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ABSTRACT

This paper reports on a new approach to solving a subsettbase

points-to analysis for Java using Binary Decision Diagré@i3Ds).

In the model checking community, BDDs have been shown very ef
fective for representing large sets and solving very laggéigation
problems. Our work shows that BDDs can also be very effeftive
developing a points-to analysis that is simple to implenaext that
scales well, in both space and time, to large programs.

The paper first introduces BDDs and operations on BDDs using

some simple points-to examples. Then, a complete subsetiba
points-to algorithm is presented, expressed completéhgu&DDs
and BDD operations. This algorithm is then refined by findipg a
propriate variable orderings and by making the algorithoppgate
sets incrementally, in order to arrive at a very efficienbaittpm.
Experimental results are given to justify the choice of able or-
dering, to demonstrate the improvement due to incremeatén,

and to compare the performance of the BDD-based solver to an

efficient hand-coded graph-based solver. Finally, basetth®me-
sults of the BDD-based solver, a variety of BDD-based qgeaie
presented, including the points-to query.

Categories and Subject Descriptors

D.3 [Software]: Programming Languages; D.3.Briogramming
Language$: Processors-eompilers, optimization

General Terms
Languages, Experimentation

Keywords

Points-to analysis, binary decision diagrams

1. INTRODUCTION

In this paper, we take a well-known problem from the compiler
optimization communitypoints-to analysisand we show how to
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solve this problem efficiently usingeduced ordered binary deci-
sion diagramgROBDDs)} which have been shown to be very ef-
fective in the model checking community.

Whole program analyses, such as points-to analysis, eqpi
proaches that can scale well to large programs. Two popplar a
proaches to flow-insensitive points-to analysis have beesued in
the past, equality-based approaches like those pionegrgtebns-
gaard [32], and subset-based approaches like the analgsisufiy-
gested by Andersen [1]. The subset-based approaches giee mo
accurate results, but they also lead to greater challerayesffi-
cient implementations [6, 10,12, 19, 25, 28, 34].

For this paper, we have chosen to implement a subset-based-po
to analysis for Java. At a very high level, one can see thiblpro
as finding the allocation sites that reach a variable in tognam.
Consider an allocation statemeéita = new A() ; . Ifavariable
X is used in some other part of the program, then one would like
to know whethetx can refer to (point-to) an object allocatedSat
A key problem in developing efficient solvers for the subdsased
points-to analysis is that for large programs there are npainyts-
to sets, and each points-to set can become very large. @itany
of these points-to sets are equal or almost equal. Sevetabdse
of representing them compactly have been studied in the jpast
cluding collapsing equivalent variables [10, 24] and deisig new
representations for sets [11, 17, 18]; the BDD-based aphrteat

we introduce in this paper is another example of such a compac

representation.

Since BDDs have been shown to be effective for compactly rep-
resenting large sets and for solving large state spacegmsblike
those generated in model checking, it seemed like an integes
question to see if BDDs could also be used to efficiently stiee
points-to problem for Java. In particular, we wanted to exam
three aspects of the BDD solution: (a) execution time fostiieer,

(b) memory usage, and (c) ease of specifying the pointsgo-al
rithm using a standard BDD package. In summary, our expegien

was that BDDs were very effective in all three aspects.

The contributions of this paper include:

e We propose and develop an efficient BDD-based algorithm
for subset-based points-to analysis for Java. To our knowl-
edge, we are the first group to successfully use BDDs to solve
such an analysis efficiently.

e \We provide new insights into how to make the BDD-based
implementation efficient in terms of space and time. First,
we used a systematic approach to find a good variable or-
dering for the points-to set. Second, we noted that the al-

1in the remainder of this paper we simply refer to BDDs, megnin
ROBDDs.

2A more detailed description of related work is found in Saf.



gorithm should propagate the sets incrementally, and pre- A a = new )5
sented an incremental version. This general idea of incre- B: b = new Q);
mentalizing the algorithm may be useful in solving other Cc f n'eW )
program analysis problems using BDDs. Third, we found a - bj
that specifying an analysis using high-level BDD opera- E _ Ef

tions allowed us to specify our analysis very compactly
and it was very simple to experiment with a wide va-
riety of algorithms. Our source code (available on our Figure 1: Example code fragment.
web page: http://ww. sabl e. ntgill.ca/bdd/)

contains many different variations that can be enabled by

switches. and the heap objects, B andC are encoded at thel, and H;

levels. As a convention, 0-successors are indicated bgdietiges
and 1-successors are indicated by solid edges.

solver. For small problem sizes, we found that the time and Notice that nodes marked x, y, and z in Figure 2(a) are at the
spacel requirements are similar’ but for larger problens, th same level and have the same 0- _and_ 1-successors. This isbeca
BDD-based approach requires ’Iess memory, and scaleé bet-they reprfesent the subsp, B}, which is shared by all three pro-
ter ' gram variables. Because they are at the same level and $igare t

same successors, they could be merged into a single node- red
« Although we initially intended to compute only points-tdse ing the size of the BDD. Furthermore, since their two sucmess

we found that the BDD approach leads to a solution that can are the same (t | node), their successor does not depend on the
be used to answer a variety of queries, of which the points-to Pit being tested, so the nodes could be removed entirelyplBjm

query is only one. We suggest several possible other queries ing other nodes in this manner, we get the BDD in Figure 2(hg T
In future work we plan to develop this aspect of our work BDD with the fewest nodes is unique if we maintain a consisten

further. ordering of the nodes; it is callededucedBDD. When BDDs are
used for computation, they are always kept in a reduced form.
The rest of this paper is organized as follows. In Section 2 we  In the examples so far, the bits of strings were tested inrtiero
provide an introduction to BDDs and operations on BDDs using in which they were written. However, any ordering can be used
small examples based on the points-to problem. Given this-in as long as it is consistent over all strings represented ®BDD.
ductory material, we then introduce our points-to algonithnd its For example, Figure 2(c) shows the BDD that represents e sa
implementation using BDDs in Section 3. Then, in Section d, w relation, but tests the bits in a different order. This BDQuiees 8
show how to improve the performance of the algorithm by chraps nodes, rather than 5 nodes as in Figure 2(b). In general satgpa
the correct variable ordering and making the algorithmeneental. bit ordering which keeps the BDDs small is very importantdér
In Section 5 we give experimental results for our best BDbalg  ficient computation; however, determining the optimal oirtgpis
rithm and compare its performance to a hand-coded and g@iini  NP-hard [23]. BDDs support the usual set operations (urnider-
solver based on BA\RK. In Section 6 we discuss possible appli- section, complement, difference) and can be maintaineednaed

e We experimentally validated the BDD-based approach by
comparing its performance to a previously existing effitien

cations for the results of our algorithm, which includesvesisng form during each operation. A binary operation on BD®andB,
points-to queries. Finally, Section 7 gives a discussioreti#fted such asAU B, takes time proportional to the number of nodes in
work and Section 8 gives conclusions and future work. the BDDs representing the operands and result. In the wass, c
the number of nodes in the BDD representing the result cahéde t
2. BDD BACKGROUND product of the number of nodes in the two operands, but in most

. . . , . cases, the reduced BDD is much smaller [23].

