Call Graphs for Languages with Parametric Polymorphism

Dmitry Petrashko

EPFL, Switzerland
dmitry.petrashko@gmail.com

Vlad Ureche

EPFL, Switzerland
vlad.ureche@gmail.com

Ondrej Lhotdk

University of Waterloo, Canada
olhotak@uwaterloo.ca

Martin Odersky

EPFL, Switzerland
martin.odersky@epfl.ch

Abstract

The performance of contemporary object oriented languages
depends on optimizations such as devirtualization, inlining,
and specialization, and these in turn depend on precise call
graph analysis. Existing call graph analyses do not take ad-
vantage of the information provided by the rich type sys-
tems of contemporary languages, in particular generic type
arguments. Many existing approaches analyze Java bytecode,
in which generic types have been erased. This paper shows
that this discarded information is actually very useful as the
context in a context-sensitive analysis, where it significantly
improves precision and keeps the running time small. Spe-
cifically, we propose and evaluate call graph construction
algorithms in which the contexts of a method are (i) the type
arguments passed to its type parameters, and (ii) the static
types of the arguments passed to its term parameters. The use
of static types from the caller as context is effective because
it allows more precise dispatch of call sites inside the callee.

Our evaluation indicates that the average number of con-
texts required per method is small. We implement the ana-
lysis in the Dotty compiler for Scala, and evaluate it on pro-
grams that use the type-parametric Scala collections library
and on the Dotty compiler itself. The context-sensitive ana-
lysis runs 1.4x faster than a context-insensitive one and dis-
covers 20% more monomorphic call sites at the same time.
When applied to method specialization, the imprecision in
a context-insensitive call graph would require the average

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2-4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4444-9/16/11...
http://dx.doi.org/10.1145/2983990.2983991

method to be cloned 22 times, whereas the context-sensitive
call graph indicates a much more practical 1.00 to 1.50 clones
per method.

We applied the proposed analysis to automatically special-
ize generic methods. The resulting automatic transformation
achieves the same performance as state-of-the-art techniques
requiring manual annotations, while reducing the size of the
generated bytecode by up to 5x.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis; D.3.4 [Pro-
gramming Languages]: Processors—Compilers, Optimiz-
ation; D.3.3 [Programming Languages]: Language Con-
structs and Features—Classes and objects, Polymorphism

Keywords call graphs, parametric polymorphism, static
analysis, specialization

1. Introduction

Modern programming languages support modularity and
scalability using abstraction facilities such as generic meth-
ods, interfaces and abstract type members. Unfortunately,
these abstractions incur important performance costs. To
achieve good performance, language implementations de-
pend on compiler optimizations to eliminate abstractions.
When the code to be optimized spans multiple methods, com-
pilers first devirtualize, inline, or specialize the methods be-
fore other optimizations can be applied. These initial trans-
formations require interprocedural information. A call site
can be devirtualized if it is monomorphic: it is known to dis-
patch to only one specific method at run time. A method can
be inlined into its caller after the call site has been devir-
tualized. A method can be specialized if the compiler has
information about the values or types with which it will be
called. In this paper, we propose and evaluate a call graph
analysis that is especially effective for devirtualization, for
specialization, and for both of these transformations applied
together.

Analysis of call targets has long benefited from static
types. Class hierarchy analysis (Dean et al. 1995) relies en-
tirely on the static types of receivers to determine call tar-
gets. In propagation-based points-to analysis for Java (which
is used in precise call graph construction algorithms), it
has long been recognized that filtering points-to sets us-
ing static type information is critical for precision and ef-
ficiency (Lhotdk and Hendren 2003).

Existing approaches to call graph construction do not take
full advantage of the information provided by the type sys-
tems of modern programming languages. Most recent work
in the context of object oriented languages targets Java byte-
code. When Java programs are compiled to bytecode, generic
type parameters and arguments are erased, so they are not
available to bytecode-based analyses. In this paper, however,
we show that this discarded type information is actually very
useful: it enables us to construct more precise call graphs
efficiently to enable devirtualization, and it provides the in-
formation necessary for specialization.

An interprocedural analysis is context-sensitive if it ana-
lyzes each method multiple times in different contexts.
Ideally, the static contexts are selected so that invocations of
the method with dissimilar run-time behaviours are abstrac-
ted by different analysis contexts, enabling the analysis to
focus on each behaviour precisely. In the specific case of a
call graph analysis, it is possible that a call site dispatches to
multiple target methods overall, but is monomorphic in each
specific analysis context. Unfortunately, in many analyses,
the number of contexts often grows very large. As a result,
the analysis becomes expensive and its output large, which
makes client analyses expensive as well.

Our novel insight is that static type arguments, which have
been erased in most previous work, are actually very effective
contexts for call graph construction. Often, the static type of
the receiver at a call site is a type parameter of the method in
which the call site appears, or of the enclosing class of that
method. Analyzing the enclosing method separately for each
argument type provides static type information that is often
precise enough to resolve the call to a single target method
(i.e., monomorphically). Moreover, the number of contexts
in which the average method needs to be analyzed remains
small. At a given call site (in a given context), only one static
type is passed as the argument for each type parameter, so
the number of contexts grows only when a type parameter is
really used with different type arguments in multiple places
in the program.

Call graphs contain the information needed for devirtual-
ization, but building them with static types as context also
provides the information needed for specialization. One com-
mon specialization criterion is to create distinct implement-
ations of polymorphic methods, and of methods in generic
classes, for each type argument with which the method or
containing class is instantiated. The context-sensitive call
graph provides exactly the set of type arguments with which

395

each parameter may be instantiated, and this is the set of
specialized methods that need to be generated.

The context-sensitive call information is well suited to
devirtualization after specialization has been applied. In par-
ticular, the context-sensitive call graph may say that a call
site is monomorphic, but only in some specific context. Since
the analysis contexts correspond directly to the specialized
method implementations, this is exactly the information that
is needed to know that a call site in a specific specialized
implementation can be devirtualized.

We intend our analyses to be included in production
compilers, rather than being limited to research prototypes.
This is feasible thanks to the efficiency and relative sim-
plicity of the proposed analyses. In our experiments, the
context-sensitive analysis runs faster than a baseline context-
insensitive analysis thanks to its higher precision.

The correctness of the approach does not depend on a
closed-world assumption about the analysis. If the program
is later extended and new type arguments become possible,
the generated code falls back to the original, generic (unspe-
cialized) version of the method. Similarly, devirtualized or
inlined monomorphic call sites can contain fall-back calls to
the original methods in case the call site is invoked with an
unexpected type at runtime.

Our use of static types as contexts is distinct from the
dynamic type tags used as contexts in the “type-sensitive”
analysis of (Smaragdakis et al. 2011, 2014). That analysis
traces the flow of objects (abstracted by their dynamic type
tags) from allocation sites along dataflow paths through the
program all the way to each call site, and then analyzes
the target of the call site in a separate context for each
possible dynamic type of the receiver (and optionally of the
other arguments (Agesen 1995)). In contrast, the context that
we propose is formed from the static types of the receiver
and arguments that are available locally at the call site.
Unlike dynamic type tags, the static type does not need
to be propagated from the allocation site to the call site.
Moreover, a given call site may be reached by objects of
many different runtime types, which gives rise to many
contexts for the target method in the “type-sensitive” analysis.
In contrast, only a single static type argument is passed
for each type parameter, so the number of contexts in our
proposed analysis remains small.

This paper makes the following contributions:

— The paper proposes two extensions to call graph con-
struction algorithms for Scala. In the first extension, we
define the contexts in which a method is analyzed using the
actual (but static) type arguments that are substituted for the
generic type parameters of the method. In the second exten-
sion, we further refine the contexts by replacing the declared
types of the method’s term parameters with more precise sub-
types, taken from the static types of actual arguments. Dif-
ferent combinations of choices of possible subtypes define
distinct contexts. In the case of type class instances passed

using Scala’s implicit mechanism, our analysis can often spe-
cialize the parameter type to a singleton type that represents
one specific instance of the type class.

— The paper presents experimental results showing that
(i) the proposed context-sensitive analyses are around 1.4x
faster than a context-insensitive analysis on substantial pro-
grams, (ii) the context-sensitive analyses discover signific-
antly more monomorphic call sites, and (iii) the precision
due to context-sensitivity reduces the number of times that
the average method would have to be specialized from 22 to
a much more reasonable 1.00 to 1.50 times.

— The paper evaluates the application of the proposed
analyses to specialization of generic type arguments. Code
specialized automatically using the analysis results achieves
the same runtime performance as code specialized accord-
ing to annotations provided by experts manually. Moreover,
the automatic specialization generates substantially less byte-
code than specialization guided by manual annotations.

