Jedd: A BDD-based Relational Extension of Java -

Ondrej Lhotak Laurie Hendren
Sable Research Group, School of Computer Science
McGill University, Montreal, Canada

{olhotak,hendren

ABSTRACT

In this paper we present Jedd, a language extension to Jawa t
supports a convenient way of programming with Binary Decisi
Diagrams (BDDs). The Jedd language abstracts BDDs as databa
style relations and operations on relations, and provitggype
rules to ensure that relational operations are used ctyrect

The paper provides a description of the Jedd language and re-

ports on the design and implementation of the Jedd tramsiaith
associated runtime system. Of particular interest is thprageh
to assigning attributes from the high-level relations tggital do-

}@sable.mcgill.ca

efficient solvers for whole program analyses like pointsitaly-

h sis [5]. As BDDs have been in use for some time, there exigraév

excellent libraries providing efficient representatioafgorithms

and memory management techniques for BDDs, including two C-

based libraries we have been using, BuDDy [14] and CUDD [25].
Based on our very positive experience with using BDDs for pro

gram analysis, we embarked on a project to express a number of

key, interrelated whole program analyses for Java using 8Db

side our Java compiler framework, Soot [27]. We still wanted

use existing efficient C-based libraries, but now we reqglérelean

and efficient interface between the Java code of our comaiidr

mains in the underlying BDDs, which is done by expressing the oy Bpp-based algorithms.

constraints as a SAT problem and using a modern SAT solver to

compute the solution. Further, a runtime system is definatl th

In developing our approach, it soon became apparent that-a si
ple strategy of providing a Java wrapper to interface withxDB

handles memory management issues and supports a browsable p |iprary was not a good solution, for many reasons. First, oumn

filing tool for tuning the key BDD operations.
The motivation for designing Jedd was to support the develop

that the interface provided by the existing BDD librariegasy low
level, and as we attempted to express several complexétatad

ment of whole program analyses based on BDDs, and we have usednalyses, understanding and maintaining our code becdfiaeiidi

Jedd to express five key interrelated whole program analysas
Soot compiler framework. We provide some examples of this ap
plication and discuss our experiences using Jedd.

Categories and Subject Descriptors

D.3.3 [Programming Language$: Language Constructs and Fea-
tures—bata types and structure®.3.4 [Programming Language$:
Processors; E.DJata]: Data Storage Representations

General Terms
Languages, Design, Experimentation

Keywords

Binary decision diagrams, relations, language desigra, Jaro-
gram analysis, boolean formula satisfiability

1. INTRODUCTION

Binary Decision Diagrams (BDDs) [8] are widely used for ef-
ficiently solving problems in model checking, and recenthe
demonstrated that BDDs are very useful for defining compadt a

*This work was supported, in part, by NSERC.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PLDI'04, June 9-11, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-807-5/04/0006$5.00.

Moreover, programming at such a low level was error prond, an
errors in our code led to either the BDD library aborting, arse,
to incorrect results. The implicit nature of the BDD repms¢ion
made these errors difficult to track down. Furthermore, waéb
that it is quite difficult to match the memory management wveJa
with the reference-counter-based schemes employed in iz B
packages. Finally, we found that tuning a BDD-based allgorit
requires profiling information about the size and shape efui-
derlying BDDs at each program step. We had previously deeelo
some ad-hoc methods for visualizing this information, batare
automated approach was needed.

Our solution, and the topic of this paper, was the developmien
(1) Jedd, a language extension to Java, which provides aléigh
way of programming BDD-based algorithms based on relatoils
operations on relations; (2) an associated translatortwanitomat-
ically translates Jedd to Java code that efficiently intsragth
back-end solvers; and (3) run-time support for memory menag
ment, debugging and profiling of BDD operations. The key atpe
of our approach, and the main contributions of this paper, ar

BDDs abstracted as relations:Rather than expose BDDs and their
low-level operations directly, our Jedd language provides
more abstract data type based on database-style relaiuhs,
operations on those relations. In developing program analy
ses using BDDs, we have found that this is a more appropri-
ate level of abstraction.

Static and dynamic type checking: When using a BDD library
directly, there is very little type information to help theop
grammer determine if BDD operations are used in a consis-
tent and correct fashion. In the Jedd approach, all op&stio
on relations have static type rules which help to eliminate
many programmer errors. Properties that cannot be checked
statically are enforced by runtime checks.

Code generation strategy: We provide a strategy to convert the ||

high-level relational operations into low-level BDD opera jeddc v

tions, and a mechanism for interfacing to several different parser

_BDD baCk-El:]dS.))]) physs?(?;?ggi]z?:gssfignmenw
Algorithm for physical domain assignment: An important issue code generation

in programming with BDDs is how to assign physical do-

mains of BDD variables to the problem being solved. When [Java m [Java m

programming directly with BDDs, the programmer must ex- = =

plicitly make all of the assignments and ensure that BDD op-

erations are applied to the correct physical domains, which Jedd runtime

is a tedious process. Furthermore, a small change in physica BDD library interface

domain mappings may require many changes in the program. ClaLll prqf)iller

When specifying a program using the Jedd language, the user Y

g . > SQL database

specifies only the important assignments, and the tramslato JVM

completes a consistent mapping for the remainder of the pro- v CGl scripts

gram. The problem of assigning physical domains turns out solution

to be NP-complete. We provide an algorithm to express it v

as an instance of the SAT problem, and we show that, us- profiler views

ing modern SAT solvers, the time to find a solution is very
acceptable. In cases where no solution exists, we provide in
formation back to the programmer to help them modify the database, an HTML browser can be used to navigate profilesvie
program to make the problem solvable. of BDD operations.
Run-time support for memory management: BDD solvers make The remainder of this paper is structured as follows. IniSe@,
use of reference counter memory management techniqueswe give an introduction to the Jedd language, along with sthuse
to efficiently reclaim the BDD data structures. These re- trative examples from our application of Jedd to programyais
quire the programmer to explicitly manipulate the refeeenc In Section 3, we explain the key aspects of jbédc compiler,
counts, which is error-prone and does not fit with the Java with a particular emphasis on how we handle code generatidn a
memory management model. Jedd frees the programmer physical domain assignment. In Section 4, we describe tperim
from this task by automatically managing all reference ¢sun tant elements of the design of our runtime system and prpoéitet
and freeing BDDs as soon as it is safe to do so. in Section 5, we briefly report on our experiences with usiedd]
BDD profiler: In our previous and current work with BDDs, we to implement five interrelated whole program analyses inSbet
found that tuning the BDD-based algorithms required profil- compiler framework. Finally, in Section 6, we discuss retaork,
ing the size and shape of the BDD data structures at each pro-and in Section 7, we conclude and suggest future work.
gram point. Our Jedd system allows the user to automatically
generate profiling information that can be browsed using any
HTML browser, and which provides both counts of the num- 2. JEDD LANGUAGE
ber of operations applied, and graphical figures showing the In this section, we describe the Jedd language, and ilbesitey
size and shape of the underlying BDD data structures at eachconcepts with examples. These examples are taken from-exten
program point. sions to the Soot framework that we have written in Jedd. &hes
Proof of concept applications: In order to verify that our approach ~ €xtensions perform interrelated whole-program analyses sis
works, we have implemented several interrelated whole pro- POiNts-to analysis, call graph construction, and sideetfanaly-
gram analyses using the Jedd system. We found that the al-SiS In BDDs, and together they form a significant applicatidn
gorithms were quite easy to specify, compact, and that the Jedd. F|gune 2 shows an overview of the five main mod_ules th_at
resulting BDD solvers were efficient. We also found that the have been implemented in Jedd and how they communicate with
physical domain assignment algorithm worked well, ran in each other. In Figure 4, we show a S|mpllf|ed version of the cor
acceptable times, and provided good mappings of attributes of the thua] Call Resolution module to give an idea of whedd
to physical domains. code looks like.

