
Predicate Abstraction of Java Programs with Collections

Pavel Parı́zek Ondřej Lhoták
David R. Cheriton School of Computer Science, University of Waterloo

{pparizek,olhotak}@uwaterloo.ca

Abstract
Our goal is to develop precise and scalable verification tech-
niques for Java programs that use collections and properties
that depend on their content.

We apply the popular approach of predicate abstraction
to Java programs and collections. The main challenge in this
context is precise and compact modeling of collections that
enables practical verification.

We define a predicate language for modeling the observ-
able state of Java collections at the interface level. Changes
of the state by API methods are captured by weakest pre-
conditions. We adapt existing techniques for construction of
abstract programs. Most notably, we designed optimizations
based on specific features of the predicate language.

We evaluated our approach on Java programs that use col-
lections in advanced ways. Our results show that interesting
properties, such as consistency between multiple collections,
can be verified using our approach. The properties are spec-
ified using logic formulas that involve predicates introduced
by our language.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Verification

Keywords Java, collections, predicate abstraction

1. Introduction
Our goal is to develop practical verification techniques for
Java programs that heavily use the collections provided by
the standard library. We call them client programs because
they are clients of the collection library. We target properties
that depend on the content of collections in some way — for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tuscon, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

example, (i) assertions over program variables that contain
values retrieved from collections, (ii) consistency between
multiple collections, and (iii) validity of method calls on col-
lection objects depending on the current state and parameter
values. For illustration, consider the Java program in Fig-
ure 1, which computes a schedule from available information
about threads. Two properties of interest are the following:
(1) the object variables schTh and actTh are not null before
the field accesses on them, and (2) there is a key-value pair
in the map from a thread ID to a ThreadInfo object for each
active thread. The program fails if either of these two proper-
ties is violated during its execution. A verification technique
for such Java programs and properties would be practically
useful if it is precise (i.e., it does not report spurious er-
rors) and scales to large programs with multiple classes and
methods. To achieve the necessary precision, the verification
technique must be path-sensitive and inter-procedural. Some
form of abstraction has to be used for scalability.

A popular approach to automated software verification
is to use predicate abstraction [21] and then run a model
checker to analyze the abstract program, which is much sim-
pler than the original program. The key idea behind predicate
abstraction is to represent the program state using predicates
defined in first-order logic with specific theories (e.g., lin-
ear arithmetic) over specific domains (e.g., integers). Each
predicate gives some information about the values of pro-
gram variables. The effect of individual statements on pro-
gram state can be captured using weakest preconditions.

Techniques based on predicate abstraction have been
proposed mainly for low-level C programs like device
drivers [1, 2, 23]. They are used especially for checking
assertions (reachability properties) and temporal properties
like validity of event sequences (e.g., whether each operation
of acquiring a lock is eventually followed by an operation
that releases the same lock).

We apply predicate abstraction to Java programs and col-
lections. The main challenges are (1) precise and compact
modeling of the collection state with a small number of pred-
icates, (2) precise modeling of operations upon collections,
(3) support for preserving information between any two pro-
gram code locations, and (4) efficient construction of ab-
stract programs. Addressing these challenges is important

Map<Integer,ThreadInfo> id2thread = new HashMap();
Set<Integer> active = new HashSet();

// initialize map with data for several threads
id2thread.put(1, new ThreadInfo(1,5));
id2thread.put(2, new ThreadInfo(2,18));
id2thread.put(3, new ThreadInfo(3,10));

// some threads are put into the active state
active.add(2);
active.add(3);

List<Integer> schedule = new LinkedList();

Iterator<Integer> actIt = active.iterator();
while (actIt.hasNext()) {

int actID = actIt.next();
ThreadInfo actTh = id2thread.get(actID);

for (int i = 0; i < schedule.size(); i++) {
int schID = schedule.get(i);
ThreadInfo schTh = id2thread.get(schID);

if (actTh.priority > schTh.priority) {
schedule.add(i, actID);
break;
}
}
}

Figure 1. Example: thread scheduling

for scalability to large programs and to enable verification
of interesting properties.

Many program verification techniques and frameworks
that target collections and data structures have been pro-
posed in recent years — symbolic execution for data struc-
tures [25], shape analysis based on predicate abstraction [7,
16, 37] or other abstractions [6], logics and decision pro-
cedures for heap data structures [7, 29], techniques based
on separation logic [18], and various techniques for verifi-
cation of linked list implementations [9, 10, 28] and general
programs that use collections against functional specifica-
tions [40, 41]. Most of these approaches model collections
at the representation level. They explicitly consider the inter-
nal data structures that implement higher-level collections,
heap nodes that represent objects, and pointers between the
heap nodes — for example, the nodes and edges of the tree
that is used internally to implement the TreeMap class from
the Java library. However, it is not necessary to consider the
internal representation of collections and their implementa-
tion details to verify programs that use collections through a
well-defined public interface (API), since the functional be-
havior of a client program does not depend on the internal
data structures and the shape of heap regions used by them.

There also exist approaches to modeling program behav-
ior that can be used for collections, such as the popular
contract specification languages JML [30] and Spec# [5],
and various logics for reasoning about data structures [27,
33, 45]. However, specifications defined in the contract lan-
guages (preconditions, postconditions, and invariants) have
limited expressive power, because they cannot refer to lo-
cal variables and they can be associated only with particular
code locations (e.g., method boundaries). The corresponding
verification techniques [4, 19] are modular at the granularity
of procedures, which means that they are efficient, but they
cannot be used for checking properties that span multiple
procedures (not in a caller-callee relationship) and for con-
sistency properties between collections owned by unrelated
objects. The logics for data structures are either very com-
plex and not suitable for predicate abstraction, or they are
not supported by state-of-the-art decision procedures yet.

Our approach is to verify client Java programs in a path-
sensitive and inter-procedural manner by using predicate ab-
straction and modeling Java collections at the interface level.
This approach requires fewer predicates about the program
state than if collections were modeled at the representation
level, and it therefore enables more efficient and scalable
verification. We consider only the state and behavior ob-
servable by client programs as specified by the textual API
documentation. We assume that the implementation of the
collection classes is correct and conforms to the documen-
tation. The latter should be true for every implementation of
the Java collections API.

In this paper, we describe our approach to modeling Java
collections at the interface level using predicates and its
usage for practical verification of Java programs that use
collections. We define the following:

• a translation from the Java collections into abstract maps,
• a predicate language for modeling the externally observ-

able state of collections, and
• weakest preconditions that capture changes of the ob-

servable state by API methods.

We adapt existing techniques for constructing abstract
programs that were introduced for programs in the C lan-
guage [2, 3]. We describe aspects of the construction that
are specific to our approach and target domain. In particular,
we designed optimizations that exploit specific features of
the predicate language.

Finally, we evaluate our approach on Java programs that
use collections in advanced ways. Our experiments show
that interesting properties of the Java programs can be suc-
cessfully verified using our approach. In particular, our pred-
icate language allows to capture all information about the
state of collections that is necessary to verify the properties
specified for the benchmark programs.

2. Overview
We start with a general overview of our approach on the
example Java program in Figure 1.

In order to verify the properties mentioned in the previous
section, it is necessary to have information about the content
of the collections pointed to by the variables id2thread and
active. The variables schTh and actTh refer to data retrieved
from collections. The stored data form the observable state
of both collections in this case. Changes of their content by
operations like add and put must be captured too.

We do not have to consider the internal implementation
of collection classes (e.g., HashMap), because the properties
are specific to the given client program. However, note that
the collections cannot be abstracted away completely, be-
cause it would not be possible to verify the given properties
without any information about the content of the maps.

The necessary information about the collections is cap-
tured by predicates such as mget(map, id2thread, 1) 6= ⊥,
mget(map, active, 2) = true, and actTh = null. The pred-
icates describe the content of the map id2thread and the set
active, and the value of the variable actTh.

The actual verification of the given Java program with our
approach consists of three steps:

1. predicates about collections and other program variables
that are necessary for the verification of the properties are
acquired (provided by the user or inferred automatically);

2. an abstract program is generated for the given client Java
program, a set of properties, and a set of predicates about
collections and other program variables;

3. the abstract program is verified using the Java Pathfinder
model checker.

The abstract program looks like the one in Figure 2 — it is
a simplified fragment. It contains boolean variables, assign-
ment statements, and Java control-flow structures. For each
assignment statement, the new value of a target boolean vari-
able is determined using the weakest preconditions defined
later in this paper.

Java Pathfinder (JPF) [44] performs exhaustive traversal
of the abstract program. If an assertion violation is detected
by JPF, then relevant information is extracted from the error
trace and reported to the user.

3. Preliminaries
Predicate abstraction. An abstract program is constructed
for a given set of predicates about variables in the input pro-
gram. The predicates are supplied by the user or inferred au-
tomatically. Either a single set of predicates can be used for
the whole input program [2] and associated with every state-
ment, or each statement s in the program can be associated
with a (possibly different) set of predicates that covers only
the aspects of program state relevant for the statement [23].

boolean bv1 = false; // mget(map,id2thread,1) != bot
boolean bv2 = false; // mget(map,active,2) = true
boolean bv3 = true; // actTh = null
// more boolean variables for other predicates

// statement: id2thread.put(1, new ThreadInfo(1,5))
atomic { bv1 = true; ... }

// statement: active.add(2)
atomic { bv2 = true; ... }

while (...) {
// statement: actTh = id2thread.get(actID)
if (bv1 && ...) bv3 = false;

// property check
if (bv3) assert false : ”actTh == null”;

...
}

Figure 2. Example: abstract program

For each statement s in the original program and each
predicate p whose truth value may be changed by the execu-
tion of s, the abstraction (abstract program) must capture the
change of the truth value of p after the execution of s. The ef-
fect of individual statements on the truth values of the pred-
icates, i.e. on the program state, is determined by weakest
preconditions in the following way. For the predicate p ∈ P
associated with the statement s, the new truth value of p after
the execution of s is determined using the weakest precon-
dition WP(s, ν(p)) of s with respect to ν(p), where ν(p) is
a literal over p (i.e., p or ¬p). Let the set ν(P) represent the
actual truth values of all predicates from the set P just be-
fore execution of the statement s, i.e. for each pi ∈ P the set
ν(P) contains pi or ¬pi. The new value of p after the exe-
cution of s is (a) true if the formula

∧
ν(P) ⇒ WP(s, p)

is valid, (b) false if the formula
∧
ν(P) ⇒ WP(s,¬p) is

valid, and (c) a non-deterministic boolean value (unknown)
otherwise. A decision procedure (e.g., an SMT solver) is
used to check the validity of the formulas.

