
268

Initializing Global Objects: Time and Order

FENGYUN LIU, Oracle Labs, Switzerland
ONDŘEJ LHOTÁK, University of Waterloo, Canada

DAVID HUA, University of Waterloo, Canada

ENZE XING, University of Waterloo, Canada

Object-oriented programming has been bothered by an awkward feature for a long time: static members. Static

members not only compromise the conceptual integrity of object-oriented programming, but also give rise to

subtle initialization errors, such as reading non-initialized �elds and deadlocks.

The Scala programming language eliminated static members from the language, replacing them with global

objects that present a uni�ed object-oriented programming model. However, the problem of global object

initialization remains open, and programmers still su�er from initialization errors.

We propose partial ordering and initialization-time irrelevance as two fundamental principles for initializing

global objects. Based on these principles, we put forward an e�ective static analysis to ensure safe initialization

of global objects, which eliminates initialization errors at compile time. The analysis also enables static

scheduling of global object initialization to avoid runtime overhead. The analysis is modular at the granularity

of objects and it avoids whole-program analysis. To make the analysis explainable and tunable, we introduce

the concept of regions to make context-sensitivity understandable and customizable by programmers.

CCS Concepts: • Software and its engineering→ Object oriented languages; Classes and objects.

Additional Key Words and Phrases: initialization safety, initialization-time irrelevance, region context

ACM Reference Format:

Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing. 2023. Initializing Global Objects: Time and Order.

Proc. ACM Program. Lang. 7, OOPSLA2, Article 268 (October 2023), 28 pages. https://doi.org/10.1145/3622844

1 INTRODUCTION

For ease of programming, most programming languages make it possible to declare global variables.
Global variables may be either mutable or immutable, and they can hold either primitive values
(e.g., integers) or non-primitive values (e.g., pointers). This is the case not only for C, but also for
the latest languages such as Rust1 and WebAssembly.2

To align with its design philosophy of modularity, object-oriented programming introduced static
�elds to support the need for global variables, as we have seen in most object-oriented languages,
such as Java, C#, C++ and Swift, but also in dynamically-typed languages, such as Python and Ruby.
The idea of static �elds naturally extends to static methods. Some languages go even further. For
example, Swift supports overriding static properties (similar to �elds) but not static methods, and
Ruby supports overriding static methods.

1See 6.10 Static items in The Rust Reference and the macro lazy_static.
2See Globals in WebAssemply Speci�cation [W3C 2022].

Authors’ addresses: Fengyun Liu, fengyun.liu@oracle.com, Oracle Labs, Zurich, Switzerland; Ondřej Lhoták, olhotak@

uwaterloo.ca, University of Waterloo, Waterloo, Canada; David Hua, david.hua@uwaterloo.ca, University of Waterloo,

Waterloo, Canada; Enze Xing, e2xing@uwaterloo.ca, University of Waterloo, Waterloo, Canada.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART268

https://doi.org/10.1145/3622844

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-7949-4303
HTTPS://ORCID.ORG/0000-0001-9066-1889
HTTPS://ORCID.ORG/0009-0004-1753-2975
HTTPS://ORCID.ORG/0009-0008-1265-5254
https://doi.org/10.1145/3622844
https://doc.rust-lang.org/reference/items/static-items.html
https://docs.rs/lazy_static/latest/lazy_static/
https://webassembly.github.io/spec/core/syntax/modules.html#syntax-global
https://orcid.org/0000-0001-7949-4303
https://orcid.org/0000-0001-9066-1889
https://orcid.org/0009-0004-1753-2975
https://orcid.org/0009-0008-1265-5254
https://doi.org/10.1145/3622844

268:2 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

Static �elds not only compromise the conceptual integrity of object-oriented programming, but
also give rise to subtle initialization errors, such as reading non-initialized �elds, deadlocks and
unsound compiler optimizations [Börger and Schulte 2000].

The Scala programming language [Odersky 2019] improves the situation by presenting a uni�ed
object-oriented programming model with the introduction of global objects, which eliminate static
�elds and static methods from the language. Semantically, a global object can be thought of as a
lazily initialized singleton instance of its underlying class with the same body.
Despite the improvement in conceptual integrity, Scala programmers still su�er from subtle

initialization errors. The Scala bug tracker contains bug reports about reading uninitialized �elds
and deadlocks related to global objects, which have been open for more than 8 years (Appendix C).

Our work tries to address the initialization safety problem related to global objects. The following
code illustrates the problem of initialization errors:3

1 object A:

2 val a: Int = B.b + 10

3 object B:

4 def foo(): Int = A.a * 2

5 val b: Int = foo()

According to the semantics of Scala, the objects A and B are lazily initialized the �rst time they
are accessed. Therefore, the initialization of the object A would trigger the initialization of B due
to the code B.b at line 2, and vice versa. As a result, either at line 2 or at line 4, the code reads an
uninitialized �eld.

In the presence of concurrency, to make sure that an object is not initialized twice, the language
semantics usually require a lock to be acquired when initialization of an object starts and released
when initialization completes. If the initializations of objects A and B are triggered from two di�erent
threads simultaneously, a deadlock happens!
The contributions of our work are as follows:

(1) We propose partial ordering and initialization-time irrelevance as fundamental principles for
safe initialization of global objects. More generally, the principles can be used in the design
of modules in programming languages (Section 2.2 and Section 2.3).

(2) We develop an e�ective static analysis to ensure safe initialization of global objects (Section 3
and Section 4). The algorithm tracks ownership of mutable state to enforce initialization-time
irrelevance. It introduces the concept of regions to make context-sensitivity understandable
and tunable by programmers for complex initialization code (Section 4.3).

(3) We implement the static analysis based on the Scala 3 compiler. Our implementation resolves
all existing bug reports related to initialization of global objects (Section 5).

(4) We conduct a case study on the practicality of the principles of partial ordering and initialization-
time irrelevance based on a large real-world Scala project (Section 6).

Note that while we present the core ideas and the algorithms of our work in a formal language
for clarity, we leave the development of meta-theories to future work.

2 CHALLENGES AND IDEAS

In this section we survey the challenges in statically checking the safe initialization of global objects.
Then, we introduce the main ideas of our solution informally.

3Unless noted otherwise, code examples will be in Scala. We use the Scala 3 indented syntax for clarity and to save space.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:3

2.1 Challenges

There are several challenges to developing a sound and practical system to ensure safe initialization
of global objects.

Challenge 1: Avoid whole-program analysis. Whole-program analysis should be avoided: it is
slow and it is not easy to explain errors to end users due to the long context from the program entry
point to the place where the error happens. Instead, the analysis should examine only the parts
of the program that may be called from the initializers of global objects. However, the following
example shows that whole-program analysis cannot be avoided unless we enforce some restrictions
on global object initialization code.
Suppose we have a project that de�nes a class X and objects A and B:

1 // project 1

2 class X { def foo(): Int = 10 }

3 object A { var a: X = new X() }

4 object B { val b: Int = A.a.foo() } // B -> A

In the code above, the initialization of object B depends on initialization of object A due to the
code A.a at line 4. It seems that regardless of whether A or B is accessed �rst in the program, they
can be initialized without any issue according to the lazy initialization semantics.
Similarly, suppose there is another project that de�nes a class Y and object C, where C depends

on the object B due to the code B.b, as the following code shows:

1 // project 2

2 class Y extends X { override def foo() = C.c }

3 object C { val c: Int = B.b } // C -> B

If objects A and B can be initialized without problem, object C should also be initialized without
any issue, because now we have the dependency � → � → �: there are no cyclic dependencies.

However, suppose in another project, which is an application, we have the following code in the
main method:

1 // project 3

2 def main = { A.a = new Y(); C } // C -> B -> C

Now, suddenly, the initialization of object B depends on object C (� → �). This is because the
�eld A.a points to an instance of class Y; consequently, the call A.a.foo() in object B executes the
method foo de�ned in the class Y, which depends on class C. But we also have � → � due to the
code B.b in the body of object C. This creates a cycle in the dependency graph!
The takeaway of this example is that if we stay with the current design of global objects, we

cannot check global objects individually — whole-program analysis cannot be avoided.

Challenge 2: Explainability. While it is well-known that static analysis can be used to enhance
expressiveness of a system without incurring syntactic overhead on programmers, making the
analysis explainable is a challenge. This is due to the fact that the rules of static analysis are
prone to optimization changes. The complexity and instability of the rules make them di�cult for
programmers to learn and reason about in daily programming. This is not a problem if the analysis
is used to justify compiler optimizations, but it is a big usability issue when the analysis is used to
help programmers construct better programs by checking and reporting errors.
Explainability requires that the abstractions and rules used by the analysis should be simple

and stable, just like types and typing rules in type systems. This way, we can avoid the syntactic
verbosity of type systems while reaping the same bene�ts of safety.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:4 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

One obscure concept in program analysis is context-sensitivity [Smaragdakis et al. 2011]. Context-
sensitivity is also one of the major reasons which make an analysis less explainable to programmers.
We introduce a more user-friendly concept, called regions, to make context-sensitivity more ex-
plainable and tunable for complex use cases (Section 4.3).

2.2 Maintaining Order in Initialization

The problems in the initialization of global objects are related to ordering. The �rst ordering problem
involves reading a �eld before its initialization, as the following code demonstrates:

1 object A:

2 def foo(): Int = b * 2

3 val b : Int = foo() + 10

We detect this kind of error by abstractly evaluating the initialization code in the global object
with respect to its initialization state. If an uninitialized �eld may be read, the checker reports an
error. Due to the fact that the global object may be accessed anywhere in the program, all code
reachable from a global object’s initializer needs to be abstractly evaluated.
The second ordering problem involves cyclic object initialization, as the following example

demonstrates:

1 object A:

2 val a: Int = 10

3 val n: Int = B.b + 10

4 object B:

5 val b: Int = A.a * 2

In the above, the initialization of object A would trigger initialization of object B, and vice versa,
a good recipe for introducing deadlocks in the presence of concurrency. The deadlock happens if
one thread holds the lock for the initialization of object A, while the other thread holds the lock for
the initialization of object B. Neither can progress as each waits for the lock owned by the other.
Another consideration to disallow such code patterns is information hiding. The code above

exposes the partial initialization state of one global object to another, which creates a subtle and
brittle contract between them.