Figure 1: Overview of Jedd system

Virtual Call

A high-level overview of the complete Jedd system is given in Hierarchy Resolution Call Graph
Figure 1. Jedd programs are written in our extension to Java, |
are provided as input to theddc compiler. Thgeddc compiler | Points-to _,| Side-effect
is composed of a front-end (parser and semantic analysisjpan Analysis Analysis
back-end (physical domain assignment and code generafitie) Figure 2: BDD-based analyses in Soot
physical domain assignment module calls an external SAfesol)) o
tool. The output ofeddc is in the form of standard Java files The remainder of this section is structured as follows. In-Se

which can be incorporated into any Java project. The Java file tion 2.1, we introduce a new data type, relations, and iniGeat2,
produced byjeddc , along with other ordinary Java source mak- We describe the new operations provided for relations. Taeng
ing up a project, are compiled to class files using a standard J ~ Mar for the extensions is given in Figure 5 and the type rules i
compiler such agavac . Unless the code written in Jedd is mod- Figure 6. In Section 2.3, we describe how objects can beaetta
ified, jeddc is not needed when recompiling the Java part of the from relations back to Java.

project. The resulting class files contain calls to the Jenitime .

library, which interfaces using JNI to a BDD package. A JvMis 2.1 Relations

used to execute the classes along with the Jedd runtime. ufke r Jedd extends the Java language with a new data type, database
time also includes a profiler, which writes profile infornoatiinto style relations. Informally, a relation is just a set of &gl For

a SQL database. When combined with CGI scripts accessing theexample, the top part of Figure 3 shows a relation that costai

type signature method
A foo() A.foo()
B bar() B.bar()

/I declaring a relation with three attributes
<type, signature, method> implementsMethod;

/I declaring a relation with explicit mappings

1 to physical domains

<type:T1, signature:S1, method:M1>
implementsMethodMapped;

Figure 3: Relations

two tuples, and each tuple contains values for the attrithye
signatureandmethod An attributeis just a namedomain, where

adomain is a set of Java objects such as the set of all types in a

program being analyzed, or the set of all methods. All tupies
relation must have the same set of attributes, and we caliehe
of attributes for a relation itschema. The relations in Jedd are
high-level abstractions for BDDs, and there must exist serag
of mapping the attributes of the higher-level Jedd relatmithe
underlying BDDs. Aphysical domain is a set of BDD variables
used to represent an attribute of a relation.

The bottom part of Figure 3 shows two different ways of declar
ing a relation in Jedd. The first example declaresrtipements-

Method relation which has three attributes. In this case, no phys-
ical domain mapping is given for the attributes and it is tefthe
Jedd compiler to find a mapping. However, sometimes the pro-
grammer does want to expose the mapping of attributes tagalys
domains, and the declaration iafplementsMethodMapped de-
clares another relation with the same schema as before, ithut w
explicit mappings to the physical domains, S1 andM1 The de-
tails of physical domains and the algorithm to perform th@piag

of attributes to physical domains are described in Section 3

Note that in our example, we have just used names for attisbut
(i.e. type , signature andmethod). These names must be de-
fined by the Jedd programmer by defining special Java clasaes t
implement the interfacgdd.Attribute to specify the domain
and the name. Similarly, each domain is defined by implemgnti
thejedd.Domain interface, and each physical domain is defined
by implementing théedd.PhysicalDomain interface. Each do-
main specifies the maximum number of objects in it, and pewid
a mapping from Java objects to integers and vice versa. Teégdan
associated with an object is used to represent the objecDIDsB
Jedd’s type checker ensures that any use of an interfaceidam
physical domain is a subclass of the correct interface.

Only relations with the same schema are assignable and com
parable. Like other primitive Java types, relations arespdsy
value, not by reference. Jedd defines two const@@snd1B, the
empty relation and the full relation (containing all po$situples),
respectively. These constants have a special type thatsntlagmn
comparable and assignable to any relation type, much lika'sla
null
from Java objects. For example, in Soot, we use the followote
to add a tuple to thanplementsMethod relation:

void addMethod(Type newType, Signature newsSig,
SootMethod newMethod) {
implementsMethod |= new { newType=>type,
newSignature=>signature, newMethod=>method };

The new expression constructs a relation of a single tuple with
the Java objectsewType, newSignature , andnewMethod in at-
tributes type, signature, and method, respectively. Tdlaion of
a single tuple is then added into tingplementsMethod relation.

constant. Jedd also provides an easy way to create new tuple

2.2 Operations on Relations

2.2.1 Set Operations and Comparison

The set union, intersection, and difference operationsete r
tions viewed as sets of tuples are written in Jedd using theabqrs
| , & and-, respectively. These operations make sense only when
their arguments have the same schema, and this is enforabe by
static type checking. Jedd also defines the expected shdrds
signment operators , &=, and-=. In the example above, tHe
operator is used to add the new tuple to ithplementsMethod
relation. The== and!= operators are used to compare relations
for equality, an operation that takes only constant timeDB.

2.2.2 Projection and Attribute Operations

Jedd provides three operations on the attributes of asalaf
projection removes an attribute from the relation, along with the
objects associated with the attribute in each tuple. Réleatlre-
lations are sets of tuples with no duplicates. Since rengpein
attribute from two tuples that differ only in that attributeakes the
tuples equal, a projection may reduce the number of tuples in
relation. Attribute renaming substitutes one attribute for another,
without changing the objects stored in tuple&ttribute copying
adds a new attribute to a relation. In each tuple, the nevbattris
mapped to the same object as the attribute being copied.

To illustrate how these operations are used, we will wal&ulh
the problem of resolving virtual method calls given the attypes
of the receivers. Given a receiver type and a method sigaatue
algorithm must search for a class implementing a method tigh
signature, starting from the receiver type and moving upcthss
hierarchy. In Jedd, this is done for an entire relation aepnather
than one signature and receiver type at a time.

The Jedd code for this algorithm is shown in Figure 4. It start
with the relationreceiverTypes , with each tuple specifying a
receiver type and a method signature at some call site. Amgbea
of such a relation is shown in Figure 4(a), specifying thesiesr
type B at two call sites with signatures foo() and bar(). Befo
starting to walk up the hierarchy starting from the receiygre,
the algorithm first saves a copy of the original receiver typeach
tuple using the attribute copying operation in line 3. Intbsulting
toResolve relation, each tuple contains the method signature and
two copies of the receiver type (see Figure 4(b)). The nesqh st
will be to determine whether the current class implementsthod
with the required signature. Before explaining how to da,thie
must pause to introduce the join and composition operations

2.2.3 Join and Composition

The join and composition operations combine the information
from two relations into a single relation. In addition to arpaf
relations, they require a list of zero or more attributesfithe left
relation to compare with a corresponding list of attributesn the
Jight relation. The new relation is constructed from allrpaof
tuples from the two relations which match in the attributeg
compared. Each such pair of tuples is merged into a single tup
in the final relation. The difference between a compositiod a
join is in the attributes which are included in the final relat A
composition (denoted>) projects away all of the attributes being
compared. A join (denoted<) keeps the attributes being com-
pared, but only those from the left relation, since theiuesl are
equal to those from the right relation. Although a compositis
equivalent to a join followed by a projection, Jedd includbesh
operations because both are commonly used, and a compadsitio
implemented more efficiently than a join followed by a proéiec.

To see how these operations are used, let us return to our exam
ple. Recall that theoResolve relation contains, in each tuple,
a method signature and two copies of the receiver type, asrsho

=
kP O ©®~NOo U MWNR

i
N

<rectype, signature, tgttype, method> answer = OB;
public void resolve(<rectype, signature> receiverTypes,
<rectype, signature, tgttype> toResolve = (rectype=>rect

do {
<rectype:T1, signature:S1, tgttype:T2, method:M1> resol
toResolve{tgttype, signature} >< declaresMethod{type,
answer |= resolved;
toResolve -= (method=>) resolved;
toResolve = (supertype=>tgttype) (toResolve {tgttype} <>
} while(toResolve != 0B);

<subtype, supertype> extend) {
ype tgttype) receiverTypes;

ved =
s ignature};

extend {subtype});

@ type signaturel (b) rectype signature tgttypa(c) rectype signature tgttype methcd(d) subtype supertypé
B foo() B foo() B B bar() B B.bar() B A
B bar() B bar() B
(e) () @
rectype signature tgttypg rectype signature supertyge rectype signature tgttype methdd
B foo() B B foo() A B foo() A A.foo()

Figure 4: Example of resolving virtual method calls (a)receiverTypes
in line 10 (f) result of composition in line 10 (g)resolved

(d) extend (e)toResolve

in Figure 4(b). The next step is to determine whether thesabds
the receiver type implements a method with the signatureis Th
is done using the join on line 7, which joins this relationtwihe
implementsMethod relation from Figure 3, matching the current
class (tgttype attribute) with the class implementing thethud
(type attribute ofmplementsMethod), and the method signature
(signature attribute) with the method signature of the enpénted
method (signature attribute infiplementsMethod). For each class
and method signature being resolved, if the class implesnant
method with a matching signature, then the resulting r&atat-
solved contains a tuple with the method signature, two copies of
the receiver type, and the target method. In our exampleprhe
match is type B and signature bar(), resulting intdelved re-
lation in Figure 4(c). In general, these are the method tadiswe
have just resolved by finding a method with the desired sigeat
soin line 8, we add them to our answer.