For example, given the statement v := e and the predicate
v < 2, the weakest precondition e < 2 determines the new
truth value of the predicate after the assignment.

Array theory. The array theory [34] for first-order logic de-
fines a pair of function symbols that represent array accesses.
The symbol select(a, i) returns the element a[i]. The symbol
store(a, i, v) returns a new array a′ which is equal to a ex-
cept that a′[i] = v. The meaning of the symbols is defined by
the read-over-write axiom: select(store(a, i, e), i) = e. The
elements of a with indices not equal to i are not modified by
the store function.

4. Modeling Java Collections with Predicates
Our predicate language enables faithful modeling of Java
collections with respect to state and behavior observable
from client programs. Specifically, it can be used to model
the common usage patterns of Java collections in real pro-
grams and the dependence of program behavior on the col-
lection state. We support both associative collections (maps
and sets) and position-based collections (lists), and iterators
over these collections. We also support nested collections
(e.g., a map from integers to linked lists). First we introduce
features of the predicate language on several example pro-
grams, and then we provide formal definitions.

4.1 Examples
Associative collections. Consider again the program frag-
ment in Figure 1. The program would crash at the field ac-
cess actTh.priority if the object variable actTh has the null
value. To decide whether the variable actTh can be null,
we need information about all key-value pairs in the map
id2thread, all elements of the set active, and the current value
of the variable actID.

If the map id2thread contains some mapping for every
possible key stored in actID and the associated value is
not null, then the value of actTh cannot be null. We cap-
ture the presence of a key-value pair (k, v) in the map
id2thread by the predicate mget(map, id2thread, k) = v
and absence of a mapping for a key k by the predicate
mget(map, id2thread, k) = ⊥. The symbols mget , map,
and ⊥ are introduced by our predicate language.

The possible values of the variable actID correspond to
elements of the set active. We model sets as maps from pos-
sible elements to boolean values, where the boolean value
for a particular element indicates its presence in the set. For
example, the presence of a value i in the set active is captured
by the predicate mget(map, active, i) = true.

The property actTh 6= null holds if there is some map-
ping in id2thread for every element of the set active, i.e.
if the formula ∀i : (mget(map, active, i) = true ⇒
mget(map, id2thread, i) 6= ⊥) holds. To determine the
truth value of the formula, we need the following predicates:
mget(map, id2thread, 1) 6= ⊥, mget(map, id2thread, 2) 6=
⊥, mget(map, id2thread, 3) 6= ⊥, mget(map, active, 2) =
true, and mget(map, active, 3) = true.

Ordered lists. The program in Figure 1 also uses the list
schedule. The program accesses list elements at specific
positions (via schedule.get(i)) and adds new elements at a
specific position (via schedule.add(i, actID)). Such method
calls would fail if the position argument (index) is out of the
valid range.

We model lists as maps from arbitrary integer values
to stored elements. However, the integers do not represent
element positions (see Section 4.2). The presence of the
element e in the list schedule is captured by the predicate
mget(map, schedule, k) = e for an arbitrary integer k.

class Image {
public List<Rectangle> rectangles;
public int[][] pixels;

public static void main(String[] args) {
Image img = new Image();
img.load();
img.render();
}

public void load() {
rectangles = new ArrayList();
pixels = new int[50][50];
rectangles.add(new Rectangle(5, 10, 20, 20, 3));
rectangles.add(new Rectangle(20, 5, 10, 35, 1));
}

public void render() {
Iterator<Rectangle> recIt = rectangles.iterator();
while (recIt.hasNext()) {

Rectangle rec = recIt.next();
for (int i = 0; i < rec.width; i++)

for (int j = 0; j < rec.height; j++)
pixels[rec.left+i][rec.top+j] = rec.color;

}
}
}

Figure 3. Example: rendering image with several rectangles

Reasoning about collection size. To determine whether the
index argument of a call to schedule.get(i) is in the valid
range, we need information about the current size of the
list schedule and the current value of the variable i. The
valid range of the index argument i is specified by the for-
mula i ≥ 0 ∧ i < msize(msz, schedule), where the ex-
pression msize(msz, schedule) represents the size of the list
schedule. We need the following predicates to capture all
of the necessary information: msize(msz, schedule) = 0,
msize(msz, schedule) = 1, msize(msz, schedule) = 2,
i = 0, i = 1, and i = 2,

Modeling object fields and arrays. The program in Fig-
ure 3 renders an image containing several rectangles. For
each rectangle, it sets the relevant pixels to a given color. An
important correctness property is the consistency between
the list of rectangles and the array of pixels — if a pixel has
some color then there must be some rectangle at its position,
and vice versa. To verify this property, we need information
about (1) the values of the fields of Rectangle objects stored
in the list rectangles and (2) the values of specific elements
of the array pixels. Moreover, the information about objects
stored in the list rectangles must be preserved between the
calls of methods load and render.

We model the values of fields by expressions of the form
fread(f, o), where f is the field name and o is the object
variable, and the values of array elements by expressions of

List<Cyclist> cyclists = new ArrayList();

cyclists.add(new Cyclist(2, 3725, 5));
cyclists.add(new Cyclist(56, 3569, 10));
cyclists.add(new Cyclist(40, 3766, 50));

TreeMap<Integer,Cyclist> results = new TreeMap();

Iterator<Cyclist> cycIt = cyclists.iterator();
while (cycIt.hasNext()) {

Cyclist cl = cycIt.next();
results.put(cl.time - cl.bonus, cl);
}

Collection<Cyclist> resCyclists = results.values();
Iterator<Cyclist> resIt = resCyclists.iterator();

Cyclist bestCL = resIt.next();
int bestTime = bestCL.time - bestCL.bonus;
print(bestCL.id + ” ” + bestTime);

while (resIt.hasNext()) {
Cyclist cl = resIt.next();
int diff = cl.time - cl.bonus - bestTime;
print(cl.id + ” ” + diff)
}

Figure 4. Example: processing results of a cycling race

the form aread(arr, a, i), where a is an array variable and i
is the index. Arrays with multiple dimensions are modeled
by nested aread expressions.

The consistency property between the list of rectangles
and the array of pixels is expressed with the formula

∀x, y : (aread(arr, aread(arr,pixels, y), x) 6= 0⇒
(∃q : mget(map, rectangles, q) = r ∧ fread(top, r) ≤ y ∧
fread(top, r) + fread(height, r) ≥ y ∧ fread(left, r) ≤ x ∧
fread(left, r) + fread(width, r) ≥ x))

where the variable r points to a Rectangle object and q is a
logic variable.

Global predicates over object fields and constants allow
preserving information about collections between method
calls (inter-procedurally). Here, we use predicates of the
form mget(map, rectangles, c) = r, where the symbol c
denotes an integer constant — their truth values would be
set during the execution of the method load and used to
determine the property status in the method render.
Iteration and sorted collections. The program in Figure 4
takes as input the raw (unsorted) results of a cycling race
and prints the final results in a standard format — first the
winner’s name and race time, and then differences for all
other riders. The final results are printed correctly if the first
element of the map results with respect to the iteration order
has the smallest key.

The iteration order over a specific collection coll is mod-
eled with predicates of the form morder(mit, coll, q1, q2),
where q1 and q2 are keys in the map that represents coll.
The key k is the first one in the iteration order for the map
results if the predicate morder(mit, results,⊥, k) holds —
we use the symbol ⊥ also to capture iteration boundaries.
If the predicate morder(mit, results, resIt,⊥) holds for the
iterator variable resIt, then it has reached the end and any
additional call of next() would fail. Therefore, the property
¬morder(mit, results, resIt,⊥) must hold before every call
of next on the iterator to guarantee that an exception is not
thrown for an attempt to iterate over the end of the collection.

The map results is sorted correctly if for any two keys k1
and k2 such that the predicate morder(mit, results, k1, k2)
holds, it is also true that k1 < k2. Sorted collections are
implemented using the proper iteration order.

Note that the iterator resIt is associated with the collection
resCyclists that represents a list view of all values in the
map results. We model this association with the predicate
mvalues(mvs, results, resCyclists).

Nested collections. The program in Figure 5 models a sim-
ple data flow analysis. It involves two collections — a map
from integers to integer arrays that represents a control-flow
graph (IDs of nodes are mapped to successor nodes), and
a map from integers (node IDs) to sets that represent facts
associated with nodes.

Reasoning about the content of sets of facts that are
stored in the map cfgnode2facts is possible through formulas
like mget(map,mget(map, cfgnode2facts, id), e) = true,
where e is a particular data flow fact and id is an ID of
a node in the control-flow graph. Similarly, formulas like
aread(arr,mget(map, cfg, 2), 0) = 3 capture the content
of arrays stored in the map cfgnode2facts and thus enable
reasoning about the control-flow graph.

The association between the map cfg and the set cfg-
Nodes, which provides a view of the map keys, is captured
by the predicate mkeys(mks, cfg, cfgNodes).

Summary. The examples above show that the state of a
Java collection observable by a client program consists of
its content, size, iteration order, and views. These aspects of
collection state must be captured to allow precise reasoning
about the behavior of client programs.

In the rest of this section, we provide a more formal
description of our approach to modeling Java collections.

4.2 Abstract Maps
We define our modeling approach on abstract maps that
support specific operations and iterators over keys.

Each abstract map is a set of key-value pairs with a spe-
cific iteration order over the keys. The following operations
are supported: get, put, putAhead, remove, clear, size,
containsKey, containsValue, createIterator, keysView,
valuesView, and findKey. The operation putAhead(k, v, l)
inserts a new key-value pair (k, v) into the map such that

// control flow graph
// a map from node IDs to successor nodes’ IDs
Map<Integer, int[]> cfg = ... // initialization

// facts associated with cfg nodes
Map<Integer, Set<Integer>> cfgnode2facts = ...

