. A
formula in CNF is a conjunction of disjunctions of literals,where
each literal is a variable or a negated variable.

Let E be the set of all expressions of BDD type in the program.
For each expressione, we use the notationea for attributea of
expressione. Let A be the set of all pairsea of expressions and
attributes in the program. LetP be the set of all physical domains
in the program.

The SAT formulation consists of two types of variables: attribute –
physical domain variables, and flow path variables. A variable of
the formea:p indicates that attributea of expressione is assigned
physical domainp. To represent the notion of connected compo-
nents in the SAT formula, we introduceflow paths, sequences of
attributes of expressions with the following properties:

• the first attribute in the sequence is the only one with a
programmer-specified physical domain,

• each consecutive pair of attributes on the flow path is con-
nected by anequality or assignment edge,

• no attribute of an expression appears more than once on the
flow path, and

• no other flow path ending with the same attribute exists whose
attributes form a proper subset of the attributes of the flow
path.

Intuitively, the flow paths represent, for each attribute ofeach ex-
pression, the shortest paths to it followingequality andassignment
edges from an attribute with a programmer-specified physical do-
main. We will require that at least one flow path ending at each
attribute be active, indicating that the attribute, as wellas all the
attributes on the flow path, are in the same connected component.
A variable of the formπ(e0

a0:p0 ,e1
a1, . . . ,en

an) indicates that the
given flow path from attributea0 of e0 to an of en is active; that is,
all attributes along it are assigned physical domainp0. We useΠ
to denote the set of all flow paths. The constraints are encoded in
terms of these variables as follows.

1. Each attribute is assigned to some physical domain.
∧

ea∈A

∨

p∈P

ea:p

2. No attribute is assigned to multiple physical domains.
∧

ea∈A

∧

p,p′∈P,p6=p′
¬ea:p∨¬ea:p′

3. Any attribute with an explicitly specified physical domain is
assigned that domain.

∧

(ea,p)∈SPECIFIED

ea:p

4. For eachconflict edge betweenea ande′a
′

, a anda′ must not
be assigned to the same physical domain.

∧

(ea,e′a
′
)∈CONFLICT

∧

p∈P

¬ea:p∨¬e′a
′:p

5. For eachequality edge betweenea ande′a
′

, a anda′ are as-
signed the same physical domain.

∧

(ea,e′a
′
)∈EQUALITY

∧

p∈P

(ea:p∨¬e′a
′:p

)∧ (¬ea:p∨e′a
′:p

)

6. For eachea, at least one flow path leading to it must be active.
∧

ea∈A

∨

π(e0
a0:p0 ,e1

a1 ,...,ea)∈Π
π(e0

a0:p0 ,e1
a1, . . . ,ea)

7. When a flow path is active, all attributes on it are assigned
the physical domain of the flow path.

∧

π(e0
a0:p0 ,e1

a1 ,...,en
an)∈Π

∧

0≤i≤n

¬π(e0
a0:p0,e1

a1, . . . ,en
an)∨ei

ai :p0

3.3.3 Error Reporting
One challenge with using a black box such as a SAT solver in

a compiler is in reporting errors to the user. When the SAT solver
determines that no physical domain assignment exists, it reports
that the boolean formula is unsatisfiable. While this fact isuseful
for the programmer to know, it is not very helpful in determining
the cause of the error.

To improve the error reporting, we took advantage of a new fea-
ture recently implemented in the zchaff SAT solver, unsatisfiable
core extraction [30]. When the SAT solver determines that the
boolean formula is unsatisfiable, it also outputs a small subset of
the clauses (disjunctions) such that their conjunction is also unsat-
isfiable. Although the minimality of this core is not guaranteed,
our experience has been that all the unsatisfiable cores found for
the physical domain assignment problem were indeed minimal.