The T1, S2, T2, and M1 on line 6 are physical domains indicat-
ing how to assign the attributes to BDD variables. In thisnepke,
the programmer supplies them for thesolved relation, and the
physical domain assignment algorithm discussed in Se&igr2
finds a reasonable assignment for all other expressions.

(b) toResolve inline 3 (c) resolved in first iteration

in second iteration

2.2.4 Selection

We have not yet mentioned the common relational operaton
lection, which returns the subset of the tuples having specified ob-
jects in certain attributes. This is most easily implemetiig con-
structing a relation containing the desired objects, anmuirjg it
with the relation of interest. Therefore, Jedd does not lzesepa-
rate selection operation.

2.3 Extracting Information from Relations

An important part of a language extension integrating it
into Java are facilities for extracting information fromatons
back to Java. Jedd provides two versionged. util.lterator
for iterating over the tuples of a relation. The first worksrefa-
tions with a single attribute, and in each iteration retuhgssingle
object in each tuple. The second iterator works on relatidragy
size, and iterates over the tuples, returning each tuple asray
of objects. These iterators are used to implemetaiSaing()
method on relations, which is very useful for debugging Jead
grams. Without such a method, it would be very difficult teeimt
pret the structure of a BDD to determine the relation it repres.

Jedd also providessize() method that returns the number of

The next step is to remove the resolved call sites from the set tuples in a relation. Jedd provides additional statistisua the

of sites left to resolve. Theesolved relation has the method at-
tribute whichtoResolve lacks, so it is projected away in line 9
before the resolved call sites are subtracted. After dairggtd our
example, we obtain th®eResolve relation in Figure 4(e).

The final step is to move up the class hierarchy by replaciog ea
class in the tgttype attribute with its immediate supeldhis is
done with a composition (in line 10) of thteResolve relation
with theextend relation passed in from the hierarchy, which en-
codes the immediate superclass (extends) relationshipurmex-
ample, as Figure 4(d) shows, B is a subclass of A. The tgttipe a
tribute is matched with the subtype attribute in gweend relation,
and a composition rather than a join is used because thbuagsi
being compared (the subtype) are not needed; fromattead re-
lation, only the supertype attribute is needed. The rewtelation
has replaced each object in the tgttype attributeRésolve with
its immediate superclass, as shown in Figure 4(f). Befatartbe
assigned taoResolve , the supertype attribute must be renamed
to tgttype to match the schemaResolve . Finally, if the set
of call sites to be resolved is not yet empty, the algorithantstan-
other iteration of the loop to resolve them. Figure 4(g) shokne
call resolved in the second iteration. Together, the retatin Fig-
ures 4(c) and (g) show the final result: the targets of caliotg)
and bar() with a receiver of type B are A.foo() and B.bar().

BDD representations of relations as part of its profilingrfeavork,
which is described in Section 4.3.

3. JEDD TRANSLATOR

We have implemented a translator which converts Jedd progra
to Java programs. In Section 3.1, we discuss the key frothisen
sues, and in Section 3.2, we describe how the high-leveioakl
operations are represented using lower-level BDD oparsiticA
key part of the code generation algorithm is the physical @lam
assignment problem which is introduced in Section 3.3, amd a
algorithm based on SAT is provided in Section 3.3.2. In some
cases, there exists no valid physical domain assignmetinaec-
tion 3.3.3, we discuss how unsatisfiable core extractiorséxuo
provide meaningful error messages.

3.1 Front-end

We implemented the Jedd to Java translator using Polygidt [2
a Java front-end intended for writing language extensions.

We used the Java grammar [12, ch. 19] as a starting point for
a Jedd grammar, after applying some language preserving-tra
formations so that the extended grammar would be LALR(1e Th
productions that we added and removed are given in Figur@b: N

Added productions:

Type ::= ‘<’ (AttributePhys) (*, ' (AttributePhys))* ‘>’
AttributePhys) ::= (Attribute) | (Attribute) *: * (Attribute)
Attribute) ::= (ClassOrlInterfaceType
UnaryExpressionNotPlusMinps:= (RelExprJoin)

RelExprJoin) ::= (RelExpr) | (Join)

(

(

(

(

(

(Join) ::= (RelExprJoin) (AttrList) (JoinSym) (RelExpr) (AttrList)
(AttrList) = *{ (Attribute) (*, * (Attribute))* ‘}’

(JoinSym) = > <<

(RelExpr) ::= (Replace) | (PostfixExpression

(

Replace) ::= ‘(" (Replacement) (",
(RelationExpr)

(Replacement))*)’

(Replacement) ::= (Attribute) ‘=>’
| (Attribute) ‘=>" (Attribute)
| (Attribute) ‘=>" (Attribute) (Attribute)

(Literal) ::= ‘new’ ‘{’ (LiteralPiece) (*,
| KOBi | llBi

(LiteralPiece))* ‘' }"

(LiteralPiece) ::= (Expressioh‘=>" (AttributePhys)
Removed production:

(UnaryExpressionNotPlusMinps:= (PostfixExpression

Figure 5: Jedd grammar productions

terminals from the original Java grammar appear in itall¢ee re-
sult is a LALR(1) grammar which extends Java in a natural way.
The syntax and symbols for all operations are intuitive aaml/do
remember (the symbols for join and compositior,and<>, were
inspired by ando, respectively, often used in relational database
literature). Attribute manipulation operations (whichadge the
type of expressions) use a cast-like syntax. No keywordsfamd
new symbols were added.

Polyglot includes a complete semantic checker for Java. We
extended this checker to infer the schemas of relationatesxp
sions from their subexpressions, and statically enforeepttop-
erties shown in Figure 6. The most important general prasert
are that no relation may have more than one instance of the sam
attribute, that operands of set and equality operations bampat-
ible schemas, and that attributes mentioned in attributeipota-
tion, join, and composition expressions exist in the cquoesling
operands.

3.2 Implementing Relational Operations

In this section, we describe how relations are represent®8®Ds,
and how the relational operations are performed.

3.2.1 Representing Relations as BDDs

A BDD is a compact representation of a set of binary strings of
a fixed length (or, equivalently, a function frof®,1}" to {0,1}).
Jedd groups bit positions of these strings iptysical domains
When a relation is represented in a BDD, each attribute iegto
in a separate physical domain. The physical domains areedefin
and named by the user by implementing an interface included i
the Jedd runtime library. The relative bit ordering of theimas
physical domains is also specified by the user. The assignofien
the attributes of each relation to specific physical domiaisabject

a=aj=i=] a < jedd.Attribute

new {0=>ay.....on=>an) : (ar,....an) |
x:T aeT a<:jedd.Attribute [Project]
(a=>)x: T\ {8} !
x:T aeT b¢T ab<:jedd.Attribute
(a=>b)x: (T {a}) U{b} (Rename]
x:T aeT bc¢T\{a}
b#c ab,c<:jedd.Attribute [Copy]
(a=>box: (T\{apufbef
x:T y:T
x@Yy: T whereo € {&] ,- } [SetOp]
x:T y:Tvye {0B,1B})
x@y: T whereo € {=,&=,|= ,-= }[ASSIgn}
x:Tvxe{0B,1B} y:Tvye{0B,1B} (Compare]

X®y:boolean where® € {==,!=}

x:T y:U U =U\{by,...by} TnNU =0
{a,...a} CT {by,....bn} CU
a=aj=i=] bj=bj=1=]j

a;,bj <:jedd.Attribute
x{a1,...,an}><y{by,...,bp} : TUU’

[Join]

x:T y:U T'nU' =0
T =(T\{a1,...,an}) U’=(U\{by,...bn})
{ar,..a0) CT {by,...bo} CU
g=aj=>i=] bj=bj=i=]
a, b <: jedd.Attribute
x{ay,...,an}<>y{by,...,bp} : T/ UU’

[Compose]

Figure 6: Typing rules

to many constraints, and we leave the discussion of this iitapb
problem to Section 3.3. Once a physical domain assignment ha
been determined, Jedd ensures that each physical domaistson
of enough bits to store the maximum number of objects thabean
stored in each attribute assigned to it.

Each domain can convert objects in the domain to integers and
vice versa. We use the binary representation of the integent
code the object. To encode a tuple, we construct the BDD itenta
ing all strings such that for each attribute, the bits in thggical
domain assigned to that attribute match the binary reptaten
of the object stored in that attribute. Note that we have naire-
ment of the bits in physical domains not used by any attrilibtese
bits can be viewed to have a wildcard value. For example,cagp
we want to encode the tup{@1=>A, 02=>B }, where the binary
representation ob1 is 01, and the binary representationasf is
10, Ais assigned to the physical domain consisting of the first two
bits, B is assigned to the physical domain consisting of the next two
bits, and a third, unused physical domain exists, congjgifrthe
last two bits. This tuple would be encoded by the BDD for thie se
of binary strings{0110?% = {01100001100101101001101%.
Although this means that the BDD encoding of a single tupte ca
be a set of many strings, this does not affect the size of thB BD
because BDDs represent such regular sets compactly. Mecd-sp
ically, the number of nodes in a BDD for a single tuple always
equals the total number of bits in the physical domains useht
code the attributes.