The rest of the paper is organized as follows. In Section 2,
we present an example program that motivates the need
for specialization and therefore for precise call graphs. In
Section 3, we provide a background discussion of the current
state-of-the-art call graph construction algorithm for Scala,
the TCAcPandthisl analysis of (Ali et al. 2014, 2015). We
define our context-sensitive analyses in Section 4. Section 5
presents and discusses our experimental results. We discuss
related work in Section 6, and conclude in Section 7.

2. Motivation

implicit def Iterable[T](implicit ord: Ordering[T]):
Ordering[Iterable[T]] =
new Ordering[Iterable[T]] {
def compare(x: Iterable[T], y: Iterable[T]): Int =

{
val xe = x.iterator
val ye = y.iterator

while (xe.hasNext && ye.hasNext) {
8 val res = ord.compare(xe.next(), ye.next())
9 if (res != 0) return res

}

12 Boolean.compare(xe.hasNext, ye.hasNext)
13 }
4|}

Listing 1. Running example from scala.math.Ordering.

We motivate the need for a more precise call graph abstrac-
tion using the example method in Listing 1. This method
is taken from the scala.math.Ordering class in the Scala
standard library. Given any ordering ord for the type T, the
method implicitly generates a lexicographic ordering for the
type Iterable[T]. Since the compare method on Line 3 is

I'TCA stands for Trait Composition Analysis.

396

called many times at run time, in loops, it is beneficial to spe-
cialize and inline the call sites within it as much as possible,
especially those within the while loop on Line 7. In particu-
lar, a high-performance code generator should specialize the
compare method for each value ord for which it is generated.

A context-insensitive call graph will contain a path to the
compare method on Line 3 from the Arrays.sort method
in the Java standard library. Therefore, for every type T
that is ever sorted anywhere in the whole program, a sound
analysis should find that an object of every such type could
reach the parameters x and y of compare. In particular, in a
large program, this is likely to include most of the possible
subtypes of Iterable. In the Scala standard library, the trait
Iterable has 214 concrete subtypes.

As a result, the calls to x.iterator and y.iterator on
lines 4 and 5 will be highly polymorphic and not inlineable.

As a consequence, the sets of possible types of xe and ye
will be highly imprecise. There are 44 concrete subtypes of
Iterator in the Scala standard library.

Therefore, the calls to xe.hasNext and ye.hasNext on
Line 7 will also be highly polymorphic and infeasible to
inline, as well as the calls to xe.next() and ye.next() on
Line 8. The bodies of these four methods are usually small,
and are called for every element of the iterables, so they need
to be inlined to achieve good performance.

Finally, the call to ord.compare on Line 8 is statically
considered to be dispatched to every implementation of
Ordering[T] that reaches the ord parameter. Therefore, this
call is also highly polymorphic in a context-insensitive call
graph.

Let us consider how the static polymorphism could be
reduced using context sensitivity (or, equivalently, specializa-
tion). We will illustrate this with the example client program
in Listing 2.

5| def lexicographicSort[T](a: Iterable[T]*)(implicit o:
Ordering[T]) = a.sorted

lexicographicSort("world", "Hello")

Listing 2. Example program that uses the compare method
from Listing 1.

The snippet defines a generic method lexicographicSort
that creates a sorted list of values of type Iterable[T]
by calling the sorted method of SeqLike. The = after the
Iterable[T] parameter type indicates that the method takes
a variable number of parameters, each of type Iterable[T].
The lexicographicSort method is called with two strings
on Line 17.

Type inference and implicit resolution in the early stages
of the Scala compiler desugar the program as shown in
Listing 3.

One of the most serious impediments to good perform-
ance of the compare method is the need to box and unbox
values of primitive Java types such as char. The bytecode

TC Aexpand-thiS

main

main € R

call e.m(. . .) occurs in method M
C' € SubTypes(StaticType(e))
method M’ has name m
method M’ is a member of type C
MeR Cex

M eR

TC Aexpand-thix

call

call D.this.m(. ..) occurs in method M
D is the declaring trait of M
C € SubTypes(D)
method M’ has name m
method M’ is a member of type C
method M is a member of type C

TCAExpand—this M S R C € >

this-call

M €R

TC Aexpand—rhi,r

“new C()” occurs in M
MeR

Cex

TC A;)i%nd_this

call e.m(. . .) occurs in method M
StaticType(e) is an abstract type 1T°
C € SubTypes(expand(T))
method M’ has name m
method M’ is a member of type C
MeR Cex

M eR

TC Aexpuml'—this

abstract-call

call M'(...) occurs in method M
M’ is method nested inside method M"”
MeR

M eR

local-call

Figure 1. Inference rules of TCA®Pad-this from (Ali et al. 2014, 2015)

version of the Iterator.next method has a return type of
Object. It is incompatible with primitive types, so each
char that it returns must be boxed in a Character. Inside
the compare method of Ordering.Char, the Character must
again be unboxed into a primitive Char.

def lexicographicSort[T](a: Seq[Iterable[T]])(
implicit o: Ordering[T]) = a.sorted

20| lexicographicSort[Char] (

21| Predef.wrapRefArray[WrappedString] (
2 new Array(
Predef.wrapString("world"),
Predef.wrapString("Hello™)

2)

6|)

7|) (Ordering.Char)

Listing 3. Desugared version of example program from
Listing 2.

Our first proposed improvement to the call graph is to
analyze the entire outer Iterable method from Listing 1
separately in the context of each possible type argument with
which the type parameter T is instantiated. In this example,
T is specialized to Char. As a result, the type of xe and
ye becomes Iterator[Char], and the calls to xe.next()
and ye.next() in Line 8 can be redirected to versions of
the methods that return a primitive Char without boxing.
Similarly, the type of ord becomes Ordering[Char], so the
call of ord.compare can be redirected to a version with
primitive Char parameters that do not need to be unboxed.

397

Thus, all of the boxing and unboxing can be removed from
the while loop.

Our second proposed improvement is to analyze methods
separately in the contexts of more precise types of their
parameters available at the call site. In our running example,
we can determine that when T is Char, the compare method
is only called with a small number of concrete types of
Iterables. In particular, we can analyze it specifically in
the context in which both of its parameters are of the type
WrappedString that is returned by Predef .wrapString. The
callstox.iterator andy.iterator in Lines 4 and 5 become
monomorphic, which enables the analysis to give a precise
type to xe and ye. As a result, the calls to hasNext and
next () become monomorphic as well. We can now rewrite
the known monomorphic calls to target specific statically
known versions of their target methods, which makes it easy
for the Java JIT compiler to inline and aggressively optimize
them. The resulting optimized code is a simple loop over the
arrays underlying the implementations of the strings being
compared, much like the loop that one would write in C to
compare two strings.

3. Background

The existing state-of-the-art in call graph construction for
Scala is the TCA®Pnd-this algorithm of (Ali et al. 2014, 2015).
To enable comparison of our results with previous work, we
formulate our improvements as extensions of this existing
framework. In this section, we present this baseline frame-
work.

The main inference rules of the formulation are shown
in Figure 1. The algorithm iterates the rules until a fixed

TCA

main

(main,0) € R

call e.m [o”] (...) occurs in method M

C € SubTypes(StaticType(e)o)
method M’ has name m
method M’ is a member of type C

(M,0) € R Ce%

T CA

call

(M/y 0/U|dom(a’)) ER

call D.this.m [¢'] (.. .) occurs in method M
D is the declaring trait of M
C € SubTypes(D)
method M’ has name m
method M’ is a member of type C
method M is a member of type C

(M,0) €cR Ce%

types
TC Arhi.v-call

(Ml, Ulgldom(g/)) €R

“new C()” occurs in M
(M,...) €R

roME s

call e.m [o”] (...) occurs in method M

StaticType(e)o is an abstract type T’
C € SubTypes(expand(T))
method M’ has name m
method M’ is a member of type C

” (M,cg) e R Ce3x
TCAM

abstract-call

(Ma UIU|d0m(a’)) ER

call M’ [0'] (...) occurs in method M
M’ is a method nested inside method M"’
DA (M,0) € R

local-call

(M/, U/O'|dom(cr’)) €R

Figure 2. Propagation

point is reached, using worklists to keep track of new facts
and to determine which rules need to be reevaluated. The
set R keeps track of the methods reachable from the entry
points through the call graph constructed so far. The set N
keeps track of the types of objects that may be allocated in
these reachable methods. The rule TCAZP"“™ intializes R
with the main entry point. The rule TCA%P@d-1his finds object
instantiations in reachable methods and adds the types to .
The rule TCA“P™ ™" resolves a call site e.m(. . .) using the
static type of the receiver e to determine all possible target
methods M’. The rule TCASP" ™5 handles the specific case
of a call site at which the static type 7" of the receiver e is an
abstract type. In this case, the TCA®P@4-?his algorithm uses the
function expand() to determine the possible concrete types
with which T could be instantiated. The expand() function
is computed by additional inference rules that find all of the
concrete types with which the abstract type 1" could ever be
instantiated. We do not show those rules here; for details,
refer to (Ali et al. 2014, 2015). The rule TCAST“4™ js a
variation of TCALH" nd-1his that is more precise in the specific
case when the receiver of the call is the this pointer in the
caller (i.e. the receiver of the callee is the same object as the
receiver of the caller). In this case, the rule adds precision
using the additional precondition that the caller M must also
be a member of some type C that the callee M’ is a member
of. The rule TCAZP“™ handles calls to local functions
that are nested inside some other function rather than being
members of a class. This rule was not given explicitly by (Ali

398

of type arguments

etal. 2014, 2015), but we have added it here for completeness.
Calls to such functions do not have a receiver, and they are
not dispatched dynamically: the method specified at the call
site is the exact method that is executed.