A Binary Decision Diagram (BDD) is a representation of a set BuDDy [20] is one of several publicly-available BDD packages.
of binary strings of lengtim that is often, equivalently, thought of  |gtead of requiring the programmer to manipulate indisldoit
as a binary-valued function that maps binary strings oftlengo positions in BDDsBuDDy provides an interface for grouping bit
1iitheyareinthe setorto Oifthey arenot. _ positions together. The terdomainis used to refer to such a group.

Structurally, a BDD is a rooted directed acyclic graph, wéh In the example in Figure 2, we used the domeirto represent
minal nodeq 0] and[ 1}, and where every non-leaf node has two variables, andH to represent pointed-to heap locations.
successors: @-successoand al-successor As in a binary trie, Another BDD operation igxistential quantificationFor exam-
to determine whether a string is in the set represented by@,BD ple, given a points-to relatioR C V x H, we can existentially quan-
one starts at the root node, and proceeds down the BDD by fol- tify over H to find the se of variables with non-empty points-to
lowing either the 0- or 1- successor of the current node ddipgn sets:S= {v| 3h.(v,h) e P}.

on the value of the bit of the string being tested. Eventualhe Therelational productoperation implemented iBuDDy com-
ends up either , indicating that the string is in the set, o poses set intersection with existential quantificationt,iimple-
indicating that it is not. mented more efficiently than these two operations comp&eekcif-
To use a concrete example, consider the program fragment inically, rel prod(X,Y,V1) = {(v,,h) | 3v;.((v4,V,) € XA (vq,h) €
Figure 1. The points-to relation we would compute for thideds Y)}. To illustrate this with an example, for the code fragment
{(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),(c,C)}, where(a,A) indi- in Figure 1, consider the initial points-to sfa, A), (b,B),(c,C)}

cates that variabla may point to objects allocated at allocation site  (corresponding to the first three lines of code) and the aaségt
A. Using 00 to represent a and A, 01 to represent b and B, and 10 toedge se{(b,a), (a,b), (b,c)} (corresponding to the last three lines
represent ¢ and C, we can encode this points-to relationy ukin of code). The paifa,b) corresponds to the statemént= a; that
set{00000001,01000101 1000 1001, 1010}. is, we write the variables in reverse order, indicating tihallo-
Figure 2(a) shows an unreduced BDD representing this seewhe cation sites reaching also reactb. The initial points-to set is rep-
the variables, b andc are encoded at BDD node levéls andV,; resented in the BDD in Figure 3(a) using the domaitisandH.
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Figure 2: BDDs for points-to relation {(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),(c,C)} (a) unreduced using orderingV,VyH;H,, (b)
reduced using orderingV,V,H; H,, (c) reduced using alternative orderingH,VyH,V;
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Figure 3: (a) BDD for initial points-to set {(a,A),(b,B),(c,C)} (b) BDD for edge set{(a — b),(b — a),(b — c)} (c) result of rel-
prod((a),(b),V1) (the points-to set{(a,B),(b,A),(c,B)}) (d) result of replace((c),V2ToV1) (e) result of (a)(d) (the points-to set

{(a,A),(a,B),(b,A),(b,B),(c,B), (c,C)}

The edge set contains pairs of variablesiwo variable domains

(V1 andVv2) are required to represent it; its representation is shown

in Figure 3(b). Given these two BDDs, we can apply the refetio
product with respect t¥ 1 to obtain the BDD of the points-to sets
after propagation along the edges (Figure 3(c)), using tmeains
V2 andH.

Thereplaceoperation creates a BDD in which information that
was stored in one domain is moved into a different domain. For
example, we would like to find the union of the points-to relas
in parts (a) and (c) of Figure 3, but the former uses the dosh4in
andH, while the latter useg2 andH.

Before finding the union, we applying the replace operatiqa)
to obtain (d), which, like (a), uses domai4 andH. We can now
find (e)=(a)J(d), the points-to set after one step of propagation. If

3. POINTS-TO ALGORITHM WITH BDDS

A points-to analysis computespints-torelation between vari-
ables of pointer type and allocation sites. Our analysis Java
extension of the analysis suggested for C by Andersen [1]. As
such, it is both flow- and context-insensitive. The analyales
as input constraints modelling four types of statementscation,
simple assignment, field store, and field load (Figureptjl) in-
dicates the points-to set of varialllel; — |, indicates that, may
point to anything that, may point to. Based on a call graph built
using class hierarchy analysis [7], we add appropriateyassnt
edges to model inter-procedural pointer flow through metbad
rameters and return values. We took this approach of geng it
the constraints ahead of time because in this first study, aveed
to clearly separate the constraint generator from the solaefu-

we repeated these steps a second time, we would obtain the finatyre work, we plan to integrate them more closely, making-p

points-to set BDD from Figure 2(b).

Note that it is possible for a BDD for a large set to have fewer
nodes than the BDD for a smaller set. In this case, although th
points-to set grows from three, to six, to seven pairs, th®B&p-
resenting it goes from eight to six to five nodes (see Figufas 3
3(e), and 2(b), respectively).

sible to experiment with building the call graph on-the-fi/ the
points-to analysis proceeds.

The inference rules shown in Figure 5 are used to computégaoin
to sets. The basic idea is to apply these rules until a fixeqt i®i
reached. The first rule models simple assignmentk; foints to
o, and is assigned t3, thenl, also points ta. The second rule



a:l:=newC @qenpt(l)
=1 I, —1
g.f =1 | —q.f
| :=p.f p.f —1

Figure 4: The four types of pointer statements (constraints

models field stores: if points too,, and is stored intay. f, then
o,.f also points tao, for eacho, pointed to byg. Similarly, the
third rule models field loads: ifis loaded fromp.f, and p points
to o,, thenl points to anyo, thato,.f points to.

I, —1, oept(ly)
oe pt(l,) @)
o,ept(l) 1 —a.f o) ept(q) @
0, € pt(o;.1)
p.f —1 o,ept(p) o,cpt(o.f) @)
0, € pt(l)

Figure 5: Inference rules

3.1 BDD Implementation

The rules presented in Figure 5 apply to elements of pomts-t
(pt) and assignment-edge+) relations. In BDDs, we encode them
as operations on entire relations, rather than their iddad ele-
ments. In our algorithm, we map the components of relations o
five BuDDy domains(groups of bit positions).

e FD is a domain representing the set of field signatures.

e V1andV2 are domains of variables of pointer type. We need
two such domains in order to represent theelation of two
variables.

e H1 andH2 are domains of allocation sites. Two are needed,
along with theFD domain, in order to represent thpe re-
lation for fields of objects, which contains elements of the
formo, € pt(o,.f).