The BDD for a relation of multiple tuples is simply the BDD
for the union of the binary strings representing all the égplThis
means that the set operations on relations are implemeastttba
same operations on the sets of binary strings in the BDD, lnduie
standard in BDD libraries. Similarly, relation equalityjisst BDD
equality. However, for all these operations, the physicahdin
assignment must be the same for both their operands.

3.2.2 Operations at the BDD level

Projection is implemented in BDDs using the existential quan-
tification BDD operation on the physical domains assigneth&o
removed attributes. Conceptually, this operation takestahgs in
the BDD, and creates new strings by replacing each bit oftiys-p
ical domain with both 0 and 1. Therefore, each tuple in thgioal
BDD will appear in the new BDD, but with a wildcard value for
the physical domains projected away, indicating that thmeynat in
use by the relation.

Attribute renaming requires no change to the underlying BDD.
Only the mapping from attribute to physical domain needsdo b
updated, with the new attribute replacing the old.

To implement gjoin in BDDs, we must first carefully set up
the physical domain assignment. The attributes being coedpa
must be assigned to the same physical domains in the leftigintd r
relations. The remaining attributes must be assigned tsipaly
domains not used by the other relation, or else their valués w
overwrite each other. Assuming we have such a physical domai
assignment, the join itself is performed with an intersetioper-
ation on the sets of binary strings in the BDD. Since thelaitds

wanted to make it possible to experiment with different jtais
domain assignments, with the ultimate goal of finding asaignts
that make the analysis execute efficiently. Third, we waatedl-
gorithm which could be practically implemented in a usedbés.
In the rest of this section, we explain these objectives inenute-
tail.

The first two objectives may seem contradictory, since a very
flexible system can be produced by requiring the user to §peei
ery detail, while an automatic system offering no choicegiires
little from the user. Therefore, one of the challenges wdmtba
reasonable compromise between these two extremes.

A programmer using a BDD library directly must assign atttés
to physical domains by hand, and write the program in terms of
physical domains, rather than attributes. For simple nogr of
several BDD expressions with two or three attributes, thicept-
able; however, for more complicated prograhessigning a valid
physical domain to each attribute of every subexpressidyoth
tedious and error-prone. It is tedious because there areasy m
attributes to which physical domains must be assigned, taisd i
error-prone because the many replace operations which datae
to the assigned physical domains must be inserted by harld, wi
no automatic verification of their correctness. Therefarewould
like Jedd to relieve the user from having to perform the fadlign-
ment by automatically generating a reasonable assignmamtd
minimum amount of user input. To prevent errors, we would lik
Jedd to automatically insert the correct replace operatiommple-
ment the assignment.

Since Jedd is a tool designed mainly for research into imple-

being compared are mapped to the same physical domain, tthe sementing program analyses using BDDs, it should make it pessi

intersection will find exactly those pairs from the two setseve
these attributes match. The remaining attributes aredstonghys-
ical domains that are unused by the other relation, so threyegr
resented there with a wildcard value. The set intersectiaach
object with the wildcard value just gives back the originbjest.

A composition is implemented in the same way as a join fol-
lowed by a projection (set intersection followed by exisidmuan-
tification), but a special function of the BDD library is usttat
performs these two operations more efficiently in one step.

Due to the requirements of each operation on the physical do-
main assignment, it is sometimes necessary to change tisecphy
domain assignment of a relation (that is, construct a diffeBDD
representing the same relation, but under a different physio-
main assignment). This is implemented using an operatibadca
replace in BuDDy, andSwapVariables in CUDD, which con-
structs a BDD containing the same strings as the original BiD
with the bits of each string permuted with a specified pertiurta
Jedd constructs the permutation required to move the biteasld
physical domain to the new physical domain, resulting in &DBD
representing the same tuples, but in different physicalaipsm

3.3 Assigning Physical Domains to Attributes

One important problem when implementing algorithms using
BDDs is deciding how to assign the attributes of each exjess
to physical domains of BDD variables. In this section, welaxp
how Jedd automates this task. First, in Section 3.3.1, wsepte
the objectives which motivated the design of the physicahaio
assignment algorithm. Next, in Section 3.3.2, we descitileeal-
gorithm itself, and explain how it achieves the objectivEmally,
in Section 3.3.3, we present the error recovery mechanisiohwh
provides meaningful error messages to the programmer.

3.3.1 Objectives

Our objectives for the design of the physical domain assetm
algorithm fall into three main categories. First, we aimedntini-
mize the amount of work required of the programmer. Secomd, w

to experiment with different physical domain assignmeritdias
been widely noted that the ordering of bits in a BDD determine
its size, and therefore the speed of operations performét ©he
bit ordering is closely related to the physical domain assignt,
since physical domains are groups of bit positions; the ¢oation
of the assignment of attributes to physical domains and ttero
ing of the bits of those physical domains together deterrtiee
relative ordering of the bits of attributes. Therefore, ggysical
domain assignment chosen has an important effect on therperf
mance of algorithms implemented with BDDs. Unfortunateligh
our currently limited knowledge of implementing progranmabn
ses using BDDs, we do not know of any easy ways to determine a
near-optimal physical domain assignment even by hand)deta
automatically. Some input from the programmer about théregs
physical domain assignment is therefore necessary. Indeégde-
sirable to allow the researcher to specify the assignmenhake
it possible to experiment with different assignments. Eheper-
iments are necessary to improve our knowledge of what makes a
good assignment, and will hopefully one day lead to a fulljoau
mated physical domain assignment algorithm. However, wstmu
remember to balance flexibility with ease of specificatiaeally,
Jedd would allow the program to initially contain a minimur o
physical domain information, and would automatically gete a
reasonable complete assignment. Later, based on profiifog i
mation, the programmer would tune the critical parts of the p
gram and specify the assignment for those parts in morel detai

In order for the physical domain assignment algorithm todee u
ful, it must be implemented in a practical tool that is useaty
programmers. When the programmer-specified part of theiqdlys
domain assignment contains errors (i.e., part of the physio-
main assignment is inconsistent), the algorithm shouldtbe @
indicate the source of the error with meaningful error mgesain
the absence of errors, the algorithm should always find aoneas

1our current implementation of whole-program analysesaiost
613 BDD subexpressions with a total of 1586 attributes.

able assignment; it should not be a heuristic that fails &atain
difficult inputs, since these difficult problems are liketydlso be
difficult for the programmer to solve by hand. Since Jedd &l
run each time the program is compiled, and since the poirnead J
is to make it easier to implement non-trivial program anedyas-
ing BDDs, the algorithm should be able to process these riziatt
programs in a reasonable amount of time.

Jedd addresses these objectives in the following ways. d&&dr e
attribute of each expression, the programmer may optipisalkbc-
ify a physical domain assignment, and Jedd automaticadigris
the correct replace operations to implement the assignnigris
makes it easy to tweak the assignment without having to tewri
the replace operations. When the programmer specifies qathysi
domains for only a small subset of the attributes, Jedd aattom
ically completes the assignment using the algorithm desdrin
the next section. Should the programmer not be satisfiedspith
cific parts of the automatically generated assignment,ipalydo-
mains may be specified for these expressions explicitly, Jaaidl
will find a reasonable assignment for the rest of the progiathe
programmer-specified portion of the physical domain assant
contains an error and an assignment cannot be found, Jeoidsrep
the specific expression and attributes to which physicalaios
cannot be assigned, as described in section 3.3.3. In ségtive
provide some experimental results showing that the phlysiza
main assignment algorithm is sufficiently fast for the pesbs for
which Jedd was intended.

3.3.2 Physical Domain Assignment Algorithm

We call a physical domain assignment for a Jedd progralia
if a BDD implementation using the assignment correctly cotap
the relational algebra expressions in the program. In oiatea
physical domain assignment to be valid, it is necessary affd s
cient for it to satisfy the following constraints betweetriatites of
expressions:

1. [conflict] All attributes of each expression must be assigned
to distinctphysical domains.

2. [equality] Each operation requires certain attributes of its op-
erands to be assigned to tkamephysical domain, as de-
scribed in Section 3.2.

