

Motivation

- Points-to analysis
- requires representing many large, often similar sets
- Binary decision diagrams (BDDs)
- provide compact representation of large sets with similarities

Background

- Points-to analysis
- [Landi 92] [Andersen 94] [Emami 94] [Wilson 95]
[Steensgaard 96] [Shapiro 97] [Aiken 98] [Fähndrich 98]
[Ghiya 98] [Choi 99] [Das 00] [Hind 00] [Ruf 00]
[Sundaresan 00] [Tip 00] [Heintze 01] [Liang 01] [Rountev 01]
[Vivien 01] [Milanova 02] [Su 02] [Whaley 02] [Lhoták 03] and more...
- BDDs
- [Bryant 92] [Burch 94] and many, many more...
- Program analysis using BDDs
- [Sias 00] [Manevich 02] [Ball 03]

Talk Outline

- Introduction
- Points-to analysis
- BDDs
- BDD-PTA algorithm
- Performance tuning
- Bit ordering
- Incrementalization
- Overall performance
- Conclusions and future work

Overview

- Designed a subset-based Java points-to algorithm using BDDs
- Implemented it using BuDDy BDD library
- Compared performance of BDD-based solver with hand-tuned Spark solver on identical input constraints
- Spark solver is very efficient compared to other Java points-to solvers [CC 03]

BuDDy: provided by Jørn Lind-Nielsen at
http://www.itu.dk/research/buddy

Simple points-to analysis example

$$
\begin{aligned}
& \mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; \\
& \mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; \\
& \mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; \\
& \mathrm{a}=\mathrm{b} ; \\
& \mathrm{b}=\mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ;
\end{aligned}
$$

Points-to set:
\{
\}

Simple points-to analysis example

$$
\begin{aligned}
& \mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; \\
& \mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; \\
& \mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; \\
& \mathrm{a}=\mathrm{b} ; \\
& \mathrm{b}=\mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ;
\end{aligned}
$$

Points-to set:
$\{(a, X)(b, Y)(c, Z)$
\}

Simple points-to analysis example

$$
\begin{aligned}
& \mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; \\
& \mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; \\
& \mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; \\
& \mathrm{a}=\mathrm{b} ; \\
& \mathrm{b}=\mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ;
\end{aligned}
$$

Points-to set:
$\{(a, X)(b, Y)(c, Z)(a, Y)$
\}

Simple points-to analysis example

$$
\begin{aligned}
& \mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; \\
& \mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; \\
& \mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; \\
& \mathrm{a}=\mathrm{b} ; \\
& \mathrm{b}=\mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ;
\end{aligned}
$$

Points-to set:
$\{(a, X)(b, Y)(c, Z)(a, Y)(b, X)$
\}

Simple points-to analysis example

$$
\begin{aligned}
& \mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; \\
& \mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; \\
& \mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; \\
& \mathrm{a}=\mathrm{b} ; \\
& \mathrm{b}=\mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ;
\end{aligned}
$$

Points-to set:
$\{(a, X)(b, Y)(c, Z)(a, Y)(b, X)(c, X)(c, Y)\}$

BDD representation

- A BDD is a compact representation of a set of bit strings
- We encode our analysis using bit strings:

$$
\begin{array}{ll}
\mathrm{a} \rightarrow 00 & \mathrm{X} \rightarrow 00 \\
\mathrm{~b} \rightarrow 01 & \mathrm{Y} \rightarrow 01 \\
\mathrm{c} \rightarrow 10 & \mathrm{Z} \rightarrow 10
\end{array}
$$

Domains: V H

$$
(\mathrm{a}, \mathrm{Y}) \rightarrow 0001
$$

BDD representation

BDD representation

BDD representation

BDD representation

$a / X \rightarrow 00$ $\mathrm{b} / \mathrm{Y} \rightarrow 01$ $c / Z \rightarrow 10$

V H
$v_{1} v_{0} h_{1} h_{0}$
$(a, X) 0000$
$(a, Y) 0001$
(b,X) 0100
(b,Y) 0101
(c, X) 1000
(c,Y) 1001
(c,Z) 1010

