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Abstract
This paper presents a static analysis of typestate-like tempo-
ral specifications of groups of interacting objects, which are
expressed using tracematches. Whereas typesate expresses a
temporal specification of one object, a tracematch state may
change due to operations on any of a set of related objects
bound by the tracematch. The paper proposes a lattice-based
operational semantics equivalent to the original tracematch
semantics but better suited to static analysis. The paper de-
fines a static analysis that computes precise local points-to
sets and tracks the flow of individual objects, thereby en-
abling strong updates of the tracematch state. The analy-
sis has been proved sound with respect to the semantics.
A context-sensitive version of the analysis has been im-
plemented as instances of the IFDS and IDE algorithms.
The analysis was evaluated on tracematches used in earlier
work and found to be very precise. Remaining imprecisions
could be eliminated with more precise modeling of refer-
ences from the heap and of exceptional control flow.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Verification

Keywords typestate, static analysis, tracematches

1. Introduction
An object is not isolated; it interacts with other objects. For
an object, a temporal specification can be expressed using
typestate [35]. At any time, the object is in some state, and
the state changes when an operation is performed on the ob-
ject. Many programming errors can be detected by check-
ing whether undesirable states are reachable. A multitude
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of typestate checking tools, both dynamic and static, have
been developed [1, 5, 6, 10, 12, 13, 17–22, 24, 29]. Tempo-
ral specifications can be applied to express constraints on
the interactions between software components. In this case,
the specified protocol may involve multiple interacting ob-
jects from different components. Some newer specification
mechanisms can express temporal properties of multiple ob-
jects [1, 10, 20, 29]. These formalisms are mainly intended
for dynamic checking. In this paper, we extend techniques
from static typestate verification to formulate and implement
a static analysis of such multi-object temporal specifications.

The static analysis has two classes of applications. First, it
can be used for sound static program verification. The anal-
ysis is intended to be precise: in the ideal case, all possible
violations are ruled out statically, and the program is there-
fore guaranteed to observe the specified protocol. However,
it is not always possible to rule out all violations statically.
In this case, the program can be instrumented with dynamic
checks that report violations at run time. The second ap-
plication of the static analysis is to reduce the overhead of
these dynamic checks. If the analysis proves that some in-
strumentation points cannot possibly lead to a violation, no
instrumentation is required at those points. Thus, the runtime
overhead at those program points is reduced.

We have chosen tracematches [1] as the formalism for
specifying the temporal properties to be checked. A trace-
match specifies which operations are relevant to the specifi-
cation, how the operations identify the objects involved, the
sequence of operations leading to an undesirable state, and
what should be done when a violation is detected at run time.
For our analysis, tracematches have two advantages over
similar formalisms. First, they are widely applicable because
their semantics is intuitive and highly expressive compared
to other regular-expression-based formalisms. A key issue in
defining such formalisms is how to tease apart the interac-
tions between operations on different objects; in some other
systems, operations on different objects are not cleanly sep-
arated. Conceptually, a tracematch executes a separate copy
of a finite automaton for every possible combination of run-
time objects. While other systems require each automaton
to bind all objects on the first state transition, tracematches



do not have this restriction. Second, the semantics of trace-
matches has been formally specified, which allows us to for-
mally prove that the static analysis soundly abstracts the se-
mantics. The original tracematch paper motivates the design
of a declarative semantics from the programmer’s point of
view, then proves it equivalent to an operational semantics
better suited for implementation [1]. The operations, and
how they bind objects, are specified using AspectJ pointcuts,
which are in widespread use and have a formal specifica-
tion [3].

While the operational tracematch semantics is convenient
for a dynamic implementation, it is difficult to abstract stati-
cally because it is defined in terms of manipulating and sim-
plifying boolean formulas, a relatively complicated concrete
domain. Thus, we have defined a new, equivalent semantics
based on sets and lattices, which are more convenient to rea-
son about and to abstract. We have proven the two semantics
bisimilar. The static analysis uses a provably sound abstrac-
tion of the lattice-based semantics.

The formal definitions and correctness proofs are impor-
tant because reasoning about interacting objects is subtle.
Allan et al. wrote this about their dynamic implementation:

In our experience it is very hard to get the implemen-
tation correct, and indeed, we got it wrong several
times before we formally showed the equivalence of
the declarative and operational semantics. [1]

Similar pitfalls apply when defining a static analysis.
A key difference between our analysis and previous work

on typestate verification is that in a tracematch, typestate is
associated not with a single object, but with a group of ob-
jects. Existing work on typestate verification (e.g. [17, 18])
generally uses some abstraction of objects and adds the cur-
rent state to each abstract object. This approach cannot be
applied when there is no single object to which the state
can be attached. Thus, our analysis uses two separate ab-
stractions: the first models individual objects and the second
models tracematch state of related groups of objects. The
first analysis uses a storeless heap abstraction [14, 27] simi-
lar to earlier work [11,17,18,23,34]. The focus of the paper
is on the second analysis, which is novel. Indeed, we present
a specific object analysis only for the sake of concreteness;
the object analysis could be replaced with more precise or
cheaper variants if necessary for a particular application.

The example in Figure 1 illustrates the kind of property
that the analysis verifies. The method flatten takes a list
of lists in, and adds all of their elements to the list out.
The automaton below the code checks that a list is not
updated during iteration, and that every call to next on
an iterator is preceded by a call to hasNext. A violation
of the property causes the automaton to enter one of the
final states. The tracematch associated with this automaton
(shown in Figure 2) has two parameters, the list (c) and
the iterator (i). The next and hasNext operations bind the
iterator i, update binds the list c, and makeiter binds both.

1 void flatten(List in, List out) {
2 Iterator it = in.iterator();
3 while(it.hasNext()) {
4 List l = (List) it.next();
5 Iterator it2 = l.iterator();
6 while(it2.hasNext()) {
7 Object o = it2.next();
8 out.add(o);
9 }

10 }
11 }

1

2

makeiter(c,i)

6

next(i)

3

update(c) 4

hasNext(i)

5

next(i), hasNext(i)

next(i)

update(c)

hasNext(i)

Figure 1. Tracematch example: iterator safety

According to the declarative tracematch semantics, a copy
of the automaton is made for every possible runtime pair
of list and iterator. Each operation causes a transition in
those automata consistent with the bindings. For example,
the update(c) operation on runtime list object oc causes an
update transition in all automaton copies having oc as their
list c.