// initialize with empty set of facts for each node
Set<Integer> cfgNodes = cfg.keySet();
Iterator<Integer> cfgIt = cfgNodes.iterator();
while (cfgIt.hasNext()) {

int nodeID = cfgIt.next();
cfgnode2facts.put(nodeID, new HashSet<Integer>());
}

List<Integer> queue = new LinkedList<Integer>();

queue.add(1); // start with the entry node

while (queue.size() > 0) {
int cfgnodeID = queue.remove(0);
Set<Integer> oldFacts = cfgnode2facts.get(cfgnodeID);

Set<Integer> newFacts = new HashSet<Integer>();
newFacts.addAll(oldFacts);
... // facts are updated in some way
cfgnode2facts.put(cfgnodeID, newFacts);

if (! oldFacts.equals(newFacts)) {
// update the queue based on CFG
int[] succ = cfg.get(cfgnodeID);
for (i = 0; i < succ.length; i++) queue.add(succ[i]);
}
}

Figure 5. Example: a simple data flow analysis

k precedes l in the iteration order. The operation findKey
returns a key for the given value. Views over maps are also
supported. The operation keysView returns a set of keys that
is associated with the map and the operation valuesView re-
turns a list of values.

Iterators are modeled using the iteration order over map
keys. The current position of a newly created iterator is
at the beginning of the iteration order (ahead of the first
key). The following operations on abstract iterators are sup-
ported: hasMore, getCurrent, and moveNext. The opera-
tion getCurrent returns a key such that the current iterator’s
position is behind the key.

In the rest of this section, we describe how Java collec-
tions are implemented using the abstract maps.

Maps. Map classes and interfaces provided by the Java col-
lection API directly correspond to the abstract map. Methods
defined by the interface java.util.Map are translated to opera-
tions supported by the abstract map in a natural way.

Iterators. The methods of the interface java.util.Iterator are
translated into sequences of operations upon abstract iter-
ators and maps. For example, the method remove, which
deletes the key-value pair at the current position, is imple-
mented via the operation getCurrent on the iterator and sub-
sequent remove on the associated map.
Sets. We model a set of elements of type T as an abstract
map with keys of type T and boolean values, where the
boolean value for a specific key indicates the presence of the
corresponding element in the set. The methods defined by
the interface java.util.Set directly correspond to operations
supported by the abstract map.
Sorted associative collections. In the case of Java classes
that provide the functionality of sorted maps and sets (e.g.,
TreeMap and TreeSet), all methods except addition of new
elements are translated directly into operations on the ab-
stract maps. The addition of a key-value pair (k, v) into a
map is modeled by a sequence of operations that consists
of two parts. The first step is to find the key l that would
be the immediate successor of k in the iteration order, and
the second step is to insert the new key-value pair using the
putAhead operation.
Lists. An ordered list of elements of type T is modeled
by an abstract map where the keys are positive integers
and the values have the type T . The keys do not represent
the positions of stored elements. Instead, the actual position
(index) of any element can be deduced from the iteration
order over keys. This approach eliminates the need to shift
many keys in the abstract map upon any modification of the
list — it is only necessary to update the set of key-value pairs
stored in the map and make a local change to the iteration
order.

The methods defined by the interface java.util.List are
translated into sequences of operations over the abstract
map. For methods that take an index argument (e.g., get(i)),
the sequence of operations has two parts — the purpose of
the first part is to find a key whose position is equal to the
value of the index argument, and the second part implements
the actual task using the operations supported by the abstract
map. For addition methods, the sequence also contains oper-
ations whose purpose is to find the smallest unused key that
could be associated with the new element. Internal tempo-
rary variables are used in the translation (e.g., to store the
key corresponding to a given index).

Other position-based collections, such as a queue or a
stack, are special cases of an ordered list, so they can be
modeled using an abstract map in the same way.

4.3 Client Programs
We define our modeling approach formally on programs
with the grammar in Figure 6. A program consists of one
or more classes, where each class has zero or more fields
and methods. The programs can use abstract maps and iter-
ators, integer and boolean variables, objects, field accesses,
and arrays. The grammar distinguishes between variables,

v ∈ Variables f ∈ FieldNames m ∈ MethodNames

Program ::= Class+ Class ::= T {Field∗ Method∗ } Field ::= T f

Method ::= T m(v, . . . , v){MethodBody } MethodBody ::= Stmt∗

e ∈ Expr ::= ic | true | false | null | v | e.f | e[e] | unop e | e binop e

Stmt ::= v := e | v := new C | e.f := e | v := new T[] | e[e] := e | assert e | Stmt ; Stmt | v := e.m(e, . . . , e) |
while e do Stmt | if e then Stmt else Stmt | v := new map | v := e.createIterator() |MapOper | IterOper

MapOper ::= v := e.get(e) | v := e.findKey(e) | v := e.size() | e.put(e, e) | e.putAhead(e, e, e) | e.remove(e) |
e.clear() | v := e.containsKey(e) | v := e.containsValue(e) | v := e.keysView() | v := e.valuesView()

IterOper ::= v := e.hasMore() | v := e.getCurrent() | e.moveNext()

Figure 6. Grammar of a client program

class names (types), field names, method names, and expres-
sions. The symbol ic represents an integer constant. Objects
can have fields of all supported types. Expressions of any
supported type can be used as keys and values in maps. In
particular, nested collections are supported because a map
can be used as a key or value in another map.

The grammar requires that the result of each method call
be saved into a variable. It does not allow using method calls
on maps and iterators directly in composite expressions such
as if (m.contains(k)) x = 5 or x = m.get(k) + 5. An example of
a valid code fragment is b = m.contains(k); if (b) x = 5.

4.4 Predicate Language
Information about the program state, including the observ-
able state of maps and iterators, is expressed by formulas in
first-order logic with the theory of linear arithmetic and the
array theory. The formulas are built from atomic predicates
over program variables. The domain of formulas is the set of
integer numbers. All other data types are translated into inte-
gers. References are modeled using integer values that rep-
resent memory addresses. Equality between reference vari-
ables models aliasing.

We introduce several function symbols and predicate
symbols for modeling the observable state of maps — mget ,
mupdate , msize , mresize, morder , mkeys , and mvalues .
All of these symbols are aliases for the functions select and
store defined by the array theory. The purpose of the aliases
is to explicitly indicate which aspect of the state of a map
is captured with the given predicate. We use special arrays
with the names map, msz, mit, mks, and mvs.

The function symbol mget is used to denote the presence
of a specific key-value pair in a given map. The expression
mget(map,m, k) returns the value associated with the key
k in the map m. The expression mupdate(map,m, k, v) re-
turns a new array that is equal to map except that the key k is
now associated with the value v in the map m. For example,
the truth value of the predicate mget(map,m, 1) = 5 says

whether the map m contains the key-value pair (1, 5). We
use predicates of the form mget(map,m, k) = ⊥ with the
special symbol⊥ to express the fact that the mapm contains
no value for the key k. Arbitrary nesting of function symbols
mget and mupdate is possible. The following axiom holds
for the symbols: mget(mupdate(map,m, k, v),m, k) = v.
The full content of some map (i.e., a set of the stored key-
value pairs) can be expressed using a conjunction of pred-
icates with the function mget . Information about a value
stored in a nested map can be expressed by a predicate of
the form mget(map,mget(map,m1, k1), k2) = v.

The function symbols msize and mresize are used to
model the size of a map. The expression msize(msz,m)
returns the current size of the map m. The expression
mresize(msz,m, sz) returns a new array that is equal to msz
except that the element corresponding to the current size of
the map m is set to sz . The following axiom holds for the
function symbols: msize(mresize(msz,m, sz),m) = sz.

We use the predicate symbol morder to model the iter-
ation order. The expression morder(mit,m, k1, k2) returns
true if the key k1 precedes the key k2 in the iteration or-
der for the map m. An iterator variable can be used as an
argument for the symbol morder to express the current po-
sition of a specific iterator. The truth value of the predicate
morder(mit,m, it , k) says whether the iterator’s current po-
sition is just ahead of the key k. Bounds are represented
by the ⊥ symbol. For example, the value of the expression
morder(map,m,⊥, 2) says whether the key 2 is the first
element in the iteration order for m. The key k is the last
element in the iteration order of the map m if the predicate
morder(mit,m, k,⊥) holds. The full iteration order for a
map can be expressed via a conjunction of predicates with
the symbol morder .

The predicate symbols mkeys and mvalues are used to
capture associations between maps and views. The expres-
sion mkeys(mks,m,ms) returns true if the map ms repre-
sents a set view of all keys in the map m. The expression

Our predicate language Array theory
mget(map,m, k) select(map,m, k)
mupdate(map,m, k, v) store(map,m, k, v)
msize(msz,m) select(msz,m)
mresize(msz,m, sz) store(msz,m, sz)
morder(mit,m, d1, d2) select(mit,m, d1, d2)
mkeys(mks,m,ms) select(mks,m,ms)
mvalues(mvs,m,ml) select(mvs,m,ml)
fread(f, o) select(f, o)
fwrite(f, o, e) store(f, o, e)
aread(arr, a, i) select(arr, a, i)
awrite(arr, a, i, e) store(arr, a, i, e)

Table 1. Translation from symbols introduced by our pred-
icate language to the array theory functions

mvalues(mvs,m,ml) returns true if the map ml represents
a list view of all values in the map m.

The symbol⊥ is modeled by a logic constant of an integer
type whose value is different from the values of all other
expressions that can appear in a given formula.

We model objects, fields, and arrays using the approach
described in [13], which is also based on the array theory.
For each field name, there is a one-dimensional array in-
dexed by objects that have the given field. The function ex-
pression fread(f, o) returns the value of the field f of the
object o and the expression fwrite(f, o, e) encodes update
of the field f in o with the new value e. Array accesses are
captured by the function symbols aread and awrite . The ex-
pression aread(arr, a, i) returns the element of the array a
with the index i. Nested arrays (with multiple dimensions)
are also possible. The value null of a reference type is mod-
eled by a logic constant of an integer type whose value is
different from the values of all other expressions that can ap-
pear in a given formula — in particular, it is different from
the constant that represents ⊥.

The value of a field f of an object stored in the mapm can
be expressed by the predicate fread(f,mget(map,m, k)) =
v. The symbol fread can be also used as an argument for
the function symbol mget . For example, the result of the
code fragment this.data.put(5,v) is captured by the predicate
mget(map, fread(data, this), 5) = v.

Table 1 summarizes the mapping from the function sym-
bols introduced by our predicate language to the functions
defined by the array theory.

Locality. We distinguish between predicates and formulas
that (1) refer only to constants and static fields, (2) refer
also to object fields, and (3) refer to all kinds of variables
including method local variables. Each formula is associated
with a certain scope — the whole program, a specific class,
or a specific method. Using different sets of predicates for
different scopes is important especially in cases where local

variables of the same name are used in two methods or two
classes define fields with the same name.