4. Algorithms
4.1 TCAY?%; Propagation of Type Arguments

We now introduce the first extension to the TCA algorithm.
The main idea is to construct a context-sensitive call graph
in which each context for a given method is a substitution
of concrete types for the type parameters of that method.
Specifically, the elements of the set R, which were the
reachable methods in TCA, now become pairs of a reachable
method and a type substitution. The inference rules for the
extended algorithm are shown in Figure 2. Changes from the
original algorithm are shaded .

The rule TCAL ® pairs the main method with the empty
substitution (), since the entry point of the program has no
type parameters.

The rule TCARP® jterates over all reachable method-
substitution pairs, ignores the substitution, and adds the types
instantiated in each reachable method to 3, as in the original
algorithm.

In the rule TCA”, for each reachable pair (M, o), where
M 1is a method and o is a substitution, ¢ is applied to the
static type of the receiver e. We use the postfix notation
StaticType(e)o to denote substitution application. From the

actual type arguments passed to the callee M’ at the call

site, we define the substitution ¢’ that replaces each type

parameter of M’ with the argument that is passed for it.

In the conclusion of the TCA?;”,;S rule, the caller’s context
substitution ¢ is composed with the call site substitution
o’. As a result, if o’ uses one of the type parameters of
the caller, it will be replaced using ¢ with the concrete type
that it is instantiated with in the specific caller context. We
use the notation o’c to denote substitution composition. We
restrict the resulting composed substitution to only the type
parameters of M’, formally dom(o’). We use the notation

o’ U|dom(0/) to denote this restriction.
expand-this
this-call

types
this-call and

We apply similar modifications to the rules TCA

expand-this .
and t;;gAabstmvt-cull to obtain the new rules TCA
TCAabsrmct-call .

Because the set of possible types is unbounded, the set
of reachable methods paired with type substitutions could
grow without bound. In particular, this happens in the case
of polymorphic recursion in the following example:

def foo[A](a: List[A], d: Int): List[_] =
2 if (d==0) a
else foo(a.zip(a), d - 1)

12
23

The method foo in context [A — Int], calls foo in context
[A — (Int, Int)], which later calls foo in context
[A — ((Int, Int), (Int, Int))], and so on. To ensure
the termination of call graph construction, we define a limit
for the number of contexts under which each method is
considered. If the limit is exceeded, then instead of creating
a new context (M, [N; — T;]), we loosen the precision of
the last created context for the same method (M, [N; — T}])
by replacing each type in it with the least upper bound of
the type in the old context and the type in the new context:
(M, [N; — lub(T;,T;)]). The loosened context conservatively
overapproximates the types in both the old, last created
context for the method and the new context that we intended
to create.

We did not encounter any cases of such unbounded growth
in any of the benchmark programs that we evaluated.

4.2 Propagation of Outer Type Parameters

In the previous section, the context of each method substi-
tuted concrete types only for the direct type parameters of
that method. For even greater precision, we can extend the
context with the type parameters of the classes and methods
that the method is nested within. Specifically, in our imple-
mentation, each element of 3 is not just an instantiated type
C, but a pair (o, C), where ¢ is a substitution that assigns a
concrete type to every type parameter that is in scope at the
program location where C is instantiated.

An equivalent method to achieve the same precision is
to split the analysis into two phases. The first phase trans-
forms the code using a transformation similar to lambda lift-
ing (Johnsson 1985), but applied to type parameters. Specific-
ally, whenever a class or method has some type parameter T

399

that can be implicitly used in methods nested within it, we
add T as an explicit type parameter to each of those nested
methods, and pass it explicitly at every call site. The second
phase is then to perform the simple analysis described in the
previous section. For performance reasons, our implementa-
tion uses the first approach of associating a substitution with
each instantiated type. For clarity of presentation, our de-
scription in this paper follows the second approach, which
decouples the issue of instantiating parameters of enclosing
classes and methods from the analysis itself.

We illustrate the transformation with the following ex-
ample program, in which method bar is nested in method
foo, which is nested in class C:

class C[T] {
def foo[U](t: T, u: U) = {
def bar[V](t: T, u: U, v: V) = {...}

bar[Double] (t, u, 1.0)
o 3
vl }
(new C[Int]).foo[String](5, "")

2

The above program would be transformed as follows:

w|class C[T] {
def foo[T2, U](t: T2, u: U) = {
w| def bar[T3, U2, V](t: T3, u: U2, v: V) = {...}

5| bar[T2,U,Double](t, u, 1.0)
}

5|}
;| (new C[Int]).foo[Int,String] (5, "")

The type parameter T of class C has been explicitly added to
the methods foo and bar nested within it as T2 and T3. The
type parameter U of method foo has been explicitly added to
the method bar that is nested within it as U2.

Type parameters need to be passed explicitly when an
outer method calls an inner one. When a given type parameter
comes from a method in the original program, it is available
at the call site as an explicit parameter of the caller method
in the transformed program: for example, in the call of bar
from foo, type parameters T2 and U of foo are passed as
arguments for the parameters T3 and U2 of bar. When a given
type parameter comes from a class in the original program, it
is also available at the call site as an argument in the type of
the receiver: for example, in the call to foo, the type argument
Int in the type C[Int] of the receiver determines the type
argument to be passed for the parameter T2 of foo.

Note that the erasure of both the original and the trans-
formed program is the same, so the runtime behavior is left
unchanged.

In addition to type parameters, we also transform abstract
type members of each class in the same way, turning them
into explicit type parameters of all methods nested inside the
class. Consider the following program:

7| abstract class Buffer {

type U

0| type T <: Seq[U]

50 def elements: T

si| def length = elements.length
s2| }
53| class Buffer123 extends Buffer {
s«| type U = Int

55| type T = List[Int]

56| def elements = List(1, 2, 3)
o3

IS

3

Buffer123.length()

The program gets transformed to:

«| abstract class Buffer {

of| type U

| type T <: Seq[U]

o3| def elements[U2, T2 <: Seq[U2]]: T2
0| def length[U2, T2 <: Seq[U2]] =

65 elements[U2, T2].length

o }
«7| class Buffer123 extends Buffer {

os| type U= Int

w| type T = List[Int]

| def elements[U2 = Int, T2 = List[U2]]: T2 =
List(1,2,3)

.| Buffer123.1length[Buffer123.U, Buffer123.T]()

A consequence of this transformation is that the body of each
method refers only to type parameters defined on the method
itself, and does not refer to any type parameters or type
members of outer enclosing classes or methods. As a result,
on the transformed program, the substitution context defined
in the previous section now provides arguments for all the
type parameters of each method, including those that came
indirectly from outer classes and methods in the original
program.

It is now easy to prove inductively that the range of every
substitution o that ever appears in a pair in R consists only
of fully instantiated types (which do not contain any type
parameters). Suppose that this is true of the substitution con-
text o of a method M that contains a call site e.m[o’](). The
only type variables used in the argument substitution ¢’ are
the direct type parameters of M. The context substitution o
provides fully instantiated types for all of these type paramet-
ers. Therefore, when ¢’ and o are composed, the range of the
composed substitution contains only fully instantiated types.
It is this composed substitution with fully instantiated types
that becomes the new context for the target method called by
the call site.

Therefore, the static type of the receiver of a call, Static-
Type(e)o, is never abstract after the caller-context substitu-

tion o has been applied to it. The rule TCA?P* s thus

never needed and can be removed from the algorithm, to-
gether with the rules for computing the expand() sets for
abstract types.

4.3 TCabpes-terms: Propagation of Term Argument
Types

It is very common for the receiver at a call site to be one of
the (term) parameters of the method containing the call site.
The implicit receiver parameter this is the most common
such receiver, but other parameters are also common. As an
example, consider the following code:

75| def internalHashCode[T](el: T, nullRep: Object) =
if (el != null)

el.hashCode

else

nullRep.hashCode

3

%

80

internalHashCode[Int] (42, "null")

%

The receivers el and nullRep of the calls to hashCode are
both parameters of internalHashCode. When the type of the
receiver is itself a type variable of the caller, the propaga-
tion of type arguments that we have described above helps
to resolve the call precisely. In the example, the type of el is
the type parameter T, which the context substitution instan-
tiates to Int, so we know that the target of el.hashCode is
the implementation of hashCode in Int. However, in the call
nullRep.hashCode, we need to assume that the runtime type
of the receiver nullRep could be any subtype of Object. To
further improve precision, the analysis can be extended fur-
ther to propagate the type of the argument from the call site
of internalHashCode, which is String, into the context in
which internalHashCode is analyzed. As a result, the ana-
lysis could then determine that the call nullRep.hashCode
calls only the String implementation of hashCode.