We now describe the most important relations used in the-algo
rithm, along with the domains onto which they are mapped.

e pointsToC V1 x H1 is the points-to relation for variables,
and consists of elements of the fooe pt(1).

o fieldPtC (H1x FD) x H2 is the points-to relation for fields
of heap objects, and consists of elements of the fosna

pt(o;.f).

e edgeSet V1xV2isthe relation of simple assignments, and
consists of elements of the forp— I,.

e storesC V1x (V2x FD) is the relation of field stores, and
consists of elements of the forp— 1. f.

e loadsC (V1x FD) x V2 is the relation of field loads, and
consists of elements of the forp f — 1.

e typeFilterCV1xH1is arelation which specifies which ob-
jects each variable can point-to, based on its declared type
This is used to restrict the points-to sets for variableso t
appropriate objects.

The BDD algorithm is given in Figure 6. First, the algorithm
loads input constraints and initializes the relationsodticed above.
The main algorithm consists of an inner loop nested withinuter
loop. To make the algorithm easier to understand, we aretbthe
type of the relations involved in each step of computatiomek
1.1to 1.2 implementrule (1). Inline 1.1, teelgeSeandpointsTo
relations are combined. This relprod operation computegeéla-
tion {(l,,0) | 31;.1; = I, A0 € pt(l;)}, the pre-conditions of rule
(). Inline 1.2, the relation is converted to use domaltisandH 1
rather thar/2 andH1, and in line 1.4, itis added into thgointsTo
relation. Line 1.3 will be explained later.

Lines 2.1 to 2.3 implement rule (2). Line 2.1 computes the
intermediate result of the first two pre-conditionsmpRel =
{(0y,0.f) | 3.0, € pt(l) Al — g.f}. In line 2.2, tmpRel is
changed to domains suitable for the next computation. la lin
2.3, the resulting relation of all three pre-conditions esnputed
as{(0,,0;.) | 30.(0,,9.) A0, € pt(q)}.

In a similar way, lines 3.1 to 3.3 implement rule (3). Again,
the first two pre-conditions are first combined to form a terapp
relation (line 3.1), then combined with the results froner{#) (line
3.2). After changing the result to the appropriate domdine 8.3),
we obtain new points-to pairs to add to the points-to retatichese
are merged into thpointsToset in line 4.2.

The algorithm in Figure 6 is very close to the real code of our
implementation using thBuDDy package. So far, we have not
explained the purpose of lines 1.3 and 4.2. An earlier pdnts
study [17, 18] showed that static type information is vergfukto
limit the size of points-to sets by including only allocatisites of
a subtype of the declared type of the variable. Lines 1.3 afd 4
implement this by screening all newly-introduced poimtsgirs
with atypeFilterrelation. This relation is constructed in line 0.3
from three relations read from the input file: the subtypatieh
between types, the declared type relation between vasiabid
types, and the allocated type relation between allocaiies and

types.

4. PERFORMANCE TUNING

As we have seen in section 2, different variable orderingslte
in different sizes of the BDD for the same set. By defaBitPDy
interleaves the variables of all domains; this tends to becal @r-
dering for transition systems in model checking. For ountmio
problem set, however, the default ordering turns out to evdyk
on toy problems, and was very slow on real benchmarks. Tai le
us to explore a variety of different variable orderings bgrrang-
ing and interleaving domains. In practice, different ondgs yield
dramatically different performance. The best ordering weoein-
tered gives impressive results even without further otations.
When, in addition, we applied incrementalization, the perfance
of the BDD solver became very competitive compared to a care-
fully hand-coded solver. Before introducing variable oidgs and
optimizations, we first describe the experimental setup bichv
our performance profiling and tuning were done.

4.1 Experimental Setup

We selected benchmarks from the SPECjvm98 [31]
suite, SPECjbb2000 [30] and three other large benchmarks:
sabl ecc-j ,soot - ¢ andj edi t . Table 1 shows the description
of each benchmarkSabl ecc- | is a parser generator written in



/* --- initialization --- */
/* 0.1 */ load constraints fromthe input file
/* 0.2 */ initialize pointsTo, edgeSet, |oads, and stores
/* 0.3 */ build typeFilter relation
r epeat
r epeat
[* --- rule 1 --- */
/* 1.1 */ newPtl:[V2xH1] = rel prod(edgeSet: [V1xV2], pointsTo: [V1xH1], V1);
/* 1.2 */ newPt2:[V1xH1] = repl ace(newPt 1: [V2ToV1l], V2ToV1);
/* --- apply type filtering and nerge into pointsTo relation --- */
/* 1.3 */ newPt3: [V1xH1] = newPt 2: [VIxH1] N typeFil ter: [VixH1];
/* 1.4 */ pointsTo: [V1xH1] = pointsTo: [VIxH1] U newPt 3: [V1xH1];
until pointsTo does not change
[* --- rule 2 --- */
/* 2.1 */ tnpRel 1: [(V2xFD)xH1] = rel prod(stores: [VIx(V2xFD)], poi ntsTo: [V1xH1], V1);
/* 2.2 *] tnpRel 2: [(VIXFD)xH2] = repl ace(tnpRel 1: [(V2xFD)xH1], V2ToVl & H1ToH2);
[* 2.3 *] fieldPt:[(H1xFD)xH2] = rel prod(tnmpRel 2: [(VIXFD)xH2], poi ntsTo: [V1xH1], V1);
/[* --- rule 3 --- */
/* 3.1 */ tnpRel 3: [(H1xFD)xV2] = rel prod(l oads: [(V1XFD)xV2], poi ntsTo: [V1xH1], V1);
/* 3.2 *| newPt4:[V2xH2] = rel prod(tnmpRel 3: [[H1xFD)xV2], fi el dPt: [(H1xFD)xH2], H1xFD);
/* 3.3 */ newPt5: [V1xH1] = repl ace(newPt 4: [V2xH2], V2ToVl & H2ToH1]);
/* --- apply type filtering and nerge into pointsTo relation --- */
[* 4.1 *] newPt6: [VIxH1] = newPt5: [VIxH1] N typeFilter: [V1xH1];
/* 4.2 */ pointsTo: [VIxH1] = poi ntsTo: [VIxH1] U newPt 6: [V1xH1];
until pointsTo does not change
Figure 6: The basic BDD algorithm for points-to analysis
benchmark | description structed using class hierarchy analysis. Effects of natie¢hods
conpress Modified LempeI-Ziv method (LZW) were considered, as Supported [:BAQK_
db Performs multiple database functions on mgm-  The raw points-to constraints generated from an input progr
ory resident database. can either be fed directly to a solver as input, or they can lies
raytrace | Araytracer that works on a scene depicting a/di-  simplified off-line by substituting a single variable forogips of
nosaur. variables known to have the same points-to set [24]. Thigltes
npegaudi o | Decompresses audio files that conform to the in a smaller set of constraints for an equivalent problem. ugés
ISO MPEG Layer-3 audio specification. the SARK framework to generate both unsimplified and simplified
j ack A Java parser generator that is based on the Pur- versions of the constraints as input to our BDD solver. Weotien
due Compiler Construction Tool Set (PCCTS). 3 simplified set of constraints with the letrand an unsimplified
j ess Java Expert Shell System. set of constraints withs
sabl ecc-j | An object-oriented parser generator written |in A points-to analysis solver for a typed language such as Java
Java. has two reasonable options for dealing with the declaredstyf
j bb2000 A Java program emulating a 3-tier system wjth  variables: it can solve the points-to constraints first, eestrict
emphasis on the middle tier. the points-to sets to subtypes of the declared type aftelsy@5,
javac The Java compiler from the JDK 1.0.2. 33]; alternatively, it can remove objects of incompatilyleet as the
soot -c A bytecode to bytecode optimization and anno-  points-to analysis proceeds [17, 18, 34]. Both our BDD sohre
tation framework. the SPARK solver support both variations. We denote a solver that
jedit A full-featured editor written in Java. respects declared types throughout the analysis with tteztieand