The physical domain assignment may not have a solution for one
of two reasons. First, there may be an attribute of an expression
with no path to any attribute for which a physical domain has been
specified; that is, a component of the graph formed byequality and
assignment edges may not have a physical domain specified for
it. Jedd detects this case while constructing the input to the SAT
solver, since it makes it impossible to construct the clauserequiring
at least one flow path leading to the attribute to be active (clause 6).
Second, it may not be possible to partition the graph formed by
equality andassignment edges in a way that respects all theconflict
constraints. In this case, the following proposition givesus a way
to report the source of the problem to the programmer.
Proposition: When the boolean formula produced for the physi-
cal domain assignment problem is unsatisfiable, every unsatisfiable
core contains at least one clause of type 4 (conflict clause).A proof
of this proposition is given in [13].

It follows from the proposition that the small unsatisfiablecore
returned by the SAT solver will include at least one clause oftype 4.
From this clause, Jedd extracts the expression and the attributes to
which physical domains could not be assigned, and even the physi-
cal domain(s) that were considered for assignment to the attributes.
This information is reported to the programmer along with the posi-
tion of the expression in the source file. The problem can be easily
fixed by explicitly assigning a new physical domain to one of the
attributes in the conflict constraint that cannot be satisfied.

To illustrate the error reporting with a typical error, consider
the following declarations, along with the compose subexpression
taken from line 10 of Figure 4.



<rectype:T1, signature:S1, tgttype:T2> toResolve;
<supertype:T1, subtype:T2> extend;
<rectype, signature, supertype> result =

toResolve {tgttype} <> extend {subtype};

The result of the compose operation has attributesrectype , sig-
nature , andsupertype , but only the physical domainT1 is avail-
able for bothrectype andsupertype . In this case, the Jedd trans-
lator would issue the following error message:

Conflict between
Compose_expression:rectype at Test.jedd:4,25
and
Compose_expression:supertype at Test.jedd:4,25
over physical domain T1

The error message indicates the line and column (4 and 25) of the
expression in question, the attributes to which a physical domain
could not be assigned (rectype and supertype ), and the sin-
gle physical domain which is available for the two attributes (T1).
To fix this error, the programmer would specify that one of the
attributes, for examplesupertype , should be assigned to a new
physical domainT3:

<rectype, signature, supertype:T3> result =
toResolve {tgttype} <> extend {subtype};

4. JEDD RUNTIME

4.1 Backends
One of the benefits of expressing BDD algorithms in a language

like Jedd is that we can execute these algorithms, without mod-
ification, using various BDD libraries as backends. This allows
us to compare the performance of different backends on the same
problem. In Jedd, we have already implemented interfaces tothe
BuDDy [14] and CUDD [25] libraries using JNI to call C code
from Java, and we are experimenting with our own library written
entirely in Java. Several researchers have suggested usingzero-
suppressed binary decision diagrams (ZDDs) [18] for our points-to
analysis algorithms. We are therefore working on a backend for
Jedd based on ZDDs, which will allow us to run all our algorithms
using ZDDs without modification.

4.2 Memory Management Issues
All BDD libraries that we are aware of use reference counts to

identify unused BDD nodes to be reclaimed. A disadvantage ofthis
approach is that a programmer using the library in a C programis
required to explicitly increment and decrement the reference count
whenever BDDs are assigned or a reference to a BDD goes out
of scope. In C++, it is possible to use overloaded assignmentop-
erators and destructors to relieve the programmer of much ofthis
burden. The lack of operator overloading makes this impossible in
Java. If Jedd were a library rather than a language extension, the
programmer would have to explicitly manipulate reference counts.
This is yet another tedious and error-prone aspect of working with
BDDs.

Since Jedd is an extension to the language, we can design it to
update reference counts automatically, without any help from the
programmer. For performance reasons, it is particularly important
that the reference count be decremented as soon as possible after
a reference becomes dead. When dead nodes are not freed in a
garbage collection, fewer nodes remain for future computation, so
garbage collection is required more frequently. In addition, BDD
libraries use a cache to speed up the basic operations on nodes.
Large numbers of unfreed obsolete nodes may pollute this cache.
In general, we cannot rely solely on the Java garbage collector to
determine when relations are unreachable, particularly short-lived

temporary relations. This is because unlike allocations ofJava ob-
jects, an allocation of a BDD node will not trigger a Java garbage
collection when no more memory is available. It is very possible
to allocate many large temporary BDDs in several iterationsof a
loop and have the BDD library run out of memory without a Java
garbage collection ever being triggered.