To implement this precision improvement in our call
graph construction algorithm, we further extend the method
contexts contained in the set R. Each element of R becomes
a triple that contains a reachable method M and a type
parameter substitution o as before, and, in addition, a list 7 of
more precise types for the term parameters of M (including
the implict this receiver parameter).

The inference rules for the extended algorithm are shown
in Figure 3. Changes compared to Figure 2 are shaded .
The StaticType function is extended to take a list 7 of more
precise parameter types. If e is a parameter of M, then
StaticType(m, e) returns the more precise type of e given
by m; otherwise it just returns the same static type of e as
in the previous analyses. We also extend StaticType to map
over a sequence of terms and return a sequence of their types.
The last premise of the TCA”/* rule uses StaticType to get
the precise types of the arguments passed at the call site. The
substitution ¢ is applied to these types. These precise types

types-terms
TCAY

main

(main, 0, Array[String]) € R

call e.m[o’](@rgs) occurs in method M
C € SubTypes(StaticType(7 ,e)o)
method M’ has name m
method M’ is a member of type C
(M,o, m)€ER Cex

/

types-terms
TCAY

(e :: args).map(arg = StaticType(r, arg)o)

call

(M',0'0lgom(er, ™) €R

“new C()” occurs in M
TCA?;};e;}-rerms (M7 e A) € R
) Cex

call M'[0"](@rgs) occurs in method M
M’ is a method nested inside method M"
(M,o, m)€R
pes- 7' = args.map(arg = StaticType(r, arg)o)
TCAP es-terms

local—call

(Mlyo—la-‘dom(o“): 77-/) €ER

call D.this.m[o’](@rgs) occurs in method M
D is the declaring trait of M
C € SubTypes(D)
method M’ has name m
method M’ is a member of type C
method M is a member of type C'

(M,o, m)€R

ces

7' = (D.this :: args).map(arg = StaticType(r, arg)o)

types-terms
TCA}

this—call

(M/,U/O'|d0m(a’)7 Trl) ER

Figure 3. Propagation of term argument types

7' are then included in the context that is added to R in the
conclusion of the rule.

5. Evaluation

We implemented the TCA“P4"-his analysis of Ali et al. (2014,
2015) and our two extensions TCA™P¢ and TCADPeS1e™S op
top of the Dotty compiler?, a new compiler for the future
evolution of the Scala language. Although Dotty is not yet
finished, it is not a research prototype: it is intended to
eventually replace the current nsc to become the standard
production-quality compiler for Scala. We tested our imple-
mentation on the full test suite of Dotty, which includes 1403
Scala programs. To the best of our knowledge, our analyses
soundly handle the entire Scala language dialect supported
by Dotty, including Dotty-specific extensions to Scala such
as trait parameters® and repeated by name parameters*.

The analysis runs after the type checker stage of Dotty. At
this stage, all expressions have their original, unerased and
unsimplified Scala types. This means that our implementa-
tion correctly handles types that may contain generic types
and path dependent types (Odersky 2014, §3.5). When the
analysis requires subtyping checks, we use the implementa-
tion of subtype testing included in the Dotty compiler.

2 https://github.com/lampepfl/dotty
3 http://docs.scala-lang.org/sips/pending/trait-parameters.html
4 http://docs.scala-lang.org/sips/pending/repeated-byname.html

401

In this section, we first evaluate the TCAYPeS"" analysis
implemented in Dotty, and then show how it can be used for
program performance.

5.1 Analysis Evaluation

We evaluated our implementation on the nine Scala programs
listed in Table 1. The first six programs were selected to ex-
ercise the Scala collections library, which is implemented in
a very generic style with multiple layers of abstraction. The
collections library is also highly megamorphic: for example,
it contains 214 named subclasses of Iterable. The next two
benchmarks are moderately-sized applications implemented
in idiomatic Scala. The largest benchmark is the parser and
type checker of the Dotty compiler itself. The Dotty compiler
is still under development, and only recently became able to
bootstrap itself. More development of the Dotty compiler
is necessary before it can compile more mainstream Scala
applications.

To construct each call graph, we provided all of the de-
pendencies written in Scala as source code to the analysis.
All Scala programs also implicitly depend on the Java Stand-
ard Library, which is in the form of Java bytecode that our
implementation does not analyze. We made conservative as-
sumptions about the effects of the Java library, and used the
Separate Compilation Assumption (Ali and Lhotdk 2012;
Ali and Lhotdk 2013) to construct a sound partial call graph
for the parts of the program that were written in Scala and
therefore available for analysis. The only methods of the

3 »
< = g |e 2

T =% El.g S |8 ¢ B | ¢

2 TE 2 2 E5| TS s s = S g

£ £ 2 %,|%. 24/5% g |E_‘&,E |°%
g g S, 22 S8 (<S8 fg|zE 5 |28 28 28| £
% S |27 5% 35|53: 22|25 g |8 EZEZ| Bt
£ = 5 SF FE|SE 8|58 S |=F =% 0% 28
TCATPOdTs |~ 149 64 207 | 207 1| 3469 16.75| 802 7.0 128 0.76
List creation TCADPes 117 33 90 90 1 90 1.00| 93.0 47 23 1.30
TCabpesterms | 117 3] 83| 101 2 83 1.00| 954 23 23 1.32
, TCATP@dT | 150 79 268 | 268 1| 6358 2473 | 734 41 224 1.89
List & Vectorcre- 1. \iypes 130 36 95| 114 2| 114 120|860 21 119 1.58
ation TCADPeserms | 130 34 90| 138 41 112 124 8.1 45 15 1.41
, TCATP@dTs [~ 157 65 209 | 209 1] 3919 18.75| 77.6 64 160 0.77
Listcreateand 1. \iypes 126 34 92 92 1 92 100|872 96 32 1.54
sort TCADPesterms | 126 34 89 | 147 2 89 1.00| 89.4 85 2.1 1.58
, TCATP@dTs [~ 170 83 357 | 357 1| 7725 21.64| 724 24 252 2.30
List & Vectorcre- +.c \iypes 142 39 115| 140 2| 140 121|862 39 98 1.64
ate and sort TCabpesterms | 142 37 109 | 147 5 131 120] 892 26 82 1.47
List creato. sopt_ TCAT @ TITT 68 212|212 1| 4146 1956 | 78.6 4.1 174 1.29
and print TCADPes 131 37 95 95 1 95 1.00| 87.8 92 3.1 5.43
TCAbpesterns | 131 35 92 | 206 6 92 100 89.8 82 20 3.25
TCATP@di | 182 88 293 | 293 1| 5529 18.87 | 727 28 245 1.50
lexicographicSort TCAPes 134 41 102| 104 20 104 101|866 77 56 591
TCabpesterms | 134 4] 98 | 231 30 102 1.04| 89.1 65 44 4.08
TCAPPTdT [~ 229 03 341 | 341 112490 3663 | 594 85 321 1028
Page rank TCADPe 145 50 127|173 30 173 136|774 76 151 1122
TCabpesterms | 145 45 118 | 293 S| 165 140|859 99 43 6.24
TCATPOdTS [(89 76 252 | 252 1| 6272 2489 | 726 8.1 193 9.69
Round robin TCADPes 147 46 130 | 174 1| 174 134|879 81 40 8.79
Teabvesterms | 147 44 123 | 310 30 165 134|879 89 32 3.91
Dotty TCAPP@TiS [1028 822 10694 | 10694 145278 423 | 556 1.8 426 89352
typeshecker TCADPes 832 695 9347 | 14011 4114011 150 823 06 17.1 | 1071.71
TCAbpesterms | @3> 69 8992 | 37992 43 | 13122 146 | 90.7 2.6 67| 637.10

Table 1. Results of the TCA®Pand-this TCADPES and TCAPPES-€™s analyses on the benchmark programs. The first two columns
specify the benchmark program and the analysis algorithm. The next three columns show the number of classes found to be
instantiated, including their superclasses, classes that have at least one reachable method, and methods reachable by the analysis.
The following two columns show the total number of reachable method contexts and the maximum number of such contexts
per method. If every reachable method were specialized for all of the type arguments that the analysis determines may flow to
its type parameters, the next two columns show the total number of such specialized methods that would be created and the
factor by which this number is greater than the number of reachable methods in the original program. The next three columns
show the percentage of call sites found to be monomorphic, bimorphic, and megamorphic by each analysis. For consistency,
to enable comparisons between the three analyses, we take as the universe of all call sites only those in methods found to be
reachable by the most precise analysis, TCAPPeS"™_ Qtherwise, the results would be confounded by the fact that each analysis
discovers a different set of reachable methods and therefore a different set of reachable call sites. The final column gives the
running time of the analysis.