For each predicate and formula that is associated with
a specific method, we consider the actual scope inside the
method body in which it is relevant. A special case are
predicates over temporary variables used in the translation
from method calls on Java collections to operations on the
abstract maps and iterators. The scope of such a predicate is
the particular method call.

A very important feature of our predicate language is the
support for preserving information about objects and their
fields between method calls. However, this requires usage
of suitable predicates with respect to the scope of program
variables. Let p be a predicate that describes the content of
a map pointed to by a specific variable m. If the variable m
is defined as a field of some object and the information cap-
tured by p must be preserved between method calls (for the
whole lifetime of m), then other expressions referenced by
p must have at least the same scope as m. For example, con-
sider the predicates mget(map, fread(data, this), 2) = 3
and mget(map, fread(data, this), id) = 5, where id is a
local variable of some method mth . The information ex-
pressed by the first predicate is preserved for the whole life-
time of the map pointed to by this.data. On the other hand,
the information captured by the second predicate will not be
preserved after the exit from mth because of the local vari-
able id .

4.5 Modeling Statements by Weakest Preconditions
The execution of any statement, including operations on
abstract maps and iterators, may change the truth values of
some predicates that cover relevant aspects of the program
state. We distinguish two categories of supported operations
on maps and iterators associated with the maps: (1) updating
operations that change the observable state of the target map
m and possibly some other maps, and (2) query operations
that change the current value of a program variable that is
used to store the result of the operation. Maps other than
m can be changed by an updating operation because of
propagation between views and the underlying map — if
the operation changes the state of the map m, then it also
changes the state of maps that represent views over m and
maps over which m is a view.

We specify changes of the truth values of predicates using
weakest preconditions. They reflect the following:

• the semantics of the Java language, including assign-
ments to local variables, field accesses, and object con-
struction;
• the behavior of the Java collection API methods that is

described in the textual documentation;
• aliasing between reference variables, including map vari-

ables, and aliasing between map elements.

Statement s Predicate p WP (s, p)
r = m.get(k) r = e ∃qm : qm = m ∧ e = mget(map, qm, k)

m.put(k,v)

mget(map,m′, k′) = v′ mget(mupdate(map,m, k, v),m′, k′) = v′

msize(msz,m′) relop u
ite((m = m′ ∧mget(map,m′, k) = ⊥) ∨m 6= m′,
msize(mresize(msz,m,msize(msz,m) + 1),m′) relop u,
msize(msz,m′) relop u)

it.moveNext() morder(mit,m′, it ,⊥) ∃qk : (morder(mit,m′, it , qk) ∧morder(mit,m′, qk,⊥))

Table 2. Weakest preconditions: selected examples

As an illustration, Table 2 shows the weakest precondi-
tions for selected combinations of the statements of the lan-
guage from Figure 6 and predicates about map content. The
symbols qk and qm denote logic variables. The construct
ite(a, b, c) is defined as ite(a, b, c) ≡ (a ∧ b) ∨ (¬a ∧ c).
The logic variable qm is used in the weakest precondition
for the statement r = m.get(k) and the predicate r = e to
capture aliasing between maps. In the case of the statement
m.put(k,v), the weakest preconditions capture aliasing im-
plicitly based on whether the symbols m and m′ have equal
values and point to the same element of the underlying array
(map or msz).

The complete definition of the weakest preconditions for
all statements and predicates is in Appendix A.

5. Construction of Abstract Programs
An abstract program is constructed from the following in-
put: the original Java program, a set PI of predicates over
program variables, and a set of properties.

We assume that one set of predicates is defined for the
whole input program, and this set applies to every state-
ment. The properties are defined as logic formulas built from
atomic predicates defined in our language. Each property is
associated with specific code locations in the input program.
For example, there can be a property o 6= null in front of a
field access on a specific object variable o.

Abstract programs are Java programs in which the only
primitive data type is boolean. The programs use methods
provided by the Java Pathfinder API — most notably the
method getBoolean of the Verify class, which returns the
non-deterministic boolean value unknown, and the call Ver-
ify.assertTrue(false) that represents a violated assertion.

The process of abstraction preserves all classes defined
in the original program (i.e., custom non-library data types).
An abstracted method is generated for each method in the
original program.

We adapt existing techniques for the construction of ab-
stract programs [2, 3] that were introduced for the C lan-
guage. We summarize the basic approach first and then dis-
cuss modifications and aspects specific to our approach.

Basic approach. Each predicate p in the set PI is repre-
sented with a boolean variable (an object field or a method
local variable) in the abstract program, which encodes the

truth value of p. The control flow structures in the original
Java program are preserved in the abstract program. Sup-
port for exceptions is very limited — throwing an exception
is modeled as an unconditional error (assert false). Assign-
ment statements and method calls on collection objects are
replaced with their abstraction in the way described below.

Using the terminology of [3], the abstraction algorithm
that we use is based on computing the abstract ”post” opera-
tor for every statement in every method of the input program.

Each statement s in the original program is processed
separately. First, a set Ps ⊆ PI of predicates about the
program state whose truth values may be changed due to
the execution of s is identified. For each predicate p ∈ Ps,
the set Ps,p ⊆ PI of predicates that may determine the new
truth value of p is also identified. The sets Ps and Ps,p are
identified based on the semantics of s. For example, when
processing the statement x := e, it is necessary to update
all predicates over the variable x (and possible aliases of x)
based on the predicates over the expression e. We present the
algorithm for selecting relevant predicates in Section 5.1.

The abstraction of the statement s contains code that
updates boolean variables that represent predicates in Ps.
It has the form of a sequence of if-else statements, where
one such statement is generated for each predicate p ∈ Ps.
The if-else statement for p represents a truth table over the
set Ps,p. It contains branches that correspond to cubes over
Ps,p. A specific cube over Ps,p is the set ν(Ps,p) that for each
pi ∈ Ps,p contains either pi or ¬pi. Every branch contains
an assignment statement that sets a new value of the boolean
variable bp that represents p.

The new value of the variable bp (i.e., the new truth
value of p) in a particular branch of the if-else statement
is computed based on the weakest precondition WP(s, p)
and the cube ν(Ps,p) in the way described in Section 3.
One call of the decision procedure (an SMT solver) is made
for every cube over Ps,p that must be considered. We de-
scribe in Section 5.1 which cubes may be safely pruned.
The input for a call of the decision procedure is the formula∧
ν(Ps,p)∧Faux ⇒WP(s, p), where the symbol Faux rep-

resents auxiliary formulas (see below).
For each property, the code if (!b) Verify.assertTrue(false)

is generated at the corresponding location in the abstract
program, where b is a boolean variable that contains the truth

value of the property formula. It is derived from the values
of the boolean variables that represent atomic predicates in
the property formula.
Auxiliary formulas. We use auxiliary formulas to express
general properties and semantics of the Java language, in-
cluding its type system and heap model, and the semantics
of abstract maps. They capture properties and semantics that
are not specific to any statement s or predicate p, and be-
cause of that they are not a part of the weakest preconditions.

We define auxiliary formulas to capture the following
semantic constraints:

• program variables of different types cannot be equal —
this applies especially to pairs of integer variables and
map variables, which can both appear as map values (as
v in the predicate mget(map,m, k) = v), and to pairs of
integer variables and iterator variables, which can be used
as the last two arguments in morder(mit,m, d1, d2);
• the symbols ⊥ and null cannot be equal to any program

variable or any integer constant explicitly used in the
program, and they must differ from each other;
• the predicate mget(map,m, k) = ⊥ is true if no predi-

cate specifying a value for the key k in the map m is true
in the current program state;
• if some predicate that specifies a value for the key k in

the map m is true in the current program state, then the
predicate mget(map,m, k) = ⊥ cannot be true;
• the iteration order over a map is an anti-symmetric rela-

tion, i.e., if the predicate morder(mit,m, k1, k2) is true
then morder(mit,m, k2, k1) cannot be true.

The constraints enforce a semantically correct heap model,
where distinct objects have different heap addresses.

In addition, we use auxiliary formulas to restrict the val-
ues of logic variables used in the weakest preconditions.
For each logic variable q in WP(s, p) and a specific cube
ν(Ps,p), expressions that can instantiate q are identified by
syntactic matching between predicates in the cube and pred-
icates in WP(s, p). The formulas permit q to get the value e
only if q and e have matching positions in some predicates
and the relevant elements of the cube evaluate to true.
Aliasing. For every statement upon a target variable v of a
reference type in the input program (e.g., a field access or
a method call), the abstract program contains the code that
updates the truth values of relevant predicates over v and
predicates over other variables that may be aliased with v.
The variables possibly aliased with v are taken from equality
predicates of the structure v = w, where the symbol w
represents some other program variable of a reference type.
Our weakest preconditions guarantee that aliasing between
variables is reflected correctly.
Views over maps. The abstract program must also correctly
reflect updates of views for any given mapm. Each update of
the mapmmust be propagated to all views overm, and each

update of some view over the map m must be propagated to
m and all other views.

We implemented the propagation of changes between
views and the underlying map by generating code that is
driven by truth values of predicates with the symbols mkeys
and mvalues . The following code is generated for the op-
eration m.put(k,v), where ms1, . . . ,msN and ml1, . . . ,mlN
are possible views overm such that the corresponding predi-
cates mkeys(mks,m,ms) and mvalues(mvs,m,ml) exist:

m.put(k,v)
if (mkeys(mks,m,ms1)) ms1.add(k)
...

if (mkeys(mks,m,msN)) msN.add(k)
if (mvalues(mvs,m,ml1)) ml1.add(v)
...

if (mvalues(mvs,m,mlN)) mlN.add(v).
Boolean variables representing the predicates over mkeys
and mvalues are used in the actual code.

The statements m.remove(k) and m.clear() are abstracted
in a similar way.

Method calls. The process of abstraction preserves calls of
methods defined in the program (i.e., non-library methods).
Every abstracted method has boolean parameters that corre-
spond to predicates over parameters of the original method,
and it may return multiple boolean values that correspond
to predicates over the expression returned from the original
method. Abstractions for method calls and returns are gen-
erated using a similar approach to the one described in [2].

For each method call in the abstract program, the actual
parameter values in the abstracted caller are derived from
the truth values of predicates over the actual parameters
in the original caller. The returned values correspond to
the truth values of the predicates over the variable used to
store the result of the method call (result variable) in the
original caller, and they are derived from the predicates over
the returned expression in the original callee. Multiple truth
values are returned in a bit vector that is implemented using a
single integer. Output parameters (collections and reference
variables that may be updated in the callee) are handled in
the same way as returned expressions and result variables.