To prevent such cycles, we impose that initialization of global objects must follow a partial order.
This implies that the initialization dependencies of global objects form a directed acyclic graph

(DAG). To enforce the partial ordering, the checker takes each not-yet checked global object as an
entry point, and then proceeds with the abstract evaluation of initialization code in the object. It is
in essence a depth-�rst search of all other global objects that it depends on. The checker maintains
a list of objects currently under initialization to detect cycles in the dependency graph.
However, the checker takes care to allow trivial self-cycles, as the following code shows:

1 class A(x: Int) { def foo(): Int = B.m }

2 object B:

3 val m: Int = 20

4 val n: Int = new A(10).foo()

In the code above, the initialization of the object B would need to access itself in the method
A.foo. In Scala, this code pattern is quite common, where the class is nested in the object and its
instances are created as value members of the object. In such cases, there is no need to worry about
deadlocks because the cycle only involves one object. Therefore, such trivial self-cycles are allowed.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:5

To clarify, here partial ordering only requires that the initialization of global objects form a
partial order. It does not mean that the compilation order of global objects needs to form a partial
order. The global objects may refer to each other in their member methods as long as there are
no cycles in the initialization code. In fact, acyclic compilation dependencies in languages such as

OCaml are neither necessary nor su�cient for safe initialiation of global objects.

2.3 Initialization-Time Irrelevance and Ownership

Re�ecting on the principles of safe initialization for global objects, we �nd that it is natural to
assume the following invariant:

The state of a global object at the end of its initialization should not depend

on when the global object is initialized.

We call this principle initialization-time irrelevance. To enforce initialization-time irrelevance, we
need to track ownership of mutable state. This can be demonstrated with the following program:

1 class Box(var value: Int)

2 object A:

3 val box: Box = new Box(4)

4 object B:

5 val boxB: Box = new Box(5)

6 val boxA: Box = A.box // ok

7 val m: Int = boxB.value // ok

8 val n: Int = boxA.value // error

In the program above, aliasing at line 6 is �ne, as it does not read any mutable state. Meanwhile,
reading the mutable state via boxB.value at line 7 is also safe because the box referred to by boxB

was only created during the initialization of object B, so the value of its �eld is not a�ected by any
other code that ran before the initialization of object B. In contrast, reading the mutable state via
boxA.value at line 8 violates initialization-time irrelevance — the �eld could have been changed
by the main program, thus it is dependent on when object B is initialized.

From the example, it is obvious that we need to track the ownership of mutable objects in order
to tell the di�erence between boxA and boxB in the code above. Reading mutable state owned by a
global object is �ne, while reading mutable state owned by other objects is problematic.
A mutable class instance is owned by a global object if its instantiation is triggered by the

initialization of that global object. We track the ownership of class instances by recording the owner
in the abstract domain (see Section 4.4). This way, we may check the ownership when the mutable
state is read or written:

During the initialization of a global object, it is forbidden to read or write the

mutable state owned by another global object.

Strictly speaking, writing to another global object is harmless. However, in an empirical study,
we did not discover such need in practice (see Section 6). Therefore, as a rule, it’s better to disallow
such writes together with reads for simplicity.

This principle is not only natural, but it also enables us to check each object individually. This is
because global object initialization does not have any parameter passing mechanism, so the only
way that the main program could communicate values to the global object initialization code is by
storing them in mutable state owned by another global object, but initialization-time irrelevance
forbids reading such state during object initialization.

The principle of initialization-time irrelevance is quite �exible. For example, the following code
pattern found in the Scala 3 compiler is allowed (Section 6):

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:6 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

1 object Trees:

2 private var counter = 0

3 class Tree { counter += 1 }

4 class EmptyTree extends Tree

5 val theEmptyTree = new EmptyTree

In the code above, the initialization of the global object Trees creates an instance of the class
EmptyTree at line 5. The super class of EmptyTree reads and mutates the �eld counter — since
the state is owned by the global object Trees, it is allowed to do so.

Aliasing an object owned by other global objects is also supported, as the following code shows:

1 object A:

2 class Box(var value: Int) { val initial: Int = value }

3 val box: Box = new Box(0)

4 object B:

5 val box: A.Box = A.box

6 val a: Int = box.initial // OK

7 val b: Int = box.value // error

In the code above, reading the �eld A.box at line 5 is OK, as the read does not observe mutable
state owned by A. Reading the �eld box.initial at line 6 is also �ne, as the �eld is immutable.
Reading the �eld box.value at line 7 is illegal, as the value of that �eld depends on the order of
initialization, which breaks initialization-time irrelevance. Our analysis has the ability to track the
ownership of mutable state, thus it reports an error at line 7.

More generally, it is allowed to create complex data structures by mixing mutable objects owned
by di�erent global objects, as the following example shows:

1 object A:

2 class Box(var value: Int)

3 val box: Box = new Box(0)

4 object B:

5 val boxes: Array[A.Box] = new Array(1)

6 boxes(0) = A.box // ok

7 val box: Box = boxes(0) // ok

8 val x: Int = box.value // error

In the above, we put the mutable box created in object A into an array in object B. Reading its
own mutable state at line 7 is OK. However, reading the mutable state owned by A at line 8 is an
error.

Side e�ects. If global objects are allowed to perform side e�ects during initialization, e.g., read
and write �les, the property of initialization-time irrelevance cannot be guaranteed. As our analysis
(Section 3 and Section 4) tracks all method calls during the intialization of an object, in theory it
may �ag all such system calls as warnings. In practice, side e�ects during initialization of global
objects are of a lesser concern for programmers. We therefore leave the handling of side e�ects
during object initialization for future work.

2.4 Static Scheduling of Global Object Initialization

Global objects usually have lazy semantics — they are initialized the �rst time the object is used in
the program. The lazy semantics requires that access of a global object be guarded with a check

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:7

to ensure initialization of the object before usage, which incurs runtime overhead.4 To eliminate
the runtime overhead, Native Image, an ahead-of-time compiler for Java, initializes static �elds
at compile time (when it is safe to do so) [Wimmer et al. 2019], to eliminate the initialization
check when accessing a class.5 However, while such optimizations are very helpful in practice, a
theoretical foundation is missing to justify the practice.

The principle of initialization-time irrelevance provides a theoretical foundation for optimizations
related to initialization of global objects. If all objects in a program conform to the principle, then
we know that changing the initialization time of those objects will not impact program semantics.
In the extreme, we may initialize all of them at the entry point or even at build time6 to remove the
overhead of a run-time initialization check.
As a concrete example, consider the following program:

1 object A:

2 val a: Int = 10

3 val b: Int = 20

4 object B:

5 var n: Int = A.a * A.b

6 @main def entry() = println(B.n)

The code B.n at line 6 will trigger initialization of the object B, which in turn triggers the
initialization of the object A as stipulated by the usual lazy semantics of global objects. At lines 5
and 6, the code needs to check whether objects A or B are initialized or not, which is an overhead at
run time. The principle of initialization-time irrelevance enables us to transform the program to
the following:

1 object A:

2 val a: Int = 10

3 val b: Int = 20

4 object B:

5 var n: Int = A.a * A.b

6 @main def entry() = { init(A); init(B); println(B.n) }

In the code above, we initialize the objects A and B at the beginning of the entry method. As all
objects in the program are initialized according to the their inter-dependencies, there is no need to
check whether a global object is initialized or not at run time.

Initializing all global objects at the beginning of the entry point is just one possible design. It is
conceptually possible to initialize objects and their dependencies just before the �rst usage. Our
current work only provides a theoretical framework for justifying such optimizations, and we leave
it open as regards to which particular scheme is optimal in a particular setting.
Kozen and Stillerman [2002] also foresee the possibility of scheduling class initialization at

compile time based on topological sorting of the acyclic dependency graph. However, they do not
realize that doing so is unsound in the absence of initialization-time irrelevance.

4Runtime overhead is only important in Ahead-of-Time (AOT) compilation, because in the case of Just-in-Time (JIT)

compilation, the virtual machine can initialize the static �elds when a class is loaded.
5Strictly speaking, build-time class initialization in Native Image serves two di�erent purposes: (1) as a compiler optimization;

(2) as a programming model, e.g., to read immutable con�guration �les and partially evaluate program, which is a form of

staged programming.
6This requires persistence of the heap as in Wimmer et al. [2019].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:8 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

Expressions

4 ::= G (Local variable)

| $ (Object access)

| this (Self-reference)

| 4.5 (Field access)

| 4.< (4) (Method call)

| new� (4) (Instance creation)

| 4.5 = 4 (Assignment)

| 4; 4 (Sequence)

Type

) ::= � |) ⇒) | { I }

I ::= var 5 :) | val 5 :) | def<(G :)) :)

Class and Object

D ::= C | O

C ::= class � (varG :)) {M }

O ::= object $ { F M }

Field and Method

F ::= val 5 :) = 4

M ::= def<(G :)) :) = 4

Program

E ::= object � { def main() :) = 4 }

P ::= {defs = D, entry = E}

Fig. 1. Surface language definition

3 THE IMMUTABLE CALCULUS

In this section, we formalize the essence of our analysis using a small calculus. For readability, we
�rst present the analysis for an immutable variant of the calculus, and then show how to deal with
mutation in the next section (Section 4).

3.1 The Surface Language

The surface language is presented in Figure 1. Its syntax and semantics are shared between the
immutable calculus and mutable calculus with slight adaptations. The language introduces top-level
object de�nitions, which may contain both �elds and methods. A program P consists of a list of
de�nitions D (class C or object O) and a unique entry object E. The semantics is de�ned such that
the program starts by executing the main method of the entry object.

We restrict classes to not have �eld members to avoid dealing with issues related to safe initial-
ization of class instances, which are addressed by other works [Blaudeau and Liu 2022; Liu et al.
2020, 2021; Qi and Myers 2009; Summers and Mueller 2011]. To simplify presentation, we avoid the
need to distinguish the syntactic categories of expressions and statements by making assignment
an expression that returns the value of the right-hand side (4.5 = 4). The semantics of the language
is standard. We refer the reader to Appendix A for more details.