402

Java standard library called by any of our benchmark pro-
grams and their Scala dependencies are the methods of the
java.lang.0Object and java.lang.Comparable classes.

We ran all of our experiments on a machine with a quad
core 2.8 GHz Intel i17-4980HQ CPU (running in 64-bit mode)
and capped available memory for experiments to 768 MB of
RAM.

5.1.1 Research Questions

Our evaluation aims to answer the following Research Ques-
tions:

RQ1. How do the three analysis algorithms compare in
terms of the precision of the call graphs that they generate?

RQ2. Type and term argument propagation increase the
size of the set R by tracking methods multiple times with dif-
ferent type and term arguments. How severe is the increase?

RQ3. How usable are the call graphs generated by the three
analysis algorithms for the purposes of specialization and
inlining?

RQ4. How many call sites can the algorithms prove to be
monomorphic?

RQ5. How does tracking of type and term arguments affect
the running time of the analysis?

5.1.2 Results

RQ1. Relative to TCA“P#d-"his ca]] graphs constructed by
TCAPP® have 22 % fewer reachable classes and 56% fewer
reachable methods on average. The most significant cause
of the precision improvement was that TCA””* precisely
resolved calls on generic super classes where TCA®Pand-this
was imprecise. For example, a call on a Seq[T] could dis-
patch to both List[Int] and Vector[Double] according to
TCAPand-this Hyut TCAYPeS would analyze the call separately
within the context of the two different type arguments.

On the Dotty typechecker, the TCA”?** call graph has 15 %
fewer reachable methods than the TCA“P4dhis call graph.
The improvement is smaller because Dotty makes little use
of the generic collections in the standard library. For example,
Dotty uses its own custom tuned implementations of sets. Of
629 classes with reachable methods, only 40 are from the
standard library.

On average over all of the benchmark programs, the ana-
lysis TCAPPesterms fyrther reduces the number of reachable
methods by 5% compared to TCAPP¢*,

The number of megamorphic call sites is, on average,
70% lower with TCAPP¢S than with TCASPand-this g pbpes-terms
further reduces the number of megamorphic call sites to 32%
fewer than TCAPP<,

On the Dotty type checker, TCAPPeS¢"S reduces the num-
ber of megamorphic call sites by 60 % compared to TCAPP¢*,
The main source of this improvement is apply methods,
which implement closures.

403

RQ2. We might expect that the number of reachable con-
texts would grow as the amount of context sensitivity is in-
creased. In fact, due to the substantial improvement in pre-
cision and the decrease in the number of reachable meth-
ods, the average number of reachable contexts is 53 % smal-
ler in TCAYP®S than in TCA®Pad-this \TCADPes1ems does gener-
ate more reachable contexts than TCA”P*, but generally still
fewer than TCA®Pand-this

The Dotty typechecker is a special case in this regard.
It has a substantial number of closures that are passed as
arguments, with multiple different closures being passed to
the same method. Tracking all of these closures requires 4x
as many reachable method contexts in TCAPP¢S¢™S a5 there
are reachable methods in TCA®Pnd-this

As we mentioned in Section 4.1, it is theoretically pos-
sible for the number of contexts to grow without bound, and
we must stop generating new contexts after a fixed limit has
been exceeded in order for the analysis to terminate. We
did not observe unbounded growth in any of the benchmark
programs. To determine how to select the limit, we coun-
ted the maximum number of contexts for any given reach-
able method for each benchmark. The maximum number
of contexts was 6 or less for all of the benchmarks, except
for the special case of the Dotty typechecker. It contains
a function track(String)(Closure) that is used to track
how many times a particular computation is performed. This
function is called with 43 different closures, and term argu-
ment type propagation tracks all of them as separate contexts.
Aside from this function, only 5 other functions in the Dotty
typechecker are analyzed with more than 10 contexts.

RQ3. The call graphs generated by the three algorithms
provide information about the concrete type arguments with
which each type parameter in the program can be instantiated.
Our intended application is to specialize each generic method
for each of the type arguments that it may be called with.
Methods that have been specialized in this way can be easily
inlined as an additional step, either in a static optimizer or in
a JIT compiler.

The type argument information provided by the context-
insensitive TCA“Ped-his analysis is too imprecise to be prac-
tical for this application. It indicates that each method should
be specialized 22 times on average.

Both of the context-sensitive analyses, TCA”P¢* and
TCADPesterms nroyvide much more usable information for spe-
cialization. They indicate that on average methods need to
be specialized 1.50 times.

RQ4. Our intended applications of call graphs, specializa-
tion and inlining, apply to call sites that have only a single
possible target method (are monomorphic). The precision of
many other analyses such as points-to analysis and escape
analysis benefits significantly from precisely knowing the
targets of virtual calls. We therefore measure the ability of
different algorithms to resolve each call site to a unique target
method.

Adding type propagation in TCAPP® substantially in-
creases the percentage of call sites that are statically mo-
nomorphic compared to TCA®P#4-his by around 10 percent-
age points on small programs and by around 20 percentage
points on large programs. TCAPP¢s€™s further increases mo-
nomorphic call sites by up to 8 percentage points on the large
programs.

RQS5. We might expect that the more precise context-
sensitive analyses require more time than TCA®Pad-his Thig
is indeed the case on some of the small programs that
exercise the library: TCA?P* takes up to 4x as long as
TCA®Pand-this This is due to more complex rules that require
more work to process each call site. However, on the three
larger programs, TCAP* takes on average only 20% more
time than TCAPand-ihis - and TCADPESTe™s jg actually always
faster than TCA®P@d-his This is explained by the more pre-
cise (and therefore smaller) sets R and)y computed by the
context-sensitive algorithms. A major source of the speedup
of TCADPesterms gyer TCAPP® is that the implementation of
substituting a type for a type parameter that occurs inside
a complicated type is slow. In many cases, term argument
type propagation can copy the entire (already substituted
type) faster than it would take to replace the type parameters
within it.

5.2 Application to Specialization

The evaluation so far has focused on the output of the
TCAPPes-terms gnalysis. In this section, we show how the ana-
lysis improves the effectiveness of specialization.

Generic classes and methods can be compiled to low-
level code using two approaches. A heterogeneous approach
duplicates the generic code and adapts it for every set of type
arguments (Kennedy and Syme 2001; Morrison et al. 1991).
This produces many low-level versions of a generic class or
method, each adapted to efficiently handle a single type of
data. A homogeneous approach generates a single copy with
the type parameters erased to their upper bound, commonly
Object, that can accommodate values of any type (Bracha
et al. 1998).

Similar approaches have also been developed for func-
tional languages with polymorphic types. Intentional type
analysis (Harper and Morrisett 1995) introduces user-facing
syntax that is similar to runtime reflection that can be used
to inspect types and generate specialized classes at run time.
For functional programs requiring boxing, (Henglein and Jgr-
gensen 1994) introduces a rewriting algorithm that places
the boxing and unboxing operations to minimize the num-
ber of coercions executed according to a formal optimality
criterion.

Both approaches have benefits and drawbacks: Although
the homogeneous approach minimizes the amount of gener-
ated low-level code, it has poor performance: Each time a
value of primitive type flows into and out of generic code,
it must be boxed into a freshly-allocated object and respect-

404

ively unboxed back to its primitive type (Leroy 1992). The
heterogeneous approach avoids boxing and unboxing, but it
requires knowing the set of possible type arguments. Further-
more, the number of combinations of type arguments used
to instantiate a generic class or method grows exponentially
with the number of type parameters, making the heterogen-
eous approach impractical. Both Java and Scala use the ho-
mogeneous translation by default, despite its negative effect
on performance.

Specialization is a technique that allows compiling se-
lected classes and methods using the heterogeneous ap-
proach (Dragos and Odersky 2009; Dragos 2010; Goetz
2014), while leaving the rest of the generic code to use the
default homogeneous translation. In Scala, specialization al-
lows the programmer to annotate the type parameter of a
class or method as @specialized. Based on this annotation,
the compiler generates 10 versions of the code, one for the
universal Object type and one for each of the 9 primitive
Scala types. When the class or method has n type paramet-
ers annotated as @specialized, the compiler generates 10™
versions of the code. The compiler also allows a more fine-
grained annotation to specialize a type parameter only for
a specified subset of the primitive types. For example, the
annotation @specialized(Int) would cause two versions
of the code to be generated, one for primitive integers and
the other for the universal Object type (in which all other
primitive types can be encoded using boxing). To make use
of these newly created code variants, the compiler rewrites
each generic class instantiation and each generic method call
to refer to the appropriate specialized version indicated by
the type arguments.