A valid (though not necessarily reasonable) physical donaa-

signment can be found very easily. First, introduce a frdg/sp
ical domain for each attribute of each expression, satigffhe

first requirement. Then, wrap each subexpression of a conegle
pression with a replace operation changing the physicalaittsn
to satisfy the second requirement. The resulting physioadain

assignment is valid, but it requires many replace opersfisiow-

ing down program execution considerably. In addition, ¢hismo

way for the programmer to force selected attributes to bigasd

to specific physical domains.

We would like to minimize or at least reduce the number of re-
place operations, as well as give the programmer some ¢ongn
where these operations take place. A convenient way to do thi
is to allow the programmer to specify physical domains faneo
small subset of expressions, and constrain the physicaaioas-
signment not to contain any “unnecessary” replaces. Thissma
it possible for Jedd to construct a reasonable assignméhtfevi/
replaces with very little input from the programmer, whiligigg
the programmer the option to more completely specify a domai
assignment for specific sections of the code.

We need to formalize what we mean by “unnecessary” replaces.
To do this, we first wrap all subexpressions with dummy replas
erations as described above, so thateipgality constraints can be
satisfied. Then, for each attribute of each replace operatie add
anassignment edge from the attribute in the original subexpression

resolved

rectype] signaturq tgttype| method|
T1 S1 T2 M1
| | replace | |

[rectype] signaturd tgttype] method|
| 1 I
| | _Join |

[rectype] signaturd tgttype] method|

“Nepiadd,

replac
[rectypd] signaturd tgttype| [signaturd type] method
I I I | I
toResplve declaresMethod

[rectypd] signaturd tgttype| [signaturd type] method

Figure 7: Example of physical domain assignment constrairst

to the attribute in the result of the replace. Intuitivelyeseas-
signment edges connect attributes whishouldbe assigned to the
same physical domain; if they are, the replace operationngcr
essary and can be removed. Because different replace iopsrat
have unpredictably different costs, we do not try to find asigas
ment having the minimum number asignment edges with dif-
ferent physical domains; instead, we are satisfied with vémgo
computation paths in which an attribute is replaced muttphes
without reason. More precisely, we partition the graph fednby
equality and assignment edges into connected components by po-
tentially breaking somassignment edges, such that each compo-
nent contains one attribute with a programmer-specifiedsiphi/
domain, and neonflict edge has both its endpoints in components
with the same physical domain (or in the same component)tyEve
attribute in a component is then assigned the same physical d
main. This ensures that every replace operation has a resison
replace operations only occur between attributes at thadsoies
of components with different programmer-specified physita
mains. Furthermore, this is consistent with the kind of veha
the programmer likely expects: if an attribute is involvadiicom-
putation with other attributes for which physical domaiasébeen
specified, one expects it to be assigned to one of those demain

The constraints produced from lines 6-7 of the example in Fig
ure 4 are shown in Figure 7Equality constraints are shown as
solid lines andassignment constraints as dashed line<onflict
constraints, which are not shown, are placed between ali péi
attributes within each expression. Replace operations baen
wrapped around the subexpressitsResolve anddeclares-
Method , and around the entire join. In the absence of any other
constraints, the graph would be split into four connectehpo-
nents (the first consisting of all rectype attributes, theosd of all
signature attributes, the third of all tgttype and typeilattes, and
the fourth of all method attributes), which would be assijtiee
physical domains T1, S1, T2, and M1, respectively. Sincarthe
put and output of each replace operation would then havesdtine s
physical domain assignment, no replacement would be regess
so Jedd would remove them prior to generating Java code.

In general, finding a partitioning respectinga@alhflict andequal-
ity constraints and the programmer-specified physical donsars
NP-complete problem. An NP-completeness proof is gived &.[
Several heuristics that we implemented failed on commomexa
ple programs. More importantly, an incomplete heuristibi¢h
may fail to find a solution even when one exists) is undesir&nl
this problem. The case when a heuristic would fail to find asol
tion is precisely when the programmer very much wants to know
whether a solution exists (and he should tediously look tfdayi
hand) or does not exist (and he should modify the code so that a
solution does exist). Therefore, the potentially very hogist of
an exhaustive search is justified, and our intuition toldhat &l-
though the problem in general is NP-complete, typical imsts

would be relatively “easy”. However, we realized that immpknt-
ing a smart exhaustive solver that would handle the eas dfie
ciently would be difficult, and we would be duplicating mudtitte
work that has been done on the boolean satisfiability (SA®ppr
lem. We therefore encode the physical domain assignmehtgpmo
as a SAT problem, and call a SAT solver to solve it for us.

Given a boolean formula over a set of variables, a SAT solver
finds a truth assignment to those variables that makes thaufar
evaluate to true. We therefore encode the physical domaigras
ment problem into a boolean formula in such a way that we can re
cover a physical domain assignment from a truth assignnfetg o
variables, and such that the formula evaluates to true lgxaben
the physical domain assignment satisfies our constrainescaf-
struct the formula in conjunctive normal form because mast S
solvers require it, and it is easier to specify it directlydNF than
to construct an arbitrary formula and convert it to CNF latér
formula in CNF is a conjunction of disjunctions of literalghere
each literal is a variable or a negated variable.

Let E be the set of all expressions of BDD type in the program.
For each expressiog we use the notatioe? for attributea of
expressiore. Let A be the set of all pairg® of expressions and
attributes in the program. L&t be the set of all physical domains
in the program.

The SAT formulation consists of two types of variables:ihtire —
physical domain variables, and flow path variables. A vagiaih
the forme*P indicates that attributa of expressiore is assigned
physical domainp. To represent the notion of connected compo-
nents in the SAT formula, we introdudlw paths sequences of
attributes of expressions with the following properties:

e the first attribute in the sequence is the only one with a
programmer-specified physical domain,

e each consecutive pair of attributes on the flow path is con-
nected by arquality or assignment edge,

e no attribute of an expression appears more than once on the.

flow path, and

e no other flow path ending with the same attribute exists whose

attributes form a proper subset of the attributes of the flow
path.

Intuitively, the flow paths represent, for each attributeeath ex-
pression, the shortest paths to it followiaguality andassignment
edges from an attribute with a programmer-specified physica
main. We will require that at least one flow path ending at each
attribute be active, indicating that the attribute, as vasllall the
attributes on the flow path, are in the same connected compone
A variable of the formm(ey®:Po, g% ... ey®) indicates that the
given flow path from attributeg of e to a, of e, is active; that is,
all attributes along it are assigned physical dorman We usell

to denote the set of all flow paths. The constraints are encide
terms of these variables as follows.

1. Each attribute is assigned to some physical domain.
NV er
etcA peP
2. No attribute is assigned to multiple physical domains.
A N\ —ePv-eP
ecA p,pePpAp

3. Any attribute with an explicitly specified physical domas
assigned that domain.

Ao e

(e2,p)SPECIFIED

4. For eaclconflict edge betweeg® ande/ @ aanda must not
be assigned to the same physical domain.

A N —€Py %P

(e2,¢¥)cCONFLICT PEP

. For eaclequality edge betweeg® andée 4 aandd are as-
signed the same physical domain.

A N\ (6P v =& P) A (—e*P v ¥ P)

(e2,e¥)eEQUALITY PP

[&)]

6. Foreacle?, at least one flow path leading to it must be active.

A V (g™, e, €%

cA m(ep?oPo e,e2)ell

7. When a flow path is active, all attributes on it are assigned
the physical domain of the flow path.

A N\ (e e® L e®)ved P
(€200 €1%1,....€y3)M 0<i<n

3.3.3 Error Reporting

One challenge with using a black box such as a SAT solver in
a compiler is in reporting errors to the user. When the SAVesol
determines that no physical domain assignment existsparte
that the boolean formula is unsatisfiable. While this faatgsful
for the programmer to know, it is not very helpful in determin
the cause of the error.

To improve the error reporting, we took advantage of a new fea
ture recently implemented in the zchaff SAT solver, un§atie
core extraction [30]. When the SAT solver determines that th
boolean formula is unsatisfiable, it also outputs a smalsstbf
the clauses (disjunctions) such that their conjunctioriss ansat-
isfiable. Although the minimality of this core is not guareed,
our experience has been that all the unsatisfiable coresl ffmn
the physical domain assignment problem were indeed minimal

The physical domain assignment may not have a solution f@r on
of two reasons. First, there may be an attribute of an exjoress
with no path to any attribute for which a physical domain hesrb
specified; that is, a component of the graph formeddnality and
assignment edges may not have a physical domain specified for
it. Jedd detects this case while constructing the input ¢oSAT
solver, since it makes it impossible to construct the claegairing
at least one flow path leading to the attribute to be activaugs 6).
Second, it may not be possible to partition the graph formed b
equality andassignment edges in a way that respects all tduaflict
constraints. In this case, the following proposition givesa way
to report the source of the problem to the programmer.
Proposition: When the boolean formula produced for the physi-
cal domain assignment problem is unsatisfiable, every isfiséie
core contains at least one clause of type 4 (conflict cladspjoof
of this proposition is given in [13].

