Points-to Analysis using BDDs Marc Berndl, Ondřej Lhoták , Feng Qian, Laurie Hendren, Navindra Umanee Sable Research Group McGill University June 9th, 2003		
--	--	--

Motivation

- Points-to analysis
 - requires representing many large, often similar sets
- Binary decision diagrams (BDDs)
 - provide compact representation of large sets with similarities

Background

Points-to analysis

[Landi 92] [Andersen 94] [Emami 94] [Wilson 95]
 [Steensgaard 96] [Shapiro 97] [Aiken 98] [Fähndrich 98]
 [Ghiya 98] [Choi 99] [Das 00] [Hind 00] [Ruf 00]
 [Sundaresan 00] [Tip 00] [Heintze 01] [Liang 01] [Rountev 01]
 [Vivien 01] [Milanova 02] [Su 02] [Whaley 02] [Lhoták 03]
 and more...

BDDs

- [Bryant 92] [Burch 94] and many, many more...
- Program analysis using BDDs
 - [Sias 00] [Manevich 02] [Ball 03]

Introduction

- Points-to analysis
- BDDs
- BDD-PTA algorithm
- Performance tuning
 - Bit ordering
 - Incrementalization
- Overall performance
- Conclusions and future work

Overview

- Designed a subset-based Java points-to algorithm using BDDs
- Implemented it using BuDDy BDD library
- Compared performance of BDD-based solver with hand-tuned Spark solver on identical input constraints
 - Spark solver is very efficient compared to other Java points-to solvers [CC 03]

BuDDy: provided by Jørn Lind-Nielsen at
http://www.itu.dk/research/buddy

```
X: a = new O();
```

- Y: b = new O();
- Z: c = new O();
- a = b;
- b = a;
- c = b;

Points-to set: {

```
X: a = new O();
Y: b = new O();
```

- Z: c = new O();
- a = b;
- b = a;
- c = b;

Points-to set: { (a,X) (b,Y) (c,Z)

```
X: a = new O();
```

- Y: b = new O();
- Z: c = new O();
- a = b;
- b = a;
- c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y)

```
X: a = new O();
```

- Y: b = new O();
- Z: c = new O();
- a = b;
- b = a;
- c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X)

```
X: a = new O();
```

- Y: b = new O();
- Z: c = new O();
- a = b;
- b = a;
- c = b;

Points-to set: { (a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y) }

- A BDD is a compact representation of a set of bit strings
- We encode our analysis using bit strings:

 $\begin{array}{ll} a \rightarrow 00 & X \rightarrow 00 \\ b \rightarrow 01 & Y \rightarrow 01 \\ c \rightarrow 10 & Z \rightarrow 10 \end{array}$

Domains: V H $v_1v_0h_1h_0$ (a,Y) \rightarrow 00 01

Reduced BDD representation

 $a/X \rightarrow 00$ $b/Y \rightarrow 01$ $c/Z \rightarrow 10$ VΗ $v_1 v_0 h_1 h_0$ (a,X) 00 00 (a,Y) 00 01 (b,X) 01 00 (b,Y) 01 01 (c,X) 10 00 (c,Y) 10 01 (c,Z) 10 10

BDD operations

- Set operations (\cup , \cap , \setminus , ...)
- Relational product $(\{(a,c) \mid \exists b.(a,b) \in X \land (b,c) \in Y)\})$ a b \rightarrow a c
- Replace changing bit order in a specific BDD
 a c → a c
- Cost of operations proportional to number of nodes in BDD, not size of set represented

X: a = Y: b = Z: c =	new O() new O() new O());););	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	
H1	X Y Z		

X: a = Y: b = Z: c =	new 0() new 0() new 0());););	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	relprod
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	
H1	X Y Z		

X: a = Y: b = Z: c =	new 0() new 0() new 0());););	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	relprod
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	b
H1	X Y Z		X

X: a = Y: b = Z: c =	= new 0() = new 0() = new 0()); ; ;	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	relprod
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	b
H1	XYZ		X

X: a = Y: b = Z: c =	= new 0() = new 0() = new 0());););	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	relprod
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	b
H1	X Y Z		X

X: a = Y: b = Z: c =	= new 0() = new 0() = new 0()	; ; ;	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	relprod
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	b a c
H1	X Y Z		XYY

X: a = Y: b = Z: c =	new O() new O() new O()	; ; ;	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	b a c
H1	XYZ		XYY

X: a = Y: b = Z: c =	= new 0() = new 0() = new 0()); ; ;	a = b; b = a; c = b;
	(a,X) (b,Y) (c,Z)	$egin{array}{l} (b ightarrow a) \ (a ightarrow b) \ (b ightarrow c) \end{array}$	replace
Domains	Points-to	Edges	New points-to
V1	a b c	b a b	
V2		a b c	b a c
H1	XYZ		XYY

X: a = Y: b = Z: c =	= n = n = n	ew ew ew	O (O (O ();););			a b c	= = =	b; a; b;		
			(a, (b, (c,	X) Y) Z)			(b (a (b	ightarrow (a) b) c)	unio	n
Domains		Points-to					E	dge	es	New	
V1	а	b	С	b	а	С	b	а	b		
V2							a	b	С		
H1	X	Y	Ζ	Χ	Y	Y					

- Introduction
 - Points-to analysis
 - BDDs
- BDD-PTA algorithm
- Performance tuning
 - Bit ordering
 - Incrementalization
- Overall performance
- Conclusions and future work

BDDs used

- $edgeset \subseteq V1 \times V2$ simple assignments $(l_2 := l_1)$
- $stores \subseteq$ $V1 \times (V2 \times FD)$ field stores $(l_2.f := l_1)$
- $loads \subseteq$ $(V1 \times FD) \times V2$ field loads $(l_2 := l_1.f)$