Consider what information a static analysis needs to
prove the absence of a violation. First, it needs precise may-
alias information to determine that the list out updated in
line 8 is not aliased with the list in or any of the lists it
contains, over which the loops iterate. Interprocedural infor-
mation is necessary because aliases may be made elsewhere;
for example, the caller of the method could pass in the same
list as both in and out. In fact, since the method could be
called several times on different lists, context sensitivity is
useful. In addition, the analysis must ensure that each call to
hasNext occurs on the same iterator as the subsequent call
to next. Although some have suggested using must-alias
analysis, proving this fact requires more than just knowing
that a pair of variables must be aliased. A must-alias analysis
can prove that whenever execution reaches a given program
point, two variables point to the same object. A must-alias
analysis does not say anything about the values of variables



1 tracematch(Collection c, Iterator i) {
2 sym makeiter after returning(i): call(* Collection+.iterator()) && target(c);
3 sym next before: call(* Iterator+.next()) && target(i);
4 sym hasNext before: call(* Iterator+.hasNext()) && target(i);
5 sym update after : (call(* Collection+.add*(..)) ||
6 call(* Collection+.clear()) ||
7 call(* Collection+.remove*(..)) ) && target(c);
8

9 makeiter (hasNext+ next)* ( next | hasNext* update+ (next | hasNext) )
10 {
11 throw new RuntimeException(‘‘Violated safety property.’’);
12 }
13 }

Figure 2. Tracematch source code

at different times during execution. It would be difficult to
extend the notion of must-aliasing to an unambiguous defini-
tion of the relationship between variables at different times.
For example, it is not true that it2 in line 6 always points to
the same object as it2 in line 7. When control flows from
line 6 to line 7, it2 continues to point to the same iterator,
but when control flows from line 7 around the outer loop and
back to line 6, the object to which it2 points changes. Thus,
a statement about the relationship between it2 at line 6 and
it2 at line 7 would be ambiguous unless it somehow con-
sidered specific control flow paths between the two points.
Instead, in order to reason about the objects pointed to by
variables at different points in time, our analysis must track
the flow of individual objects along specific control flow
paths. To summarize, the analysis requires:

1. precise may-alias information,

2. precise context-sensitive interprocedural information,
and

3. flow-sensitive tracking of individual objects along con-
trol flow paths.

The analysis presented in this paper satisfies all three re-
quirements.

The main contributions of this paper are:

1. We define a lattice-based operational semantics of trace-
matches which is better suited to static analysis than the
original semantics of Allan et al. [1]. We have proven that
the two semantics are bisimilar. (Section 2)

2. We define a precise static abstraction of the lattice-based
operational semantics. We have proven that the overall
abstraction is sound with respect to the operational se-
mantics. (Section 3)

3. We express the static analysis as instances of the IFDS [32]
and IDE [33] frameworks which efficiently support
context-sensitive interprocedural analysis. (Section 4)

4. We report experimental results from our implementation
of the static analysis. We implemented the analysis in
Scala, using the tracematch implementation in the abc
compiler [1,2] to provide the intermediate representation
to be analyzed. (Section 5)

Due to space constraints, complete formal details and
proofs are presented in a separate technical report [30].

2. Tracematch Semantics
Allan et al. [1] define a tracematch as follows:

DEFINITION 1. A tracematch is a triple 〈F,A, P 〉, where

F is a finite set of tracematch parameters,
A is a finite alphabet of symbols (operations), and
P is a regular language over A.

Figure 2 shows the source code that a programmer would
write to define the example tracematch discussed in Sec-
tion 1. This tracematch has two parameters, a Collection
c and an Iterator i. Lines 2-7 define the four tracematch
symbols. Each symbol is accompanied by an AspectJ point-
cut that specifies where in the base code the symbol occurs.
A pointcut may also bind objects from the base code to
tracematch parameters. For example, the makeIter point-
cut binds the target of the call (the collection) to c and the
returned iterator to i. Line 9 defines the regular language of
the tracematch and lines 10-12 provide the code to be exe-
cuted when the tracematch matches at run time.

When writing a tracematch, the programmer specifies P
using a regular expression. Internally within the abc com-
piler, P is represented as a non-deterministic finite automa-
ton accepting the same language. To refer to this NFA, we
use the customary notation 〈Q,A, q0, Qf , δ〉, where Q is a
finite set of states,A is the finite alphabet of tracematch sym-
bols, q0 ∈ Q is the start state, Qf ⊆ Q is a set of final states,
and δ ⊆ Q×A×Q is a transition relation.

A tracematch is applied to a program in an existing lan-
guage such as Java or AspectJ. The program executes ac-



cording to the semantics of the base language, but the dy-
namic tracematch implementation maintains additional state
to keep track of the configuration of the tracematch. Allan
et al. defined a declarative semantics of how tracematches
ought to work, as well as an operational semantics that they
proved equivalent [1].

Next, we review the declarative semantics. We then define
a new operational semantics based on sets and lattices which
is more amenable to static analysis. In the technical report,
we have proven the lattice-based semantics equivalent to
the semantics of Allan et al. Thus, all three semantics are
equivalent.

2.1 Declarative Semantics of Tracematches
The essential part of a tracematch is a regular expression
over operations of interest (symbols). The dynamic trace-
match implementation checks, for each suffix of the program
trace, whether the suffix is a word in the language specified
by the regular expression. Each such word is a match and
causes the tracematch body to be executed. When a trace-
match defines a safety property, each violation of the speci-
fied property is a match of the tracematch.

Much of the expressive power of tracematches comes
from their parameters, to which symbols can bind specific
objects. The tracematch body executes for each suffix of the
trace that matches the specified regular expression with a
consistent set of object bindings. The declarative semantics
makes this precise: a separate version of the tracematch au-
tomaton is instantiated for each possible set of objects that
could be bound to the tracematch parameters. These automa-
ton versions run independently of each other. An automaton
version makes a transition on each event in the trace if the
parameters bound by the event are bound to the objects asso-
ciated with that automaton version. The tracematch body is
executed whenever an automaton version reaches an accept-
ing state; at that point, the automaton version is discarded.