Table 1: Benchmark description

Java, andsoot - ¢ is a bytecode transformation framework. Both
are non-trivial Java applications, and are publicly-al# in the
Ashes [2] suite. Jedi t [15] is a full-featured editor written in
Java.

We generated the constraints for our BDD-based solver using
the SPARK points-to analysis framework [17,18]. Constraints were
generated for a field-sensitive analysis (using a separatdspto
set for each field of the objects allocated at each allocatita).

The call graph used for interprocedural flow of pointers wais-c

one that ignores them until the end with

The two options for simplification and two options for handji
of types result in four combinations, all four of which haveeh
used in related work. In this study, we focus on three of thesft),
(ns/t), and(ns/nt) We stress that theamesets of constraints were
used as input to both our BDD solver and thea8k solver.

The BDD Solver is written in C++ and uses tBeDDy 2.1 C++
interface compiled with GCC 2.95.4 at -O3. TBaDDy package
has a built-in reference counting mark-and-compact gartuadr
lector for recycling BDD nodes. Whenever the proportion reef
nodes is less than a threshold (20% by default), the kerntases
the node table size. In our experiments for performance uneas
ment, we used a heap size of 160M. All our experimental date we



collected on a 1.80 GHz Pentium 4 with 1 GB of memory running
Linux 2.4.18.

4.2 Variable Ordering

In this section, we describe the path leading us to find efftcie
derings and empirically compare several representatiyeriomgs.

We consider two factors in choosing a variable ordering: the
ordering of domains and interleaving of the variables ofedif
ent domains. We use the following naming scheme for ordsring
when we list several domain names together, their variablem-
terleaved; when we list domain names separated by undesscor
the variables of one domain all come before those of the next.
For example, iffy, f;,..., fn are the variables of the domafd
andvy,vy,...,vn are the variables of the domairl, the order-
ing fdvl corresponds tdyv,f,v; ... fovn, andfd_vl corresponds
to fof;... favgvy ... va. Within each domain, the variables are ar-
ranged from the most significant bit to the least significantde-
cause the more significant bits may not all be used (alwayan@),
placing them closer to the beginning reduces the BDD size.

Using the default orderinffiviv2h1h2, our BDD solver cannot
solve real benchmarks. We investigated the performancdkebetk
and found that most of time was spent on tekprod operation for
rule (1) (line 1.1 of Figure 6). This operation propagatesi{ssto
sets along assignment edges. Since this operation onlivas/the
edgeSeandpointsTorelations, which use the domaing, v2 and
h1, only the arrangement of these three domains affects tleisaop
tion. We experimented with several arrangements and @aeirigs
of these three key domains.

The graph in Figure 7 shows the effect of two different order-
ings of the domain$il andvl1 on the execution time of theel-
prod operation in line 1.1 (on thpavac benchmark, with off-line
simplification and respecting declared types). The x-axisggthe
loop iteration number and the y-axis gives the time spentamh e
iteration of therelprod operation in line 1.1. The solid line corre-
sponds to the case whdr& comes aftevl whereas the dotted line
corresponds to the case whére comes beforerl. Note that the
execution time ofelprod changes dramatically: withl beforeh1,
each operation takes less than 0.5s, while \ittheforevl, each
operation takes about 4.2s on average. Our experimenttiighn
orderings confirm this behavior, and we conclude that aimangl
beforehl is a good heuristic.

16 T T T T T T T T

14 r B
12 1
10 1

fd_vlv2_hl h2 ——
fd_h1_viv2_h2

execution time (s)

10 12 14 16
iteration number
the execution time ofelprod operation
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Figure 7: Effect of domain arrangement

We also measured the size of fpaintsTorelation for these two
orderings expecting the slower ordering to correspond trget
relation. Surprisingly, we did not find this to be the casehhr-
derings gave similar sizes. This indicates thatréiprod operation
in BuDDy is sensitive to not only the size of operands but also the
variable ordering.

In other experiments, we found that arrangirigbeforev2 for
the edgeSetelation yields better performance, but this has a much
smaller effect than rearranging. andhl. One possible explana-
tion is that theedgeSetelation (using the domainsl andv?2) re-
mains constant during the computation, while plegntsTorelation
(using domaing’1 andhl) is repeatedly recomputed; therefore, the
order ofvl andh1 affects the computation more.

After determining the order in which to arrange domains, we
looked at the effect of interleaving them. Again, we only sidn
eredvl, v2, andhl, since these are the domains involved in the
most expensive operation. Figure 8 shows the effect on the BD
size of thepointsTorelation and on the execution time of line 1.1
in each iteration. Whenl andh1l are interleaved, the BDD for the
initial points-to relation is much smaller than when theg placed
one after the other. However, as the analysis proceeds, Bz B
with the interleaved ordering grows to about five times tlze sif
the BDD withvl beforehl. This is because the points-to sets be-
gin to grow as the analysis proceeds, but it appears thaatter |
BDD is able to exploit their regularity and remain small. Riee
increase in the BDD with the interleaved ordering degrakdepér-
formance significantly. Thus, a good heuristic is to platdefore
h1, and not interleave them.