A BDD can become dead in four ways. First, it may be the result
of a subexpression of an expression becoming unreachable after the
outer expression is evaluated. Second, it may be stored in a local
variable or field, and it may be overwritten by another BDD. Third,
the BDD may be stored in a local variable which goes out of scope.
Fourth, the BDD may be stored in a field, and the object containing
the field may become unreachable. For temporary values, the first
two cases are the most common and therefore the most important.

To handle the first case, we implement the convention that each
BDD operation decrements the reference count of its arguments
and increments the reference count of its result before returning it.
This convention is partly imposed by the requirement of the BDD
libraries that any BDDs passed to library functions have non-zero
reference counts.

For a clean implementation of the remaining cases, we createa
relation container object for each local variable and field.In the
generated Java code, the variable/field points to its relation con-
tainer throughout its lifetime; this is enforced by making the vari-
able/field final. The BDD itself is stored as a private field in the
relation container, and can be updated only through an assignment
method which also updates the reference counts. This guarantees
that in the second case, a BDD being overwritten has its reference
count decremented immediately. To handle the third and fourth
cases, the relation container object also decrements the reference
count of any BDD stored in its finalizer, which is called when the
relation container is garbage collected. In the fourth case(a field
becoming dead), this happens in the same garbage collection2 as
the one in which the object containing the field becomes unreach-
able, which is the earliest time that it is safe to decrement the refer-
ence count. For the third case (a variable going out of scope), this
ensures that the reference count will eventually be decremented,
but this may be a significant amount of time after the variablegoes
out of scope. To improve on this, we perform a static livenessanal-
ysis on all relation variables, and at each point where a variable
may become dead, we decrement the reference count of any BDD
it may contain and remove the BDD from the container. In the face
of exceptional interprocedural control flow, this is not always pos-
sible. We assume such control flow to be unusual, and fall backon
the finalizer to decrement the reference count in such cases.

To summarize, Jedd manages BDD reference counts automati-
cally without any help from the programmer. In all four cases, it
frees BDDs as soon as it becomes safe to do so, so its performance
should be no worse than that of a hand-coded reference counting
solution.

4.3 Profiler
A common problem when tuning any algorithm using BDDs is

choosing an efficientvariable ordering, the relative order of the
individual bits of the physical domains. In complicated programs
with many relations and attributes, a related problem is tuning the
physical domain assignment, and the replace operations which it
dictates. Specifically, we are interested in removing thosereplace
operations which are particularly expensive by modifying the phys-

2Here, we assume that the garbage collector collects all unreach-
able objects in each collection. However, even when this is not
true in general, such as in a generational collector, it is very likely
that the object containing the field and the relation container will
be reclaimed in the same collection, since they are allocated close
together: the latter is allocated in the constructor of the former.



Analysis Relation Phys. Number of Constraints SAT Problem Solving
Component Exprs. Attrs. Doms. Conflict Equality Assignment Variables Clauses Literals Time (s)
Virtual Call Resolution 46 127 5 184 173 70 1298 5600 11627 0.016
Hierarchy 172 344 5 242 442 143 3711 18140 37764 0.062
Points-to Analysis 247 561 8 637 802 259 7997 44405 93052 0.161
Side-effect Analysis 68 237 9 484 282 108 4441 41772 86482 0.165
Call Graph 89 340 8 929 442 187 7043 96514 197865 0.284
All 5 combined 613 1586 10 4902 2141 767 31083 273986 568597 4.607

Table 1: Size of physical domain assignment problem

ical domain assignment to make them unnecessary. For these tun-
ing tasks, we need some insight into the runtime behaviour ofour
program. In particular, we want to know which operations areex-
pensive in terms of time and BDD size (and therefore space), in
order to either remove them, or make them cheaper by modifying
the variable ordering. For tuning the variable ordering, knowing
the shape of the BDDs involved in the operation is also useful. The
shape of a BDD is the number of nodes at each level (testing each
variable) of the BDD.