BDD representation

$a / X \rightarrow 00$ b/Y $\rightarrow 01$ $c / Z \rightarrow 10$

V H
$v_{1} v_{0} h_{1} h_{0}$
$(a, X) 0000$
$(a, Y) 0001$
(b,X) 0100
(b,Y) 0101
(c, X) 1000
$(\mathrm{c}, \mathrm{Y}) 1001$
(c,Z) 1010

BDD representation

Reduced BDD representation

$$
\begin{aligned}
& \mathrm{a} / \mathrm{X} \rightarrow 00 \\
& \mathrm{~b} / \mathrm{Y} \rightarrow 01 \\
& \mathrm{c} / \mathrm{Z} \rightarrow 10
\end{aligned}
$$

V H

$$
v_{1} v_{0} h_{1} h_{0}
$$

$$
(a, X) 0000
$$

$$
(a, Y) 0001
$$

$$
(b, X) 0100
$$

$$
(\mathrm{b}, \mathrm{Y}) 0101
$$

$$
(c, X) 1000
$$

$$
(c, Y) 1001
$$

$$
\text { (c,Z) } 1010
$$

BDD operations

- Set operations $(\cup, \cap, \backslash, \ldots)$
- Relational product

- Replace changing bit order in a specific BDD

- Cost of operations proportional to number of nodes in BDD, not size of set represented

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a,X)
($\mathrm{b} \rightarrow \mathrm{a}$)
(b, Y)
$(\mathrm{a} \rightarrow \mathrm{b})$
(c,Z)
($b \rightarrow c$)

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b	
V2				a	b	c	
H1	X	Y	Z				

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a,X)
($b \rightarrow a$)
(b,Y)
($\mathrm{a} \rightarrow \mathrm{b}$)
(c,Z)
(b \rightarrow c)
relprod

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b	
V2				a	b	c	
H1	X	Y	Z				

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a, X)	$(b \rightarrow a)$
(b, Y)	$(a \rightarrow b)$
(c, Z)	$(b \rightarrow c)$

relprod

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b	
V2				a	b	c	b
H1	X	Y	Z			X	

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a, X)	$(b \rightarrow a)$
(b, Y)	$(a \rightarrow b)$
(c, Z)	$(b \rightarrow c)$

relprod

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b	
V2				a	b	c	b
H1	X	Y	Z			X	

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a, X)	$(b \rightarrow a)$
(b, Y)	$(a \rightarrow b)$
(c, Z)	$(b \rightarrow c)$

relprod

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b	
V2				a	b	c	b
H1	X	Y	Z			X	

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a, X)	$(b \rightarrow a)$
(b, Y)	$(a \rightarrow b)$
(c, Z)	$(b \rightarrow c)$

relprod
Domains
Points-to
Edges New points-to

V1	a	b	c	b	a	b		
V2				a	b	c	b	a
H1		X	Y	Z				X
H	Y							

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a,X)
($b \rightarrow a$)
(b, Y)
$(\mathrm{a} \rightarrow \mathrm{b})$
(c,Z)
$(b \rightarrow c)$

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b			
V2				a	b	c	b	a	c
H1	X	Y	Z			X	Y	Y	

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a, X)	$(b \rightarrow a)$
(b, Y)	$(a \rightarrow b)$
(c, Z)	$(b \rightarrow c)$

replace

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b			
V2				a	b	c	b	a	c
H1	X	Y	Z			X	Y	Y	

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a, X)	$(b \rightarrow a)$
(b, Y)	$(a \rightarrow b)$
(c, Z)	$(b \rightarrow c)$

replace
Domains
Points-to

V1	a	b	c	b	a	b	b	a	c
V2				a	b	c			
H 1	X	Y	Z				X	Y	Y

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a, X)
($\mathrm{b} \rightarrow \mathrm{a}$)
(b, Y)
$(\mathrm{a} \rightarrow \mathrm{b})$
(c,Z)
(b \rightarrow c)

Domains	Points-to	Edges	New points-to

V1	a	b	c	b	a	b	b	a	c
V2				a	b	c			
$H 1$	X	Y	Z			X	Y	Y	

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

$(a, X) \quad(b \rightarrow a)$
$(b, Y) \quad(a \rightarrow b)$
$(\mathrm{c}, \mathrm{Z}) \quad(\mathrm{b} \rightarrow \mathrm{c})$
union