We illustrate with an example. Figure 3 shows a possible
trace of the events declared in the tracematch from Figure 2.
Each hasNext and next event binds an iterator object, up-
date binds a list object and makeiter binds both a list and
an iterator. We assume the program creates two list objects
x and y and two iterator objects a and b. Thus, there are
four possible ways in which these objects could be bound to
the parameters, which correspond to the four automaton ver-
sions shown as columns in Figure 3. Each column includes
only those events from the trace that are consistent with the
object bindings of each version. The example trace results
in matches of two automaton versions: the version with c=x
and i=a, and the version with c=y and i=b. The first of these
signals that the collection was modified while it was being
iterated. The second signals two consective next events with-
out an intervening hasNext event on the same iterator.

c=x c=x c=y c=y
Trace i=a i=b i=a i=b

makeiter(x,a) makeIter
hasNext(a) hasNext hasNext

makeiter(y,b) makeIter
next(a) next next

hasNext(b) hasNext hasNext
update(x) update update
next(b) next next
next(a) next next
next(b) next next

match no no match

Figure 3. Declarative semantics of tracematches. Column 1
shows the program trace. Columns 2 to 5 show automaton
versions for different runtime objects bound to tracematch
parameters.

2.2 A Lattice-Based Operational Semantics
The abc compiler includes a transformation that implements
tracematch semantics at run time. This is done by inserting
additional code, which we call transition statements, at each
point in the base program where a tracematch symbol could
match. In the dynamic implementation, the effect of each
transition statement is to update the tracematch state to re-
flect the corresponding state transition and parameter bind-
ings. The operational semantics is defined on the code that
results after transition statements have been inserted.

Before performing the static analysis, we simplify the
code to an intermediate representation (IR) containing only
instructions relevant to tracematch semantics. The intrapro-
cedural instructions in the IR are:

s ::= tr 〈a, b〉 | body
| v1 ← v2 | v ← h | h← v | v ← null | v ← new

In addition, the IR contains method call and return instruc-
tions. In the IR, v can be any variable from the set Var of
local variables of the current method. The symbol h repre-
sents any heap location, such as a field of an object or an
array element.

The two instructions directly relevant to tracematches are
tr (transition statement) and body (body statement). Each
transition statement contains a pair1 a, b where a ∈ A is
one of the symbols of the tracematch and b : F ↪→ Var
is a partial map specifying the object to be bound to each
tracematch parameter. The map b binds a subset of the pa-
rameters; any of the parameters may be left unbound. When

1 Allan et al. [1] allow each transition statement to contain multiple tran-
sitions, each a pair 〈a, b〉. This is necessary because their implementation
allows a single instruction to be matched by multiple tracematch symbols.
We fully handle this general case in the technical report. The generality
does not add expressivity, nor does it make the analysis any more inter-
esting, only more complicated. We therefore restrict our discussion in this
paper to the common case of a single pair.



tr 〈a, b〉 is executed, each automaton version whose object
bindings are consistent with the objects currently pointed to
by the variables specified by b performs a transition on the
symbol a.

A body statement is generated immediately after every
transition statement tr 〈a, b〉 in which a is a symbol on which
the tracematch automaton contains a transition into an ac-
cepting state. The effect of body is to find each automaton
version in an accepting state, execute the tracematch body
for it, and discard it.

The remaining IR instructions are self-explanatory: they
copy object references between variables and the heap, and
create new objects.

In the declarative semantics, the number of automaton
versions that must be maintained is unbounded because the
number of objects that could be created by the program is
unbounded. This unboundedness hinders both a practical
dynamic implementation and a static analysis. Therefore,
Allan et al. defined an equivalent operational semantics. For
the same reason, we define a different operational semantics
that is well suited for static analysis. All three semantics
have been proven equivalent.

The core construction of our semantics is a binding lat-
tice. Figure 4 illustrates a sample binding lattice for a pro-
gram with three objects o1, o2, o3; in general, the binding
lattice is defined analogously for the unbounded number of
objects that the program may allocate. Thus, the binding lat-
tice is infinite. In Section 3.2, we will define a finite abstrac-
tion of the binding lattice for use in the static analysis. The
binding lattice comprises the element ⊥, positive bindings
(which are a single object), and negative bindings (which
contain zero or more objects). The interpretation of each el-
ement of the binding lattice is a set of objects: ⊥ represents
the empty set, a positive binding represents a single object,
and a negative binding represents the set of all objects other
than those in the binding. We write > as a synonym for the
empty set of negative bindings (which represents all objects).
The lattice order corresponds to the subset order on sets of
objects: for any pair of bindings d1 v d2, every object in the
set represented by d1 is also in the set represented by d2. As
a reminder that a set of objects indicates negative bindings,
we will always write such a set with a bar above it: O. The
bar is only a reminder; it has no semantic meaning.

We extend the binding lattice pointwise to the space of
functions that map each tracematch parameter to an element
of the binding lattice. We say that a mapping m ∈ F →
Bind is consistent with a given automaton version if the ob-
ject it associates with each parameter f is in the set repre-
sented bym(f). Thus, each mappingm can be interpreted as
a set of automaton versions. For example, consider the map-
ping c 7→ x, i 7→ {b}. Of the automaton versions shown
in Figure 3, only the one corresponding to c=x and i=a
is consistent with this mapping. Again, the lattice order on

positive bindings

negative bindings

bottom⊥

>

{o1} {o2} {o3}

{o1o2} {o1o3} {o2o3}

{o1o2o3}

o1o2o3

Figure 4. Concrete Binding Lattice Bind

F → Bind corresponds to the subset order on automaton
versions.

The runtime state of a tracematch is then defined as a set
σ of pairs 〈q,m〉, where q is a tracematch state, and m ∈
F → Bind. Each pair 〈q,m〉 indicates that all automaton
versions consistent with m are in the state q.

When execution begins, the initial tracematch state is the
single pair 〈q0, λf.>〉. The binding map λf.> is consistent
with every version of the automaton, and q0 indicates that all
these versions are in the initial state.

Whenever a transition statement executes, some automa-
ton versions change state and others keep their old state. A
mapping m in the runtime state must be refined to distin-
guish the versions whose state changes from those whose
state remains the same. In both cases, this refinement is done
using the meet operator of the lattice.

For example, consider a tracematch with a single pa-
rameter f and the automaton in Figure 5, and suppose
that the transition 〈a, f 7→ o1〉 occurs. The automaton ver-
sion for o1 should move to state qa and all others should
remain in state q. From the initial map λf.>, we per-
form meets with λf.o1 and λf.{o1} to obtain the desired
pairs 〈qa, λf.o1〉 and

〈
q, λf.{o1}

〉
. Suppose the transi-

tion 〈b, f 7→ o2〉 occurs next. We again perform the meets
of the existing states with both λf.o2 and λf.{o2} to ob-
tain 〈qab, λf.⊥〉 , 〈qa, λf.o1〉 , 〈qb, λf.o2〉,

〈
q, λf.{o1o2}

〉
.