To make the small calculus more interesting, we introduce structural types of the form { I }, where

eachmember I can be either a �eld declaration like var 5 :) or amethod declaration def<(G :)) :) .

A function type) ⇒) is syntactic sugar for the structural type { def apply(G :)) :) }. Introducing
a type system for this small calculus is straightforward and we omit the details here. Such type
systems, although simple and useful in practice, are incapable of handling initialization errors for
global objects. In contrast, our analysis will work both for typed and untyped languages: it does
not depend on the type system. Nevertheless, a type system is given in Appendix B.

3.2 The Immutable Variant

To present the analysis in steps, we will deal with an immutable variant of the surface language
where all �elds are immutable. In syntax, we replace var with val and disallow assignment. The
immutable variant already enables us to write programs that cause initialization errors, as the
following code demonstrates:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:9

1 object A { val a: Int = B.b }

2 object B { val b: Int = A.a }

According to the semantics de�ned in Figure 4, the code above will result in reading an uninitial-
ized �eld, no matter whether object A or B is accessed �rst in the program. The analysis should be
able to detect and report such errors.
The immutable variant also allows invented programs like the following:

1 class A(val a: A)

2 object B:

3 val a: A = loop()

4 def loop(): A = new A(loop())

Such programs can serve as tests for the analysis, since a naive analysis for the language is prone
to either non-termination or unsoundness.

3.3 Abstract Domain

The analysis de�nes the following abstract values:

Ê ∈ AValue ::= Cold | >̂ | Bot

>̂ ∈ AObject ::= Object($) | Instance(�,Ω)

Σ ∈ AHeap ::= $ ↦→ Ω

Ω ∈ AMap ::= 5 ↦→ Ê

The abstract value Cold represents cold aliases, which is the top of the lattice. A cold alias cannot
be actively used. That is, it is forbidden to call methods or access �elds of a cold alias. However, they
can be used as a black box to create complex data structures. The introduction of the abstraction is
motivated by the observation that programmers usually create and prepare values in global objects,
but do not actively use them. The abstraction is inspired by similar abstractions in previous works,
where a class instance possibly under initialization should not be used [Blaudeau and Liu 2022; Liu
et al. 2020; Summers and Mueller 2011].
The bottom of the lattice is represented by the abstract value Bot, which corresponds to an

empty set in the concrete domain. It is allowed to call any method and access any �eld on a bottom
value to support programs like loop().m() and loop().a, where loop is a de�ned by itself, i.e.,
def loop():T=loop().
The analysis employs an abstract heap Σ to track the initialization state of global objects. As a

result, an object reference in the code can be given the abstract value Object($) — the object name
serves as an index into the abstract heap. For class instances, they are represented by the abstract
value Instance(�,Ω), where � is the class name of the instance, and Ω is a map from �eld names
to abstract �eld values.
For a real-world language, we can make the abstract domain more complex. In particular, the

abstract domain should have an abstraction for a set of abstract values to allow more precise
abstraction for if-expressions. Given that such extensions are easy to carry out in practice and they
add more notational complexity, we keep the abstract domain simple for the sake of presentation.

The reader might have noticed that the domain for abstract values is in�nite. This is because we
can de�ne a program like class A(val a: A). The class can be instantiated with the help of an
in�nite loop: def loop():A=new A(loop()). Handling the in�nite loop naively in the anlaysis
would give rise to the ever-growing abstract value: Instance(�, 0 ↦→ Instance(�, 0 ↦→ ...)).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:10 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

As the abstract values have a tree-like structure, a simple way to make the domain �nitary is
to restrict the height of values. This is implemented with the helper function widen, de�ned as
follows:

widen(Ê, 0) = Cold

widen(Cold, :) = Cold

widen(Bot, : + 1) = Bot

widen(Object($), : + 1) = Object($)

widen(Instance(�, 5 ↦→ Ê), : + 1) = Instance(�, 5 ↦→ widen(Ê, :))

To make the analysis explainable, we make the following design choice: By default, method

arguments and constructor arguments are widened with a height of 1 unless speci�ed otherwise. In
Scala, programmers may write e.m(e: @widen(k)) to restrict the argument to the speci�ed height.

3.4 Analysis

The analysis is presented as a set of declarative rules in Figure 2. As in the concrete semantics, we
assume that there exists a mapping from names to their de�nitions and that there are no duplicate
names in method parameters, class members and object members. We use several helpers: rhs(F)
returns the right-hand side of a �eld de�nition; de�nition($) returns the de�nition of the object
named $, lookup(>̂,<) returns the de�nition of the method< associated with the abstract object
>̂ ; params(�) returns the class parameters of the class � .

Program Check (Rule A-Prog). To check that global objects in a program can be initialized

safely with partial ordering, written
 (D,E), we check that each object O in the de�nitions D can
be initialized safely.
The check of a global object takes the form ∅;∅
 O → Σ. On the left-hand side, the �rst

parameter ∅ signi�es that there are no other objects under initialization. The second parameter ∅
represents the abstract heap for global objects — initially it is empty. After checking, we get an
updated abstract heap Σ for global objects.
Object Check (Rule A-Obj-Init). To ensure safe initialization of an object in a given context,

written Δ; Σ
 O→ Σ
′, we check each �eld initializer in the object, with Object($) as the value

for this, ∅ for local variables. Σ8 is the abstract heap after running the initializer for �eld 8 . In
particular, it makes sure that the abstract heap Σ8 is consistent with already initialized �eld values
and updates the corresponding �eld-value map of the object (Σ8+1 = [$ ↦→ Ω8] Σ

′
8) . Note that

evaluating the �eld initializer might trigger the initialization of other global objects. Therefore,
abstractly evaluating the initializer of a �eld F8 in Σ8 gives rise to an updated abstract heap Σ

′
8 .

Expression Check. Expressions are checked with the judgement Δ;k̂ ;Θ; Σ
 4 → Ê ; Σ′, which
means that the expression 4 evaluates to the abstract value Ê in the given context, where (1) Δ

represents the global objects currently under initialization; (2) k̂ represents the abstract value for
this; (3) Θ is the environment for local variables; (4) Σ holds the �eld values for global objects;
(5) Σ′ holds the �eld values for global objects after evaluation of the expression — evaluating an
expression may cause more objects to become initialized. The updated abstract heap Σ

′ is always
an extension of Σ, because the variant of the calculus we consider here is immutable.
Normally, an object access will trigger the initialization check of the object as de�ned in the

rule A-Obj-Acc. The rule checks that the object is not already under initialization ($ ∉ Δ). This
condition ensures that the initialization of global objects follows a partial order. However, if the
object being accessed is the most recent object under initialization (head (Δ) = $), we simply return

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:11

Program check
 (D,E)

∀O ∈ D, ∅;∅
 O→ Σ

 (D,E)
(A-Prog)

Object initialization check Δ; Σ
 O→ Σ

$:: Δ;Object($);∅; Σ8
 rhs(F8) → Ê8 ; Σ
′
8

Ω0 = ∅ Ω8+1 = Ω8 ∪ {58 ↦→ Ê8 } Σ8+1 = [$ ↦→ Ω8] Σ
′
8

Δ; Σ0
 O→ Σ=

(A-Obj-Init)

Expression check Δ;k̂ ;Θ; Σ
 4 → Ê ; Σ

Δ;k̂ ;Θ; Σ
 G → Θ(G); Σ (A-Var) Δ;k̂ ;Θ; Σ
 this → k̂ ; Σ (A-This)

head (Δ) = $

Δ;k̂ ;Θ; Σ
 $ → Object($); Σ
(A-Obj-Cyc)

Δ;k̂ ;Θ; Σ
 4 → Bot; Σ′

Δ;k̂ ;Θ; Σ
 4.5 → Bot; Σ′
(A-Sel-Bot)

$ ∉ Δ O = de�nition($) Δ; Σ
 O→ Σ
′

Δ;k̂ ;Θ; Σ
 $ → Object($); Σ′
(A-Obj-Acc)

Δ;k̂ ;Θ; Σ
 4 → Object($); Σ′ Ê = Σ($) (5)

Δ;k̂ ;Θ; Σ
 4.5 → Ê ; Σ′
(A-Sel-Obj)

Δ;k̂ ;Θ; Σ
 4 → Instance(�,Ω); Σ′ Ê = Ω(5)

Δ;k̂ ;Θ; Σ
 4.5 → Ê ; Σ′
(A-Sel-Ins)

Δ;k̂ ;Θ; Σ
 40 → >̂ ; Σ0 Δ;k̂ ;Θ; Σ8
 40 → Ê0 ; Σ8+1 Θ
′
= G ↦→ widen(Ê0, :)

lookup(>̂,<) = 〈def<(G :)) :)A = 41〉 Δ; >̂ ;Θ′; Σ=
 41 → Ê ; Σ′
=

Δ;k̂ ;Θ; Σ
 40.<(40) → Ê ; Σ′
=

(A-Call)

Δ;k̂ ;Θ; Σ
 40 → Bot; Σ0 Δ;k̂ ;Θ; Σ8
 40 → Ê0 ; Σ8+1

Δ;k̂ ;Θ; Σ
 40.<(40) → Bot; Σ=
(A-Call-Bot)

Δ;k̂ ;Θ; Σ8
 40 → Ê0 ; Σ8+1 params(�) = 〈G :) 〉 Ω = G ↦→ widen(Ê0, :)

Δ;k̂ ;Θ; Σ0
 new� (40) → Instance(�,Ω); Σ=
(A-New)

Fig. 2. Declarative check rules for the immutable calculus. Both class and object fields are immutable.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:12 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

the object reference, as stipulated by the rule A-Obj-Cyc. This allows trivial self cycles during
initialization.

At the high level, �eld selection and method call on a cold alias is forbidden — there are no rules
for selection and method call when the receiver is cold. Otherwise, the rules follow the concrete
semantics for each syntactic form.

• A-Var. A local variable takes the abstract value de�ned in the environment, i.e., Θ(G).