In the code generated by Jedd, relational operations are imple-
mented as calls into the Jedd runtime library. The runtime library
optionally makes calls to a profiler which records, for each oper-
ation, the time taken and the number of nodes and shape of the
operand and result BDDs. This information is written out as an
SQL file to be loaded into a database, which provides a flexible
data store on which arbitrary queries can be performed to present
the data to the user. Jedd also includes CGI scripts to provide ac-
cess to the profiling data through a web browser. We use SQLite
for the database and thttpd for the web server because of their ease
of installation, but in principle, any SQL database and CGI-capable
web server should work. The overall profile view shows, for each
relational operation in the program, the number of times it was ex-
ecuted, the total time taken, and the maximum size of the BDDs
involved. Clicking on an operation brings up a detailed viewwith a
line of information for each time the operation was executed. Click-
ing on a specific execution of the operation generates a graphical
representation of the shape of the BDDs involved in the operation.

5. EXPERIENCE WITH JEDD
We have implemented in Jedd several test examples, our BDD

points-to analysis algorithm [5], and a collection of interrelated
whole-program analyses. Without Jedd, the latter would nothave
been feasible, since it would require us to assign physical domains
by hand to the attributes of 613 subexpressions, with no automated
way to verify that we had not made mistakes; in fact, we initially
tried such an approach, and quickly gave up. Even the relatively
short points-to analysis algorithm becomes much clearer when ex-
pressed using attributes rather than physical domains directly, and
without the clutter of low-level replace operations. In general, we
wrote the whole-program analyses without specifying any physical
domains at all, and when it came time to compile, we assigned just
enough attributes to physical domains to allow the physicaldomain
assignment algorithm to assign the rest. In this process, Jedd’s error
reporting pointed us directly to the expressions that needed to have
physical domains assigned by hand. The analyses themselveswere
easy to implement compared to pure Java implementations, mainly
thanks to the compact representation provided by BDDs. For in-
stance, the Java version of the side-effect analysis consists of 803
non-comment lines of code, mostly implementing data structures
to compactly represent the large, highly redundant sets of side ef-
fects. In contrast, the Jedd version is only 124 lines. For now, this
is just preliminary experience, but we hope that Jedd will enable
the development of many other BDD-based program analyses.

We have found the zchaff SAT solver [19] to be more than fast
enough for solving the domain assignment problem, even for sig-

nificant programs such as the combination of all five program anal-
yses, as shown in Table 1. The first section of the table shows the
number of relational expressions, attributes in these expressions,
and physical domains. The second section lists the number ofeach
type of constraint in the physical domain assignment problem. The
third section gives the number of distinct variables, clauses, and
literals in the resulting SAT formula. Finally, the fourth section
shows the time taken by zchaff to parse and solve the formula on
a 1833 MHz Athlon with 512 MB of RAM. To put the times into
perspective, a complete build of Soot takes 5 minutes on the same
machine, so 4.6 seconds to assign physical domains is very accept-
able. The SAT encoding of the physical domain assignment prob-
lem was designed to be easy to understand rather than compact;
it could easily be made smaller if the SAT solver ever became a
bottleneck.

To measure the runtime overhead of Jedd compared to using a
BDD library directly in C++ [5], we timed the C++ and Jedd ver-
sions of our points-to analysis algorithm on five benchmarks. Both
versions used the BuDDy library as the backend. The timings are
shown in Table 2. The overhead varied from 0.5% to 4%, which
we attribute to having to have the Java VM in memory, and to the
internal Java threads that run even when not executing Java code.

Benchmark Std. lib. C++ Jedd
version

javac 1.1.8 3.4 s 3.5 s
compress 1.3.1 21.7 s 22.4 s
javac 1.3.1 25.3 s 26.3 s
sablecc 1.3.1 25.4 s 26.1 s
jedit 1.3.1 41.1 s 41.3 s

Table 2: Running time comparison of hand-coded C++ [5] and
Jedd points-to analysis

6. RELATED WORK
We have organized related work into four categories. In the next

section, we sample the abundance of work on languages for ex-
pressing relational computation. In Section 6.2, we present various
tools that have been written to interface with BDDs at a low level.
Some work has been done on abstracting BDDs as relations, andwe
compare this work with Jedd in Section 6.3. Finally, a small,but
rapidly growing, number of researchers have implemented program
analyses using BDDs without a relational abstraction; we discuss
their work in Section 6.4.