It follows from the proposition that the small unsatisfiabtee
returned by the SAT solver will include at least one clausyoé 4.
From this clause, Jedd extracts the expression and thieuatsi to
which physical domains could not be assigned, and even yy&-ph
cal domain(s) that were considered for assignment to thibutis.
This information is reported to the programmer along withpbsi-
tion of the expression in the source file. The problem can bidyea
fixed by explicitly assigning a new physical domain to oneha t
attributes in the conflict constraint that cannot be satisfie

To illustrate the error reporting with a typical error, cites
the following declarations, along with the compose subesgion
taken from line 10 of Figure 4.

<rectype:T1, signature:S1, tgttype:T2> toResolve; temporary relations. This is because unlike allocationawf ob-

<supertype:T1, subtype:T2> extend; jects, an allocation of a BDD node will not trigger a Java gaed
<rectype, signature, supertype> result = _ collection when no more memory is available. It is very poigsi
toResolve {gttype} <> extend {subtype}; to allocate many large temporary BDDs in several iteratioiha
The result of the compose operation has attribedetype | sig- loop and have t_he BDD Ilb_rary run out of memory without a Java
nature , andsupertype , but only the physical domaift is avail- garbage collection ever being triggered.
able for bothrectype andsupertype . Inthis case, the Jedd trans- ABDD can become dead in four ways. First, it may be the result
lator would issue the following error message: ofa subexpressmp of an expression beco_mlng unreachabt_ethaé
outer expression is evaluated. Second, it may be storeddoz |
Conflict between variable or field, and it may be overwritten by another BDDirdh
Compose_expression:rectype at Testjedd:4,25 the BDD may be stored in a local variable which goes out of scop
and Fourth, the BDD may be stored in a field, and the object coirtgin

Compose_expression:supertype at Test.jedd:4,25

over physical domain T1 the field may become unreachable. For temporary values,rtte fi

two cases are the most common and therefore the most importan
The error message indicates the line and column (4 and 2Bgoft ~ To handle the first case, we implement the convention that eac

expression in question, the attributes to which a physioatain BDD operation decrements the reference count of its argtsmen
could not be assignedegtype andsupertype), and the sin- and increments the reference count of its result beforenieiy it.
gle physical domain which is available for the two attritsu¢e1). This convention is partly imposed by the requirement of tidbB

To fix this error, the programmer would specify that one of the libraries that any BDDs passed to library functions have-nerm
attributes, for exampleupertype , should be assigned to a new reference counts.

physical domairTs: qu a clean.implementation of the remaining cases, we Ceeate
) relation container object for each local variable and fieliul.the
<rectype, signature, supertype:T3> result = generated Java code, the variable/field points to its czlatdbn-

toResolve {tgttype} <> extend {subtype}; tainer throughout its lifetime; this is enforced by makihg tvari-

able/field final. The BDD itself is stored as a private field le t

4, JEDD RUNTIME relation container, and can be updated only through anrassigt
method which also updates the reference counts. This geasan
4.1 Backends that in the second case, a BDD being overwritten has itsaeter

One of the benefits of expressing BDD algorithms in a language ¢0unt decremented immediately. To handle the third andttiour
like Jedd is that we can execute these algorithms, withoud-mo C€@Ses, the relation container object also decrements teeenee
ification, using various BDD libraries as backends. Thiswad count of any BDD stored in its finalizer, which is called whee t
us to compare the performance of different backends on tne sa relation container is garbage collected. In the fourth daskeld
problem. In Jedd, we have already implemented interfacéiseto ~ PeComing dead), this happens in the same garbage coliéation
BuDDy [14] and CUDD [25] libraries using JNI to call C code the one in which the object containing the field becomes wirea
from Java, and we are experimenting with our own library terit able, which is the earllgst time that it is safe tq decren‘twtefgr-
entirely in Java. Several researchers have suggested zming ~ €NCe count. For the third case (a variable going out of scapis)
suppressed binary decision diagrams (ZDDs) [18] for ountgeio ensures that the reference count will eventually be deanede
analysis algorithms. We are therefore working on a backend f Putthis may be a significant amount of time after the varigjoles

Jedd based on ZDDs, which will allow us to run all our algarith out of scope. To improve on this, we perform a static liveraess-
using ZDDs without modification. ysis on all relation variables, and at each point where aakbgi

may become dead, we decrement the reference count of any BDD
4.2 Memory Management Issues it may contain and remove the BDD from the container. In tlve fa
All BDD libraries that we are aware of use reference counts to ©f €xceptional interprocedural control flow, this is not ayis pos-

identify unused BDD nodes to be reclaimed. A disadvantageisf sible. We assume such control flow to be unusual, and fall back
approach is that a programmer using the Iibrary in a C progeam the finalizer to decrement the reference count in such cases.
required to explicitly increment and decrement the refeeezount To summarize, Jedd manages BDD reference counts automati-
whenever BDDs are assigned or a reference to a BDD goes outCally without any help fr_om the programmer. In all f_our cases

of scope. In C++, it is possible to use overloaded assignment frees BDDs as soon as it becomes safe to do so, so its perfoema_n
erators and destructors to relieve the programmer of muchi®f Shlmi.ld be no worse than that of a hand-coded reference ogunti
burden. The lack of operator overloading makes this imjptessn solution.

Java. If Jedd were a library rather than a language extentien 4.3 Profiler

programmer would have to explicitly manipulate referenoents. :

This is yet another tedious and error-prone aspect of wgrkiith A common problem when tuning any algorithm using BDDs is
BDDs. choosing an efficienvariable ordering the relative order of the
Since Jedd is an extension to the language, we can design it toindividual bits of the physical domains. In complicated grams
update reference counts automatically, without any helmfthe with many relations and attributes, a related problem isntyithe
programmer. For performance reasons, it is particularjyortant physical domain assignment, and the replace operationshvihi

that the reference count be decremented as soon as podsile a dictates. Specifically, we are interested in removing theptace
a reference becomes dead. When dead nodes are not freed in 8Perations which are particularly expensive by modifyimg phys-
garbage collection, fewer nodes remain for future commraso

2
arbage collection is required more frequently. In additiBDD Here, we assume that the garbage collector collects albahre
g 9 q a Y l able objects in each collection. However, even when thisois n

libraries uss a cafchef to Zpebed Iup thedba5|c operaltltlonsh?sr:‘.:node true in general, such as in a generational collector, it iy likely
Large numbers of unfreed obsolete nodes may pollute thisecac that the object containing the field and the relation cortaimill

In general, we cannot rely solely on the Java garbage cofl¢at be reclaimed in the same collection, since they are alldozitese
determine when relations are unreachable, particuladytdived together: the latter is allocated in the constructor of trenkr.

Analysis Relation Phys. Number of Constraints SAT Problem Solving
Component Exprs. Attrs. Doms. Conflict Equality Assignment Variables Clauses Literals Time (s)
Virtual Call Resolution 46 127 5 184 173 70 1298 5600 11627 0.016
Hierarchy 172 344 5 242 442 143 3711 18140 37764 0.062
Points-to Analysis 247 561 8 637 802 259 7997 44405 93052 0.161
Side-effect Analysis 68 237 9 484 282 108 4441 41772 86482 0.165
Call Graph 89 340 8 929 442 187 7043 96514 197865 0.284
All 5 combined 613 1586 10 4902 2141 767 31083 273986 568597 4.607

Table 1: Size of physical domain assignment problem

ical domain assignment to make them unnecessary. For these t
ing tasks, we need some insight into the runtime behaviowuof
program. In particular, we want to know which operations ere
pensive in terms of time and BDD size (and therefore space), i
order to either remove them, or make them cheaper by modifyin
the variable ordering. For tuning the variable orderingowimg
the shape of the BDDs involved in the operation is also us&fué
shape of a BDD is the number of nodes at each level (testiny eac
variable) of the BDD.