Since the binding in the first pair is ⊥, it is not consistent
with any automaton version and can be discarded. The next
two pairs correspond to the two automaton versions for o1
and o2 in states qa and qb, respectively, and the final pair
corresponds to all other automaton versions still in the ini-
tial state.

In the general case of a tracematch with multiple param-
eters, there is an additional difference between negative and
positive bindings. In the declarative semantics, only the au-
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a

qb

b qab

a
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Figure 5. Example automaton

tomaton versions consistent in all the parameters bound by
the transition statement change state; if an automaton ver-
sion is inconsistent in any parameter, its state remains the
same. Thus, for the automaton versions that change state,
the new map is computed by replacing each m(f) with the
meetm(f)uo, where o is the object bound to f by the transi-
tion statement. However, for the automaton versions that do
not change state, multiple maps must be computed, one for
each parameter bound by the transition statement. The map
computed for each parameter f reflects the condition that the
object bound to f in the automaton version differs from the
object bound to f by the transition statement. Thus, the new
map for parameter f is constructed by replacing only m(f)
with m(f) u {o}, where o is the object bound to f by the
transition statement.

A formal definition of the transition function e that is ap-
plied to each pair 〈q,m〉 in the tracematch state is given in
Figure 6. In the technical report, the semantics is fully for-
malized and proven equivalent to the operational semantics
of Allan et al.

e+0 (b, ρ) , λf.

{
ρ(b(f)) if f ∈ dom(b)
> otherwise

e−0 (b, ρ, f) , λf ′.

{
{ρ(b(f))} if f = f ′

> otherwise

e+[a, b, ρ](q,m) ,
{〈
q′,m u e+0 (b, ρ)

〉
: δ(q, a, q′)

}
e−[b, ρ](q,m) ,

{〈
q,m u e−0 (b, ρ, f)

〉
: f ∈ dom(b)

}
e[a, b, ρ](q,m) , e+[a, b, ρ](q,m) ∪ e−[b, ρ](q,m)

Figure 6. Transition function, in the Lattice-based opera-
tional semantics, for tr 〈a, b〉 in local variable environment ρ,
which is applied to each pair 〈q,m〉 in the tracematch state.

3. Static Abstraction
The abstraction is presented in two parts. The first abstrac-
tion computes object aliasing relationships. This information
is needed to determine which objects are pointed to by the
variables in each transition statement. The second abstrac-
tion models the tracematch state. Using this abstraction, the
analysis can prove that at certain body statements, the trace-
match cannot be in an accepting state.

3.1 Object Abstraction
The object abstraction represents each concrete object by
the set of local variables pointing to it. This is the same
abstraction as the nodes in Sagiv et al.’s shape analysis [34].
However, our abstraction tracks only the nodes, not the
pointer edges between objects.

The set of variables in the abstraction of each object is
exact; it is neither a may-point-to nor a must-point-to ap-
proximation. Since it may not be known statically whether a
given pointer points to the object, the analysis maintains a set
ρ] of abstract objects. This set is an overapproximation of all
possible objects. That is, if it is possible for some concrete
object to be pointed to by the set of variables o], then the
set o] must be an element of ρ]. Converesely, the presence
of o] in ρ] indicates that there may exist zero or more con-
crete objects which are pointed to by the variables in o] and
no others. For example, consider a concrete environment in
which variables x and y point to distinct objects and z may
be either null or point to the same object as x. The abstrac-
tion of this environment would be the set {{x}, {x, z}, {y}}.

The abstraction subsumes both may-alias and must-alias
relationships. If variables x and y point to distinct objects, ρ]

will not contain any set containing both x and y. If variables
x and y point to the same object, every set in ρ] will contain
either both x and y, or neither of them.

At run time, a variable cannot point to more than one ob-
ject at a time. Thus, every abstract object except the empty
set ∅ represents at most one concrete object at any given
point of execution. This enables precise flow-sensitive anal-
ysis including strong updates.

Specifically, if s is any statement in the IR except a heap
load, and if o] is the set of variables pointing to a given con-
crete object o, then it is possible to compute the exact set
of variables which will point to o after the execution of s.
The transfer function JsKo] that performs this computation
is shown in Figure 7. This property enables the analysis to
flow-sensitively track individual objects along control flow
paths; this was one of the three requirements motivated in
the introduction. We formalize the property in the accompa-
nying technical report [30, Proposition 2].

To precisely handle the uncertainty in heap loads we use
the materialization or focus operation [11,17,18,23,34]. The
abstract object o] is split into two, one representing the sin-
gle concrete object that was loaded, and the other represent-
ing all other objects previously represented by o]. Focus is
important to regain the precision lost when an object is no
longer referenced from any local variables, in which case
the analysis lumps it together with all other such objects. In
order for a tracematch operation to be performed on such an
object, the object must first be loaded into a variable. At the
load, the focus operation separates the loaded object from
the other objects. If multiple tracematch operations are then
performed on the object, the analysis knows that they are



JsKo](o]) ,


o] ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ o]
o] \ {v1} if s = v1 ← v2 ∧ v2 6∈ o]
o] \ {v} if s ∈ {v ← null, v ← new}
o] if s ∈ {e← v, tr(T ),body}

undefined if s = v ← e

focus[h]](v, o]) ,

{ {
o] \ {v}

}
if o] 6∈ h]{

o] \ {v}, o] ∪ {v}
}

if o] ∈ h]

JsKO] [h]](O]) ,

{ {
JsKo](o]) : o] ∈ O]

}
if s 6= v ← e⋃

o]∈O] focus[h]](v, o]) if s = v ← e

JsKρ](ρ], h]) ,

{
JsKO] [h]](ρ]) ∪ {{v}} if s = v ← new

JsKO] [h]](ρ]) otherwise

JsKh](ρ], h]) , JsKO] [h]]
({

h] ∪ {o] ∈ ρ] : v ∈ o]} if s = e← v
h] otherwise

)

Figure 7. Transfer function for the object abstraction

performed on the same concrete object as long as the local
variable continues to point to it.

In addition to the set ρ] of possible abstract objects, the
analysis tracks a subset h] ⊆ ρ] of abstract objects which
may have escaped to the heap. The focus operation is per-
formed only on these escaped abstract objects. Since focus
splits one abstract object into two, it can theoretically lead
to exponential growth in the abstraction. The escape infor-
mation was necessary and sufficient to control this growth in
the benchmarks that we evaluated.