Table 2 summarizes the performance of the BDD solver with
four representative orderings. Column (a) correspondeadle-
fault ordering used buDDy ; this ordering cannot solve real bench-
marks in a reasonable time. Column (b) is another example of a
bad ordering, witth1 beforevl. This ordering already allows the
solver to finish on small inputs. The last two columns show the
performance when using a good domain arrangement, witheut i
terleavingvl andhl. The performance improvement is dramatic.
The difference between last two columns shows the effecttef-
leavingvl andv2. This effect is much less significant. The BDD
for theedgeSetelation is smaller wheml andv2 are interleaved,
and we observed fewer garbage collections. pbiatsTorelation
has the same size with either ordering. On small ingsi3, the
two orderings yield comparable performance. On large prabl
sets(ns/nt) interleavingvl andv2 gives much better performance.

(a) -fdvlv2hih2
(c) -fd_vlv2_h1_h2

(b) - h1_viv2_fd_h2
(d) - fd_v1_v2_h1_h2

benchmark @) (b) (c) (d)
compress (s/t) || 6420s 996s| 21s| 19s
compress (ns/t) N/C | 4200s| 53s| 84s
compress (ns/nt)l N/C | 8280s| 145s| 228s
javac (s/t) 9360s| 1203s| 23s| 24s
javac (ns/t) N/C | 4920s| 62s| 104s
javac (ns/nt) N/C | 10140s| 167s| 286s
sablecc-j (s/t) 9960s| 1388s| 22s| 23s
sablecc-j (ns/t) N/C | 5700s| 63s| 111s
sablecc-j (ns/nt)|{| N/C | 9480s| 158s| 269s
jedit (s/t) N/C | 2460s| 36s| 35s
jedit (ns/t) N/C N/C | 112s| 358s
jedit (ns/nt) N/C N/C | 336s| 784s
Table 2: Effect of variable ordering on performance

(N/C means the solver does not complete the run in 4 hours.)
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4.3 Incrementalization

So far, we have seen that ordering has a huge effect on trarperf
mance of the basic BDD solver. The empirical study and arglys
lead us to find good orderings that yield reasonable perfocama
in our basic algorithm. However, this is not the end of theysto
We apply one further optimization on our basic algorithm jckh
improves the performance to compete with a highly efficieahd-
coded solver.

Whenever thepointsTorelation changes, the solver propagates
points-to pairs by repeating thelprod operation in line 1.1 until
it reaches a fixed point. The execution time of thiprod opera-
tion is proportional to the sizes of the BDDs being combiried,
this casepointsToandedgeSetIn each iteration, we propagadt
points-to sets along all edges, even though most pointststhsive
already been propagated in previous iterations. This laads an
additional optimization, incrementalization.

The idea is to propagate, in each iteration, only the pareohe
points-to set that has been newly introduced since the tist-i
tion (the old part has already been propagated). Figure @sstiee
replacement for rule (1) of the algorithm. Notice that pwntsTo
operand ofelprodin line 1.1 has been replaced witimewPointsTo
relation, which holds only newly introduced points-to gaiA new

benchmark fd_vlv2_h1l_h2 fd_vl.v2_hl h2
non-inc inc || non-inc inc
compress (s/t) 20.63| 11.72 19.07 9.80
compress (ns/t) 54.46| 26.83 83.63| 19.66
compress (ns/nt)| 145.33| 71.55| 228.21| 58.58
javac (s/t) 22.62| 14.83 23.89| 10.83
javac (ns/t) 62.35| 30.55| 103.52| 23.14
javac (ns/nt) 166.66| 80.04| 285.65| 65.46
sablecc-j (s/t) 21.90| 14.00 23.10| 10.60
sablecc-j (ns/t) 63.43| 30.05| 110.87| 22.86
sablecc-j (ns/nt)|| 158.33| 76.53|| 269.30| 63.82
jedit (s/t) 35.92| 20.11 35.43| 15.60
jedit (ns/t) 112.47| 47.53| 357.97| 35.29
jedit (ns/nt) 336.18| 150.72|| 783.92| 120.53

Table 3: Analysis time improvement due to incrementalizatbn

line 1.3 has been added, in which any old points-to pairshbet
already been propagated (and are therefore present pothesTo
relation) are removed from theewPointsTaelation. This opti-
mization keeps theaewPointsTaelation small (both in terms of set
size, and number of BDD nodes), greatly speeding upehmod
operation.

In a similar way, we also applied incrementalization to theeo
rules. The details are omitted here; the full incremengalialgo-
rithm is given in Appendix A and the full source code can benfibu
on our web sitdt t p: / / www. sabl e. ncgi | | . ca/ bdd/ .

Table 3 shows the improvements in analysis times due to-incre
mentalization on the two good variable orderings that wetide
fied earlier. For the orderinfd_vlv2_h1_h2, incrementalization
improves the performance almost 100% for all input sizesthWi
the orderingfd_v1_v2_h1_h2, the improvement is even more dra-
matic, and becomes more significant when the problem becomes
larger. Onj edi t (ns/t), incrementalization makes the solver al-
most 10 times faster. Combined with incrementalizatioe, dih-
deringfd_v1_v2_h1_h2 outperformsfd_viv2_h1_h2 on all of the
benchmarks.

By finding a good variable ordering, and by incrementalizing
the algorithm, we have significantly improved its performanto
the point that it competes with hand-coded points-to selvdn
fact, as we show in the next section, for large problems, th® B
algorithm scales well and produces extremely compact éngsd
of the points-to sets.

5. FULL EXPERIMENTAL RESULTS

We introduced our benchmarks and experimental setup in sec-
tion 4.1. We also presented the performance of the BDD solver
on four benchmarks during the tuning process. In this secti@
present and discuss the performance of our best variabézingd
for BDDs compared to an efficient, hand-coded solvenr [17,

18], in three aspects: time, memory requirements, and ltigla
SPARK includes several different solving algorithms; we used the
incremental worklist propagation algorithm, the fastest.o