6.1 Languages with Relations
The relational data model based on relational algebra was pro-

posed by Codd [10], and has since been used for many applications,
particularly as the basis of relational databases. The SQL language
has become a standard way of expressing relational operations in
database systems, and snippets of SQL code are often embedded in
programs written in other languages. Prolog [9] and its derivatives
are based on querying and updating a database offacts, which are
analogous to relational tuples. Relations as first-class objects have
appeared in many general-purpose languages ever since the days



of SETL [23], which included binary relations as one of its basic
data types. Support for n-ary relations is often present in languages
for writing “glue” code between database systems and clientinter-
faces, such as the<bigwig> project [7], a high-level language for
web services. The increasing popularity of XML is fuelling work
on adapting languages for manipulating XML fragments, which of-
ten resemble tuples, but are generally less homogeneous. A recent
example of this work are extensions to the type system of C# for
expressing both relational and XML data [16].

Jedd is similar to these languages in that it adds relations as a
data type to Java. In contrast to these languages whose primary
goal is to provide access to relations, the primary focus of Jedd is
to enable program analysis developers to exploit the compact data
representation provided by BDDs, using relations as an abstraction
to make programming with BDDs manageable.

6.2 Interfacing with BDDs
Jedd is built on top of the BuDDy [14] and CUDD [25] BDD li-

braries, which provide a low-level interface to a BDD implementa-
tion. These libraries implement the basic operations on BDDs, with
few higher-level abstractions. Thefinite domain blocksof BuDDy
are one small exception; they provide a convenient way to group
together BDD variables, much like the physical domains in Jedd.

Several small interactive languages have been developed for ex-
perimenting with BDDs. One example is BEM-II [17], designed
for manipulating Arithmetic BDDs and solving 0-1 integer pro-
gramming problems. Another is IBEN [3], which provides a com-
mand-line user interface to directly call the BuDDy libraryfunc-
tions, as well as BDD visualization facilities.

The JNI interface allows Java code to use BDD libraries written
in C through specially written wrappers. We have found it very
convenient to use the wrapper generator Swig [2] to automatically
generate these wrappers for us. However, others have chosento
write such wrappers by hand, resulting in JBDD [26], a Java in-
terface to both BuDDy and CUDD, later extended and renamed
JavaBDD [28]. Unlike Jedd, these JNI wrappers provide no ab-
straction over the underlying BDD libraries. They simply allow the
library functions to be called from Java.

6.3 Relations with BDD Back-ends
Although relations have been included in many languages, and

several BDD implementations and interfaces exist, the use of BDDs
as back-ends for implementing relations has been comparatively
rare.

The RELVIEW system is an interactive manipulator of binary re-
lations with a graphical user interface for visualizing them. It sup-
ports multiple back-ends, and one of the newer back-ends stores re-
lations in BDDs [4]. The fundamental difference between RELVIEW
and Jedd is that RELVIEW is designed around binary relations,
while much of the complexity of Jedd stems from the need to repre-
sent n-ary relations. As pointed out by Fahmy, Holt, and Cordy [11],
binary relations are insufficient for expressing certain problems in
representing and querying graphs. For many program analysis prob-
lems whichcould be represented by binary relations, this repre-
sentation would be more cumbersome than is possible using n-ary
relations.

GBDD [20] is a C++ library providing an abstraction of BDDs
based on relations of integers. Although it has partial support for
n-ary relations, some operations (such as composition) require bi-
nary relations. Compared to Jedd, GBDD lacks static type check-
ing (the type of a relation is not known until run-time), the concept
of abstract attributes to be assigned to physical domains, automatic
memory management, and a profiler.