• A-This. The self reference this takes the provided abstract value k̂ .
• A-Sel-Obj. A selection on a global object is valid if the corresponding �eld is already initialized.
The rule A-Obj-Init ensures that Σ only contains currently initialized �elds of the objects
under initialization when evaluating �eld initializers.

• A-Sel-Ins. A selection on a class instance simply returns the abstract value bound to the
immutable �eld of the class instance.

• A-Call. In a method call, we require the receiver to be either a global object or class instance
>̂ . Widening is performed on the evaluated abstract values of method arguments according to
a user speci�cation or the default. Finally, the body of the method is evaluated in the abstract
environment.

• A-New. In a new expression, wewiden the abstract values of constructor arguments according
to user speci�cation or default. Then we create an abstract value for the class instance with
the widened arguments.

• A-Sel-Bot and A-Call-Bot. In a selection, if the abstract value for the receiver is Bot, then
the selection is also Bot. The same goes for method calls. These two rules are intended to
support programs like loop().m() and loop().a, where loop is a de�ned by itself, i.e.,
def loop():T=loop().

The rules are declarative (not algorithmic) in the sense that we do not specify how to handle
recursive method calls. We discuss that co-inductive interpretation is needed and show how to
make the rules algorithmic in Section 5.1.

3.5 Examples

Let us look at the two examples to illustrate how the rules work. Consider the following program:

1 object A { val a: Int = B.b }

2 object B { val b: Int = A.a }

This program will be rejected regardless of whether object A or B is initialized �rst. This is
because the check in the rule A-Obj-Acc would detect cycles in Δ.

The second example is more interesting:

1 class A(val a: A)

2 object B:

3 val a: A = loop().a

4 def loop(): A = new A(loop())

This programwill be accepted by the analysis. The recursive call loop() at line 4 can be abstracted
by the value Instance(�, 0 ↦→ Instance(�, 0 ↦→ Cold)). The choice is consistent with the default
widening of constructor arguments to be of height 1. Consequently, selection of the �eld a on such
a value at line 3 would return the abstract value Instance(�, 0 ↦→ Cold).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:13

4 THE MUTABLE CALCULUS

While it is recommended to avoid mutable state in global objects, even new programming languages
(e.g., Rust) support mutable global variables. In this section, we show how to track ownership of
mutable state to enforce initialization-time irrelevance. We also present a novel design to make
context sensitivity explainable and customizable by programmers.
The syntax and semantics of the mutable variant is exactly as presented in Section 3.1 (see

Figure 1 and Figure 4). Therefore, we omit the introduction here.

4.1 Ownership of Mutable Objects

We mentioned in Section 2.3 that to enforce the principle of initialization-time irrelevance, we
forbid reading or writing mutable state owned by other global objects during the initialization of
one global object.
A mutable class instance is owned by a global object if its instantiation is triggered by the

initialization of that global object. We can track the ownership of abstract class instances by
recording the owner in the abstract domain (see Section 4.4). This way, when the analysis encounters
a read or write of mutable state, it can allow it if it concerns a class instance that is owned by the
global object currently being initialized. Cold aliases lose information about instance owners — this
does not pose a problem because cold aliases cannot be used as receivers of reads or writes.
As an example, we draw the reader’s attention again to the following program:

1 class Box(var value: Int)

2 object A:

3 val box: Box = new Box(4)

4 object B:

5 val boxA: Box = A.box // ok

6 val boxB: Box = new Box(5)

7 val m: Int = boxB.value // ok

8 val n: Int = boxA.value // error

In the program above, the instance referred to by A.box and boxA is owned by object A, and
that of boxB is owned by object B. The aliasing at line 5 is �ne, as it does not read any mutable
state. Meanwhile, while reading its own mutable state via boxB.value at line 7 is safe, reading the
mutable state of object A via boxA.value at line 8 violates initialization-time irrelevance.

4.2 Context Sensitivity

The following example illustrates why context sensitivity is needed in the analysis when we allow
mutable state:7

1 abstract class Foo { def foo(): Int }

2 class C(var x: Int) extends Foo { def foo(): Int = 20 }

3 class D(var y: Int) extends Foo { def foo(): Int = A.m }

4 class Box(var value: Foo)

5 object A:

6 val box1: Box = new Box(new C(5))

7 val box2: Box = new Box(new D(10))

8 val m: Int = box1.value.foo()

7We write the code in Scala instead of the calculus for readability. It can be translated to the calculus by replacing the

abstract class Foo with the corresponding structural type and removing the abstract class and inheritance.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:14 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

When it runs, this program creates two boxes, one containing an instance of class C and the
other an instance of class D. Then, the program calls the method box1.value.foo() at line 8. Is it
safe to perform this method call?

In the concrete semantics, we allocate a new heap address for each new mutable class instance.
Complex aliasing and mutation may happen via the heap address. To reason about aliasing and
mutation in the analysis, we need to do the same— to allocate abstract addresses for new-expressions.
However, in the presence of the potentially large or even in�nite number of objects in the concrete
domain, the static analysis has to approximate a potentially in�nite set of concrete objects with a
single abstract object in the abstract heap. In the abstract domain, the aliases that refer to the same
abstract object share the same abstract addresses.

Context sensitivity is a way to �nitize the abstract addresses (thus abstract objects) in the abstract
heap. If the domain of the abstract heap and abstract values are �nite, then the set of possible
con�gurations for abstractly evaluating an expression is �nite, which is necessary for the analysis
to terminate. Di�erent context sensitivity policies can achieve di�erent degrees of precision and
performance [Sharir and Pnueli 1981; Smaragdakis et al. 2011].

For the immutable calculus, we do not need context sensitivity because we can abstract immutable
objects with abstract values directly without resorting to abstract addresses and an abstract heap
— the �eld values of immutable objects cannot change. We only need to �nitize the domain for
abstract values to make sure that the analysis terminates.
Returning to the example above, how do we decide whether box1 and box2 have the same

abstract address or not? That matters because if they share the same abstract address, then the code
box1.value.foo() at line 8 may reach the method D.foo at line 2, which leads to initialization
errors — a false positive. If they do not share the same abstract address, we can avoid such false
positives.

4.3 Regions

We follow the design philosophy advocated by Alan Kay that simple things should be simple, complex

things should be possible. When using program analysis to perform static checks, the complex use
cases usually demand better precision in the analysis, which involves tuning context sensitivity.
The concept of context sensitivity is one of the most obscure concepts in program analysis

[Smaragdakis et al. 2011]. While a practical static analysis usually has reasonable defaults so that it
balances the performance and the precision of the analysis, there should be a mechanism to tune
context sensitivity to handle complex cases.
As we mentioned in Section 2.1, explainability is critical for a static checker of global objects

to be successful. We approach the problem by reversing the design: Instead of �xing a particular
design of context sensitivity into the analysis, we expose it to programmers in the form of a more
understandable concept — regions.

Intuitively, instances of the same class in the same region are represented by the same abstract
object in the abstract domain. A program may introduce a new region for evaluating an expression
4 by writing region { 4 }. The construct has the same semantics as 4 at run time.

At the high level, a region context consists of a stack of explicitly marked program locations
encountered while abstractly evaluating an expression from the entry point of the analysis. Cycles
in the region context will be detected by the checker and reported as errors. This does not prevent
the usage of region annotations in recursive functions — it only requires that the region annotation
does not enclose recursive calls.

By default, the region context is empty — all mutable objects are in the same region, which works
reasonably well for practical code in the wild. To support complex initialization code in global
objects, programmers can explicitly introduce regions to tune the analysis.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:15

For example, by default the checker would report an error for the invented example in Section 4.2.
This is because by default, box1 and box2will be in the same region, so they share the same abstract
representation because they are of the same class Box — this means that the �eld box1.value is
considered to possibly point to either an instance of class C or an instance of class D. Therefore, the
checkerwould report an error at line 8— a false positive, because themethod call box1.value.foo()
will be resolved as possibly calling both C.foo() and D.foo(), and the latter reads the uninitialized
�eld A.m.
To pass the check, the programmer has to introduce explicit region annotations:

1 abstract class Foo { def foo(): Int }

2 class C(var x: Int) extends Foo { def foo(): Int = 20 }

3 class D(var y: Int) extends Foo { def foo(): Int = A.m }

4 class Box(var value: Foo)

5 object A:

6 val box1: Box = region { new Box(new C(5)) } // explicit region

7 val box2: Box = region { new Box(new D(10)) } // explicit region

8 val m: Int = box1.value.foo()

With the explicit region annotations at lines 6 and 7, now box1 and box2 will have di�erent
abstract representations. Therefore, box1.value will point to instances of class C and box2.value

to instances of class D. Consequently, the method call box1.value.foo() will be considered to call
only the method C.foo(), so no false positive warnings will be reported.

The concept of regions not only makes the obscure concept of context sensitivity more intuitive,
it also enables �exibility in tuning the precision of the analysis. For simple initialization code,
programmers usually do not need to do anything. For complex initialization code, programmers
may need to tune the region context to make the analysis more precise.

Discussion. In the terminology of Smaragdakis et al. [2011], regions are neither call-site-
sensitivity nor object-sensitivity but can subsume both. In call-site-sensitivity, contexts are strings
of call sites, while in object-sensitivity, contexts are strings of allocation sites. In our abstractions,
objects are represented by strings of static locations of region annotations. A programmer can place
region annotations on call sites, on allocation sites, or on any other expression in the program.

The key distinction between the various forms of context sensitivity in Smaragdakis et al. [2011]
and regions is that the former builds contexts out of all call sites (resp. allocation sites) encountered,
while regions give the programmer control to determine which expressions (which sites) are
relevant and are to be used for context sensitivity. This is important because the complexity of
call-site-sensitivity and object-sensitivity grows exponentially in the length of the context strings,
so those context strings must be kept short in practice. Thus, it is important to choose carefully and
precisely which sites to include, and regions give the programmer �ne-grained control to do that.