We are interested not only in scalability in terms of the sifzine
program being analyzed, but also in the dependence of thersol
on techniques that reduce the size of the problem being dolve
such as respecting declared types and off-line variablstisution.
This is because these techniques may not always be applidaii
example, if we were analyzing a program written in C rathanth
Java, we could not rely on declared types. Even when analyzin
Java, declared types are not always used [25] because theyema



newPoi nt sTo = poi ntsTo;
r epeat
[* --- rule 1 --- */
/* 1.1 */ newpPtl:[V2xH1] = rel prod(edgeSet: [V1xV2], newPoi ntsTo: [VixH1], V1);
/* 1.2 *] newpPt2:[VIxH1] = repl ace( newPt 1: [V2ToV1], V2ToVl);
/* --- remove old (al ready propagated) points-to pairs --- */
/* 1.3 */ newPt 3: [VIxH1] = newPt 2: [VIxH1] \ poi nt sTo: [V1xH1];
/* --- apply type filtering and nmerge into pointsTo relation --- */
[* 1.4 */ newPoi ntsTo: [V1xH1] = newPt 3: [VIxH1] N typeFilter: [V1xH1];
/* 1.5 */ pointsTo: [V1xH1] = poi ntsTo: [V1xH1] U newPoi nt sTo: [V1xH1];
until pointsTo does not change
Figure 9: Incremental modification to rule (1) of algorithm
inconvenient to represent in the specific solver being impleted. 180 . . . . . .
Off-line variable substitution is applicable only when tide con-
straints are available before the analysis begins; we coofidise 160 r 1
it if we were computing the call graph on-the-fly as the poiots 140 + A
analysis proceeds. o
Table 4 presents our benchmarks ordered by the size ofthe pro 2 120 ¢ ]
lem sets and grouped under the headifggs), (ns/t) and(ns/nt), % 100 + Spark i
wheres denotes simplification of the set of constraints, winite @ BDD
denotes no simplification, artddenotes use of type information > 80r 1
during propagation, whereas denotes no use of type information g 60 - i
during propagation. The column labellednstraintsgives the size g
of theinput in terms of the number of constraints, including allo- 40 1
cation sites, direct assignments, and field loads and stéfigsout 90 | oo e - |
simplification, we see that numbers of constraints for theche
marks range from 316K to 433K. Tlset sizecolumn indicates the 0 . . . : . .
170 180 190 200 210 220 230 240

sum of the sizes of the computed points-to sets across #&bles,
and is an indication of the size of the solution (théput).

5.1 Performance of BDDs

For small problem sets, we find that our BDD solver is very com-
petitive in terms of solving time, and even begins to bertrXk
when solvingj edi t, our largest benchmark. Further, in terms
of memory usage, the BDD solver is a clear winner. Figure 10
plots the memory usage versus the number of input constriint

number of constraints (x1000)

Figure 10: Memory usage vs. number of constraintgs/t)

efficient set representation using a single bit per set eiemeuld
require a huge amount of memory to store these sets. In fat, t
SPARK solver uses such an encoding, and it ran out of memory
on all of the problems which ignored declared types, even on a

the (s/t) case, where the constraint set has been simplified and thelarger machine with 2 GB of memory. However, when we look

type information is used. Note that not only is the absolpizce
used much lower for the BDD solver, but also the space usetid¢or
BDD solver scales very well as the number of constrainteiases.

The difference in space usage widens when we consider the oth
cases(ns/t)and(ns/nt) where the number of input constraints are
larger. As indicated by the middle section of Table 4, with&im-
plification but using type informatiofns/t), the BDD solver scales
gracefully to a mere 38 MB of memory usage in the worst case,
whereas the traditional solver requires up to 244 MB of RAM.

The final section of Table 4 shows the results when type infor-
mation is not used. Note that the size of output sets incsedise
matically, they are about an order of magnitude larger thhanwv
types are used. This makes it clear that solvers using ancixpl
representation of points-to sets will have difficulty soglif type
information is not used, because the total size of the pomtets
becomes up to 356 million elements. This number includeg onl
points-to sets corresponding to variables; the pointsets sorre-
sponding to fields of heap objects (tfieldsPtrelation in our al-
gorithm) are more than an order of magnitude larger. Everra ve

at the results for the BDD solver we see that even though the se
size has increased by about a factor of 10 over(tisé) case, the
BDD memory usage increases by less than a factor of 2, andssolv
all problems in less than 66 MB. This demonstrates the glulit
BDDs to take advantage of the sharing of large sets.

Overall, we see that both solvers are efficient on small grobl
sets, and that the hand-coded solver is good at handlingsimgth
type information. As the problem sets get larger, howeterBDD
solution shows a remarkable ability to scale well and hatatige
points-to sets by exploiting regularity in the sets to keeprepre-
sentation small. Techniques in which declared types areised
to limit the size of points-to sets, which have been used lated
work [25, 33], would not be able to scale to this size of proble
however, the BDDs do.

5.2 Notes on Measuring Memory Usage

As previously noted, for the timing run of the BDD solver, we
allotted a heap of 160 MB to reduce the frequency of garbalye co
lections. However, the solver never requires this full ami@uring



benchmark const- set BDD SPARK
raints size || time | mem || time | mem
108 10° (s) | (MB) (s) | (MB)
E0)
conpr ess 174 6.7 10 21 8 84
db 174 6.8 10 21 8 84
raytrace 175 6.7 10 21 8 84
j ack 177 7.1 10 21 8 87
mpegaudi o 178 7.0 10 21 8 88
j ess 180 7.2 10 21 8 88
j bb2000 185 7.8 10 19 9 100
j avac 198 8.0 11 23 10 99
sabl ecc-j 212 7.3 11 23 8 101
soot-c 218 9.9 12 23 10 104
jedit 232 | 122 16 28 19 169
(/D)
conpr ess 316 | 18.3 20 29 11 127
db 317 | 184 20 28 11 128
raytrace 318 | 18.3 22 29 11 129
j ack 325 | 19.2 22 29 12 132
npegaudi o 325| 19.1 23 30 13 134
j ess 330 | 198 24 29 12 136
j bb2000 342 | 20.9 22 23 13 159
j avac 366 | 21.0 23 31 14 148
sabl ecc-j 393 | 19.9 23 31 14 158
soot - ¢ 397 | 249 26 33 15 162
jedit 433 | 35.1 35 38 35 244
(ns/nt)
conpr ess 316 | 163.3 59 38 || oom | oom
db 317 | 163.9 59 38 || oom | oom
raytrace 318 | 163.4 59 38 || oom | oom
j ack 325 | 1715 59 38 || oom | oom
npegaudi o 325 | 171.2 61 39 || oom | oom
j ess 330 | 183.3 61 39 || oom | oom
j bb2000 342 | 206.7 70 42 || oom | oom
j avac 366 | 199.7 65 40 || oom | oom
sabl ecc-j 393 | 196.3 64 41 || oom | oom
soot-c 397 | 228.4 66 43 || oom | oom
jedit 433 | 3449 || 121 66 || oom | oom

Table 4: Performance and live data of BDD solver.
The value “oom” indicates that the solver ran out of memorgne
on a machine with 2 GB.

the computation.

To measure the actual memory usage, we stéBtddDy with
23 MB as the initial size of the node table and a 2.4 MB cacle siz
Whenever less than 20% of memory was I&tDDy increased
the size of the node table by 2.4 MB. This allowed us to measure
the maximum live set size to within 2.4 MB. Note that the attua
memory allocated is up to 20% higher than this number, becaus
BuDDy always maintains 20% of unused nodes for future use.