Domains	Points-to		Edges		New points-to				
V 1	a	b	c	b	a	b	b	a	c
V 2				a	b	c			
H 1	X	Y	Z				X	Y	Y

Propagating points-to sets

$$
\begin{array}{ll}
\mathrm{X}: \mathrm{a}=\text { new } \mathrm{O}() ; & \mathrm{a}=\mathrm{b} ; \\
\mathrm{Y}: \mathrm{b}=\text { new } \mathrm{O}() ; & \mathrm{b}=\mathrm{a} ; \\
\mathrm{Z}: \mathrm{c}=\text { new } \mathrm{O}() ; & \mathrm{c}=\mathrm{b} ;
\end{array}
$$

(a,X)
($b \rightarrow a$)
(b,Y)
$(\mathrm{a} \rightarrow \mathrm{b})$
(c,Z)
($\mathrm{b} \rightarrow \mathrm{c}$)
union

Domains	Points-to	Edges	New

V1	a	b	c	b	a	c	b	a	b
V2							a	b	c
H 1	X	Y	Z	X	Y	Y			

$\begin{array}{lll}b & a & b \\ a & b & c\end{array}$
H1 X Y Z X Y Y

Talk Outline

- Introduction
- Points-to analysis
- BDDs
- BDD-PTA algorithm
- Performance tuning
- Bit ordering
- Incrementalization
- Overall performance
- Conclusions and future work

BDDs used

- edgeset $\subseteq V 1 \times V 2$ simple assignments $\left(l_{2}:=l_{1}\right)$
- stores \subseteq
$V 1 \times(V 2 \times F D)$
field stores
$\left(l_{2} . f:=l_{1}\right)$
- loads \subseteq
$(V 1 \times F D) \times V 2$
field loads
$\left(l_{2}:=l_{1} . f\right)$
- 5 domains needed: $V 1, V 2, H 1, H 2, F D$

Overall algorithm

initialize
repeat repeat
(1) process simple assignments until no change
(2) process field stores
(3) process field loads
until no change

Simple assignments $\left(l_{2}:=l_{1}\right)$

(1)

$$
\frac{l_{1} \rightarrow l_{2} \quad o \in p t\left(l_{1}\right)}{o \in p t\left(l_{2}\right)}
$$

newPt1: [V2xH1] =
relprod (edgeSet: [V1xV2], pointsTo:[V1xH1], V1) ;
newPt2: $\quad[\mathrm{V} 1 \times \mathrm{H} 1]=$
replace (newPt1: [V2xH1], V2ToV1) ;
pointsTo:[V1xH1] = union (pointsTo:[V1xH1], newPt2: [V1xH1]) ;

Field stores ($q . f:=l$)

(2)

$$
\frac{o_{2} \in p t(l) \quad l \rightarrow q . f \quad o_{1} \in p t(q)}{o_{2} \in p t\left(o_{1} . f\right)}
$$

tmpRel1:[(V2xFD)xH1] = relprod (stores: [V1x(V2xFD)], pointsTo:[V1xH1],

V1) ;
tmpRel2:[(V1xFD)xH2] =
replace (tmpRel1: [(V2xFD)xH1], V2ToV1\&H1ToH2) ;
fieldPt:[(H1xFD)xH2] =
relprod (tmpRel2: [(V1xFD)xH2], pointsTo:[V1xH1],
V1) ;

Field loads ($l:=p . f$)

(3)

$$
\frac{p . f \rightarrow l \quad o_{1} \in p t(p) \quad o_{2} \in p t\left(o_{1} . f\right)}{o_{2} \in p t(l)}
$$

tmpRel3: [(H1xFD)xV2] = relprod (loads: [(V1xFD)xV2], pointsTo:[V1xH1], V1) ;
newPt4: [V2xH2] =
relprod (tmpRel3: [(H1xFD)xV2], fieldPt: [(H1xFD)xH2], H1xFD) ;
newPt5: $\quad[\mathrm{V} 1 \mathrm{xH} 1]=$ replace (newPt4: [V2xH2], V2ToV1\&H2ToH1) ;

Talk Outline

- Introduction
- Points-to analysis
- BDDs
- BDD-PTA algorithm
- Performance tuning
- Bit ordering
- Incrementalization
- Overall performance
- Conclusions and future work