4.4 Abstract Domain

The analysis de�nes the following abstract values:

Ê ∈ AValue ::= Cold | ;̂ | Bot

;̂ ∈ ALoc ::= Object($) | Instance(�,$, ®A)

Σ ∈ AHeap ::= ;̂ ↦→ Ω

Ω ∈ AMap ::= 5 ↦→ Ê

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:16 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

Cold and Bot are the top and bottom of the lattice respectively, as in the immutable variant. Now
the object and class instances are addresses of the abstract heap. The �eld values of class instances
are now stored in the abstract heap instead of directly in the abstract class instance because they
are mutable. What is interesting lies in the address for class instances, written as Instance(�,$, ®A):

(1) � represents the concrete class of the instance.
(2) $ represents the global object that owns the current abstract class instance.
(3) ®A represents the region context for the creation of the instance.

By default, the region context is empty. Programmers can write region { 4 } to introduce regions
to have a more �ne-grained approximation of runtime behavior for complex initialization code.

A region context ®A consists of a stack of locations in the program, and the analysis checks that the
context may not contain cycles. Therefore, the number of region contexts is �nite. Consequently,
the domains of abstract addresses and abstract values are also �nite.

As in the immutable variant, we could introduce a set of addresses as an abstract value to allow
a more precise abstraction for the joins of two values. Given that such extensions are easy to carry
out in practice and they add more notational complexity, we keep the abstract domain simple for
the sake of presentation.

4.5 Analysis

The analysis is presented as a set of declarative rules in Figure 3. The notable di�erences from the
immutable variant are highlighted.

The rule for checking a program (D,E) is exactly the same as in the immutable calculus (Rule

A-Prog in Figure 2) — we simply check that each object in the de�nitions D is well-formed. We
therefore omit it from the �gure for space reasons.

Expressions are checked with the judgement Δ;k̂ ;Θ; Σ; ®A
 4 → Ê ; Σ′, which means that the
expression 4 evaluates to the abstract value Ê in the given context, where (1) Δ represents the

global objects currently under initialization; (2) k̂ represents the abstract value for this; (3) Θ is
the environment for local variables; (4) Σ is the abstract heap before evaluation of the expression;
(5) ®A is the region context for evaluating the expression; (6) Σ′ is the updated abstract heap after
evaluation of the expression — mutation might happen during evaluation of an expression.

The object initialization check (Rule A-Obj-Init) is the same as in the immutable calculus, except
that in checking the �eld initializer, we use the empty region context ∅.
Most of the rules are similar to those in the immutable calculus. Therefore, we only emphasize

the di�erences here.

• A-Sel-Ins. When accessing a �eld of a mutable class instance, we check that the mutable
instance is owned by the object currently being initialized with the condition head (Δ) = $.
This is how we enforce initialization-time irrelevance in the analysis.

• A-Region. This is how we allow programmers to specify a region context. We require that
the region context is acyclic with the condition loc ∉ ®A to ensure that (1) abstract addresses
are �nite; (2) the structure of region context is easy to understand.

• A-New. When creating a new class instance, we �rst create a new abstract heap address

;̂ with the region context and owner of the instance, i.e., ;̂ = Instance(�,$, ®A). Note that
the abstract object corresponding to the address might already exist in the abstract heap.
Therefore, we need to do a join with the existing object when updating the abstract heap.

• A-Mut. In mutation, we check that the class instance to be mutated is owned by the object
currently being initialized with the condition head (Δ) = $. When updating the �eld in the
heap entry, we need to do a join with the existing value of the �eld because the abstract

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:17

Object initialization check Δ; Σ
 O→ Σ

$:: Δ;Object($);∅; Σ8 ; ∅
 rhs(F8) → Ê8 ; Σ
′
8

Ω0 = ∅ Ω8+1 = Ω8 ∪ {58 ↦→ Ê8 } Σ8+1 = [$ ↦→ Ω8] Σ
′
8

Δ; Σ0
 O→ Σ=

(A-Obj-Init)

Expression check Δ;k̂ ;Θ; Σ; ®A
 4 → Ê ; Σ

Δ;k̂ ;Θ; Σ; ®A
 G → Θ(G); Σ (A-Var) Δ;k̂ ;Θ; Σ; ®A
 this → k̂ ; Σ (A-This)

head (Δ) = $

Δ;k̂ ;Θ; Σ; ®A
 $ → Object($); Σ
(A-Obj-Cyc)

Δ;k̂ ;Θ; Σ; ®A
 4 → Bot; Σ

Δ;k̂ ;Θ; Σ; ®A
 4.5 → Bot; Σ
(A-Sel-Bot)

$ ∉ Δ O = de�nition($) Δ; Σ
 O→ Σ
′

Δ;k̂ ;Θ; Σ; ®A
 $ → Object($); Σ′
(A-Obj-Acc)

Δ;k̂ ;Θ; Σ; ®A
 4 → ;̂ ; Σ′ ;̂ = Object($) Ê = Σ
′(;̂) (5)

Δ;k̂ ;Θ; Σ; ®A
 4.5 → Ê ; Σ′
(A-Sel-Obj)

Δ;k̂ ;Θ; Σ; ®A
 4 → ;̂ ; Σ′ ;̂ = Instance(�,$, ®A ′) head (Δ) = $ Ê = Σ
′(;̂) (5)

Δ;k̂ ;Θ; Σ; ®A
 4.5 → Ê ; Σ′
(A-Sel-Ins)

Δ;k̂ ;Θ; Σ; ®A
 40 → ;̂ ; Σ1 Δ;k̂ ;Θ; Σ8 ; ®A
 40 → Ê0 ; Σ8+1 Θ
′
= G ↦→ Ê0

lookup(;̂ ,<) = 〈def<(G :)) :)A = 41〉 Δ; ;̂ ;Θ′; Σ= ; ®A
 41 → Ê ; Σ′

Δ;k̂ ;Θ; Σ; ®A
 40 .<(40) → Ê ; Σ′
(A-Call)

loc ∉ ®A Δ;k̂ ;Θ; Σ; loc :: ®A
 4 → Ê ; Σ′

Δ;k̂ ;Θ; Σ; ®A
 (region { 4 })loc → Ê ; Σ′
(A-Region)

Δ;k̂ ;Θ; Σ; ®A
 40 → Bot; Σ1 Δ;k̂ ;Θ; Σ8 ; ®A
 40 → Ê0 ; Σ8+1

Δ;k̂ ;Θ; Σ; ®A
 40.<(40) → Bot; Σ=
(A-Call-Bot)

Δ;k̂ ;Θ; Σ8 ; ®A
 40 → Ê0 ; Σ8+1 params(�) = 〈G :) 〉 $ = head (Δ)

Ω = G ↦→ Ê0 ;̂ = Instance(�,$, ®A) Σ
′
=

[

;̂ ↦→ Ω ∪ Σ= (;̂)
]

Σ=

Δ;k̂ ;Θ; Σ; ®A
 (new� (40)) → ;̂ ; Σ′
(A-New)

Δ;k̂ ;Θ; Σ; ®A
 41 → ;̂1; Σ1 ;̂1 = Instance(�,$, ®A ′)
Δ;k̂ ;Θ; Σ1; ®A
 42 → Ê2; Σ2 Ω = Σ2 (;̂1)

head (Δ) = $ Ω
′
= [5 ↦→ Ω(5) ∪ Ê2] Ω Σ3 = [;1 ↦→ Ω

′] Σ2

Δ;k̂ ;Θ; Σ; ®A
 (41 .5 = 42) → Ê2; Σ3

(A-Mut)

Fig. 3. Declarative check rules for the mutable calculus. Class fields are mutable, object fields are immutable.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:18 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

address corresponds to a group of concrete objects and we cannot distinguish the individual
concrete objects of the group in the abstract domain.

Note that in the calculus, the �elds of global objects are immutable and can only be initialized
at their de�nition sites. Therefore, in the rule A-Obj-Init, we can be sure that the corresponding
�eld 58 is absent in Ω8 , hence we can simply add the �eld value to the abstract heap object without
worrying about overwriting. If the �eds of global objects can be mutable (as is the case in Scala),
we need to do a join with the existing values for mutable �elds, as it is done in A-New and A-Mut.

4.6 Examples

Consider the following program:

1 class Box(var value: Int)

2 object A:

3 val box: Box = new Box(4)

4 object B:

5 val boxB: Box = new Box(5)

6 val boxA: Box = A.box // ok

7 val m: Int = boxB.value // ok

8 val n: Int = boxA.value // error

The checker will report an error at line 8, because boxA is abstracted by Instance(�>G,�,∅)
whose owner is di�erent from the object B currently being initialized. In contrast, boxB is abstracted
by Instance(�>G, �,∅), thus the �eld access boxB.value at line 7 is valid.
The following program will be rejected:

1 abstract class Foo { def foo(): Int }

2 class C(var x: Int) extends Foo { def foo(): Int = 20 }

3 class D(var y: Int) extends Foo { def foo(): Int = A.m }

4 class Box(var value: Foo)

5 object A:

6 val box1: Box = new Box(new C(5))

7 val box2: Box = new Box(new D(10))

8 val m: Int = box1.value.foo()

The reason is that both box1 and box2 are in the same region, so they thus share the same
abstract address Instance(�>G,�,∅). Consequently, box1.value evaluates to a value that is the
join of the abstract values Instance(�,�,∅) and Instance(�,�,∅).8 Calling the method foo() on
the �eld box1.value at line 7 is therefore illegal.
To make the code above pass the check, we can introduce explicit region contexts:

1 abstract class Foo { def foo(): Int }

2 class C(var x: Int) extends Foo { def foo(): Int = 20 }

3 class D(var y: Int) extends Foo { def foo(): Int = A.m }

4 class Box(var value: Foo)

5 object A:

6 val box1: Box = region { new Box(new C(5)) } // explicit region

7 val box2: Box = region { new Box(new D(10)) } // explicit region

8 val m: Int = box1.value.foo()

8The result of the join is Cold for the calculus due to its simplicity. In our actual implementation, it is a set that consists of

the two aforementioned abstract values. The method call at line 7 is still invalid in the actual implementation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:19

Now box1 is abstracted by Instance(�>G,�, [5])9 and box2 is abstracted by Instance(�>G,�, [6]).
Therefore, the values contained in the boxes are kept separate by the analysis: box1.value is ab-
stracted by Instance(�,�, [5]) and box2.value is abstracted by Instance(�,�, [6]). Consequently,
the method call box1.value.foo() resolves to only C.foo(), which is safe.