In the code generated by Jedd, relational operations arkeimp
mented as calls into the Jedd runtime library. The runtireaty
optionally makes calls to a profiler which records, for eapkre

nificant programs such as the combination of all five prograai-a
yses, as shown in Table 1. The first section of the table shioavs t
number of relational expressions, attributes in theseessgions,
and physical domains. The second section lists the numbeaabf
type of constraint in the physical domain assignment prablEhe
third section gives the number of distinct variables, asusand
literals in the resulting SAT formula. Finally, the fourtlecdion
shows the time taken by zchaff to parse and solve the formula o
a 1833 MHz Athlon with 512 MB of RAM. To put the times into
perspective, a complete build of Soot takes 5 minutes onahes
machine, so 4.6 seconds to assign physical domains is veepac
able. The SAT encoding of the physical domain assignmeri-pro

ation, the time taken and the number of nodes and shape of thelem was designed to be easy to understand rather than cgmpact

operand and result BDDs. This information is written out as a
SQL file to be loaded into a database, which provides a flexible
data store on which arbitrary queries can be performed teepte
the data to the user. Jedd also includes CGI scripts to pravd
cess to the profiling data through a web browser. We use SQLite
for the database and thttpd for the web server because o

of installation, but in principle, any SQL database and C&pable
web server should work. The overall profile view shows, farhea
relational operation in the program, the number of timesais \wx-
ecuted, the total time taken, and the maximum size of the BDDs
involved. Clicking on an operation brings up a detailed vieith a

line of information for each time the operation was execuek-

ing on a specific execution of the operation generates a gaph
representation of the shape of the BDDs involved in the djmera

5. EXPERIENCE WITH JEDD

We have implemented in Jedd several test examples, our BDD
points-to analysis algorithm [5], and a collection of imetated
whole-program analyses. Without Jedd, the latter wouldhaet
been feasible, since it would require us to assign physizalains
by hand to the attributes of 613 subexpressions, with nonaated
way to verify that we had not made mistakes; in fact, we ihitia
tried such an approach, and quickly gave up. Even the relgtiv
short points-to analysis algorithm becomes much clearemnvex-
pressed using attributes rather than physical domainstljirand
without the clutter of low-level replace operations. In gexl, we
wrote the whole-program analyses without specifying anysjatal
domains at all, and when it came time to compile, we assigmed |
enough attributes to physical domains to allow the physioatain
assignment algorithm to assign the rest. In this proceds,slerror
reporting pointed us directly to the expressions that né¢odave
physical domains assigned by hand. The analyses themsetves
easy to implement compared to pure Java implementatiorialyma
thanks to the compact representation provided by BDDs. fror i
stance, the Java version of the side-effect analysis den#i803
non-comment lines of code, mostly implementing data stnest
to compactly represent the large, highly redundant set&lefes-
fects. In contrast, the Jedd version is only 124 lines. Far, iiois
is just preliminary experience, but we hope that Jedd widltde
the development of many other BDD-based program analyses.

We have found the zchaff SAT solver [19] to be more than fast
enough for solving the domain assignment problem, evenider s

it could easily be made smaller if the SAT solver ever became a
bottleneck.

To measure the runtime overhead of Jedd compared to using a
BDD library directly in C++ [5], we timed the C++ and Jedd ver-
sions of our points-to analysis algorithm on five benchmaBath
versions used the BuDDy library as the backend. The timings a
shown in Table 2. The overhead varied from 0.5% to 4%, which
we attribute to having to have the Java VM in memory, and to the
internal Java threads that run even when not executing d@lea c

Benchmark| Std. lib. | C++ | Jedd
version

javac 1.1.8 34s| 35s

compress 131 | 21.7s| 224s

javac 1.31 | 25.3s| 26.3s

sablecc 1.3.1 | 25.4s| 26.1s

jedit 1.31 | 41.1s| 41.3s

Table 2: Running time comparison of hand-coded C++ [5] and
Jedd points-to analysis

6. RELATED WORK

We have organized related work into four categories. In the n
section, we sample the abundance of work on languages for ex-
pressing relational computation. In Section 6.2, we priegamous
tools that have been written to interface with BDDs at a lovele
Some work has been done on abstracting BDDs as relationgy@nd
compare this work with Jedd in Section 6.3. Finally, a snialk,
rapidly growing, number of researchers have implementedram
analyses using BDDs without a relational abstraction; veeus
their work in Section 6.4.

6.1 Languages with Relations

The relational data model based on relational algebra was pr
posed by Codd [10], and has since been used for many applhisati
particularly as the basis of relational databases. The &@duage
has become a standard way of expressing relational opesatio
database systems, and snippets of SQL code are often enaliadde
programs written in other languages. Prolog [9] and itsvagities
are based on querying and updating a databaactf which are
analogous to relational tuples. Relations as first-clagsctbhave
appeared in many general-purpose languages ever sincayke d

of SETL [23], which included binary relations as one of itsica
data types. Support for n-ary relations is often presergngliages
for writing “glue” code between database systems and ciigat-
faces, such as thebigwig> project [7], a high-level language for
web services. The increasing popularity of XML is fuellingnk

on adapting languages for manipulating XML fragments, Wiuf:

ten resemble tuples, but are generally less homogeneowsceitr
example of this work are extensions to the type system of €# fo
expressing both relational and XML data [16].

Jedd is similar to these languages in that it adds relatiers a
data type to Java. In contrast to these languages whosergrima
goal is to provide access to relations, the primary focusedfids
to enable program analysis developers to exploit the cotgza
representation provided by BDDs, using relations as arradigin
to make programming with BDDs manageable.

6.2 Interfacing with BDDs

Jedd is built on top of the BuDDy [14] and CUDD [25] BDD li-
braries, which provide a low-level interface to a BDD impkamta-
tion. These libraries implement the basic operations on B@th
few higher-level abstractions. THi@ite domain blockef BuDDy
are one small exception; they provide a convenient way togro
together BDD variables, much like the physical domains adJe

Several small interactive languages have been developexfo
perimenting with BDDs. One example is BEM-II [17], designed
for manipulating Arithmetic BDDs and solving 0-1 integemopr
gramming problems. Another is IBEN [3], which provides a eom
mand-line user interface to directly call the BuDDy librdonc-
tions, as well as BDD visualization facilities.

The JINI interface allows Java code to use BDD libraries emitt
in C through specially written wrappers. We have found ityver
convenient to use the wrapper generator Swig [2] to autaaliti
generate these wrappers for us. However, others have chmsen
write such wrappers by hand, resulting in JBDD [26], a Java in

tracted from source code. Like Jedd, CrocoPat is based op n-a
relations. CrocoPat uses a declarative, Prolog-like syintavhich
attributes are identified implicitly by their position, hatr than ex-
plicitly by name, as in Jedd. CrocoPat also differs from Jedd
that it is primarily a query language rather than an extensib

a general-purpose language. The issue of assigning a#sila
physical domains is not discussed in the CrocoPat paper.

6.4 Program Analysis using BDDs

Several researchers have implemented various prograrysasal
using BDDs directly, without a relation-based abstraction

One example of this is our own earlier work on points-to analy
sis [5], which we are now extending using Jedd.

Ball and Rajamani [1] lifted a flow-sensitive finite-set dater
analysis to keep track & setof dataflow sets for each program
point, in order to track correlations between elements tdftaw
sets, achieving a path-sensitive analysis. They used BBbsm-
pactly represent the otherwise large sets of sets.

Sagiv, Reps, and Wilhelm [22] have constructed a framework
based on three-valued logic for expressing program ans|yse-
ticularly heap shape analyses. Although very expressiieframe-
work has memory requirements that are often prohibitivermdre
alyzing non-trivial programs. Manevich et al. [15] comphdiffer-
ent techniques for reducing the space required to représestate
required in these analyses; BDDs were one of these tectmique
This work is related to Jedd in that it allows program anaytee
be expressed at a high level and can use BDDs as a back-end. It
differs in that it uses three-valued logic as the high-leepresen-
tation, rather than relations.

Sittampalam, de Moor, and Larsen [24] formulate prograntana
yses using conditions on control flow paths. These conditomm-
tain free metavariables corresponding to program elenfsath as
variables and constants). To perform an analysis, thesavarét
ables are instantiated with specific elements from theqaati pro-

terface to both BuDDy and CUDD, later extended and renamed 9ram being analyzed. BDDs are used to efficiently represesht a

JavaBDD [28]. Unlike Jedd, these JNI wrappers provide no ab-

straction over the underlying BDD libraries. They simplioal the
library functions to be called from Java.

6.3 Relations with BDD Back-ends

Although relations have been included in many languages, an
several BDD implementations and interfaces exist, the iB®®s
as back-ends for implementing relations has been compelsati
rare.

The RELVIEW system is an interactive manipulator of binay r
lations with a graphical user interface for visualizingrthdt sup-
ports multiple back-ends, and one of the newer back-endssste-
lations in BDDs [4]. The fundamental difference between REHW
and Jedd is that RELVIEW is designed around binary relations
while much of the complexity of Jedd stems from the need toerep
sent n-ary relations. As pointed out by Fahmy, Holt, and @ftd],
binary relations are insufficient for expressing certaiobpems in
representing and querying graphs. For many program asgdid-
lems whichcould be represented by binary relations, this repre-
sentation would be more cumbersome than is possible usarg n-
relations.