Bit ordering matters

$a / X \rightarrow 00$ b/Y $\rightarrow 01$
$\mathrm{c} / \mathrm{Z} \rightarrow 10$
$v_{1} v_{0} h_{1} h_{0}$
$(a, X) 0000$
$(a, Y) 0001$
(b,X) 0100
(b,Y) 0101
(c,X) 1000
(c,Y) 1001
(c,Z) 1010

Bit ordering matters

$a / X \rightarrow 00$ $\mathrm{b} / \mathrm{Y} \rightarrow 10$
$\mathrm{c} / \mathrm{Z} \rightarrow 01$
$h_{0} v_{0} h_{1} v_{1}$
$(a, X) 0000$
$(a, Y) 1000$
(b,X) 0100
(b,Y) 1100
(c,X) 0001 (c,Y) 1001
(c,Z) 0011

How to find a good ordering?

- BuDDy default is to interleave bits:
FD 3|2|1|0

V 1	3
	2

H 1	3	2	1	0

- Good heuristic for state machines in model checking
- Bad for points-to analysis: much too slow!

How to find a good ordering?

Where is most of the time spent?

$$
\begin{equation*}
\frac{l_{1} \rightarrow l_{2} \quad o \in p t\left(l_{1}\right)}{o \in p t\left(l_{2}\right)} \tag{1}
\end{equation*}
$$

newPt1: [V2xH1] =

$$
\begin{array}{r}
\text { relprod(edgeSet: [V1xV2], } \\
\text { pointsTo:[V1xH1], } \\
\text { V1); }
\end{array}
$$

newPt2: [V1xH1] = replace(newPt1: [V2xH1], V2ToV1);
V1, V2, H1 make a difference; H2, FD do not.

How to find a good ordering?

- Idea:
- H1 represents points-to sets (large, regular)
- Put it at the end \Rightarrow big speedup!
- What about V1 and V2?
- Interleaving them is usually a bit faster than one before the other

Performance of different orderings

Effect of ordering on edgeSet

Effect of ordering on pointsTo

Incrementalization

- All sets are re-propagated in each iteration
- Could we propagate only the new elements of each set?
- We found this to work well for Spark
- How well would it work in BDDs?

Incrementalization

newPt1: [V2xH1] =
relprod(edgeSet: [V1xV2], pointsTo:[V1xH1],

V1);
newPt2: [V1xH1] = replace(newPt1: $\begin{aligned} & {[\mathrm{V} 2 x H 1], } \\ &\mathrm{V} 2 \mathrm{ToV1}) ;\end{aligned}$
pointsTo:[V1xH1] = union(pointsTo:[V1xH1], newPt2: [V1xH1]);

Incrementalization

newPt1: [V2xH1] =
relprod(edgeSet: [V1xV2], newPoint:[V1xH1], V1);
newPt2: [V1xH1] =
replace(newPt1: [V2xH1], V2ToV1);
newPoint:[V1xH1] =
setminus(newPt2: [V1xH1], pointsTo:[V1xH1]);
pointsTo:[V1xH1] = union(pointsTo:[V1xH1], newPoint:[V1xH1]);

Incrementalization

Talk Outline

- Introduction
- Points-to analysis
- BDDs
- BDD-PTA algorithm
- Performance tuning
- Bit ordering
- Incrementalization
- Overall performance
- Conclusions and future work

Experiment setup

Overall performance (time)

Overall performance (space)

Solving without declared types

- In Java, use declared types of variables to keep points-to sets small
- Without declared types, large sets, traditional solvers do not scale
- May not have declared types (IR does not support them; language dynamically typed)
- Surprisingly, BDD-based solver scales well even without declared types

eg. javac: | | Set size | BDD size |
| :--- | ---: | ---: |
| | with types | 21 M |
| no types | 366 M | 41 MB |
| | 40 MB | |

Conclusions

- BDDs are a good fit for points-to analysis
- BDDs give reasonably efficient solvers with relatively little effort
- BDDs make it easy to experiment with variations of set-based problems
- Bit ordering is crucial (and we found a good one for points-to analysis)

Future Work

- More heuristics for BDD program analysis
- Library for program analysis using BDDs
- Variations on the points-to analysis
- Context-sensitivity
- Compute other whole-program information
- Call graph
- Interprocedural side-effect analysis
- . . . (suggestions?)