4.7 Properties

To formulate the property of initialization-time irrelevance, we introduce the following program
transform, which removes trivial object accesses in the program:

T (〈$; 4〉) = 4

In the above, the transform T recursively rewrites the code pattern 〈$; 4〉 (which evaluates to the
address of object $, forcing its initialization, then discards that address and evaluates expression 4)
to just 〈4〉 in the program — e�ectively removing all trivial object accesses in the original program.
For a removed object access, there are three scenarios:

(1) Its initialization time will not change if the access happens after the �rst real use of object $.
(2) Its initialization will be delayed if the access precedes the �rst real use of object $.
(3) Its initialization will be removed if there are no real uses of object $.

Obviously, the �rst scenario will not change program semantics. We expect the second scenario
to not change program semantics either if the principle of initialization-time irrelevance is observed.
The third scenario might change program semantics, e.g., the removal of the initialization of an
object might remove non-termination in the program. We capture the intuition with the following
property:

Property 1 (Initialization-Time Irrelevance). If a program passes the initialization check, then

the removal of trivial object accesses will maintain semantics of terminating programs. Formally,

given a well-formed program P = (D,E), i.e.
 P, and P′ = T (P) = (D
′
,E′), if JPK = (;, f), then

JP′K = (;, f ′) and f ′ ⊆ f .

The property above only captures equivalence for terminating programs — removing a trivial
object access may remove non-termination as well. Technically, the heap f ′ is a subset of f because
some global objects (and instances they create) might not be initialized after the removal.

This property enables us to schedule the initialization of global objects by the topological order in
the initialization dependence graph. For example, a simple scheme would be to initialize them at the
beginning of the entry method in ahead-of-time (AOT) compilation. It is also possible to initialize
the global objects at build time, as is done in Native Image of the GraalVM project [Wimmer et al.
2019]. This way, we can reduce the overhead of initialization checking at run time as required by
the lazy semantics. Our current work provides a theoretical justi�cation for such optimizations.
Previous work also foresees the possibility of scheduling class initialization at compile time based
on topological sorting of the acyclic dependency graph [Kozen and Stillerman 2002]. However, they
do not realize that doing so is unsound in the absence of initialization-time irrelevance.

Discussion. A technical subtlety is related to memory locations. Usually, the fresh memory
location is implemented in mechanized proofs by using the size of the current heap [Blaudeau and
Liu 2022]. With this scheme, the removal of trivial object accesses might result in fewer objects
being created and thus lead to a mismatch in memory locations. The proposition f ′ ⊆ f fails to
hold when such a mismatch happens.
In formal semantics, we can overcome this di�culty by changing the scheme for addresses.

Instead of using just a number, we can use a pair ($,=) as locations: Always use ($, 0) as the

9We use line numbers instead of exact source positions to approximate region context.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:20 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

address of object$, and when allocating a new class instance owned by an object$, use the address
($,= + 1) where the number = is the number of instances currently owned by the object $.
Given the subtlety of the theorem, we think a mechanized proof will be necessary to validate the

theorem, which we leave for future work.

5 IMPLEMENTATION

In this section, we show how to implement the declarative checking rules and scale from the small
language to Scala. Our implementation is integrated in the Scala 3 compiler, Dotty, and can be
enabled via the compiler option -Ysafe-init-global.

5.1 Fixed-Point Computation

The checking rules presented in Figure 2 and Figure 3 are declarative (not algorithmic). The rules
should be read co-inductively. The co-inductive reading can be illustrated by the following example:

1 class C(var x: Int)

2 object A:

3 var f: C = foo()

4 def foo(): C = foo()

In order to prove that the method call foo() is safe at line 3, the analysis will encounter exactly
the same sub-goal to prove that the call foo() is safe. A coherent interpretation of the rules needs to
assume that the call foo() returns a �xed-point value for the recursive call foo(). In this example,
both the top and bottom of the value lattice (Cold and Bot) are �xed points for the expression
foo(). We are only interested in least �xed points, which allow more programs to be accepted. The
greatest �xed point Cold is always safe, but it rejects too many programs (even though it accepts
the program above), so it is not useful.

We use an abstract de�nitional interpreter to compute least �xed points based on the technique
of co-inductive caching [Darais et al. 2017]:

Ẑ ∈ ACache = (4, k̂ ,Θ, Σ, ®A) ↦→ (;̂ , Σ′)

The cache Z maps the expression 4 , the value k̂ for this, Θ for the abstract environment, Σ for

the abstract heap and ®A for the current region context to the value ;̂ of the expression and the
updated heap Σ

′.
As in Darais et al. [2017], we need to employ both an input cache Z8= and output cache Z>DC . In the

abstract evaluation of an expression, we check whether the corresponding key exists in the output
cache Z>DC . If it is in Z>DC , we return the cached value immediately. Otherwise, we retrieve the value
from the input cache Z8= (using the bottom value Bot if the key is not yet in the cache), put it in the
output cache Z>DC , and evaluate the expression by evaluating its sub-expressions. The output cache
Z>DC is then updated with the actual value for the expression. The co-inductive caching ensures
that cache values are only used in recursive calls but not eagerly.

The iterative algorithm works at the granularity of global objects. After each iteration, it checks
whether Z8= and Z>DC are the same. If not, it will use Z>DC as the new Z8= , reset Z>DC to empty, and
check the object again until a �xed point is reached. The �xed point always exists because the
abstract de�nitional interpreter is monotone with respect to the abstract cache.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:21

5.2 Handling Scala Features

Scala [Odersky 2019] is a language with rich features: path-dependent types, higher-kinded types,
traits, local classes, enums, �rst-class functions, etc. For an analysis to be practical for Scala, it has
to handle all of the language features.

Theoretically, the analysis only needs to handle the language model for Scala after type erasure
and �attening — assuming that the compiler preserves language semantics. This language model is
much simpler because most language features are elaborated to classes and global objects, which
are at the top level. The non-trivial complications compared to our small language are inheritance,
traits, closures10 and arrays.

For inheritance and traits, the analysis needs to follow the linearization ordering in the initializa-
tion semantics [Odersky 2019]. Virtual method calls do not pose a problem, as the abstract domain
records the concrete classes of abstract values. Therefore, the analysis may resolve virtual method
calls according to the language semantics.
Conceptually, closures are immutable classes — the �elds are the variable values that they

capture.11 Therefore, it is easy to handle functions with a special form of abstract values similar to
immutable classes. Calling a function can be emulated by a method call in the abstract interpreter.
We handle arrays as if they were class instances with a single mutable �eld — we do not

distinguish the array elements at di�erent indexes. Similar to mutable class instances, we need to
record both the owner and the region context in the abstract domain.

In the actual implementation, however, we de�ne the abstract interpreter before �attening and
type erasure. This design decision is motivated by two considerations: (1) For separately compiled
libraries, the intermediate representation, called TASTY, is in a form before �attening and type
erasure; (2) The analysis may report better error messages when the input language is closer to the
surface language.
To handle this language model, we ignore type parameters and type arguments in the abstract

interpreter. Meanwhile, we augment the abstract values with the environment that local/inner
classes and functions capture, which achieves the same convenience that �attening provides.

The abstract domains we presented in Section 3.3 and Section 4.4 modeled only a single object at
a time for simplicity of presentation. In the implementation, an abstract value can be a set of such
abstract objects in order to more precisely represent the join of two abstract values.

The analysis is implemented as a compiler phase after type checking. The implementation does
not require any changes to the type system in the compiler. The implementation resolves all existing
bug reports related to initialization of global objects (Appendix C).
If only immutable classes are reachable in the initialization of global objects, the analysis is

the same as the immutable calculus in essence (Section 3). To uniformly handle mutable and
immutable �elds in classes, we implement context sensitivity at the level of mutable �elds instead
of objects. This design also allows us to unify mutable local variables in closures and mutable
�elds in objects. For programmers, the same mutable �eld in the same region context has the same
abstract representation.

6 CASE STUDY

In this section, we discuss the practicality of the principles of partial ordering and initialization-time
irrelevance based on a case study of a large real-world Scala project. We would like to remind the

10Functions used to be represented by anonymous classes in earlier versions of the Scala compiler. Now there are special

AST trees for closures to reduce code size since Java 8 introduced lambdas.
11As a technical detail, the capture of mutable variables is not an issue — the compiler desugars a captured mutable variable

to an immutable variable which points to an object containing the mutable state.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:22 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

reader that the �ndings discussed below are true positives: they were actual violations of the two
principles in the code.

6.1 Initialization-Time Irrelevance

We have been justifying the principle of initialization-time irrelevance from the semantic point of
view. The reader might be wondering whether the principle works with existing Scala code. To
answer this question, we performed a case study on one of the most complex open source Scala
applications: the Scala 3 compiler.
The Scala 3 compiler, named Dotty, contains about 123K lines of code for the compiler itself. It

de�nes 1017 classes and 567 non-synthesized objects.12 Among the objects, we �nd 4 violations of
the principle, which we discuss below.
The �rst violation is arguably a valid use case, as the following code illustrates (adapted):

1 object Names:

2 class Name(val start: Int, val length: Int)

3 var chrs: Array[Char] = new Array[Char](0x20000)

4 def name(s: String): Name = Name(0, chrs.length) // simplified for readability

5

6 object StdNames:

7 val AnyRef: Names.Name = Names.name("AnyRef")

8 val Array: Names.Name = Names.name("Array")

9 val List: Names.Name = Names.name("List")

In the code above, the global object Names contains a mutable name table, which is shared across
di�erent compiler runs. The object StdNames creates prede�ned names that are used in the compiler.
Creating a new name requires reading (and possibly writing) the mutable state owned by the object
Names, thus it violates initialization-time irrelevance.