In SPARK, the memory requirements increase monotonically as
the analysis proceeds, so we simply report the final liveigetad-
ter a garbage collection at the end of the analysis. This eoisgn
can only be used as a rough reference, since Java and C++ifiave d

mation. One option is to extract the entire relation into Aplieit
representation of the points-to sets. The time to enuméhnatset
of satisfying bit-vectors for a BDIX is nearly linear to the num-
ber of solutiong. Alternatively, it can selectively extract only the
points-to set of a variable, or those of a specific set of éem® on
demand. A third, interesting option is to minimize or eveimél
nate the need to extract an explicit representation, boéraise the
BDD representation and operations for further computatidhe
size of the explicit representation of the relation store@ BDD
may be quite large; by encoding part or all of the subsequeint s
processing with BDD operations, we can avoid constructmga
plicit representation of this possibly large relation.

The most common use of points-to information is to determine
whether two heap referencesf andg. f could refer to same loca-
tion, which reduces to checking whethgandq could be aliased.
A demand-driven way to solve this is to extract the pointsebof
pt(p) andpt(q) by using the standard BDD operatioastrict, and
check if the intersection of two sets is not empty (an emptyrse
BDD equals to thddd_f al se constant):

pt (p) restrict(pointsTo, BDD(p), V1);
pt(q) restrict(pointsTo, BDD(q), V1);
alias(p,q) = (pt(p) N pt(q) # bdd_false);

Another common use of points-to information is virtual naeth
call resolution. To resolve a method call site, a compilezdsea
set of possible types of the receiver. This can be determiyed
checking the types of the objects found in the points-to §¢te
receiver. As the object types are encoded in a BDD relati@can
find the sets of possible receiver types for all receiveragufiist
one relational product operation. Thus we can find all thesyfor
all the receivers in just one step.

var Types

rel prod(poi ntsTo, objectType, H1)

The implicit BDD encoding has advantages beyond that of com-
pactness. Direct operations on BDDs are very powerful; dhieyv
a compiler to use a high-level specification to describe dexp
queries and set transformations. Not only does this enapliel r
development, but with a good ordering, one can expect good pe
formance.

7. RELATED WORK

Points-to analysis [1, 9, 32] has been an active researchifiel
the past several years. Hind [14] gives a very good overviiveo
current state of algorithms and metrics for points-to asialyAn
important issue is how well the algorithms scale to larggpams.
Various points-to analyses make trade-offs between dffigiand
precision. Equality-based analysis [32] runs in almosdintime,
but with less precise results. On the other hand, subsedlasal-
ysis [1] produces more precise results, but with cubic woesie
complexity. In this work, we developed a specific version of a

ferent object models and memory management. However, we aresubset-based analysis that is suitable for implementitiy BDDs,

measuring only the size of the data structures used by thespoi
to analysis, excluding any structures introduced by thguage-
specific run-time system. The memory requirements sholcth
fore be at least roughly comparable, in spite of the diffeesnbe-
tween Java and C++.

6. APPLICATIONS

Section 5 shows that the BDD encoding scheme allows thegpoint
to problem to be solved quickly and represents the pointstation
compactly. A compiler has several options for accessirsittfor-

and which exhibits good space and time behaviour when usad to
alyze a range of Java programs, including a variety of lasgeh-
mark programs.

Various optimizations have been proposed to improve the effi
ciency of points-to analyses. Two of these optimizationglec
elimination [10] and variable substitution [24], are basedthe
idea that variables whose points-to sets are provably exumabe
merged, so that a single representation of the set can bedshar

3If |X| is size of the set, anMl is the number bits used to encode
the BDD, then the set can be enumerate®{hX| x M) time.



by multiple variables. Heintze and Tardieu [12] reportedyviast
analysis times using a demand-driven algorithm and a déyreler
signed implementation of points-to sets [11].

BDDs came from the fact that for large programs, the numbdr an
size of points-to sets can grow so that even well-tuned ttosudil
representations fail to scale appropriately. BDDs have lskewn

Several groups adapted the points-to analyses used for C toto work well for large problems in the model checking commu-

Java [19, 25]. These approaches, however, were appliedtonly
benchmarks using the JDK 1.1.8 class library. One of thecdiffi
points for whole program analysis for Java is that even venpke
programs touch, or appear to touch, a large part of the dlarssy.
The JDK 1.3.1 class library is several times larger than the31i-
brary, and techniques which applied to the 1.1.8 case maynuyet
scale.

nity, and we wanted to see if they could be applied effegtivel
the points-to problem. We showed that with the appropriaéy,
a fairly simple algorithm could deliver a solver that was qati
tive with previously existing solvers and provided a verynpact
representation of points-to relationships.

It was not immediately obvious that a BDD-based approach
would work for a program analysis like points-to. AlthougbBs

Recently, two approaches have been presented that have beehave been shown to be very effective in areas like hardware ve

shown to scale well to the JDK 1.3.1 library. Whaley and La#] [3
adapted the approach of Heintze and Tardieu to Java progeats
managed to get it to scale to benchmarks using the JDK 1.&8ss cl
library (although they made optimistic, potentially uresessump-
tions about what part of the library needs to be analyzedptath
and Hendren [17, 18] presented theag&k framework, which al-
lows experimentation with many variations of points-to lgsas
for Java. They used this framework to implement points-teese
that were more efficient in time and space than the other tegor
work, including that of Whaley and Lam, making it the most-effi
cient Java points-to analysis solver of which we are awaheré-
fore, in our study of BDD-based points-to analysis, we uded t
SPARK framework both to generate the input to our BDD-based
solver, and as a baseline solver against which to compareeyur
BDD-based solver.

Ordered Binary Decision Diagrams [5] represent boolea-fun
tions as DAGs. The canonical representation allows efficien
boolean operations and testing of equivalence and satlifiab
Symbolic Model Checking [16] is used to verify circuits wih ex-
tremely large number of states by using BDDs. The use of BDDs i
this context has allowed researchers to solve larger prabtban
can be solved using table-based representations of gr&ibbs
have also been used in software verification and progranysesl
PAS [29] converts predicate and condition relations in atrcbn
flow graph to a compact BDD representation and performs analy
sis on these BDDs. Another use of BDDs is to represent large se
and maps; TVLA [21] and Bebop [3] are examples. In our work,
as in model checking, we use BDDs to represent all data stest
and we show non-trivial techniques to make the original @tlym
scalable to large programs using this new representation.