- pointsTo $\subseteq V1 \times H1$ points-to relation for
 variables
 (l points to o)
- $fieldPt \subseteq$ $(H1 \times FD) \times H2$ points-to relation for object fields $(o_1.f \text{ points to } o_2)$

5 domains needed: V1, V2, H1, H2, FD

Overall algorithm

initialize
repeat
repeat
 (1) process simple assignments
 until no change
 (2) process field stores
 (3) process field loads
until no change

Simple assignments ($l_2 := l_1$)


```
Field stores (q.f := l)
         o_2 \in pt(l) \quad l \to q.f \quad o_1 \in pt(q)
(2)
                  o_2 \in pt(o_1, f)
tmpRell:[(V2xFD)xH1] =
     relprod( stores: [V1x(V2xFD)],
                 pointsTo:[V1xH1],
                             V1 );
tmpRel2:[(V1xFD)xH2] =
     replace( tmpRel1: [(V2xFD)xH1],
                             V2ToV1&H1ToH2);
fieldPt:[(H1xFD)xH2] =
     relprod( tmpRel2: [(V1xFD)xH2],
                 pointsTo:[V1xH1],
                             V1 );
```

Field loads (l := p.f)

 $p.f \to l \quad o_1 \in pt(p) \quad o_2 \in pt(o_1.f)$ (3) $o_2 \in pt(l)$ tmpRel3: [(H1xFD)xV2] =**relprod**(loads: [(V1xFD)xV2], pointsTo:[V1xH1], V1); newPt4: [V2xH2] =relprod(tmpRel3: [(H1xFD)xV2], fieldPt: [(H1xFD)xH2], H1xFD); newPt5: [V1xH1] =replace(newPt4: [V2xH2], V2ToV1&H2ToH1);

- Introduction
 - Points-to analysis
 - BDDs
- BDD-PTA algorithm
- Performance tuning
 - Bit ordering
 - Incrementalization
- Overall performance
- Conclusions and future work

Bit ordering matters

 $a/X \rightarrow 00$ $b/Y \rightarrow 01$ $c/Z \rightarrow 10$ $v_1 v_0 h_1 h_0$ (a,X) 0000 (a,Y) 0001 (b,X) 0100 (b,Y) 0101 (c,X) 1000 (c,Y) 1001 (c,Z) 1010

Bit ordering matters

 $a/X \rightarrow 00$ $b/Y \rightarrow 10$ $c/Z \rightarrow 01$ $h_0 v_0 h_1 v_1$ (a,X) 0000 (a,Y) 1000 (b,X) 0100 (b,Y) 1100 (c,X) 0001 (c,Y) 1001 (c,Z) 0011

How to find a good ordering?

BuDDy default is to interleave bits:

00001111112222233333

- Good heuristic for state machines in model checking
- Bad for points-to analysis: much too slow!

How to find a good ordering? Where is most of the time spent? $l_1 \to l_2 \quad o \in pt(l_1)$ (1) $o \in pt(l_2)$ newPt1: [V2xH1] =**relprod**(edgeSet: [V1xV2], pointsTo:[V1xH1], V1); newPt2: [V1xH1] =**replace**(newPt1: [V2xH1], V2ToV1); V1, V2, H1 make a difference; H2, FD do not.

How to find a good ordering?

Idea:

- H1 represents points-to sets (large, regular)
- Put it at the end \Rightarrow big speedup!
- What about V1 and V2?
 - Interleaving them is usually a bit faster than one before the other

Performance of different orderings

Effect of ordering on *edgeSet*

Effect of ordering on *pointsTo*

- All sets are re-propagated in each iteration
- Could we propagate only the new elements of each set?
- We found this to work well for Spark
- How well would it work in BDDs?

newPt1: [V2xH1] =relprod(edgeSet: [V1xV2], pointsTo:[V1xH1], V1); newPt2: [V1xH1] =**replace**(newPt1: [V2xH1], V2ToV1); pointsTo:[V1xH1] = union(pointsTo:[V1xH1], newPt2: [V1xH1]);

```
newPt1:
       [V2xH1] =
          relprod( edgeSet: [V1xV2],
                    newPoint:[V1xH1],
                              V1 );
newPt2: [V1xH1] =
          replace( newPt1: [V2xH1],
                              V2ToV1 );
newPoint:[V1xH1] =
          setminus( newPt2: [V1xH1],
                     pointsTo:[V1xH1] );
pointsTo:[V1xH1] =
          union( pointsTo:[V1xH1],
                    newPoint:[V1xH1] );
```


- Introduction
 - Points-to analysis
 - BDDs
- BDD-PTA algorithm
- Performance tuning
 - Bit ordering
 - Incrementalization
- Overall performance
- Conclusions and future work

Experiment setup

Overall performance (time)

Overall performance (space)

Solving without declared types

- In Java, use declared types of variables to keep points-to sets small
- Without declared types, large sets, traditional solvers do not scale
- May not have declared types (IR does not support them; language dynamically typed)
- Surprisingly, BDD-based solver scales well even without declared types

		Set size	BDD size
eg. javac:	with types	21M	31MB
	no types	366M	40MB

Conclusions

- BDDs are a good fit for points-to analysis
- BDDs give reasonably efficient solvers with relatively little effort
- BDDs make it easy to experiment with variations of set-based problems
- Bit ordering is crucial (and we found a good one for points-to analysis)

- More heuristics for BDD program analysis
- Library for program analysis using BDDs
- Variations on the points-to analysis
 - Context-sensitivity
- Compute other whole-program information
 - Call graph
 - Interprocedural side-effect analysis
 - ...(suggestions?)