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Motivation

Points-to analysis
requires representing many large, often
similar sets

Binary decision diagrams (BDDs)
provide compact representation of large
sets with similarities

PTA ? BDD
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Background

Points-to analysis
[Landi 92] [Andersen 94] [Emami 94] [Wilson 95]

[Steensgaard 96] [Shapiro 97] [Aiken 98] [Fähndrich 98]

[Ghiya 98] [Choi 99] [Das 00] [Hind 00] [Ruf 00]

[Sundaresan 00] [Tip 00] [Heintze 01] [Liang 01] [Rountev 01]

[Vivien 01] [Milanova 02] [Su 02] [Whaley 02] [Lhoták 03]

and more. . .

BDDs
[Bryant 92] [Burch 94] and many, many more. . .

Program analysis using BDDs
[Sias 00] [Manevich 02] [Ball 03]
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Overview

Designed a subset-based Java points-to
algorithm using BDDs

Implemented it using BuDDy BDD library

Compared performance of BDD-based solver
with hand-tuned Spark solver on identical
input constraints

Spark solver is very efficient compared to
other Java points-to solvers [CC 03]

BuDDy: provided by Jørn Lind-Nielsen at
http://www.itu.dk/research/buddy
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Simple points-to analysis example

X: a = new O();
Y: b = new O();
Z: c = new O();
a = b;
b = a;
c = b;

Points-to set:
{

(a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y)

}
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Simple points-to analysis example

X: a = new O();
Y: b = new O();
Z: c = new O();
a = b;
b = a;
c = b;

Points-to set:
{ (a,X) (b,Y) (c,Z) (a,Y) (b,X) (c,X) (c,Y) }
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BDD representation

A BDD is a compact representation of a set
of bit strings

We encode our analysis using bit strings:

a 00 X 00
b 01 Y 01
c 10 Z 10

Domains: V H

��� ���

�
�

�
�

(a,Y) 00 01
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BDD representation

���

��� ���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1 0

a/X 00
b/Y 01
c/Z 10

V H

�� ��

�
�

�
�

(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10
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BDD representation
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a/X 00
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c/Z 10

V H
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�
�

�
�

(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
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BDD representation
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BDD representation

���

��� ���

�
�

�
�

�
�

�
�

�
�

1 0

a/X 00
b/Y 01
c/Z 10

V H

�� ��

�
�

�
�

(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10

– p. 11/53



BDD representation

���

��� ���

�
�

�
�

�
�

�
�

1 0

a/X 00
b/Y 01
c/Z 10

V H

�� ��

�
�

�
�

(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10

– p. 12/53



BDD representation

���

��� ���
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�
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�

1 0

a/X 00
b/Y 01
c/Z 10

V H

�� ��

�
�

�
�

(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
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Reduced BDD representation

���

���

�
�

�
�

�
�

1 0

a/X 00
b/Y 01
c/Z 10

V H

�� ��

�
�

�
�

(a,X) 00 00
(a,Y) 00 01
(b,X) 01 00
(b,Y) 01 01
(c,X) 10 00
(c,Y) 10 01
(c,Z) 10 10
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BDD operations

Set operations (

��
�

��
�

�
�� � � )

Relational product
(

�� �� 	 
� �
�

� ��
 
 � � � 
� 	 
 � 


})
a b

b c
a c

Replace –
changing bit order in a specific BDD

a c a c

Cost of operations proportional to number of
nodes in BDD, not size of set represented
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c
H1 X Y Z
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c
H1 X Y Z

relprod

– p. 17/53



Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b
H1 X Y Z X

relprod
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b
H1 X Y Z X

relprod
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b
H1 X Y Z X

relprod

– p. 20/53



Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b a c
H1 X Y Z X Y Y

relprod
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b a c
H1 X Y Z X Y Y
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b
V2 a b c b a c
H1 X Y Z X Y Y

replace
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b b a c
V2 a b c
H1 X Y Z X Y Y

replace
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b b a c
V2 a b c
H1 X Y Z X Y Y
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New points-to

V1 a b c b a b b a c
V2 a b c
H1 X Y Z X Y Y

union
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Propagating points-to sets

X: a = new O();
Y: b = new O();
Z: c = new O();

a = b;
b = a;
c = b;

(a,X)
(b,Y)
(c,Z)

(b a)
(a b)
(b c)

Domains Points-to Edges New

V1 a b c b a c b a b
V2 a b c
H1 X Y Z X Y Y

union
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BDDs used

� ��� �� � � � � �

simple assignments
(

	�
 :=

	�� )

� �� � � �
� � � � � 


field stores
(

	�
� :=

	�� )

	  � ��

� � � 
 � �
field loads
(

	�
 :=

	��� )

� ��� � �  � � �

points-to relation for
variables
(

	

points to  )

� � 	 � �

� � � 
 � �

points-to relation for
object fields
( �� points to  
 )

5 domains needed:

�
�

�
�

�
�

�
�
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Overall algorithm

initialize
repeat

repeat
(1) process simple assignments

until no change
(2) process field stores
(3) process field loads

until no change
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Simple assignments (

	 
 :=

	�� )

	� 	
  � � �� 	� 


 � � �� 	
 
(1)

newPt1: [V2xH1] =
relprod( edgeSet: [V1xV2],

pointsTo:[V1xH1],
V1 );

newPt2: [V1xH1] =
replace( newPt1: [V2xH1],

V2ToV1 );
pointsTo:[V1xH1] =

union( pointsTo:[V1xH1],
newPt2: [V1xH1] );
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Field stores ( �� :=