We consider inheritance, method overriding, and inter-
faces with their implementing classes. For every call site,
the abstract program contains a non-deterministic choice be-
tween all methods that can be invoked.

Library methods are conservatively approximated in such
a way that all boolean variables representing predicates over
fields and the result variable are set to the value unknown.

Predicate locality. For every statement s in the methodm in
the original program, only those predicates over local vari-
ables of m whose scope includes the statement s (i.e., pred-
icates live at s) are considered by the abstraction algorithm.
The predicate p is live at s only if all local variables referred
to by p are live at s. If the variable v is live at s, then every
program variable that may be aliased with v is also live at s.

The scope for every predicate in the set PI is determined
using static analysis of the original program code. A few
restrictions apply to predicates over collections. A predicate
over an iterator variable it and a map variable m is live
only if the iterator it is associated with m at the given
code location. The scope of a map variable (collection) must
enclose the scope of iterator variables related to the map. A
local variable v used as an argument for the operations put
and putAhead on a local map variable m is live between the
point of the first usage of v and the end of m’s lifetime.

Precision. The generated abstract program is an over-
approximation of the original Java program (in general). It
captures all execution paths of the original Java program (in
particular all errors), and possibly some additional execu-
tion paths that are not feasible for the original program. The
number of additional infeasible execution paths depends on
the input predicates.

5.1 Optimizations
The overall performance of the construction of an abstract
program depends on the number of calls to the decision pro-
cedure, which are expensive. In this section, we describe op-
timizations that exploit (i) the structure and semantics of for-
mulas that capture program state using the predicates defined
in our language, and (ii) the semantics of operations upon ab-
stract maps and iterators. The main goal of these optimiza-
tions is to reduce the number of calls to the decision proce-
dure by (1) creating small sets Ps and Ps,p, and (2) pruning
some cubes over Ps,p. A secondary goal, but also important,
is the reduced complexity of the generated abstract program
and the elimination of some spurious execution paths (that
are not feasible in the original program). We also adapt the
optimizations proposed in [2] to our predicate language.

Selecting relevant predicates. For every operation oper on
an abstract map or an abstract iterator, there is a set Poper

of predicates whose truth value must be updated to simulate
the effects of oper ’s execution.

If the operation oper has a return value, the set Poper

contains predicates over the variable r used to store the
return value and all variables that may be aliased with r.
This applies, for example, to the operation v = m.get(k).

If the operation oper updates the map content or iterator
position, then the set Poper contains predicates over the
target variable (a method call receiver) and all other variables
aliased with it.

For the particular operation oper and each predicate p ∈
Poper , the set Poper ,p of predicates that determine the new
truth value of p is a subset of PI that depends on the weak-
est precondition WP(oper , p). More specifically, the set
Poper ,p contains the following predicates:

• every predicate in PI that matches some atomic predicate
in the weakest precondition,

• every predicate in PI that has a common operand with
some predicate in the weakest precondition, and
• every equality predicate in PI that refers to a variable

used as an argument for the function symbol mget or for
the predicate morder in the weakest precondition.

We use simple syntactic matching (unification) between
predicates. The matching procedure considers also aliasing
between variables. A logic variable in the weakest precondi-
tion can match any program variable or a constant value. A
program variable can match any constant of the same type.
Temporary variables used in the translation from Java col-
lections to abstract maps match integer expressions.

Conflicting literals. The first optimization is to prune cubes
over Ps,p that include conflicting literals. It was inspired by
the ”enforce” construct described in [2].

Two or more literals in the given cube ν(Ps,p) are con-
flicting if they cannot be simultaneously true. For example,
the predicates v = 3 and v = 5 are conflicting because the
variable v cannot be equal to two different constants at the
same time. Similarly, the predicates morder(mit,m, 2,⊥)
and morder(mit,m, 3,⊥) are conflicting because only one
key stored in the map m can be at the end of the iteration
order for m.

We define tuples of conflicting literals that express the
following inherent semantic properties of abstract maps and
iterators: (i) only a single value or ⊥ can be associated with
a given key k, (ii) there exist unique first and last elements
in the iteration order, (iii) each element must have a unique
predecessor and successor in the iteration order, (iv) and only
keys stored in the map can appear in the iteration order. In
addition, we define a tuple of literals as conflicting when
one element of the tuple is true only for an empty map and
some other element is true only for a non-empty map. This
applies, for example, to the literals mget(map,m, k) 6= ⊥
and morder(mit,m,⊥,⊥).

Conflicting literals are reflected as follows in the abstract
program. When generating the abstraction for the operation
oper and the updated predicate p, cubes over the set Poper ,p

that contain any conflicting literals are pruned. Code that
forces JPF to backtrack is generated for the pruned cubes.
We eliminate spurious execution paths (and errors) in this
way too, because it cannot happen during the execution of
the original program that two conflicting literals are simulta-
neously true in any state of the program.

This optimization significantly reduces the number of
calls to the decision procedure and the size of the abstract
program, because typically many cubes over Ps,p contain
pairs of conflicting literals.

Irrelevant cubes with respect to aliasing relationship. We
exploit aliasing between map variables to prune additional
cubes. Suppose that a statement s affects a map variable m
that may be aliased with another map variable m2, and pi is
some predicate over m2 in Ps,p. We prune every cube over

Ps,p that contains both of the literals ¬(m = m2) and pi. It
is sound to prune such a cube because the predicate pi over
m2 is not relevant when m and m2 are not aliased.

Ambiguous information. We also prune cubes that give
ambiguous information about the values of the temporary
variables used in the translation from Java collections to
abstract maps. A cube over the set Ps,p gives ambiguous
information about the value of a temporary variable tv if for
every predicate tv = c inPs,p, where c is an integer constant,
the cube contains the literal ¬(tv = c). For example, if the
cube contains only the literals ¬(tv = 1) and ¬(tv = 2) for
tv , then it does not specify a precise value for tv .

This optimization is sound because temporary variables
must have a precise value in any reachable state of the
abstract program due to the way we designed the translation
from Java collections to abstract maps. Code that forces JPF
to backtrack is generated for every ambiguous cube.

6. Evaluation
In this section, we describe the prototype implementation of
our approach and present results of experiments with several
benchmark programs.

6.1 Implementation
We implemented the predicate language and the algorithm
for the construction of abstract programs, including all of the
optimizations, in our J2BP tool [43]. The tool generates an
abstract program in Java for an input client program, a set of
properties defined as logic formulas, and a set of predicates.
It uses the WALA library [46] to analyze the input Java
program, the ASM library [42] for bytecode generation, and
the Yices SMT solver [47] for checking satisfiability of logic
formulas. Java Pathfinder (JPF) [44] is used for verification
of the generated abstract programs.

Formulas representing input properties can include quan-
tifiers over logic variables. Our tool eliminates quantifiers in
property formulas based on the possible values of the logic
variables that are identified by syntactic matching over the
set of input predicates. Each sub-formula with an existen-
tial quantifier over the logic variable q at the root level is
replaced with a disjunction where each clause is an instanti-
ation of the original sub-formula with a particular value of q.
A conjunction of such clauses is used as a replacement for a
universal quantifier.

Our implementation supports classes from the Java col-
lection library and their methods that can be modeled using
abstract maps and operations upon them as described in Sec-
tion 4.2. The calls of methods like List.containsAll, which are
not supported yet, must be replaced with loops that imple-
ment them before running J2BP.

Artificial temporary return variables are used for process-
ing composite expressions that involve method calls in cases
where the result of a method call is not stored in an explicitly
defined variable. This applies, for example, to expressions

such as m.values().iterator() and m.get(k) + 2. The names of
these artificial return variables start with the prefix ”tmpr ”
and they can be referenced from the predicates.

6.2 Benchmarks
We evaluated our approach on two groups of Java programs
that use collections in advanced ways: (1) small programs
created by Dillig et al. [17] as a testbed for verification tools,
and (2) the example programs from Section 4.1.

The programs created by Dillig et al. contain various
assertions that concern values stored in the collections. We
translated the programs from C++ into Java and replaced all
variables and constants of the string type with integers. The
properties for our example programs are defined externally,
i.e., not as assertions embedded in the source code, but in
separate files. All benchmarks, including our translation of
programs created by Dillig et al., are available at http:
//plg.uwaterloo.ca/˜pparizek/oopsla12.

Table 3 provides a short description of the properties
that we tried to verify for each benchmark program and
the size of the programs in terms of Java code lines. As an
example, Figure 7 shows the code of the program named
”Relationship between keys and values” in the table. The
program adds several key-value pairs into the map m — three
mappings with fixed keys (1-3) and one mapping with the
key equal to the parameter s. Assertions check whether the
map m contains the right key-value pairs depending on the
value of the parameter s. If the value of s is 1, then the map
should contain the key-value pair (1,56), and otherwise it
should contain the key-value pair (1,3).

6.3 Experiments and Results
The goal of our experiments was to find out (1) whether our
predicate language has sufficient expressive power to allow
the verification of the properties defined for the benchmark
programs, and (2) how many predicates are needed to cap-
ture all of the necessary information about the state of col-
lections and other program variables.

For the purpose of the experiments, we defined all of
the predicates by hand. We are currently working on an
automated procedure for the inference of predicates about
collections.

We bounded the maximal size of collections that is con-
sidered by the verification procedure, and defined predicates
that reflect this bound. Restricting the size of data structures
is a common approach used by many testing and verification
techniques [11, 26, 39]. Note, however, that our approach is
general and can be used to model collections of any finite
size (provided that the corresponding predicates are avail-
able). For the purpose of our experiments, we set the bound
such that all execution paths of the benchmark programs are
verified.

All of the properties defined for the benchmark programs
were successfully verified using predicates defined in our
language. Quantitative results of the experiments are shown

Program Property Java LOC
Dillig et al.

List copy equality between lists 35
Map copy equality between maps 39
Reverse map correctly reversed input map 40
Set of map keys a set contains exactly all map keys 29
Map of lists correct size and content of nested lists 36
List of sets valid content of nested sets after updates 35
Multimap correct size and content of nested sets 29
Map values map contains only non-null values 40
List elements elements are not aliased 43
List of key-value pairs equality between a list and a map 54
Relationship between keys and values valid content of a map after updates 31

Examples from Section 4.1
Thread scheduling object variables are not null 54
Rendering image consistency between a list and an array 61
Processing results of a cycling race correctly sorted map 57
Simple data-flow analysis set of facts exists for every CFG node 63

Table 3. Benchmark programs and verified properties

Program Predicates J2BP time SMT calls Bytecode JPF time States
Dillig et al.