Specialization produces significant speedups, sometimes
in excess of 10x, because boxing and unboxing operations
often end up in hot loops (Dragos and Odersky 2009; Dragos
2010). However, the increase in code size quickly becomes
impractical. For example, specializing a map data structure,
which has two type parameters, generates 100 variants, which
makes distribution infeasible. A function type with two argu-
ments and one return value requires three type parameters,
and therefore an unreasonable 1000 variants.

Miniboxing (Ureche et al. 2013) is an alternative hetero-
geneous approach that encodes multiple primitive values in
a single (larger) slot, thus reducing the number of variants
from 10" to 3". Using miniboxing, the map data structure,
Map[Key, Value], requires only 9 variants, while the two-
argument function, Function2[T1, T2, R] requires 27 vari-
ants. As we will see later, the TCA®P** analysis can further
reduce the number of variants generated by miniboxing.

The fundamental problem remains: both specialization
and miniboxing trigger excessive bytecode growth, making
them infeasible to use as the default compilation scheme for
generics. To avoid the excessive bytecode growth, program-
mers must carefully choose which type parameters are to be
specialized. Furthermore, they must decide the exact prim-

ArrayBuffer. append ArrayBuffer.reverse ArrayBuffer.contains
time speedup time speedup time speedup
Erasure 37.3+0.1 Ix 12.5+0.1 Ix 3108.0 £ 59.1 1x
Specialization - Naive 13.0 £ 0.1 2.9x 1.7+ 0.1 7.4x 4458 £4.2 7.0x
Specialization - Call Graph 13.0 £ 0.1 2.9x 1.7+ 0.1 7.4x 4428 +£2.2 7.0x
Miniboxing - Naive 19.9 £ 0.1 1.9x 1.7 £ 0.1 7.4x 453.4 £3.6 6.9x
Miniboxing - Call Graph 19.9 £ 0.1 1.9x 1.7£0.1 7.4x 4572 £3.7 6.8x
LinkedList creation LinkedList.hashCode LinkedList.contains
time speedup time speedup time speedup
Erasure 171.2 £ 40.3 Ix 17.0 £ 0.1 1x 2871.8 £19.2 Ix
Specialization - Naive 34.1 £ 0.7 5.0x 16.9 + 0.1 1.0x 2286.1 £ 11.6 1.3x
Specialization - Call Graph 33.7£0.8 5.1x 16.9 £ 0.1 1.0x 2296.0 £ 15.8 1.3x
Miniboxing - Naive 31.0+ 0.6 5.5x 16.2 £ 0.1 1.0x 2303.9 £ 13.7 1.2x
Miniboxing - Call Graph 31.1 £ 0.6 5.5x 16.2 + 0.1 1.0x 23335 +£24.8 1.2x

Table 2. Benchmark running time, for 3 million elements. The time is reported in milliseconds. Lower is better.

1.8
Erasure ———
1.6 Specialization - Naive — |
' Specialization - Call Graph ===
Miniboxing - Naive ==
1.4 Miniboxing - Call Graph = -
1.2 B
Q
€
=1 1r (n — = = = B
o o ey
2 i
© 08| B
[
[+4
0.6 B
0.4 - -
N HH [En ‘
: CNEE | [ImEE i

ArrayBuffer.create

ArrayBuffer.reverse ArrayBuffer.contains

LinkedList.create LinkedList.hashCode LinkedList.contains

Figure 4. Graphical representation of the data in Table 2, in milliseconds. Lower is better.

itive types that each type parameter should be specialized
for, as this can reduce the generated bytecode. These two
decisions require deep knowledge of the entire code base,
including dependent libraries and applications. Yet different
applications use a library in different ways, and no specific
set of annotations of a library is ideal for all applications that
use it. Additionally, when an annotation (or a primitive type
within an annotation) is missing, it can significantly harm per-
formance (Ureche et al. 2015). Therefore, when performance
is required, programmers often err on the side of specializ-
ing for all primitive types, accepting the large increases in
bytecode size.

The TCAPP¢ analysis solves this problem by inferring the
specialization annotations automatically. In particular, the
necessary information is, for each generic class or method,
the set of type argument instantiations of its type parameters.
This set is exactly the set of contexts explored by the TCAPP¢s
analysis. Note that the information is not generally obtainable
from just a (context-insensitive) call graph. The automatic
inference of the specialization annotations depends on the

405

specific contexts that we have introduced in the TCAPP¢
analysis.

When the TCA”P* analysis is employed, the specialization
annotations generated contain the exact primitives used in
the code and nothing more, reducing the bytecode generated
as much as possible while avoiding the boxing operations
completely. In the case of miniboxing, the TCA®P¢* analysis
can indicate if any of the miniboxing encodings is redund-
ant, again saving the creation of redundant heterogeneous
variants.

Specialization guided by the TCAP* analysis results is
fully correct in an open-world context. The specialization
transformation does not depend on any soundness assump-
tions about the specialization annotations, which are nor-
mally provided by the programmer. If a type parameter is
instantiated by a type argument that was not included in the
annotation, the generated code falls back to the default univer-
sal Object-based implementation and its associated boxing
and unboxing. Therefore, unanalyzed code that passes type
arguments that the analysis is not aware of will still work

correctly, though it will understandably not enjoy the same
performance improvement as the analyzed code.

To test the effectiveness of our analyses, we have applied
them to specialization and miniboxing, reproducing the per-
formance experiments from the miniboxing paper (Ureche
et al. 2013). The benchmarks are adapted from two collec-
tion classes in the Scala standard library, ArrayBuffer and
(linked) List, and selected to cover code patterns commonly
used throughout the collection library. They cover a wide
range of scenarios: both contiguous and sparse memory stor-
age, custom equality checks, hash code computations, and
tight loops that can be further optimized by the JIT compiler
(e.g. ArrayBuffer.reverse). Each benchmark method is ex-
ercised by a driver program that executes it on collections of
3 million integers. The setup is similar to the one used in the
miniboxing paper.

To evaluate the automated inference of specialization an-
notations, we used the following experimental setup. We first
compiled the benchmark programs with the dotty compiler
and the TCA"P* analysis. In general, the TCAPPe™S gng-
lysis could be more precise, but on these benchmark pro-
grams, both analyses produce the same results. The type con-
texts found by the analysis were translated into specialization
annotations inserted into the code. The annotated code was
then compiled with the standard Scala compiler and evalu-
ated for performance. We used the standard Scala compiler
for this last step for consistency with the experiments in the
miniboxing paper, and because the porting of the specializ-
ation transformations from the standard Scala compiler to
dotty is still in progress. Once the specialization feature is
completely ported to dotty, the overall process can be im-
plemented in a single compilation pass that performs the
analysis and applies the specializations.

We ran the benchmarks on a server machine with an
8-core Intel 17-4770 processor with the frequency fixed at
3GHz, running the Oracle Java distribution 1.7.0-79 on the
Ubuntu 12.04.5 LTS operating system. We used the JMH
benchmarking framework (Shipilev) as a harness, due to
its close integration with the OpenJDK execution platform:
for each benchmark, JMH started the Java Virtual Machine
(JVM) with 3GB of memory, warmed up the benchmark code
until it was compiled by the HotSpot Just-in-time (JIT) C2
compiler, and then took 20 measurements. To minimize the
noise, the process was repeated 10 times for each benchmark.
This ensured that the variability introduced by the JIT com-
piler, the garbage collector (GC) and other processes running
on the server was reduced as much as possible.

The performance results are shown in Table 2 and Figure 4.
The “Erasure” results are for an unannotated program com-
piled using a homogeneous translation. The “Specialization
- Naive” results simulate a fully heterogeneous translation
by annotating every type parameter with @specialize, and
using the implementation of the specialization transforma-
tion in the standard Scala compiler to generate clones of the

406

Specialization - Naive
Miniboxing - Naive
Miniboxing - Call Graph
Specialization - Call Graph
Erasure

I I I I
40 60 80

Bytecode size (KBytes)

100

Figure 5. Graphical representation of the data in Table 3,
showing the bytecode size in kilobytes. Lower is better.

methods. The “Specialization - Call Graph” results evalu-
ate a program with annotations for specialization inferred by
the TCAPP** analysis, and specialized by the standard imple-
mentation in the Scala compiler. The same types of naive vs
call-graph-based annotations are shown for the “Miniboxing”
transformation.

Transformation Bytecode Size (Bytes)
Specialization - Naive 86146
Miniboxing - Naive 31372
Miniboxing - Call Graph 18918
Specialization - Call Graph 16458
Erasure 7291

Table 3. The bytecode size produced by specializing the Ar-
rayBuffer and LinkedList classes with different approaches.
Lower is better.