The technical report formally defines a correctness rela-
tion that ensures that for any concrete object o occurring at
run time, its abstract counterpart o] is included in ρ], as well
as in h] if o is referenced from the heap. We have proven that
the transfer function for ρ] and h] preserves the correctness
relation [30, Theorem 2].

We illustrate the effect of the transfer functions using the
example statement sequence shown in Figure 8. Statement 1
creates a new concrete object and assigns it to variable x.
Correspondingly, the transfer function JsKρ] creates the ab-
stract object {x}. Statement 2 assigns the value of x to some
pointer in the heap. The transfer function JsKh] adds the ab-
stract object {x} to h] since the concrete object represented
by this abstract object has been assigned to a heap location.
The value of x is then assigned to a local variable w in state-
ment 3. The transfer function JsKo] adds the variablew to the
abstract object {x} since after statement 3 executes, w and x
point to the same concrete object. Statement 4 creates a new
concrete object and assigns it to y. Like in statement 1, a
new abstract object, {y}, is added to ρ]. Statement 5 is a load
from the heap. The transfer function JsKO] applies the focus
operation to both {y} and {x,w}. Since the abstract object
{y} is not in h], focus[h]](z, {y}) is simply {{y}}. How-
ever, since {x,w} ∈ h], this abstract object is split into two:
{x,w, z} and {x,w}. After statement 5, ρ] contains three

abstract objects: {x,w}, {y}, and {x,w, z}. Statement 6 as-
signs y to x. The transfer function JsKo] is applied to each of
the three abstract objects, yielding {w}, {x, y}, and {w, z}.
Statement 7 assigns null to z. This changes {w, z} to simply
{w}, yielding the abstract environment {w}, {x, y}.

ρ] h]

1: x← new {x}
2: h← x {x} {x}
3: w ← x {x,w} {x,w}
4: y ← new {x,w}, {y} {x,w}
5: z ← h {x,w}, {y}, {x,w, z} {x,w}, {x,w, z}
6: x← y {w}, {x, y}, {w, z} {w}, {w, z}
7: z ← null {w}, {x, y} {w}

Figure 8. Example statement sequence to illustrate transfer
functions

3.2 Tracematch Abstraction
Typestate associates a state with each runtime object. Ex-
isting typestate analyses (e.g. [17, 18]) model each runtime
object using an abstraction similar to the one defined in the
previous section. The typestate analysis models the state of
a runtime object by maintaining a set of possible states for
each abstract object. A runtime object o can only be in state
q if the abstract object o] representing o has q in its set of
possible states. When the analysis encounters an instruction
that changes the state of an object, it updates the possible
states of the appropriate abstract objects.

In our setting, a state is not associated with any single ob-
ject, but with multiple objects. Thus, we cannot just add the
state to any given object abstraction. Therefore, our analysis
uses a second abstraction to represent the tracematch state.
Each such abstract tracematch state contains within it the ab-
stractions of the objects bound by the tracematch.



We begin by presenting a simple but inefficient abstrac-
tion of the tracematch state, then discuss the refined ver-
sion that we have implemented in our analysis. Thanks to
the lattice-based design of our tracematch semantics, a basic
tracematch state abstraction would be straightforward to de-
fine. Recall that a concrete tracematch state is a set of pairs
〈q,m〉, where m maps each tracematch parameter to an ele-
ment of the Bind lattice. An abstraction of this state could be
defined by replacing all concrete objects in the Bind lattice
with their abstract counterparts as defined in the previous
section. The resulting abstract lattice Bind] has the same
structure as Bind, but each positive binding is an abstract
object, and each negative binding is a set of abstract ob-
jects. The overall abstraction is a set of pairs

〈
q,m]

〉
, where

m] maps each tracematch parameter to an element of Bind].
After working out some details, we defined a transfer func-
tion on this domain, proved that it correctly abstracts the
semantics, and implemented it. However, on tracematches
with multiple parameters, the implementation did not scale
to large benchmarks. The key reason for this is that the fo-
cus operation was applied to every abstract object bound by
a tracematch state. Since each focus splits the state into two,
the growth was exponential in the number of abstract objects
appearing in the tracematch state.

In fact, there is little benefit to performing the focus oper-
ation once the object has been bound in a tracematch state.
The benefit of the focus operation is that it singles out one
object, so that if a sequence of transition statements occurs,
we know that they occur on the same concrete object. Thus,
focus is needed for precise aliasing information at the tran-
sition statement before an object is bound. However, after
the object is bound, focusing it simply causes both resulting
objects to appear in two separate tracematch states, and does
not improve precision of the tracematch abstraction.

Therefore, in the tracematch state, we replaced the ob-
ject abstraction (the precise set of variables pointing to the
object) with an under- and over-approximation: a pair of a
must set o! and may set o? represents every concrete object
pointed to by all variables in o! and only by variables in o?.
In the special case when the must and may sets are equal,
we recover the precise set of variables pointing to the object.
The resulting abstract lattice Bind] is illustrated for two vari-
ables x, y in Figure 9. We use the notation x? to say that the
variable x is in the may set but not the must set, and x to
say that it is in both sets. Suppose that a tracematch state has
bound an object pointed to by x and a heap load to y occurs.
Instead of focusing the bound object to x and xy, we instead
use the join of these two, namely xy?, to represent both pos-
sibilities. Thus, we avoid focusing objects already bound in
the tracematch state.

Efficiency can be further improved for negative bindings.
It turns out that the transfer function is independent of the
may sets of negatively-bound objects; thus, we need only
maintain the must sets. This is because a negative binding

⊥

>

x? y? x?yxy?

x yxy∅

x?y?

{x}{y}

{xy}

positive bindings

negative bindings

bottom

Figure 9. Abstract Binding Lattice Bind]

indicates that some object o′ is not the object o bound by
a given automaton version; knowing that a given variable v
may not point to o′ gives no information about the identity
of o, since v could still point to some other object o′′ that is
also not o. In addition, although a concrete negative binding
is a set of objects, all the must sets representing these objects
can be replaced with their intersection without affecting pre-
cision of the analysis. Thus, the Bind] lattice illustrated in
Figure 9 represents a negative binding as simply a set of
variables that definitely point to every concrete object that
may have been negatively bound.

In the technical report, we formally define Bind], show
that it is a finite lattice, and that the abstraction preserves the
partial order from Bind in Bind] [30, Propositions 3 and 4].