	

)

 
 � � �� 	 
 	

��  � � � �� �



 
 � � ��  ��


(2)

tmpRel1:[(V2xFD)xH1] =
relprod( stores: [V1x(V2xFD)],

pointsTo:[V1xH1],
V1 );

tmpRel2:[(V1xFD)xH2] =
replace( tmpRel1: [(V2xFD)xH1],

V2ToV1&H1ToH2);
fieldPt:[(H1xFD)xH2] =

relprod( tmpRel2: [(V1xFD)xH2],
pointsTo:[V1xH1],

V1 );
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Field loads (

	

:= �� )

��

	  � � � �� � 
  
 � � ��  ��




 
 � � �� 	 
(3)

tmpRel3: [(H1xFD)xV2] =
relprod( loads: [(V1xFD)xV2],

pointsTo:[V1xH1],
V1 );

newPt4: [V2xH2] =
relprod( tmpRel3: [(H1xFD)xV2],

fieldPt: [(H1xFD)xH2],
H1xFD );

newPt5: [V1xH1] =
replace( newPt4: [V2xH2],

V2ToV1&H2ToH1);
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Bit ordering matters

��

���

�� ��

�
�

1 0

a/X 00
b/Y 01
c/Z 10

��� ��

�
�

�
�

(a,X) 0000
(a,Y) 0001
(b,X) 0100
(b,Y) 0101
(c,X) 1000
(c,Y) 1001
(c,Z) 1010
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Bit ordering matters

�
�

� � � �

�� �� ��

�� ��
1 0

a/X 00
b/Y 10
c/Z 01

�
� ��

�
� ���

(a,X) 0000
(a,Y) 1000
(b,X) 0100
(b,Y) 1100
(c,X) 0001
(c,Y) 1001
(c,Z) 0011
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How to find a good ordering?

BuDDy default is to interleave bits:
FD 3 2 1 0

V1 3 2 1 0

V2 3 2 1 0

H1 3 2 1 0

H2 3 2 1 0

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Good heuristic for state machines in model
checking

Bad for points-to analysis: much too slow!
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How to find a good ordering?

Where is most of the time spent?

	� 	
  � � �� 	� 


 � � �� 	
 
(1)

newPt1: [V2xH1] =
relprod( edgeSet: [V1xV2],

pointsTo:[V1xH1],
V1 );

newPt2: [V1xH1] =
replace( newPt1: [V2xH1],

V2ToV1 );
V1, V2, H1 make a difference; H2, FD do not.
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How to find a good ordering?

Idea:
H1 represents points-to sets (large,
regular)
Put it at the end big speedup!

What about V1 and V2?
Interleaving them is usually a bit faster
than one before the other
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Performance of different orderings

 10

 100

 1000

 10000

compress javac sablecc jedit

S
ec

on
ds

(V1V2H1)
H1_(V1V2)
(V1V2)_H1
V1_V2_H1
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Effect of ordering on � ��� � � � �

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  5  10  15  20  25  30  35

N
od

es

BDD level

V1_V2
V2_V1
(V1V2)

Total sizes
487 582
494 222
379 877
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Effect of ordering on � � � � � 

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  5  10  15  20  25  30  35

N
od

es

BDD level

V1_H1
H1_V1
(V1H1)

Total sizes
171 055
303 694

2 156 747
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Incrementalization

All sets are re-propagated in each iteration

Could we propagate only the new elements
of each set?

We found this to work well for Spark

How well would it work in BDDs?
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Incrementalization

newPt1: [V2xH1] =
relprod( edgeSet: [V1xV2],

pointsTo:[V1xH1],
V1 );

newPt2: [V1xH1] =
replace( newPt1: [V2xH1],

V2ToV1 );

pointsTo:[V1xH1] =
union( pointsTo:[V1xH1],

newPt2: [V1xH1] );
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Incrementalization

newPt1: [V2xH1] =
relprod( edgeSet: [V1xV2],

newPoint:[V1xH1],
V1 );

newPt2: [V1xH1] =
replace( newPt1: [V2xH1],

V2ToV1 );
newPoint:[V1xH1] =

setminus( newPt2: [V1xH1],
pointsTo:[V1xH1] );

pointsTo:[V1xH1] =
union( pointsTo:[V1xH1],

newPoint:[V1xH1] );
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Incrementalization

 0

 20

 40

 60

 80

 100

 120

compress javac sablecc jedit

S
ec

on
ds

non-inc
inc
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Experiment setup

Java bytecode

Spec JVM 98
Spec JBB
Soot
SableCC
jEdit

Spark

Constraints

Spark solver
Java

BDD solver
C/C++
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Overall performance (time)
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Overall performance (space)
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Solving without declared types

In Java, use declared types of variables to
keep points-to sets small

Without declared types, large sets, traditional
solvers do not scale

May not have declared types (IR does not
support them; language dynamically typed)

Surprisingly, BDD-based solver scales well
even without declared types

eg. javac:
Set size BDD size

with types 21M 31MB
no types 366M 40MB
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Conclusions

PTA BDD

BDDs are a good fit for points-to analysis

BDDs give reasonably efficient solvers with
relatively little effort

BDDs make it easy to experiment with
variations of set-based problems

Bit ordering is crucial (and we found a good
one for points-to analysis)

– p. 52/53



Future Work

More heuristics for BDD program analysis

Library for program analysis using BDDs

Variations on the points-to analysis
Context-sensitivity

Compute other whole-program information
Call graph
Interprocedural side-effect analysis
. . . (suggestions?)

– p. 53/53
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