Although the last four compilation strategies achieve sim-
ilar speedups over the baseline “Erasure” configuration, there
is a stark difference in the size of the generated bytecode.
The total bytecode size for the two data structures is shown
in Table 3. Figure 5 shows the same data graphically. The
fully heterogeneous translation (“Specialization - Naive”) re-
quires a prohibitive 11.8x increase in the size of the code
compared to the standard homogeneous translation. Minibox-
ing (“Miniboxing - Naive”) reduces this overhead to a still
substantial 4.3x. Using the TCA"P* analysis to drive the two
heterogeneous transformations produces the same perform-
ance while further reducing the bytecode size by 5.2x for
specialization and 1.7x for miniboxing (the “Specialization
- Call Graph” and “Miniboxing - Call Graph” entries, com-
pared to their “Naive” counterparts).

In fact, the code size increase can easily be reduced even
further by a tighter integration of the analysis and the special-
ization transformation. In the current implementation of spe-
cialization, if two or more type parameters are annotated, the
compiler generates specialized versions of the code for the
cross product of the possible argument types. For example, if
the keys and values of a map can each be of type Int or Long,
the compiler generates all four combinations. However, the
analysis could have more precise information that indicates,
for example, that only Map[Int,Int] and Map[Long,Long]
are ever instantiated. Using this information, the specializa-
tion transformation would generate only two versions instead

of four. However, the current annotation mechanism is not
expressive enough to encode this precise information that the
analysis provides.

6. Related Work

Context sensitivity has been studied extensively in call
graphs for dynamically typed functional languages (Shivers
1988). However, because of Scala’s expressive static type sys-
tem, call graph construction algorithms for statically-typed
languages are more closely related. In object-oriented lan-
guages, call graph construction and points-to analysis are
interdependent, because virtual calls are resolved using the
runtime type of the receiver object pointed to by the call site.

For Java, the most thoroughly studied forms of context
are call strings (Shivers 1988) and object sensitivity (Milan-
ova et al. 2002, 2005). Analyses using these forms of context
sensitivity have a high cost, and much work has been done
to balance analysis cost against the precision of the analysis
results (Sridharan and Bodik 2006; Xu and Rountev 2008;
Xu et al. 2009; Yan et al. 2011; Bravenboer and Smaragdakis
2009; Smaragdakis et al. 2011; Kastrinis and Smaragdakis
2013; Smaragdakis et al. 2014). In Java, context sensitivity
has been found to improve precision of pointer information.
On call graph precision, its effect is more modest (Lhotdk and
Hendren 2006; Lhotdk and Hendren 2008; Smaragdakis et al.
2011, 2014), unless very sophisticated context abstractions
are used (Feng et al. 2015). In Scala, where use of generic
type parameters and abstract type members is pervasive, our
static-type-based context-sensitive analysis that can precisely
model these features significantly improves call graph preci-
sion.

The technique of using type arguments as context is most
closely related to the C# type analysis of (Sallenave and
Ducournau 2012). Their analysis adds type arguments as con-
text to types of instantiated objects (their analogue of the set
). In contrast, our analysis adds context to reachable meth-
ods (the set). The goal of their analysis is to specialize
the memory layout of objects, in contrast to our goal of spe-
cializing method implementations. As we discussed in Sec-
tion 4.2, the transformation that propagates type parameters
from outer classes and methods into inner methods already
gives our analysis the precision that would be gained from
adding context to instantiated object types.

The technique of using term argument types as con-
text is most closely related to the Cartesian Product Al-
gorithm (Agesen 1995) and object sensitivity (Milanova et al.
2002, 2005). Both of these techniques analyze a method in
contexts determined by the runtime types of their parameters
(CPA) or of only their receiver (object sensitivity). The key
difference compared to our technique is that these contexts
are estimates of the dynamic type tags of the objects that
may flow to the parameters, while our contexts are the stat-
ically declared types of the arguments at the call site of the
method. This difference is important for scalability. In the

407

existing approaches, the number of contexts grows with the
number of types instantiated anywhere in the program that
flow to the parameters (raised to the power of the number of
parameters in the case of CPA). In our approach, the number
of contexts of a method is bounded by the number of its call
sites (although those call sites may themselves be replicated
in different contexts of the caller).

As we indicated in Section 3, our analysis is defined as an
extension of the context-insensitive Scala call graph construc-
tion analysis of (Ali et al. 2014, 2015). Our implementation
analyzes only the Scala source code presented to the Dotty
compiler, not any of the Java bytecode that forms the rest of
the complete program. We use the Separate Compilation As-
sumption to construct a sound partial call graph for the part
of the program that is available for analysis (Ali and Lhotak
2012; Ali and Lhotdk 2013).

7. Conclusion

We presented several extensions to the TCA®Pd-ihis]
gorithm of (Ali et al. 2014, 2015) that both improve call
graph precision and decrease analysis time for non-trivial
Scala programs. Our algorithms consider type arguments
and term argument types, and use them to select more pre-
cise targets for virtual dispatch.

We implemented the algorithms in the context of the Dotty
compiler and compared their precision and running time on a
collection of Scala programs. We have found that TCA”P¢* is
significantly more precise than TCA®P4"d-?his indicating that
tracking type parameters would allow to greatly improve the
precision for common Scala code. Furthermore, we showed
that TCAPPes-er™s jg glightly more precise than TCA”P¢* but is
substantially faster, indicating that tracking the static types of
the arguments at each call site is beneficial. In particular, the
call graphs generated by the context-insensitive TCA®P@d-this
algorithm are too imprecise to be usable for method specializ-
ation and inlining. The call graphs from both the TCA?P* and
TCADPesterms glgorithms are very precise for this client optim-
ization: they would require specializing the average method
only 1.5 times in the worst case, and often much less.

Our work suggests that expressive type systems can not
only protect users from writing incorrect code, but could
also be used to gather more knowledge about the program to
enable more performance optimizations.

While our work was primarily focused on Scala, the ideas
of our work are applicable to other statically typed languages
with generic types. In particular, type and term propagation
could be used to improve call graph construction algorithms
for languages such as Java and C#.

Acknowledgments

This research was supported by the Natural Sciences and
Engineering Research Council of Canada.

References

O. Agesen. The Cartesian product algorithm. In ECOOP
’95, Object-Oriented Programming: 9th European Conference,
volume 952 of Lecture Notes in Computer Science, pages 2-51,
1995.

K. Ali and O. Lhotdk. Application-only call graph construction. In
J. Noble, editor, ECOOP 2012 - Object-Oriented Programming
- 26th European Conference, Beijing, China, June 11-16, 2012.
Proceedings, volume 7313 of Lecture Notes in Computer Science,
pages 688-712. Springer, 2012. ISBN 978-3-642-31056-0.

K. Ali and O. Lhotdk. Averroes: Whole-program analysis
without the whole program. In G. Castagna, editor, ECOOP
2013 - Object-Oriented Programming - 27th European Con-
ference, Montpellier, France, July 1-5, 2013. Proceedings,
volume 7920 of Lecture Notes in Computer Science, pages
378-400. Springer, 2013. ISBN 978-3-642-39037-1. doi: 10.
1007/978-3-642-39038-8. URL http://dx.doi.org/10.1007/
978-3-642-39038-8.

K. Ali, M. Rapoport, O. Lhotdk, J. Dolby, and F. Tip. Constructing
call graphs of Scala programs. In R. Jones, editor, ECOOP 2014
— Object-Oriented Programming, volume 8586 of Lecture Notes
in Computer Science, pages 54—79. Springer Berlin Heidelberg,
2014. ISBN 978-3-662-44201-2.

K. Ali, M. Rapoport, O. Lhotdk, J. Dolby, and F. Tip. Type-based
call graph construction algorithms for Scala. ACM Trans. Softw.
Eng. Methodol., 25(1):9:1-9:43, Dec. 2015. ISSN 1049-331X.
doi: 10.1145/2824234. URL http://doi.acm.org/10.1145/
2824234.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
Future Safe for the Past: Adding Genericity to the Java Program-
ming Language. In Proceedings of the 13th ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA °98, pages 183-200, New York, NY,
USA, 1998. ACM. ISBN 1-58113-005-8. doi: 10.1145/286936.
286957. URL http://doi.acm.org/10.1145/286936.286957.

M. Bravenboer and Y. Smaragdakis. Strictly declarative specific-
ation of sophisticated points-to analyses. In Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA 09,
pages 243-262, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-766-0. doi: 10.1145/1640089.1640108. URL http:
//doi.acm.org/10.1145/1640089.1640108.

J. Dean, D. Grove, and C. Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In
ECOOP 95, Object-Oriented Programming: 9th European Con-
ference, volume 952 of Lecture Notes in Computer Science,
pages 77-101, 1995.

I. Dragos. Compiling Scala for Performance.
Lausanne, 2010.

I. Dragos and M. Odersky. Compiling generics through user-
directed type specialization. In Proceedings of the 4th workshop
on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, pages 42—47.
ACM, 2009.