Although model checking and program analyses are not ¥ightl
connected yet, several publications have pointed out ¢tieat
connections between them [26, 27]. The theoretical fouodaif
flow analyses is the fixed-point theory on monotonic functjon
whose counterpart in model checking is the mogatalculus.
Schmidt and Steffen [27] presented a methodology of trgdtin
erative flow analysis as model checking of abstract intéagions.
Bandera [8] is a tool-set applying such ideas to analyziadjstic
programs. Like some other work [4], it abstracts progranppro
erties to linear temporal logic (LTL) or computational triegic
(CTL) formulas, which can be verified efficiently by existimgpdel
checking tools. Martena and Pietro [22] studied the aptitinaof
a model checker, Spin, to solve intraprocedural alias aimfpr
C. In a different program analysis setting, BDD-based gdoess
analysis for constraint (logic) programs has become oneeoftan-
dard approaches [13].

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a BDD-based points-tosinaly
that scales very well in terms of time and space, and is vesy ea
to implement using standard BDD packages. The motivatiorséo

ification, program analyses face program properties trataite
different from those areas, including: 1) the problem may b
represented by LTL and CTL formulas; and 2) the analyzedabbje
may not have many common patterns. For example, the tramsiti
system of a circuit written in CTL often exhibits regulagsiin the
structure, which can be compactly represented in BDDs byyapp
ing good heuristics. However, before we started our worlyais
not clear if the subset-inclusion relationship graph, atetiodata
structures required for points-to analysis, had commactires
that could give compactness. By systematically exploringaa
riety of orderings and empirically analyzing the performanwe
did find an incrementalized algorithm and associated veriab
dering that led to compact BDD representations. It is irsténg to
note that in the case of points-to analysis, it was not so itapb
to find a compact representation for tinput problem (unlike the
case of hardware verification, where the input descriptiay itve
very large and have many common patterns), but it was impiorta
to find a compact representation for thaution (i.e. the points-to
relationships). Thus, it was the fact that the points-ts sebwed

a lot of regularity that leads to a fast and space-efficiehttium.

It would be very interesting to see if other whole-prograralgses
exhibit the same sort of regularity in their solutions. I opinion,
this is very likely.

In our work so far, we concentrated on choosing a good vaxiabl
ordering and developing the incremental propagation atgar It
is possible that this could be further improved by introdgcsome
aspects of graph-based solvers into the BDD solver. For exam
ple, it would be very interesting to see if efficient BDD aligoms
for collapsing strongly connected components [35] wouldhfer
improve the efficiency of our BDD-based points-to algorithhm-
other idea which has been suggested for improving the effigie
of BDDs is dynamic variable reordering. Our preliminary esp
ments with using this technique on our points-to problemstb
no significant improvement. In fact, the cost of reorderimg large
BDDs involved appeared to be even higher than the cost of solv
ing the points-to problem with the original ordering. Werthe
fore leave further investigation of dynamic variable residg for
BDD-based points-to analysis as future work.

In addition to achieving our goals in terms of time and space,
were pleasantly surprised with how easy it was for us to $peci
wide variety of algorithms with the BDD approach. We triednya
variations of the points-to analysis while developing dgogthm
and it was very easy to go from one variation to the next. Based
this experience, we believe that a BDD package should beopart
the standard toolkit for compiler analysis developers.th&r our
BDD-based points-to analysis should be very easy to incatpo
into program analysis tools where BDDs are used more and more
frequently.

We plan to continue our work with BDDs and to further experi-
ment with the kinds of queries outlined in Section 6. In additwe
would like to make a tighter connection between the Soot &am



work and a BDD toolkit so that subsequent BDD-based analyses [17] Ondrej Lhotak. Spark: A flexible points-to analysis
could be specified at a very high level.
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APPENDIX
A. FULL INCREMENTAL ALGORITHM

/* global variables, initialized by input constraints */
bdd poi ntsTo; /1 points-to relation V1 x H1L
bdd edgeSet; /'l assignment relation V1 x V2

bdd stores; /1 field store relation V1 x (V2 x FD)

bdd | oads; /1 field load relation (V1 x FD) x V2

bdd typeFilter; // encoding type filter V1 x Hl

/* caches for internediate results */

bdd fiel dPt; /1 (HL x FD) x H2 points-to relation for fields of heap objects
bdd storePt; /1 H2 x (V1 x FD) tenporary relation for field stores

bdd | oadAss; /1 (HL x FD) x V2 tenporary relation for field |oads

/* increnentally conmputes points-to relation */
voi d sol ve_increnmental () {
bdd ol dPoi ntsTo = bdd_fal se(); /1 initialize variable to FALSE (0)
bdd newPoi nt sTo = poi ntsTo;
/] main iteratons
do{
//{repeat rule (1) in the inner |loop, see Figure 9 for details
do
bdd newPt1 = bdd_rel prod(edgeSet, newPoi ntsTo, fdd_ithset(V1));
bdd newPt2 = bdd_repl ace(newPt1, V2ToVl);
bdd newPt3 = newPt2 - pointsTo;
newPoi nt sSTo = newPt3 & typeFilter;
poi ntsTo = poi ntsTo | newPoi ntsTo;
} while (newPointsTo != bdd_fal se());
newPoi nt sTo = poi ntsTo - ol dPoi ntsTo;

/1 apply rule (2)

bdd tnpRel 1 = bdd_rel prod(stores, newPoi ntsTo, fdd_ithset(V1)); /'l (V2xFD) xH1
bdd tnpRel 2 = bdd_repl ace(bdd_repl ace(tnpRel 1, V2ToV1l), H1ToH2); /'l (V1xFD) xH2
bdd newStorePt = tnpRel 2 - storePt;

storePt | = newStorePt; /1 (V1xFD) xH2

bdd newFi el dPt = bdd_rel prod(storePt, newPoi ntsTo, fdd_ ithset(V1)); // (HLxFD)xH2
newFi el dPt | = bdd_r el prod(newSt orePt, ol dPointsTo, fdd ithset(V1)); // (HLxFD)xH2
newri el dPt -= fieldPt;

fieldPt |= newFieldPt; /1 (H1xFD) xH2

/1 apply rule (3)

bdd tnpRel 3 = bdd_rel prod(l oads, newPoi ntsTo, fdd_ithset(V1)); /1 (H1xFD) xV2
bdd newLoadAss = tnpRel 3 - | oadAss;

bdd newLoadPt = bdd_rel prod(l oadAss, newFi el dPt, fdd_ithset(Hl)& dd_ithset(FD));
newLoadPt | = bdd_rel prod(newLoadAss, fieldPt, fdd_ithset(Hl)&f dd_ithset(FD));

| oadAss | = newlLoadAss;

ol dPoi nt sTo = poi ntsTo;

/1 convert new points-to relation to normal type
newPoi nt sTo = bdd_repl ace(bdd_r epl ace( newLoadPt, V2ToV1), H2ToHl);
newPoi nt sTo -= poi ntsTo;

/1 apply typeFilter
newPoi nt sTo = typeFilter & newPoi ntsTo;
poi nt sTo | = newPoi nt sTo;
/1 loop until points-to set has no changes
} while (newPointsTo != bdd_false());
}