The transfer function for the tracematch state abstraction
for all statements except transition statements is shown in
Figure 10. We again draw a bar over each negative binding
like we did for the concrete tracematch lattice. The helper
function JsKd] is similar to JsKo] from the object abstraction,
but it updates both the must and may set of each abstract
binding. On a heap load instruction, it introduces uncertainty
into the binding instead of focusing it. The transfer function
is extended pointwise to maps of bindings by JsKm] and
to sets of abstract state pairs by JsKσ] . Like for JsKo] , we
have proven that the adapted function JsKd] also tracks each
concrete object flow-sensitively along control flow paths [30,
Proposition 5].

The transfer function for transition statements is more
complicated. In the operational semantics, all variables men-
tioned in each transition statement are looked up in the con-
crete environment. How should this lookup be performed in
the abstract domain? A sound but imprecise and therefore



JsKd](⊥) ,⊥ for all statements s

JsKd]

(〈
o!, o?

〉)
,



〈
o! ∪ {v1}, o? ∪ {v1}

〉
if s = v1 ← v2 ∧ v2 ∈ o!〈

o! \ {v1}, o? ∪ {v1}
〉

if s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 ∈ o?〈
o! \ {v1}, o? \ {v1}

〉
if s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 6∈ o?〈

o! \ {v}, o? \ {v}
〉

if s ∈ {v ← null, v ← new}〈
o! \ {v}, o? ∪ {v}

〉
if s = v ← e〈

o!, o?
〉

if s ∈ {e← v,body}

JsKd]

(
V ]
)

,


V ] ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ V ]
V ] \ {v1} if s = v1 ← v2 ∧ v2 6∈ V ]
V ] \ {v} if s ∈ {v ← null, v ← new, v ← e}
V ] if s ∈ {e← v,body}

JsKm](q,m]) ,
{〈
q, λf.JsKd](m](f))

〉}
JsKσ](σ]) ,

⋃
〈q,m]〉∈σ]∪{〈q0,λf.>〉}

JsKm](q,m])

Figure 10. Transfer functions for the tracematch state abstraction for s 6= tr 〈a, b〉.

costly approach is to consider that each variable v could
point to any abstract object containing v, and to handle
all possible combinations of variable values independently.
We use a more precise approach that considers compatibil-
ity [34], the notion that some abstract objects cannot possibly
correspond to concrete objects in the same execution. For ex-
ample, the abstract environment may contain both {x} and
{x, y} if the object pointed to by x is also pointed to by y
in some but not all executions. However, at any given instant
at run time, y cannot both point and not point to the object
pointed to by x; thus, the two abstract objects are incompati-
ble. The analysis therefore considers reduced environments,
which are subsets of the abstract environment ρ] satisfying
the following constraints:

• The objects must all be compatible with each other, and
with all objects in the tracematch state being updated.

• The objects must be relevant: each object must be pointed
to by some variable in the transition statement.

• The subset must contain some object pointed to by each
variable in the transition statement.

These constraints guarantee that each variable points to a
unique abstract object, so every variable can be looked up
in the reduced abstract environment. In addition, the con-
straints reduce the otherwise possibly exponential number of
subsets of the abstract environment to a small number, usu-
ally only one. To be sound, the analysis considers all reduced
environments satisfying the constraints.

Consider, for example, a transition statement binding x
and y to two tracematch parameters. Suppose that the ab-
stract environment contains abstract objects {x}, {y}, {x, y}
and {z}. The subsets {{x}, {y}} and {{x, y}} satisfy the
constraints of the reduced environment. The subsets {{x}, {x, y}}

and {{y}, {x, y}} are not compatible. The subset {{x}, {y}, {z}}
is compatible but not relevant since the transition statement
does not bind z. The subset {{x}} is not in the reduced en-
vironment because it does not contain any object pointed to
by y.

It would be expensive to construct the reduced environ-
ment by considering all subsets of the abstract environment
and selecting those that satisfy the constraints. Instead, we
use Algorithm 1, which, by construction, only generates en-
vironments satisfying the constraints. The algorithm works
as follows: at each step, it chooses some abstract object o] to
remove from the abstract environment ρ], and calls itself re-
cursively to construct all reduced environments not contain-
ing o] and all reduced environments containing o]. The set of
all reduced environments not containing o] is simply the set
of all reduced environments of the smaller abstract environ-
ment ρ] \ {o]}. A reduced environment can contain o] only
if o] is relevant and compatible with other abstract objects in
the environment. To check that o] is relevant, the algorithm
checks that o]∩ relevantVars is non-empty. To ensure that o]

is compatible with other abstract objects in the environment,
the algorithm uses a parameter called forbiddenVars to keep
track of variables which already appear in some abstract ob-
ject. When it calls itself recursively to construct the reduced
environments to which o] will be added, it adds all the vari-
ables in o] to forbiddenVars. Thus, the abstract objects in the
environments returned by the recursive call cannot contain
any of the variables in o], so they are compatible with o]. To
each of the reduced environments returned by the recursive
call, the algorithm adds o], and the environments are then
returned. In the base case, when ρ] is empty, the algorithm
returns either the empty environment if every relevant vari-



Algorithm 1: reducedEnvs(ρ], relevantVars, forbiddenVars)

Input: ρ]: abstract environment
Input: relevantVars: set of variables
Input: forbiddenVars: set of variables
Output: set of reduced environments (i.e. sets of abstract objects)

if ρ] 6= ∅ then1

choose any o] from ρ]2

r1 = reducedEnvs(ρ] \ {o]}, relevantVars, forbiddenVars)3

if (o] ∩ relevantVars 6= ∅) ∧ (o] ∩ forbiddenVars = ∅) then4

r2 = reducedEnvs( ρ] \ {o]}, relevantVars \ o], forbiddenVars ∪ o])5

r3 = {ρ′] ∪ {o]} : ρ′] ∈ r2}6

return r1 ∪ r37

else8

return r19

end10

else11

if relevantVars = ∅ then return { {} }12

else return {}13

end14

able has already been included in some abstract object, or no
environments if some relevant variable remains.