List copy 43 146 s 2086 5862 1 s 91
Map copy 35 79 s 1114 2721 1 s 315
Reverse map 54 332 s 3854 8239 1 s 595
Set of map keys 33 21 s 312 1516 1 s 63
Map of lists 77 14769 s 111331 88414 2 s 283
List of sets 54 958 s 10836 27347 1 s 25
Multimap 26 180 s 2566 4606 1 s 175
Map values 54 477 s 6224 18955 1 s 9
List elements 52 643 s 8456 12488 1 s 29
List of key-value pairs 78 302 s 3324 6328 1 s 945
Relationship between keys and values 6 9 s 198 695 1 s 29

Examples from Section 4.1
Thread scheduling 30 52 s 782 2844 1 s 67
Rendering image 65 2612 s 20272 16827 17 s 120871
Processing results of a cycling race 104 6654 s 67390 85178 9 s 51739
Simple data-flow analysis 74 978 s 11344 11761 1 s 177

Table 4. Experimental results

in Table 4. For each benchmark program, we provide the
number of predicates that were used, the running time of the
J2BP tool (construction of the abstract program), the number
of calls to the SMT solver during construction of the abstract
program, size of the generated abstract program in terms
of the number of bytecode instructions, the running time of
JPF (exhaustive verification of the abstract program), and the
number of states explored by JPF. The number of predicates
is equal to the number of boolean variables in the generated
abstract program. The number of states explored by JPF in-

dicates the number of non-deterministic choices in the ab-
stract program. The actual predicates and property formulas
used for each benchmark program are available at http:
//plg.uwaterloo.ca/˜pparizek/oopsla12.

Returning to the program in Figure 7, the assertions in the
program code were expressed by the formulas i = 3 and i =
56, and the following six predicates were necessary to verify
them: s = 1, mget(map,m, 1) = 3, mget(map,m, 1) =
56, mget(map,m, 1) = ⊥, i = 3, and i = 56.

public static void bar(int s) {
Map<Integer,Integer> m = new HashMap();

m.put(1,3);
m.put(2,9);
m.put(3,34);
m.put(s,56);

m.remove(3);

int i = m.get(1);
if (s != 1) {

assert (i == 3) : ”m.get(1) != 3”;
}
else {

assert (i == 56) : ”m.get(1) != 56”;
}
}

public static void main(String[] args) {
bar(8);
bar(2);
}

Figure 7. Benchmark program: relationship between keys
and values

The measured running times indicate that more work re-
mains to be done to improve the performance and scalability
of the construction of abstract programs. This is one of our
goals for future work.

7. Related Work
We describe selected existing approaches to modeling pro-
gram behavior and reasoning about it that explicitly consider
data structures and collections in some way. For each ap-
proach, we discuss the main differences from our work.

7.1 Contract Specification Languages
There exist specification and modeling languages for object-
oriented programs that allow to define valid functional be-
havior in terms of contracts for individual methods and ob-
ject invariants. We collectively call them contract specifica-
tion languages. Popular examples are JML [30], Spec# [5],
and Dafny [31].

A contract for a method consists of a precondition and a
postcondition. Each class can be equipped with an invariant
that must hold for every object of the class before and after
the call of any method on the object. Contracts are defined as
logic formulas that refer to program variables, model vari-
ables and functions, and abstract data types (e.g., sets and
sequences). Method postconditions can also involve special
constructs for accessing (i) values that were current at the
time of a method call and (ii) the return value. The contract
languages support basic set operations on the respective data

types, accessing sequence elements by their index, and get-
ting the current size of a given collection.

The motivation behind contract specification languages
such as JML and Spec# is to permit modular verification
(i.e., one method at a time). Let the method m1 be equipped
with a contract and the method m2 be the caller of m1.
The implementation of m1 must first be verified against its
contract. Later, in the verification of m2, the contract for m1

can be used as an abstraction of its behavior.
Verification tools for the contract specification languages

have been developed — for example, ESC/Java for JML [15,
19], Boogie for Spec# [4], and the verifier for Dafny [31].
We focus on the ESC/Java tool as it targets Java programs. It
detects simple errors like null dereferences and array index
bound violations, and it also checks whether methods satisfy
their contracts defined by the user and whether they preserve
all invariants. The verification algorithm consists of two big
steps: a verification condition is generated from the method’s
code, and then an automatic theorem prover is used to check
the verification condition.

Modular verification of contracts is very scalable but it
reports false errors. The result depends very much on the
precision and the completeness of the user-defined contracts
(annotations) — the user must write many annotations to
capture the necessary information and eliminate spurious
warnings.

Comparison. The main limitations of method contracts are
that they can be associated only with method boundaries, and
that they cannot refer to local variables. It is not possible to
use contracts for expressing the value of a specific variable
at an arbitrary program location. Moreover, an invariant de-
fined for a class C can describe the valid states of a single
object o of the class and the objects pointed to by the fields
of o (i.e., objects owned by o), but it cannot specify the re-
lation between the fields of o and the values of completely
unrelated variables (e.g., fields of a different object).

In our approach, predicates and properties can capture in-
formation about the values of local variables, and they can
express the current value of any variable at any program
code location. Properties built using our predicate language
can specify a relation between collections from different ob-
jects — this is an important prerequisite for expressing con-
sistency properties between multiple collections. For exam-
ple, our approach allows defining a consistency property be-
tween a collection local to some method m of an object o
and a collection pointed to by some field of o, which should
hold at a particular location in m.

Regarding verification, our approach is not modular un-
like the algorithm used by ESC/Java. We aim at path-
sensitive inter-procedural analysis of the whole program.

7.2 Logics for Data Structures
There exist many logic-based approaches to modeling data
structures and collections. Sets and maps (hash tables) are

typically modeled using the array theory [12]. However, our
approach to modeling maps differs from the encoding of
hash tables described in [12, Section 7.3] in the following
aspects: (1) we do not support set operations over keys, (2)
we support predicates over map size and iteration order, and
(3) we support views of stored keys and values. Some ap-
proaches also support lists and other data structures. For ex-
ample, the theorem prover Z3 [36] supports lists and trees
defined recursively in a way that resembles modeling col-
lections at the representation level. A first-order theory of
sequences based on concatenation was proposed in [20]. It
supports lists defined in the recursive style. A decidable ver-
sion of this theory does not support indexed access to ele-
ments and therefore does not allow updating of individual
elements, but it supports membership queries and various
properties over the whole sequences (e.g., sortedness and
partitioning).

Kroening et al. [45] propose theories for reasoning about
finite sets, maps, and lists in the context of the SMT-Lib stan-
dard [38]. Their work has similar goals to our approach, i.e.
modeling externally observable state of various collections.
However, we focus on designing a predicate language suit-
able for program verification, while the authors of [45] pro-
pose general theories. The main difference between their ap-
proach and ours is that we use the array theory instead of
defining new custom theories, and therefore logic formulas
built using our predicate language can be checked with ex-
isting SMT solvers that support the array theory. Regarding
specific features, the approach of Kroening et al. supports
basic set operations like union and intersection, but it has
no support for iterators. It allows defining sets and lists by
enumeration of elements, but that can be simulated via con-
junctions of atomic predicates in our approach.

Powerful logics and complex theories for representing
data structures and checking properties about them were re-
cently proposed [27, 33]. The STRAND logic [33] allows
reasoning about heap data structures and the values stored in
them. However, such complex logics are not needed for (1)
modeling collections at the interface level and (2) verifica-
tion of programs that use collections against the properties
that we are interested in.

7.3 Program Verification
In this section, we describe program verification techniques
that model collections at the interface level in some way, and
techniques that could be used for this purpose.

Blanc et al. [8] proposed a technique for checking whether
a C++ program uses STL containers correctly with respect
to preconditions and postconditions of individual methods.
Their approach focuses on position-based containers and it-
erators. It does not support maps, sets, and nested containers.

Kapur et al. [24] proposed a method for verifying pro-
grams that use data structures through interface functions
assuming a correct implementation of these data structures.
The method is based on abstraction refinement (CEGAR),

and it uses interpolants with symbolic execution to find new
predicates. It has the same goals as our overall approach, but
in [24], the authors focused on computing interpolants for
the various theories rather than on faithful modeling of col-
lection state and behavior. Library methods are abstracted
with formulas that express transition relations — they spec-
ify, for example, how the return value of a method depends
on the parameter values. Strong updates are possible through
functions that return a modified data structure, but the ab-
straction does not make it possible to capture side effects. To
capture the behavior of Java collections precisely, it is nec-
essary to model side effects such as increasing the collection
size upon addition of a new element.

An optimization of symbolic execution that models col-
lections at the interface level was proposed in [26]. The nec-
essary information about the collection state is captured in
terms of sets of actual elements and the operation contains.
It supports only maps and sets, and not ordered lists.

The static technique proposed by Dillig et al. [17] com-
putes information about the possible content of collections
during a program run at the level of individual elements, and
uses this information for checking memory safety of C++
programs. It uses a unified abstract model of position-based
containers and associative containers. It supports iterators
and nested collections. The content of a particular collection
can be expressed by a graph, where nodes represent collec-
tions (heap structures) or atomic values and edges represent
the containment relation. Constraints on indexes that are at-
tached to edges indicate possible associations between keys
(indexes) and values — for each possible (tracked) value the
constraints define positions at which it may be stored. The
main limitations of this technique compared to our approach
are the following: (1) each analysis fact can give informa-
tion only about the content of a particular collection and all
collections nested in it, and (2) it cannot maintain precise
information about collection size. In our approach, a single
formula that uses predicates defined in our language can de-
scribe the content of multiple separate collections (that are
not in the nesting relation).

Program verification techniques and tools that model col-
lections at the representation level were also published. For
example, the Jahob verification system proposed by Zee et
al. [40, 41] analyzes the whole Java program at the pointer-
level with the goal of proving correctness of individual meth-
ods with respect to some specification of their functional be-
havior. It supports a very powerful language for specifying
properties and integrates various reasoning tools (automated
SMT solvers and interactive theorem provers). The verifica-
tion procedure of Jahob is modular such that preconditions
and postconditions of already checked methods are used to
verify their callers. It involves automated generation of veri-
fication conditions (proof targets), but users may be required
to provide hints.