Y. Feng, X. Wang, I. Dillig, and C. Lin. EXPLORER : query-
and demand-driven exploration of interprocedural control flow

PhD thesis, IC,

408

properties. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 520-
534. ACM, 2015. doi: 10.1145/2814270.2814284. URL http:
//doi.acm.org/10.1145/2814270.2814284.

. Goetz. State of the Specialization, 2014. URL http://web.
archive.org/web/20140718191952/http://cr.openjdk. java.
net/~briangoetz/valhalla/specialization.html.

. Harper and G. Morrisett. Compiling polymorphism using inten-
sional type analysis. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
pages 130-141. ACM, 1995.

F. Henglein and J. Jgrgensen. Formally optimal boxing. In Proceed-
ings of the 21st ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 213-226. ACM, 1994.

T. Johnsson. Lambda lifting: Transforming programs to recursive
equations. In Functional programming languages and computer
architecture, pages 190-203. Springer, 1985.

G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for
points-to analysis. In H. Boehm and C. Flanagan, editors,
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 423-434. ACM, 2013. ISBN 9781-450-3201-4-
6. doi: 10.1145/2462156.2462191. URL http://dl.acm.org/
citation.cfm?id=2491956

A. Kennedy and D. Syme. Design and implementation of generics
for the .net common language runtime. In Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Snowbird, Utah, USA, June
20-22, 2001, pages 1-12, 2001. doi: 10.1145/378795.378797.
URL http://doi.acm.org/10.1145/378795.378797.

X. Leroy. Unboxed Objects and Polymorphic Typing. In Proceed-
ings of the 19th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL *92, pages 177-188,
New York, NY, USA, 1992. ACM. ISBN 0-89791-453-8. doi:
10.1145/143165.143205. URL http://doi.acm.org/10.1145/
143165.143205.

O. Lhotdk and L. Hendren. Scaling Java points-to analysis using
Spark. In G. Hedin, editor, Compiler Construction, 12th Inter-
national Conference, volume 2622 of LNCS, pages 153-169,
Warsaw, Poland, Apr. 2003. Springer.

O. Lhotdk and L. Hendren. Context-sensitive points-to analysis:
is it worth it? In A. Mycroft and A. Zeller, editors, Compiler
Construction, 15th International Conference, volume 3923 of
LNCS, pages 47-64, Vienna, Mar. 2006. Springer.

O. Lhotdk and L. Hendren. Evaluating the benefits of context-
sensitive points-to analysis using a BDD-based implementation.
ACM Trans. Softw. Eng. Methodol., 18(1):1-53, 2008. ISSN
1049-331X. doi: http://doi.acm.org/10.1145/1391984.1391987.

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In Pro-
ceedings of the 2002 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 1-11. ACM Press, 2002.
ISBN 1-58113-562-9. doi: http://doi.acm.org/10.1145/566172.
566174.

http://dx.doi.org/10.1007/978-3-642-39038-8
http://dx.doi.org/10.1007/978-3-642-39038-8
http://doi.acm.org/10.1145/2824234
http://doi.acm.org/10.1145/2824234
http://doi.acm.org/10.1145/286936.286957
http://doi.acm.org/10.1145/1640089.1640108
http://doi.acm.org/10.1145/1640089.1640108
http://doi.acm.org/10.1145/2814270.2814284
http://doi.acm.org/10.1145/2814270.2814284
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://dl.acm.org/citation.cfm?id=2491956
http://dl.acm.org/citation.cfm?id=2491956
http://doi.acm.org/10.1145/378795.378797
http://doi.acm.org/10.1145/143165.143205
http://doi.acm.org/10.1145/143165.143205

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Trans. Softw.
Eng. Methodol., 14(1):1-41, 2005. ISSN 1049-331X. doi:
http://doi.acm.org/10.1145/1044834.1044835.

R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An Ad
Hoc Approach to the Implementation of Polymorphism. ACM
Trans. Program. Lang. Syst., 13(3):342-371, July 1991. ISSN
0164-0925. doi: 10.1145/117009.117017. URL http://doi.
acm.org/10.1145/117009.117017.

M. Odersky. The Scala language specification v 2.9, 2014.

0. Sallenave and R. Ducournau. Lightweight generics in embedded
systems through static analysis. In R. Wilhelm, H. Falk, and
W. Yi, editors, SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems 2012, LCTES 12,
Beijing, China - June 12 - 13, 2012, pages 11-20. ACM, 2012.
ISBN 9781-450-3121-2-7. doi: 10.1145/2248418.2248421. URL
http://dl.acm.org/citation.cfm?id=2248418.

A. Shipilev. OpenJ]DK JMH Project. URL https:
//web.archive.org/web/20160119005244/http://openjdk.
java.net/projects/code-tools/jmh/.

O. Shivers. Control flow analysis in Scheme. In Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, pages 164—174. ACM Press, 1988.
ISBN 0-89791-269-1. doi: http://doi.acm.org/10.1145/53990.
54007.

Y. Smaragdakis, M. Bravenboer, and O. Lhotdk. Pick your contexts
well: understanding object-sensitivity. In T. Ball and M. Sagiv,
editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26-28, 2011, pages 17-30. ACM, 2011.
ISBN 9781-450-3049-0-0.

Y. Smaragdakis, G. Kastrinis, and G. Balatsouras. Introspect-
ive analysis: context-sensitivity, across the board. In M. F. P.
O’Boyle and K. Pingali, editors, ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014,
page 50. ACM, 2014. ISBN 9781-450-3278-4-8. doi: 10.1145/
2594291.2594320. URL http://dl.acm.org/citation.cfm?
1d=2594291.

M. Sridharan and R. Bodik. Refinement-based context-sensitive
points-to analysis for Java. In PLDI '06: Proceedings of the

409

2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 387-400, New York, NY,
USA, 2006. ACM Press. ISBN 1-59593-320-4. doi: http:
//doi.acm.org/10.1145/1133981.1134027.

V. Ureche, C. Talau, and M. Odersky. Miniboxing: improving the
speed to code size tradeoff in parametric polymorphism trans-
lations. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH
2013, Indianapolis, IN, USA, October 26-31, 2013, pages 73—
92, 2013. doi: 10.1145/2509136.2509537. URL http://doi.
acm.org/10.1145/2509136.2509537.

V. Ureche, M. Stojanovic, R. Beguet, N. Stucki, and M. Odersky.
Improving the interoperation between generics translations. In
Proceedings of the Principles and Practices of Programming
on The Java Platform, PPPJ 15, pages 113-124, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3712-0. doi: 10.
1145/2807426.2807436. URL http://doi.acm.org/10.1145/
2807426.2807436

G. Xu and A. Rountev. Merging equivalent contexts for scal-
able heap-cloning-based context-sensitive points-to analysis. In
ISSTA °08: Proceedings of the 2008 International Symposium
on Software Testing and Analysis, pages 225-236, New York,
NY, USA, 2008. ACM. ISBN 9781-605-5805-0-0. doi: http:
//doi.acm.org/10.1145/1390630.1390658.

Xu, A. Rountev, and M. Sridharan. Scaling CFL-reachability-
based points-to analysis using context-sensitive must-not-alias
analysis. In S. Drossopoulou, editor, ECOOP 2009 - Object-
Oriented Programming, 23rd European Conference, Genoa, Italy,
July 6-10, 2009. Proceedings, volume 5653 of Lecture Notes in
Computer Science, pages 98—122. Springer, 2009. ISBN 978-3-
642-03012-3.

. Yan, G. H. Xu, and A. Rountev. Demand-driven context-sensitive

alias analysis for Java. In M. B. Dwyer and F. Tip, editors,
Proceedings of the 20th International Symposium on Software
Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July
17-21, 2011, pages 155-165. ACM, 2011. ISBN 9781-450-3056-
2-4.

http://doi.acm.org/10.1145/117009.117017
http://doi.acm.org/10.1145/117009.117017
http://dl.acm.org/citation.cfm?id=2248418
https://web.archive.org/web/20160119005244/http://openjdk.java.net/projects/code-tools/jmh/
https://web.archive.org/web/20160119005244/http://openjdk.java.net/projects/code-tools/jmh/
https://web.archive.org/web/20160119005244/http://openjdk.java.net/projects/code-tools/jmh/
http://dl.acm.org/citation.cfm?id=2594291
http://dl.acm.org/citation.cfm?id=2594291
http://doi.acm.org/10.1145/2509136.2509537
http://doi.acm.org/10.1145/2509136.2509537
http://doi.acm.org/10.1145/2807426.2807436
http://doi.acm.org/10.1145/2807426.2807436

	1 Introduction
	2 Motivation
	3 Background
	4 Algorithms
	4.1 TCAtypes: Propagation of Type Arguments
	4.2 Propagation of Outer Type Parameters
	4.3 TCAtypes-terms: Propagation of Term Argument Types

	5 Evaluation
	5.1 Analysis Evaluation
	5.1.1 Research Questions
	5.1.2 Results

	5.2 Application to Specialization

	6 Related Work
	7 Conclusion