This seems to be a justi�ed violation of the principle. However, instead of capitulating by classi-
fying such use cases as an exception, it is possible to support the usage with a slight modi�cation
of the code, making StdNames a class instance rather than a global object:

1 object Names:

2 val StdNames = new StdNames

3 class StdNames:

4 val List: Names.Name = Names.name("List")

The second violation is related to diagnostic code in the compiler, as shown below:

1 object Stats { var monitored: Boolean = false }

2 class UncachedGroundType { if (Stats.monitored) println("record stats") }

3 class LazyType extends UncachedGroundType

4 object NoCompleter extends LazyType

In the code above, the mutable �eld Stats.monitored could be set to true by programmers via
a compiler �ag. But at the time when the object NoCompleter is initialized, it is uncertain whether
the user input has been written to the �eld already or not. This could result in slight imprecision in
diagnostic data, but this is negligible in practice. For this case, we believe it is justi�ed to use the
annotation @unchecked to suppress the warning from the analysis.
The third violation comes from the following code (adapted for readability):

12Synthesized companion objects for case classes do not contain member �elds, so their initialization is trivial.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:23

1 class SourceFile

2 object Contexts:

3 val NoContext: Context = new Context

4 class Context:

5 private var _source: SourceFile = null

6 final def source: SourceFile = _source

7 def setSource(source: SourceFile) = { this._source = source }

8 object Implicits:

9 import Contexts.*

10 case class SearchFailure(tag: Int, source: SourceFile)

11 val NoMatchingFailure: SearchFailure = SearchFailure(1, NoContext.source)

In the code above, initialization of the object Implicits would read the mutable �eld source of
Contexts.NoContext, which is owned by the object Contexts. In fact, both NoContext.source

and NoMatchingFailure.source will be null at run time. However, the �elds will never be used
by the compiler, thus they do not pose a problem. Given the fact that the value NoMatchingFailure
is only used as a tag in the compiler, we think a reasonable refactoring would be to make
NoMatchingFailure an object extending a shared base class with SearchFailure. This way, it
would avoid reading the uninitialized �eld NoContext.source in the �rst place.

The fourth violation again involves diagnostic code, which can be illustrated as follows:

1 object Positioned { var debug: Boolean = false }

2 abstract class Positioned:

3 if (Positioned.debug) { println("do debugging") }

4 object Trees:

5 class Tree extends Positioned

6 val emptyTree = new Tree

In the code above, initialization of the object Trees would read the mutable state debug in the
object Positioned, which can be set via compiler �ags. It is uncertain whether the �eld is set or
not when the object Trees is initialized. That should not matter in practice, because programmers
are not supposed to debug the empty trees which are usually used as placeholders.

For this reason, we believe it is better to move the diagnostic code from the object Positioned
to the object Trees. This way, initialization of the object Trees will only read its own state, which
is allowed by initialization-time irrelevance.

6.2 Partial Ordering

While the principle of partial ordering is justi�ed based on deadlock freedom and information
hiding, there is concern whether the principle is expressive enough for real-world programs.
In the Dotty project, we encounter only one violation of partial ordering. The violation can be

illustrated with the following code:

1 object Names:

2 val ctorString = "<init>"

3 val ctorName: MethodName = MethodName.apply(ctorString)

4 class MethodName(encoded: String)

5 object MethodName:

6 val ctor: MethodName = new MethodName(Names.ctorString)

7 def apply(name: String): MethodName =

8 if (name == Names.ctorString) ctor else new MethodName(name)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:24 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

In the code above, initialization of the object Names triggers the initialization of the object
MethodName at line 3; the latter in turn depends on the former at line 6. The cycle might lead to a
deadlock in the presence of concurrency.

To avoid the cycle, we can simply move the �eld ctorString at line 2 to the object MethodName.

6.3 Discussion

As it is explained above, the violation of initialization principles in the Scala 3 compiler can be
�xed with code refactoring. For the particular case study, we do not need to resort to regions to
make the analysis more expressive. To some extent, it meets our expectation that regions are only
needed for rare and complex cases, for which programmers pay the tax for the complexity. We
expect such complex use cases to arise as the checker becomes more widely used in practice.

The reader might be wondering: how long does it take to check the Scala 3 compiler? We ran 5
iterations of compiling Dotty with the checker enabled and disabled and observed the following
compilation times:

• Enabled: 59s, 55s, 55s, 54s, 53s
• Disabled: 57s, 56s, 56s, 52s, 53s

The execution time of the current implementation is not a signi�cant fraction of total compilation
time. Given the acceptable result, we think it is premature to do performance tuning on the
implementation, and we delay a carefully controlled experiment to obtain a precise measurement
of the execution times as future work when performance becomes a concern.

7 RELATED WORK

Börger and Schulte [2000] report several problems with Java’s lazy initialization semantics of
classes, such as portability, deadlocks and unsound compiler optimizations.

Kozen and Stillerman [2002] propose a graph-based algorithm to ensure that there are no cycles
when running static initializers of classes. For this purpose, they build an initialization dependency
graph with edges � ⇒ � to mean that running the static initializer of class A would lead to running
the static initializer of class B. They enforce that the dependency graph is acyclic except for benign
self-cycles (see Figure 2 and Figure 4), similar to partial ordering in our design. Their algorithm,
however, needs to perform whole-program analysis due to the absence of the initialization-time

irrelevance proposed in our work.
They also foresee the possibility of scheduling class initialization at compile time based on

topological sorting of the acyclic dependency graph. However, they do not realize that doing so is
unsound in the absence of initialization-time irrelevance.
Hubert and Pichardie [2009] propose a system for tracking which static �elds of a class have

been initialized at any given point to ensure that a static �eld is only read after initialization. The
work is based on bytecode and it depends on whole-program analysis.

Leino and Müller [2004] consider the problem of modular veri�cation of global module invariants
in object-oriented programs. Interestingly, to support reasoning about invariants of modules, they
also arrive at the design of ownership: The invariant of module A may depend on �elds of objects
that are (transitively) owned by A. They introduce syntax to specify owners explicitly for new-
expressions when creating new objects. The ownership structure forms a tree in their work, while
it is �at in ours: only global objects may be owners.
In a following work, Leino and Müller [2005] extend the technique to static class invariants.

They impose a stronger concept of partial ordering on classes — compilation partial ordering. In
contrast, our work only requires that the initialization dependencies of global objects form a partial
order — global objects are allowed to mutually reference each other as long as they do not form

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:25

initialization cycles. Leino and Müller [2005] did not realize that compilation partial ordering is
neither necessary nor su�cient for safe initialization of global objects because compilation partial
ordering does not imply initialization-time irrelevance.
There is a lineage of works on safe initialization of class instances [Blaudeau and Liu 2022; Liu

et al. 2020, 2021; Qi and Myers 2009; Summers and Mueller 2011]. These works do not handle global
objects or static �elds. In contrast, our work sidesteps the problem of safe initialization of class
instances in the syntax of the calculus. A language designer might be interested in reading both,
given that they are complementary.
The abstraction �>;3 in the abstract domains of our analyses is inspired by similar concepts in

previous work on safe initialization of class instances (cold in [Blaudeau and Liu 2022; Liu et al.
2020] and free in [Summers and Mueller 2011]). In both cases, it is forbidden to access �elds or
call methods on cold values. However, they are motivated slightly di�erently. For class instances
potentially under initialization, it is dangerous to access �elds or call methods on them. For global
objects, programmers usually prepare values in global objects and do not intend those values to be
used. Our analysis currently enables programmers to use any values prepared in global objects —
albeit with some annotation overhead for complex use cases. We also envision the introduction of
the annotation “@Cold” to enable programmers to control the usage of values during initialization.
Meanwhile, in the aforementioned previous works, the systems maintain a heap separation

between cold and non-cold objects: the static system guarantees that cold objects are not reachable
from non-cold objects at run time to observe the transitivity of the initialized state. The invariant
is usually enforced by forbidding the assignment of a cold value to the �eld of a non-cold object.
Our analysis explicitly models the heap, therefore it does not need such a rule.

8 CONCLUSION

In this paper, we propose two principles for safe initialization of global objects: partial ordering and
initialization-time irrelevance. The principles (1) enable modular reasoning about initialization; (2)
avoid deadlocks in initializing global objects; (3) allow static scheduling of global object initialization.
To enforce the principles, we present a static analysis algorithm to ensure safe initialization

of global objects. The algorithm tracks ownership of mutable state to enforce initialization-time
irrelevance. It introduces the concept of regions to make context-sensitivity understandable and
tunable by programmers for complex initialization code.

ACKNOWLEDGMENTS

We sincerely thank OOPSLA 2023 reviewers for their helpful feedback. We are also grateful to our
shepherd Philipp Haller for the many improvement suggestions. This research was supported by
the Natural Sciences and Engineering Research Council of Canada.

A SEMANTICS

The big-step semantics of the language is presented in Figure 4. An evaluation relation takes the
form J4K(f, d,k) −→ (;, f ′), which means that the expression 4 evaluates to the value ; with the
updated heap f ′, given the heap f before the evaluation, the environment d for method parameters,
and the valuek for this.