Since Sagiv et al.’s notion of compatibility [34] is defined
only for the precise object abstraction, we generalized it for
the must-may abstraction. The generalized compatible pred-
icate is formally defined in Figure 11. In order for two ab-
stract objects to be compatible, they must either be abstrac-
tions of distinct concrete objects, or of the same concrete
object. In the former case, the two must sets need to be dis-
joint. In the latter case, the must set of each abstract object
needs to be a subset of the may set of the other. Before com-
puting the reduced environments using Algorithm 1, we use
the generalized compatibility predicate to remove from the
abstract environment any abstract objects that are incompat-
ible with an abstract object already bound in the tracematch
state.

same(
〈
o!1, o

?
1

〉
,
〈
o!2, o

?
2

〉
) ,o!1 ⊆ o?2 ∧ o!2 ⊆ o?1

diff(
〈
o!1, o

?
1

〉
,
〈
o!2, o

?
2

〉
) ,o!1 ∩ o!2 = ∅

compatible(o!?1 , o
!?
2 ) ,same(o!?1 , o

!?
2 ) ∨ diff(o!?1 , o

!?
2 )

Figure 11. Generalized compatibility predicate.

The transfer function for transition statements is defined
in Figure 12. At a high level, it mirrors the semantics of
tr 〈a, b〉 presented in Section 2. Having defined abstract
variable lookup, the abstract tracematch transition func-
tions e+]0 , e−]0 , e+], e−], e] are exactly like their concrete

counterparts, but with abstract lookup lookup(O], v) substi-
tuted for concrete lookup in ρ. The overall transfer function
Jtr 〈a, b〉Km] joins the results of e] for all reduced abstract
environments O] ⊆ ρ]. Finally, JsKσ] extends JsKm] to sets
of abstract tracematch state pairs; it is the same as in Fig-
ure 10. At control flow merge points, the join operator used
on sets of tracematch state pairs is set union.

We illustrate the effect of the tracematch state transfer
function using the example statements shown in Figure 13.
In this example, the must and may sets in every positive
binding are the same, so we only show the set of vari-
ables once in each positive binding. Consider the tracematch
from Figure 2 whose automaton was shown in Figure 1. The
right side of Figure 13 shows some of the tracematch state
computations performed when analyzing the statements in
the left side of the figure. Once statement 3 has executed,
ρ] contains the abstract objects {l1}, {l2} and {it1}. The
tracematch state σ] contains the initial tracematch state pair
〈1, {c 7→ >, i 7→ >}〉. The execution of statement 4 creates
a state pair in state 2 with a positive binding for the two trace-
match parameters. Two state pairs with negative bindings for
the parameters are also created. Hence, after statement 4, the
abstract tracematch state σ] contains the 4 state pairs shown
in the figure. Of the computations required to model state-
ment 5, the figure shows only the computations needed to
handle the state pair 〈2, {c 7→ {l1}, i 7→ {it1}}〉. The posi-
tive binding of l2 yields one state pair in state 3 which has a
binding of⊥ for the tracematch parameter c. This represents
an inconsistent binding and is discarded by the analysis. If
ρ] had contained an abstract object {l1, l2}, indicating that
l1 and l2 may have been aliased, the transfer function would



lookup(O], v) ,o] ∈ O] : v ∈ o]

e+]0 (b,O]) ,λf.

{ 〈
o], o]

〉
where o] = lookup(O], b(f)) if f ∈ dom(b)

> otherwise

e+][a, b,O]](q,m]) ,
{〈
q′,m] u e+]0 (b,O])

〉
: δ(q, a, q′)

}
e−]0 (b,O], f) ,λf ′.

{
lookup(O], b(f)) if f = f ′

> otherwise

e−][b,O]](q,m]) ,
{〈
q,m] u e−]0 (b,O], f)

〉
: f ∈ dom(b)

}
e][a, b,O]](q,m]) ,e+][a, b,O]](q,m]) ∪ e−][b,O]](q,m])

Jtr 〈a, b〉K[ρ]](q,m]) ,
⋃

O]∈reduced environments of ρ]

e][a, b,O]](q,m])

Figure 12. Transfer function for a transition statement tr 〈a, b〉, which is applied to each pair
〈
q,m]

〉
in the tracematch state

abstraction.

1 l1 ← new
2 l2 ← new
3 it1 ← new

σ] = {〈1, {c 7→ >, i 7→ >}〉}
4 tr〈makeIter, {c 7→ l1, i 7→ it1}〉 O] = {{l1}, {it1}}

e+]0 = { c 7→ {l1}, i 7→ {it1} }
e+] = 〈2, {c 7→ >, i 7→ >} u {c 7→ {l1}, i 7→ {it1}}〉

= 〈2, {c 7→ {l1}, i 7→ {it1}}〉
e−] =

{〈
1, {c 7→ {l1}, i 7→ >}

〉
,
〈
1, {c 7→ >, i 7→ {it1}}

〉}
σ] =

{
〈1, {c 7→ >, i 7→ >}〉 ,

〈
1, {c 7→ {l1}, i 7→ >}

〉
,〈

1, {c 7→ >, i 7→ {it1}}
〉
, 〈2, {c 7→ {l1}, i 7→ {it1}}〉

}
5 tr〈update, c 7→ l2〉 O] = {{l2}}

For tracematch state pair 〈2, {c 7→ {l1}, i 7→ {it1}}〉 only:
e+]0 = {c 7→ {l2}}
e+] = 〈3, {c 7→ {l1}, i 7→ {it1}} u {c 7→ {l2}}〉

= 〈3, {c 7→ ⊥, i 7→ {it1}}〉
e−] =

〈
2, {c 7→ {l1}, i 7→ {it1}} u {c 7→ {l2}}

〉
= 〈2, {c 7→ {l1}, i 7→ {it1}}〉

σ] =
{
〈1, {c 7→ >, i 7→ >}〉 ,

〈
1, {c 7→ {l1, l2}, i 7→ >}

〉
,〈

1, {c 7→ {l1}, i 7→ {it1}}
〉
,
〈
1, {c 7→ {l1}, i 7→ >}

〉
,

〈2, {c 7→ {l1}, i 7→ {it1}}〉 , 〈3, {c 7→ ⊥, i 7→ {it1}}〉}

Figure 13. Example illustrating tracematch state transfer function



have generated the state pair 〈3, {c 7→ {l1, l2}, i 7→ {it1}}〉,
indicating a transition to state 3 with consistent bindings.
The negative binding creates a state pair in state 2. The ad-
ditional state pairs appearing in the final tracematch state σ]

arise from the other state pairs that were present before state-
ment 5. The computation for these state pairs is not shown
in the figure.