GBDD [20] is a C++ library providing an abstraction of BDDs
based on relations of integers. Although it has partial supjor
n-ary relations, some operations (such as compositionjinegi-
nary relations. Compared to Jedd, GBDD lacks static typelche
ing (the type of a relation is not known until run-time), trencept
of abstract attributes to be assigned to physical domairnemaatic
memory management, and a profiler.

search the large space of possible instantiations.

Zhang, Gupta and Zhang [31] record dynamic slices during pro
gram execution for debugging purposes. These sets of gies
very large, making the space and time required for thisunsénta-
tion prohibitive when using traditional methods. In orderéduce
these costs, they store the sets of slices efficiently in BDDs

Interest in the use of BDDs for static program analysis cor@s
to grow; two other papers using BDDs for context-sensitivmer
analysis appear in these same proceedings [29, 32].

Our hope is that Jedd will facilitate the implementation of-f
ther, more complicated program analyses using BDDs.

7. CONCLUSIONS AND FUTURE WORK

We have introduced Jedd, a high-level language extension to
Java for expressing set-based algorithms so that they cam-be
plemented using BDDs. The motivation for designing the leag
was to provide a convenient way of specifying program areay®
that they could be efficiently solved using existing BDD pagés.

The approach presented is one of designing an appropriate la
guage abstraction which: (1) provides the programmer with t
correct abstraction of the problem, in this case a form dftiehs;

(2) provides as much static type support as possible; (s
only as much low-level detail as required (the programmexdne
only provide some of the key physical domain assignments); a
(4) fits naturally as an extension of a general purpose progriag
language, Java.

Based on this language, we have defined and implemented a
translator to generate Java code and an associated rurytesns

The language most closely related to Jedd is CrocoPat [6], a Key parts of the translator are: (1) the high-level relatiooper-

tool for querying relations representing software arcitee ex-

ations are translated into low-level BDD operations whieh be

provided by a variety of backend solvers; (2) the translaeer-
ages the power of existing SAT solvers to automatically jplev
a complete assignment of attributes to physical domainpr@r
vides a meaningful error message if no such assignmensgxi3}
automatically supports a reference-count-based approactem-
ory management at the Java level, compatible with the appesa
taken in the C-based solvers; and (4) provides support foagie
ging and profiling of the BDD-based operations.

We have used our system to program five key program analysis
modules in the Soot compiler framework [27] and have fourad th
it allows us to write compact programs which can be compited i
reasonable time, and that generated BDD-based code is about

efficient as the BDD solvers we coded by hand.

Our next steps are to experiment with more analyses written i
Jedd and to integrate the Jedd-based analyses into the main S

development trunk. Another challenge will be to make Jedd-co
patible with generics when Java 1.5 is released. Informattmut
the most recent versions of Jedd and its release statusrid fu
http://www.sable.mcgill.ca/jedd/

8. REFERENCES

[1] Thomas Ball and Sriram K. Rajamani. Bebop: A
Path-sensitive Interprocedural Dataflow Engine. In
Proceedings of PASTE'Qpages 97 — 103, June 2001.

[2] D. M. Beazley. SWIG: An easy to use tool for integrating
scripting languages with C and C++. Broceedings of the
4th USENIX Tcl/Tk Workshopages 129-139, July 1996.

[3] Gerd Behrmann. The interactive BDD environment.
http://iben.sourceforge.net/

[4] R. Berghammer, B. Leoniuk, and U Milanese.
Implementation of relational algebra using binary decisio
diagrams. Ir6th International Conference RelMiCS 2001
volume 2561 oLNCS pages 241-257, December 2002.

[5] Marc Berndl, Ondfej Lhotak, Feng Qian, Laurie Hendren
and Navindra Umanee. Points-to analysis using BDDs. In
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementatjmeges
103-114. ACM Press, 2003.

[6] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Simple
and efficient relational querying of software structures. |
Proceedings of the 10th IEEE Working Conference on
Reverse Engineering (WCRE 2008ages 216—225, 2003.

[7] Claus Brabrand, Anders Mgller, and Michael I.
Schwartzbach. Thebigwig> project. ACM Transactions
on Internet Technology (TOIT2(2):79-114, 2002.

[8] Randal E. Bryant. Symbolic boolean manipulation with
ordered binary decision diagram®CM Computing Surveys
24(3):293-318, 1992.

[9] W. F. Clocksin and C. S. MellisiRrogramming in Prolog

Springer-Verlag New York, Inc., 1987.
E. F. Codd. A relational model of data for large sharethda
banks.Communications of the ACM3(6):377-387, 1970.

[10]

[11] H.M. Fahmy, R.C. Holt, and J.R. Cordy. Wins and losses of

algebraic transformations of software architecture A S
2001: Automated Software Engineerjipgges 51-62, 2001.

[12] James Gosling, Bill Joy, and Guy Ste€elée Java Language
Specification Addison-Wesley, 1996.

[13] Ondfej Lhotak and Laurie Hendren. Jedd: A BDD-based
relational extension of Java. Technical Report 2003-7,
McGill University, Sable Research Group, 2003.

[14] Jern Lind-Nielsen. BuDDy, A Binary Decision Diagram

Package. Department of Information Technology, Technical

University of Denmark,

http://www.itu.dk/research/buddy/

R. Manevich, G. Ramalingam, J. Field, D Goyal, and

M. Sagiv. Compactly Representing First-Order Structuoes f
Static Analysis. In Manuel V. Hermenegildo and German

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Puebla, editorsProceedings of SAS'02olume 2477 of
LNCS Madrid, Spain, September 2002. Springer.
Erik Meijer and Wolfram Schulte. Unifying tables, objs,
and documents. IivVorkshop on Declarative Programming
in the Context of Object-Oriented Languagpages
145-166, August 2003.
S. Minato and F. Somenzi. Arithmetic boolean exprassio
manipulator using BDDsormal Methods in System Design
10(2/3):221-242, 1997.
Shinichi Minato. Zero-suppressed BDDs for set
manipulation in combinatorial problems. Rroceedings of
the 30th ACM/IEEE Design Automation Conferenuages
272-277. ACM Press, 1993.
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: engineering an
efficient SAT solver. IrProceedings of the 38th Conference
on Design Automatigrpages 530-535. ACM Press, 2001.
Marcus Nilsson. GBDD — A package for representing
relations with BDDshttp://user.it.uu.se/-
“marcusn/projects/rmc/docs/gbdd/index.html
N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot An
extensible compiler framework for Java.18th
International Conference on Compiler Constructienlume
2622 ofLNCS pages 138-152, 2003.
Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Parametric shape analysis via 3-valued logicM
Transactions on Programming Languages and Systems
(TOPLAS) 24(3):217-298, 2002.
J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and
E. SchonbergProgramming with Sets - an Introduction to
Setl Springer, New York, 1986.
Ganesh Sittampalam, Oege de Moor, and Ken Friis Larsen.
Incremental execution of transformation specifications. |
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languaggsages 26—38.
ACM Press, 2004.
Fabio Somenzi. CUDD: CU Decision Diagram Package.
Department of Electrical and Computer Engineering,
University of Colorado at Boulder,
http://visi.colorado.edu/ fabio/CUDD/
Arash Vahidi. Arash’s Java interface to BDDs
http://www.chl.chalmers.se/"vahidi/bdd/bdd.html .
Raja Vallee-Rai, Etienne Gagnon, Laurie J. Hendreutri€k
Lam, Patrice Pominville, and Vijay Sundaresan. Optimizing
Java bytecode using the Soot framework: is it feasible? In
Compiler Construction, 9th International Conference (CC
2000) volume 1781 oLNCS pages 18-34, 2000.
John Whaley. JavaBDD — Java binary decision diagram
library. http://javabdd.sourceforge.net/
John Whaley and Monica Lam. Cloning- based
context-sensitive pointer alias analyses using binarisaet
diagrams. IrProceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and
ImplementationACM Press, 2004.
L. Zhang and S. Malik. Validating SAT solvers using an
independent resolution-based checker: Practical
implementations and other applications Proceedings of
Design, Automation and Test in Europe (DATE20@2)ges
880-885, 2003.
X. Zhang, R. Gupta, and Y. Zhang. Efficient forward
computation of dynamic slices using reduced ordered binary
decision diagrams. 18004 IEEE/ACM International
Conference on Software Engineerjiap04.
Jianwen Zhu and Silvian Calman. Symbolic pointer asialy
revisited. InProceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and
ImplementationACM Press, 2004.