Other techniques aim at verifying programs that manip-
ulate linked lists and dynamically allocated memory. They
model lists at the pointer level and impose some restrictions
on the programs that they can verify. For example, the ap-
proach proposed in [9] works only for programs that do not
access data stored in the lists at all or that only compare data
in some nodes (for sorting purposes). Lahiri and Qadeer pro-
posed a logic for specifying properties over linked lists and
a decision procedure for checking programs in a subset of
C against such specifications [29]. This approach supports
only loop-free and call-free programs that use explicit deal-
location. All loops must be unrolled and method calls must
be inlined (or replaced with their preconditions and postcon-
ditions). It does not support library calls. The logic allows
to specify invariants over the content and structure of linked
lists (e.g., whether they are sorted) and properties related to
memory safety.

7.4 Predicate Abstraction for Collections and the Heap
Some work has also been done in shape analysis techniques
based on predicate abstraction. These techniques work upon
the heap graph, i.e. upon the pointer-level representation of
data structures. The key idea of [37] is to encode the heap
graph by special predicates that express pointer relations be-
tween objects (i.e., edges in the graph). The approach pro-
posed by Dams and Namjoshi [16] uses predicates that can
express the reachability of an address a2 from the address
a1, and performs shape analysis via model checking of the
predicate abstraction of a given program.

8. Conclusion
We have proposed an approach for modeling the state and
behavior of Java collections observable from client pro-
grams, which is based on predicates and abstract maps with
iterators. It captures all of the important features of Java col-
lections, including the following: iteration order, size, views,
aliasing between elements, and nested collections.

We use the model of Java collections based on maps
and the predicate language to verify interesting properties
of client programs by means of predicate abstraction. The
predicate language has sufficient expressive power to cap-
ture the information necessary for successful verification of
properties that depend on the collection state, as we illus-
trate in the results of our experiments and in the examples
in Section 4.1. Note that all of the features of the predicate
language are required for this purpose.

Future work. Our main priorities for future work are the
following: (1) automated inference of predicates about col-
lections that are needed to verify a given property, and (2)
further improving the performance and scalability of con-
structing abstract programs. We aim at inference of predi-
cates that would yield a sufficiently precise abstraction, for
which the model checker reports no spurious errors and finds
real errors (if any exist in the original input program).

We also plan to improve the practical usefulness of our
tool chain by supporting projection of error traces back to
the source code of input programs. Another possible direc-
tion is the usage of our tool in existing CEGAR-based ver-
ification frameworks [14] — this would require support for
automated checking whether an error trace is spurious and
identification of predicates that can be used to eliminate the
given spurious error trace from the abstract program.

In the long term, we plan to use the proposed predi-
cate language in other program verification and bug find-
ing techniques. For example, the weakest preconditions that
we defined could be used in backward symbolic execution
that aims at efficient bug finding [13]. Another option is
to use the predicates as elements of an abstract domain in
static analysis (abstract interpretation). We could extend the
technique described in [32], which aims to verify the cor-
rectness of dereferences using weakest preconditions and
backward data flow analysis, so that it handles collections
more precisely. We might also consider interpolation-based
model checking procedures [22, 24, 35] that construct the
abstraction on-the-fly during the traversal of the program
state space.

Finally, we would like to extend the predicate language
with support for set operations over the content of maps,
assuming that a map is actually a set of key-value pairs.

Acknowledgments
This research was supported by the Natural Sciences and
Engineering Research Council of Canada and the Ontario
Ministry of Economic Development and Innovation.

References
[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,

C. McGarvey, B. Ondrusek, S.K. Rajamani, and A. Ustuner.
Thorough Static Analysis of Device Drivers. In Proceedings of
EuroSys 2006, ACM.

[2] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Auto-
matic Predicate Abstraction of C Programs. In Proceedings of
PLDI 2001, ACM.

[3] T. Ball, A. Podelski, and S.K. Rajamani. Boolean and Cartesian
Abstraction for Model Checking C Programs. In TACAS 2001,
LNCS, vol. 2031.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and R.
Leino. Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. In FMCO 2005, LNCS, vol. 4111.

[5] M. Barnett, R. Leino, and W. Schulte. The Spec# Programming
System: An Overview. In CASSIS 2004, LNCS, vol. 3362.

[6] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,
T. Wies, and H. Yang. Shape Analysis for Composite Data Struc-
tures. In CAV 2007, LNCS, vol. 4590.

[7] J. Bingham and Z. Rakamaric. A Logic and Decision Procedure
for Predicate Abstraction of Heap-Manipulating Programs. In
VMCAI 2006, LNCS, vol. 3855.

[8] N. Blanc, A. Groce, and D. Kroening. Verifying C++ with STL
Containers via Predicate Abstraction. In ASE 2007, ACM.

[9] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and
T. Vojnar. Programs with Lists Are Counter Automata. In CAV
2006, LNCS, vol. 4144.

[10] A. Bouajjani, C. Dragoi, C. Enea, A. Rezine and M. Sighire-
anu. Invariant Synthesis for Programs Manipulating Lists with
Unbounded Data. In CAV 2010, LNCS, vol. 6174.

[11] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
Testing Based on Java Predicates, In ISSTA 2002, ACM.

[12] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s Decidable
About Arrays?. In VMCAI 2006, LNCS, vol. 3855.

[13] S. Chandra, S.J. Fink, and M. Sridharan. Snugglebug: A Pow-
erful Approach to Weakest Preconditions. In PLDI 2009, ACM.

[14] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement, In CAV 2000,
LNCS, vol. 1855.

[15] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML,
In CASSIS 2004.

[16] D. Dams and K. Namjoshi. Shape Analysis through Predicate
Abstraction and Model Checking. In Proceedings of VMCAI
2003, LNCS, vol. 2575.

[17] I. Dillig, T. Dillig, and A. Aiken. Precise Reasoning for Pro-
grams Using Containers. In Proceedings of POPL 2011, ACM.

[18] D. Distefano and M. Parkinson. jStar: Towards Practical Ver-
ification for Java. In Proceedings of OOPSLA 2008, ACM.

[19] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J.B. Saxe,
and R. Stata. Extended Static Checking for Java, In Proceedings
of PLDI 2002, ACM.

[20] C.A. Furia. What’s Decidable about Sequences?. In ATVA
2010, LNCS, vol. 6252.

[21] S. Graf and H. Saı̈di. Construction of Abstract State Graphs
with PVS. In Proceedings of CAV 1997, LNCS, vol. 1254.

[22] M. Heizmann, J. Hoenicke, and A. Podelski. Nested inter-
polants. In POPL 2010, ACM.

[23] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. In Proceedings of POPL 2002, ACM.

[24] D. Kapur, R. Majumdar, and C.G. Zarba. Interpolation for
Data Structures. In Proceedings of FSE 2006, ACM.

[25] S. Khurshid, C.S. Pasareanu, and W. Visser. Generalized Sym-
bolic Execution for Model Checking and Testing. In TACAS
2003, LNCS, vol. 2619.

[26] S. Khurshid and Y.L. Suen. Generalizing Symbolic Execution
to Library Classes. In Proceedings of PASTE 2005, ACM.

[27] V. Kuncak, R. Piskac, P. Suter, and T. Wies. Building a Calcu-
lus of Data Structures. In VMCAI 2010, LNCS, vol. 5944.

[28] S.K. Lahiri and S. Qadeer. Verifying Properties of Well-
Founded Linked Lists. In Proceedings of POPL 2006, ACM.

[29] S.K. Lahiri and S. Qadeer. Back to the Future: Revisiting Pre-
cise Program Verification Using SMT Solvers. In Proceedings of
POPL 2008, ACM.

[30] G. Leavens, A. Baker, and C. Ruby. Preliminary Design of
JML: A Behavioral Interface Specification Language for Java.
ACM SIGSOFT Software Engineering Notes, 31(3), 2006.

[31] R. Leino. Dafny: An Automatic Program Verifier for Func-
tional Correctness. In LPAR 2010, LNAI, vol. 6355.

[32] R. Madhavan and R. Komondoor. Null Dereference Verifica-
tion via Over-approximated Weakest Pre-conditions Analysis. In
OOPSLA 2011, ACM.

[33] P. Madhusudan, G. Parlato, and X. Qiu. Decidable Logics
Combining Heap Structures and Data. In POPL 2011, ACM.

[34] J. McCarthy. A Basis for a Mathematical Theory of Compu-
tation, Technical report, MIT, Cambridge, MA, USA, 1962.

[35] K. McMillan. Lazy Abstraction with Interpolants. In CAV
2006, LNCS, vol. 4144.

[36] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In
Proceedings of TACAS 2008, LNCS, vol. 4963.

[37] A. Podelski and T. Wies. Boolean Heaps. In SAS 2005,
LNCS, vol. 3672.

[38] S. Ranise and C. Tinelli. The SMT-LIB standard, version 1.2,
August 2006.

[39] W. Visser, C.S. Pasareanu, and S. Khurshid. Test Input Gener-
ation with Java PathFinder, In ISSTA 2004, ACM.

[40] K. Zee, V. Kuncak, and M. Rinard. Full Functional Verifica-
tion of Linked Data Structures. In PLDI 2008, ACM.

[41] K. Zee, V. Kuncak, and M. Rinard. An Integrated Proof Lan-
guage for Imperative Programs. In PLDI 2009, ACM.

[42] ASM: Java bytecode manipulation and analysis framework.
http://asm.ow2.org/.

[43] J2BP tool for predicate abstraction of Java programs. http:
//plg.uwaterloo.ca/˜pparizek/j2bp/.

[44] Java Pathfinder system for verification of Java programs.
http://babelfish.arc.nasa.gov/trac/jpf/.

[45] SMT-LIB Format for Finite Lists, Sets, and Maps. http:
//www.cprover.org/SMT-LIB-LSM/.

[46] T.J. Watson Libraries for Analysis (WALA). http://
wala.sourceforge.net/.

[47] Yices: An SMT solver. http://yices.csl.sri.com/.

A. Weakest Preconditions
For each statement s of the language in Figure 6, we define
the weakest preconditions for predicates whose truth value
may be changed by the execution of s. The weakest precon-
ditions are shown in Tables 5-9. We consider only statements
whose execution may change the truth value of some predi-
cate — assignment statements, object construction, and sup-
ported operations on abstract maps and iterators.

The weakest precondition WP(s, p) is in many cases de-
fined in terms of the predicate p and certain syntactic sub-
stitutions. The symbol Fx denotes any valid atomic predi-
cate over the expression x that is not covered by other lines
of the table for a given statement. The symbols q, qk and
qm denote logic variables whose names are different from
the names of all program variables. The symbol d represents
any expression that can have a specific position in the iter-
ation order of some map (i.e., a key or an iterator variable).