We assume a few helpers: lookup(g,<) looks up the method< in a corresponding class or object
de�nition depending on whether g is a class name or object name; params(�) returns the class
parameters of class �; �eld ($, 8) returns the 8-th �eld of the object $; addr ($) returns the heap
address bound with the object $.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

268:26 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

JGK(f, d,k) −→ (d (G), f) (E-Var) JthisK(f, d,k) −→ (k, f) (E-This)

J4K(f, d,k) −→ (;, f ′) f ′(;) = (_, l) l (5) = ; ′

J4.5 K(f, d,k) −→ (; ′, f ′)
(E-Select)

; = addr ($) ; ∈ 3>< (f)

J$K(f, d,k) −→ (;, f)
(E-Obj1)

; = addr ($) ; ∉ 3>< (f) �eld ($, 8) = 〈val 58 :)8 = 48〉

J48K(f8 ,∅, ;) −→ (E8 , f
′
8) f0 = f ∪ {; ↦→ ($,∅)} f8+1 =

[

; ↦→
(

$, 58 → E8

)]

f ′
8

J$K(f, d,k) −→ (;, f=)
(E-Obj2)

J4K(f, d,k) −→ (;1, f1) f1 (;1) = (g, _) J40K(f1, d,k) −→ (;0, f2)

lookup(g,<) = 〈def<(G :)) :)A = 4<〉 J4<K(f2, G ↦→ ;0, ;1) −→ (;3, f3)

J4.< (40)K(f, d,k) −→ (;3, f3)
(E-Call)

J40K(f, d,k) −→ (;0, f1) ;fresh ∉ 3>< (f1) ∀$.;fresh ≠ addr ($)

params(�) = (G :)) f2 = f1 ∪
{

;fresh ↦→
(

�, G ↦→ ;0

)}

Jnew� (40)K(f, d,k) −→ (;fresh, f2)
(E-New)

J41K(f, d,k) −→ (;1, f1) J42K(f1, d,k) −→ (;2, f2)
f2 (;1) = (�,l) f3 = [;1 ↦→ (�, [5 ↦→ ;2] l)] f2

J41.5 = 42K(f, d,k) −→ (;2, f3)
(E-Assign)

J41K(f, d,k) −→ (;1, f1) J42K(f1, d,k) −→ (;2, f2)

J41; 42K(f, d,k) −→ (;2, f2)
(E-Seq)

Fig. 4. Big-step semantics for surface language

The rules E-Obj1 and E-Obj2 show that global objects have lazy semantics. The other rules are
straightforward, so we omit a detailed explanation here. The semantics of a program, written JPK,
is de�ned by executing the main method of the entry object.
As usual, big-step semantics only de�nes the behavior of terminating programs. It can be

instrumented with a fuel to de�ne the behavior of non-terminating programs [Amin and Rompf
2017; Blaudeau and Liu 2022].

B TYPE SYSTEM

Here we present a simple type system for the language. Our analyses (Section 3 and Section 4)
do not depend on the type system. However, our analyses only check that global objects can be
initialized safely and the principle of initialization-time irrelevance is observed. They do not check
that the main program is well-formed. To ensure that the main program will not get stuck at
runtime, the type system can be used.
For simplicity, we intentionally keep the subtyping of structural types simple: It is straight-

forward to make the subtyping more expressive by extending subtyping to members of structural
types. The typing rules are standard, we therefore omit a detailed explanation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

Initializing Global Objects: Time and Order 268:27

Program Typing ` (D,E)

∀C ∈ D, ` C ∀O ∈ D, ` O ` E

` (D,E)
(T-Prog)

Class Typing ` C

∀M ∈ methods(C), M = 〈def<(G :)8) :)A = 4〉 G :)8 ;� ` 4 :)A

` C
(T-Class)

Object Typing ` O

∀F ∈ �elds(O), F = 〈val 5 :) = 4〉 ∅; structType($) ` 4 :)

∀M ∈ methods(O), M = 〈def<(G :)8) :)A = 4〉 G :)8 ; structType($) ` 4 :)A

` O
(T-Object)

Subtyping) <:)

structType(�) <:)

� <:)
(S-Class)

I1 ⊆ I2

{ I1 } <: { I2 }
(S-Struct)

Expression Typing Γ;) ` 4 :)

Γ;) ` this :) (T-This) G : * ∈ Γ

Γ;) ` G : *
(T-Var)

)$ = structType($)

Γ;) ` $:)$
(T-Obj)

Γ;) ` 4 :)1)1 <:)2

Γ;) ` 4 :)2
(T-Sub)

Γ;) ` 4 :)4)5 = �eldType()4 , 5)

Γ;) ` 4.5 :)5
(T-Sel)

)8 = constrType(�) Γ;) ` 48 :)8

Γ;) ` new � (4) : �
(T-New)

Γ;) ` 41 :)1 Γ;) ` 42 :)2

Γ;) ` 41; 42 :)2
(T-Seq)

Γ;) ` 41 :)1)5 = �eldType()1, 5)
∧

mutable()1, 5) Γ;) ` 42 :)5

Γ;) ` 41.5 = 42 :)5
(T-Assign)

Γ;) ` 4 :)4 ()8 ,)A) = methodType()4 ,<) Γ;) ` 48 :)8

Γ;) ` 4.<(4) :)A
(T-Invoke)

Fig. 5. Type system for the calculus

C SCALA OPEN BUGS

Scala programmers have being bothered by problems related to initialization of global objects for a
long time. The following language bugs were reported about 8 years ago: #9312 #9115 #9261 #5366
#9360 at github.com/scala/bug. And programmers continue to report such issues for the Scala 3
compiler: #16152 #9176 #11262 at github.com/lampep�/dotty. Our checker manages to resolve all
the bug reports.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

https://github.com/scala/bug/issues/9312
https://github.com/scala/bug/issues/9115
https://github.com/scala/bug/issues/9261
https://github.com/scala/bug/issues/5366
https://github.com/scala/bug/issues/9360
https://github.com/scala/bug
https://github.com/lampepfl/dotty/issues/16152
https://github.com/lampepfl/dotty/issues/9176
https://github.com/lampepfl/dotty/issues/11262
https://github.com/lampepfl/dotty

268:28 Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing

REFERENCES

Nada Amin and Tiark Rompf. 2017. Type soundness proofs with de�nitional interpreters. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe

Castagna and Andrew D. Gordon (Eds.). ACM, 666–679. https://doi.org/10.1145/3009837.3009866

Clement Blaudeau and Fengyun Liu. 2022. A conceptual framework for safe object initialization: a principled and mechanized

soundness proof of the Celsius model. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 729–757. https://doi.org/10.1145/

3563314

Egon Börger and Wolfram Schulte. 2000. Initialization problems for Java. Software-Concepts & Tools 19 (2000), 175–178.

David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. 2017. Abstracting de�nitional interpreters (functional

pearl). Proc. ACM Program. Lang. 1, ICFP (2017), 12:1–12:25. https://doi.org/10.1145/3110256

Laurent Hubert and David Pichardie. 2009. Soundly handling static �elds: Issues, semantics and analysis. Electronic Notes in

Theoretical Computer Science 253, 5 (2009), 15–30.

Dexter Kozen and Matt Stillerman. 2002. Eager class initialization for Java. In Formal Techniques in Real-Time and Fault-

Tolerant Systems: 7th International Symposium, FTRTFT 2002 Co-sponsored by IFIP WG 2.2 Oldenburg, Germany, September

9–12, 2002 Proceedings 7. Springer, 71–80.

K Rustan M Leino and Peter Müller. 2004. Modular veri�cation of global module invariants in object-oriented programs.

Technical Report/ETH Zurich, Department of Computer Science 459 (2004).

K. Rustan M. Leino and Peter Müller. 2005. Modular Veri�cation of Static Class Invariants. In FM 2005: Formal Methods,

International Symposium of Formal Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings (Lecture Notes in Computer

Science, Vol. 3582), John S. Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki (Eds.). Springer, 26–42. https://doi.org/10.1007/

11526841_4

Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo G. Giarrusso, and Martin Odersky. 2020. A type-and-e�ect system for

object initialization. 4 (2020), 1–28. Issue OOPSLA. https://doi.org/10.1145/3428243

Fengyun Liu, Ondřej Lhoták, Enze Xing, and Nguyen Cao Pham. 2021. Safe object initialization, abstractly. In Proceedings

of the 12th ACM SIGPLAN International Symposium on Scala. Association for Computing Machinery, 33–43. https:

//doi.org/10.1145/3486610.3486895

Martin Odersky. 2019. Scala Language Speci�cation. https://scala-lang.org/�les/archive/spec/2.13/.

Xin Qi and Andrew C. Myers. 2009. Masked types for sound object initialization. In Proceedings of the 36th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong

Shao and Benjamin C. Pierce (Eds.). ACM, 53–65. https://doi.org/10.1145/1480881.1480890

Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedural data �ow analysis. In Program Flow Analysis:

Theory and Applications, Steven S Muchnick and Neil D Jones (Eds.). Prentice-Hall, Chapter 7, 189–233.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-sensitivity.

In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,

TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 17–30. https://doi.org/10.1145/1926385.1926390

Alexander J. Summers and Peter Mueller. 2011. Freedom before commitment: a lightweight type system for object

initialisation. In Proceedings of the 2011 ACM international conference on Object oriented programming systems languages

and applications (New York, NY, USA, 2011-10-22) (OOPSLA ’11). Association for Computing Machinery, 1013–1032.

https://doi.org/10.1145/2048066.2048142

W3C. 2022. WebAssembly Core Speci�cation. https://www.w3.org/TR/wasm-core-2/

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas

Würthinger. 2019. Initialize once, start fast: application initialization at build time. Proc. ACM Program. Lang. 3, OOPSLA

(2019), 184:1–184:29. https://doi.org/10.1145/3360610

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 268. Publication date: October 2023.

https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3563314
https://doi.org/10.1145/3563314
https://doi.org/10.1145/3110256
https://doi.org/10.1007/11526841_4
https://doi.org/10.1007/11526841_4
https://doi.org/10.1145/3428243
https://doi.org/10.1145/3486610.3486895
https://doi.org/10.1145/3486610.3486895
https://scala-lang.org/files/archive/spec/2.13/
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2048066.2048142
https://www.w3.org/TR/wasm-core-2/
https://doi.org/10.1145/3360610

	Abstract
	1 Introduction
	2 Challenges and Ideas
	2.1 Challenges
	2.2 Maintaining Order in Initialization
	2.3 Initialization-Time Irrelevance and Ownership
	2.4 Static Scheduling of Global Object Initialization

	3 The Immutable Calculus
	3.1 The Surface Language
	3.2 The Immutable Variant
	3.3 Abstract Domain
	3.4 Analysis
	3.5 Examples

	4 The Mutable Calculus
	4.1 Ownership of Mutable Objects
	4.2 Context Sensitivity
	4.3 Regions
	4.4 Abstract Domain
	4.5 Analysis
	4.6 Examples
	4.7 Properties

	5 Implementation
	5.1 Fixed-Point Computation
	5.2 Handling Scala Features

	6 Case Study
	6.1 Initialization-Time Irrelevance
	6.2 Partial Ordering
	6.3 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Semantics
	B Type System
	C Scala Open Bugs
	References