The language most closely related to Jedd is CrocoPat [6], a
tool for querying relations representing software architecture ex-

tracted from source code. Like Jedd, CrocoPat is based on n-ary
relations. CrocoPat uses a declarative, Prolog-like syntax in which
attributes are identified implicitly by their position, rather than ex-
plicitly by name, as in Jedd. CrocoPat also differs from Jeddin
that it is primarily a query language rather than an extension of
a general-purpose language. The issue of assigning attributes to
physical domains is not discussed in the CrocoPat paper.

6.4 Program Analysis using BDDs
Several researchers have implemented various program analyses

using BDDs directly, without a relation-based abstraction.
One example of this is our own earlier work on points-to analy-

sis [5], which we are now extending using Jedd.
Ball and Rajamani [1] lifted a flow-sensitive finite-set dataflow

analysis to keep track ofa setof dataflow sets for each program
point, in order to track correlations between elements of dataflow
sets, achieving a path-sensitive analysis. They used BDDs to com-
pactly represent the otherwise large sets of sets.

Sagiv, Reps, and Wilhelm [22] have constructed a framework
based on three-valued logic for expressing program analyses, par-
ticularly heap shape analyses. Although very expressive, this frame-
work has memory requirements that are often prohibitive when an-
alyzing non-trivial programs. Manevich et al. [15] compared differ-
ent techniques for reducing the space required to representthe state
required in these analyses; BDDs were one of these techniques.
This work is related to Jedd in that it allows program analyses to
be expressed at a high level and can use BDDs as a back-end. It
differs in that it uses three-valued logic as the high-levelrepresen-
tation, rather than relations.

Sittampalam, de Moor, and Larsen [24] formulate program anal-
yses using conditions on control flow paths. These conditions con-
tain free metavariables corresponding to program elements(such as
variables and constants). To perform an analysis, these metavari-
ables are instantiated with specific elements from the particular pro-
gram being analyzed. BDDs are used to efficiently represent and
search the large space of possible instantiations.

Zhang, Gupta and Zhang [31] record dynamic slices during pro-
gram execution for debugging purposes. These sets of slicesget
very large, making the space and time required for this instrumenta-
tion prohibitive when using traditional methods. In order to reduce
these costs, they store the sets of slices efficiently in BDDs.

Interest in the use of BDDs for static program analysis continues
to grow; two other papers using BDDs for context-sensitive pointer
analysis appear in these same proceedings [29,32].

Our hope is that Jedd will facilitate the implementation of fur-
ther, more complicated program analyses using BDDs.

7. CONCLUSIONS AND FUTURE WORK
We have introduced Jedd, a high-level language extension to

Java for expressing set-based algorithms so that they can beim-
plemented using BDDs. The motivation for designing the language
was to provide a convenient way of specifying program analyses so
that they could be efficiently solved using existing BDD packages.

The approach presented is one of designing an appropriate lan-
guage abstraction which: (1) provides the programmer with the
correct abstraction of the problem, in this case a form of relations;
(2) provides as much static type support as possible; (3) exposes
only as much low-level detail as required (the programmer need
only provide some of the key physical domain assignments); and
(4) fits naturally as an extension of a general purpose programming
language, Java.

Based on this language, we have defined and implemented a
translator to generate Java code and an associated runtime system.
Key parts of the translator are: (1) the high-level relational oper-
ations are translated into low-level BDD operations which can be



provided by a variety of backend solvers; (2) the translatorlever-
ages the power of existing SAT solvers to automatically provide
a complete assignment of attributes to physical domains (orpro-
vides a meaningful error message if no such assignment exists); (3)
automatically supports a reference-count-based approachto mem-
ory management at the Java level, compatible with the approaches
taken in the C-based solvers; and (4) provides support for debug-
ging and profiling of the BDD-based operations.

We have used our system to program five key program analysis
modules in the Soot compiler framework [27] and have found that
it allows us to write compact programs which can be compiled in
reasonable time, and that generated BDD-based code is aboutas
efficient as the BDD solvers we coded by hand.

Our next steps are to experiment with more analyses written in
Jedd and to integrate the Jedd-based analyses into the main Soot
development trunk. Another challenge will be to make Jedd com-
patible with generics when Java 1.5 is released. Information about
the most recent versions of Jedd and its release status is found at
http://www.sable.mcgill.ca/jedd/ .
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