Statement s Predicate p WP (s, p)
w = w’ Fw p[w′/w]

w = e
w relop u e relop u
Fw false

o.f = e
fread(f, o′) relop u fread(fwrite(f, o, e), o′) relop u
Ffread(f,o) false

o = new C

o = w false
o = null false
fread(f, o) relop u false
Fo false

a[i] = e
aread(arr, a′, i′) relop u aread(awrite(arr, a, i, e), a′, i′) relop u
Faread(arr,a,i) false

m = new map

mget(map,m, k) = ⊥ true
mget(map,m, k) relop v false
mget(map,m, k1) = mget(map,m, k2) true
msize(msz,m) = 0 true
msize(msz,m) relop sz false
morder(mit,m, d1, d2) false
morder(mit,m,⊥,⊥) true
mkeys(mks,m,ms) false
mkeys(mks,m′,m) false
mvalues(mvs,m,ml) false
mvalues(mvs,m′,m) false
m = m′ false

Table 5. Weakest preconditions for assignment statements

Statement s Predicate p WP (s, p)

r = m.get(k)

r = mget(map,m′, k′) (m = m′ ∧ k = k′) ∨ (mget(map,m, k) = mget(map,m′, k′))
r = null ∃qm : qm = m ∧mget(map, qm, k) = q ∧ (q = ⊥ ∨ q = null)
r = e ∃qm : qm = m ∧ e = mget(map, qm, k)
fread(f, r) = e ∃qm : qm = m ∧ fread(f,mget(map, qm, k)) = e
Fr ∃qm ∃q 6= ⊥ : qm = m ∧mget(map, qm, k) = q ∧ Fr[q/r]

b = m.containsKey(k)
b = true ∃qm ∃q 6= ⊥ : qm = m ∧mget(map, qm, k) = q
b = false ∃qm : qm = m ∧mget(map, qm, k) = ⊥

b = m.containsValue(v)
b = true ∃qm ∃q : qm = m ∧mget(map, qm, q) = v
b = false ¬(∃qm ∃q : qm = m ∧mget(map, qm, q) = v)

r = m.findKey(v)
mget(map,m′, r) = v′ m = m′ ∧ v = v′

Fr ∃qm ∃q : qm = m ∧mget(map, qm, q) = v ∧ Fr[q/r]
sz = m.size() sz relop u ∃qm : qm = m ∧msize(msz, qm) relop u

Table 6. Weakest preconditions for statements that query map state

Statement s Predicate p WP (s, p)

m.put(k,v)

mget(map,m′, k′) = v′ mget(mupdate(map,m, k, v),m′, k′) = v′

mget(map,m′, k′) = (m = m′ ∧ k = k′ ∧mget(map,m′′, k′′) = v) ∨
mget(map,m′′, k′′) (m = m′′ ∧ k = k′′ ∧mget(map,m′, k′) = v) ∨

((m 6= m′ ∨ k 6= k′) ∧ (m 6= m′′ ∨ k 6= k′′) ∧ p)

msize(msz,m′) relop u
ite((m = m′ ∧mget(map,m′, k) = ⊥) ∨m 6= m′,
p[mresize(msz,m,msize(msz,m) + 1)/msz], p)

morder(mit,m′,⊥, d) ite(m = m′, ite(d = k,morder(mit,m′,⊥,⊥), p), p)
morder(mit,m′, d,⊥) ite(m = m′, d = k, p)
morder(mit,m′,⊥,⊥) ite(m = m′, false, p)
morder(mit,m′, d1, d2) ite(m = m′, d1 6= k ∧ ((d2 = k ∧mget(map,m′, d1) 6= ⊥) ∨ p), p)

m.putAhead(k,v,l)

morder(mit,m′,⊥, d) ite(m = m′, ite(d = k, p[⊥/d] ∨ p[l/d], d 6= l ∧ p), p)
morder(mit,m′, d,⊥) ite(m = m′ ∧ d = k,mget(map,m′, l) = ⊥, p)
morder(mit,m′,⊥,⊥) ite(m = m′, false, p)

morder(mit,m′, d1, d2)
ite(m = m′, ite(d1 = k, d2 = l,

(d2 = k ∧ d1 6= l ∧mget(map,m′, d1) 6= ⊥) ∨ p), p)

m.remove(k)

mget(map,m′, k′) = v′ mget(mupdate(map,m, k,⊥),m′, k′) = v′

mget(map,m′, k′) = (m 6= m′ ∧m 6= m′′ ∧ p) ∨ (m = m′ ∧m′ = m′′ ∧ k′ = k′′) ∨
mget(map,m′′, k′′) (m = m′ ∧m 6= m′′ ∧ ite(k 6= k′, p,mget(map,m′′, k′′) = ⊥)) ∨

(m = m′′ ∧m 6= m′ ∧ ite(k 6= k′′, p,mget(map,m′, k′) = ⊥))

msize(msz,m′) relop u
ite((m = m′ ∧mget(map,m′, k) 6= ⊥) ∨m 6= m′,
p[mresize(msz,m,msize(msz,m)− 1)/msz], p)

morder(mit,m′,⊥, d) ite(m = m′, d 6= k ∧ p[k/d] ∧ p[k/⊥], p)
morder(mit,m′, d,⊥) ite(m = m′, d 6= k ∧ p[k/⊥] ∧ p[k/d], p)

morder(mit,m′,⊥,⊥)
ite(m = m′, ite(mget(map,m′, k) = ⊥, p,
morder(mit,m′,⊥, k) ∧morder(mit,m′, k,⊥)), p)

morder(mit,m′, d1, d2) ite(m = m′, d1 6= k ∧ d2 6= k ∧ (p ∨ (p[k/d2] ∧ p[k/d1])), p)

m.clear()

mget(map,m′, k′) = v′ ite(m = m′, v′ = ⊥, p)
mget(map,m′, k′) = (m 6= m′ ∧m 6= m′′ ∧ p) ∨ (m = m′ ∧m′ = m′′) ∨
mget(map,m′′, k′′) (m = m′ ∧m 6= m′′ ∧mget(map,m′′, k′′) = ⊥) ∨

(m = m′′ ∧m 6= m′ ∧mget(map,m′, k′) = ⊥)
msize(msz,m′) = 0 ite(m = m′, true, p)
msize(msz,m′) relop sz ite(m = m′, false, p)
morder(mit,m′,⊥, d) ite(m = m′, false, p)
morder(mit,m′, d,⊥) ite(m = m′, false, p)
morder(mit,m′,⊥,⊥) ite(m = m′, true, p)
morder(mit,m′, d1, d2) ite(m = m′, false, p)

Table 7. Weakest preconditions for statements that update map state

The symbol relop denotes a relational operator that is de-
fined for the type of variables used as operands (e.g., only =
for booleans). For the operation putAhead, we show in the
table only those pairs of a predicate and a weakest precon-
dition where the precondition is different than in the case of
the put operation.

Several notes about the behavior (semantics) encoded by
the weakest preconditions follow. An execution of the as-
signment statement w = e sets to false any predicate in which
w is an argument for mget and morder , because now the
variable w may have a different value than when it was used
as an argument for the put operation. The statement m =
new map sets to false all predicates over the variable m ex-
cept the predicates saying that the map is empty. A map cre-

ated by the operation valuesView (which represents the list
of all values in m) contains keys in the range from 1 to the
size ofm. The expression mupdate(map,m, k,⊥) indicates
that the key-value pair involving k is being removed from
the map m. An execution of the statement o = new C sets
the truth value of all aliasing predicates over the reference
variable o to false and assigns the non-deterministic boolean
value unknown to all predicates over fields of the object
pointed to by o. This expresses the absence of any knowl-
edge about the values of fields of the object immediately
after its allocation. The predicates mget(map,m′, k′) =
mget(map,m′′, k′′) and the respective weakest precondi-
tions are used to express aliasing between map elements.

Statement s Predicate p WP (s, p)

ms = m.keysView()

mget(map,ms, k) = true ∃q 6= ⊥ : mget(map,m, k) = q
msize(msz,ms) relop sz p[m/ms]
morder(mit,ms,⊥, d) p[m/ms]
morder(mit,ms, d,⊥) p[m/ms]
morder(mit,ms,⊥,⊥) p[m/ms]
morder(mit,ms, d1, d2) p[m/ms]
mkeys(mks,m′,ms) m = m′

mkeys(mks,ms,ms ′) false
mvalues(mvs,m′,ms) false
mvalues(mvs,ms,ml) false
ms = ms ′ mkeys(mks,m,ms ′)

ml = m.valuesView()

mget(map,ml, k) = v ∃q : mget(map,m, q) = v
msize(msz,ml) relop sz p[m/ml]
morder(mit,ml ,⊥, d) d = 1
morder(mit,ml , d,⊥) d = msize(msz,m)
morder(mit,ml ,⊥,⊥) msize(msz,m) = 0
morder(mit,ml , d1, d2) d1 < d2 ∧ 1 ≤ d1 ∧ d2 ≤ msize(msz,m)
mkeys(mks,m′,ml) false
mkeys(mks,ml ,ms ′) false
mvalues(mvs,m′,ml) m = m′

mvalues(mvs,ml ,ml ′) false
ml = ml ′ mvalues(mvs,m,ml ′)

Table 8. Weakest preconditions for statements that create views over maps

Statement s Predicate p WP (s, p)

it = m.createIterator()

it = it ′ false
morder(mit,m′,⊥, it) m = m′

morder(mit,m′, it ,⊥) m = m′ ∧ p[⊥/it]
morder(mit,m′, it , d) m = m′ ∧ p[⊥/it]
morder(mit,m′, d, it) false

b = it.hasMore()
b = true ∃qm : ¬morder(mit, qm, it ,⊥)
b = false ∃qm : morder(mit, qm, it ,⊥)

r = it.getCurrent()
morder(mit,m′, r, it) true
Fr ∃qm ∃qk : (morder(mit, qm, qk, it) ∧ Fr[qk/r])

it.moveNext()

morder(mit,m′,⊥, it) false
morder(mit,m′, it ,⊥) ∃qk : (p[qk/⊥] ∧ p[qk/it])
morder(mit,m′, it , k′) ∃qk : (p[qk/k

′] ∧ p[qk/it] ∧ ¬p[⊥/it])
morder(mit,m′, k′, it) morder(mit,m′, it , k′)

Table 9. Weakest preconditions for statements over iterators