We have proven [30, Theorem 3] that the transfer function
JsKσ] preserves correctness. The correctness relation relating
concrete and abstract binding lattice elements is defined
as follows. An abstract state σ] soundly approximates a
concrete state σ if for every pair 〈q,m〉 in σ, there is a
corresponding pair

〈
q,m]

〉
in σ] that soundly approximates

it. A pair
〈
q,m]

〉
soundly approximates 〈q,m〉 if for every

tracematch parameter f , m](f) is higher in the binding
lattice than the abstraction of m(f) obtained by replacing
each concrete object with the set of variables that point to
it. Recall that a body statement completes a match only if
the concrete state contains a pair 〈q,m〉 such that q is a final
state and m(f) is not ⊥ for any f . The correctness relation
ensures that if this happens, the abstract state σ] must also
contain a pair

〈
q,m]

〉
satisfying the same conditions. In

the absence of such a pair in the abstract state, the analysis
concludes that the body statement cannot complete a match.

4. Context-Sensitive Interprocedural
Analysis

We implemented the analysis as an instance of the IFDS
algorithm of Reps et al. [32] with some small modifications.
The IFDS algorithm implements a fully context-sensitive
interprocedural dataflow analysis provided that:

• the analysis domain is the powerset of a finite set Dom,
• the merge operator is union, and
• the transfer function is distributive.

IFDS is an efficient dynamic programming algorithm that
uses O(E|Dom|3) time in the worst case, where E is the
number of control-flow edges in the program. The key rea-
son for its efficiency is that it evaluates transfer functions on
each individual element of Dom at a time, rather than on a
subset of Dom at a time (recall that each element of the anal-
ysis domain is a subset of Dom). As a result, any distributive
function f : P(Dom) → P(Dom) can be efficiently repre-
sented as a graph with at most (|Dom|+ 1)2 edges [32, Sec-
tion 3]. The IFDS algorithm starts with a graph representa-
tion of the transfer function for each instruction in the pro-
gram, and works by composing them into transfer functions
for ever longer sequences of instructions. Specfically, it uses
a typical worklist algorithm to complete two tables of trans-
fer functions: the PathEdge table gives the transfer function
from the start node of each procedure to every other node in
the same procedure, and the SummaryEdge table gives the
transfer function that summarizes the effect of each call site
in the program.

To formulate the tracematch analysis as an IFDS prob-
lem, we must define the set Dom and the transfer functions
on individual elements of Dom. This cannot be done for
the overall flow function that computes both the object and
tracematch abstractions because it is not distributive. This
is because the tracematch state depends on abstractions of
multiple objects, which could come from different control
flow paths. Individually, however, each of the transfer func-
tions for the object abstraction and for the tracematch state
abstraction is distributive. Thus, we can first perform the ob-
ject analysis as one instance of IFDS, then use the result to
perform the tracematch state analysis as a second instance of
IFDS. Moreover, the decomposition into transfer functions
on individual elements of a finite set Dom comes naturally
from the definition of the overall transfer functions. For the
object abstraction, Dom is two copies of the set of all possi-
ble abstract objects, one copy to represent each of ρ] and h].
Thus, the decomposed transfer function specifies the effect
of an instruction on a single abstract object at a time. For the
tracematch state abstraction, Dom is the set of all possible
pairs

〈
q,m]

〉
. Thus, the decomposed transfer function spec-

ifies the effect of an instruction on one pair at a time. The
complete decomposed transfer functions and a proof of their
equivalence to the overall transfer functions appears in the
technical report [30].

In addition to the transfer functions, an instantiation of the
IFDS algorithm must specify how to map elements of Dom
between the caller and callee at a call site. Our mapping into
the callee simply replaces actuals with formals, and removes
all caller-side variables from both the object and tracematch
state abstractions. In order to map objects from the callee
back to the caller, we need to know which caller-side vari-
ables pointed to the object prior to the call. This information
is readily available in the IFDS algorithm. Although [32] did
not anticipate making this information available to the trans-
fer function, it is straightforward to modify it to do so. The
same modification is also used in the typestate analysis of
Fink et al. [17, 18], and is likely to be useful in general in
other IFDS analyses.

4.1 Collecting Useful Update Shadows
The analysis presented thus far can prove that the tracematch
will never be in an accepting state at a given body state-
ment. If this can be proved for all body statements in the
program, the property expressed by the tracematch has been
fully verified statically, and all dynamic instrumentation can
be removed. However, the analysis may not be successful in
ruling out all body statements. In this case, it is useful to
compile a list of all transition statements that may contribute
to a match at each body statement. In static verification, this
list helps the user identify the source of the bug, or to decide
that the error report is a false positive. For example, if a col-
lection is updated during iteration, the body statement is the
failing next call on the iterator; more useful to the program-
mer would be the location of the collection update. We are



currently developing an Eclipse plugin to present this infor-
mation to the programmer. In optimizing the dynamic trace-
match implementation, all transition statements not leading
to a potentially matching body statement can be removed,
thereby reducing the runtime overhead of matching.

The analysis can be extended to keep track of relevant
transition statements by using the IDE [33] algorithm in-
stead of IFDS. The IDE algorithm is an extension of IFDS
to analysis domains of the form Dom → L, where Dom
satisfies the same conditions as for IFDS and L is a lat-
tice of finite height. Indeed, IFDS is a special case of IDE
with L chosen as the two-point lattice ⊥ v >. The IFDS
version of the tracematch analysis presented thus far deter-
mines only whether a given pair

〈
q,m]

〉
is (>) or is not

(⊥) present at each program point. To keep track of tran-
sition statements leading to a match, we keep the same set
Dom = Q× (F → Bind]), and define L to contain⊥ along
with all subsets of the set of all transition statements. For
each pair

〈
q,m]

〉
present at a program point, the IDE ver-

sion of the analysis maintains the set of transition statements
that may have contributed to its presence.

The IDE transfer functions are extensions of the IFDS
transfer functions that we have already presented. The trans-
fer functions are fomally defined in the technical report; we
briefly summarize them here. The transfer function for every
statement other than a transition statement keeps the set of
relevant transition statements for each tracematch state pair
unchanged. The transfer function for a transition statement
adds the current transition statement to the set of relevant
transition statements for each tracematch state pair. There
is one exception: when the transition statement transforms
a tracematch state pair

〈
q,m]

〉
to itself, the transition state-

ment is not added to the set of relevant transition statements
for that pair. A transition statement that does not change the
concrete tracematch state at run time is not considered rele-
vant because removing it would not change the program be-
haviour. Such a statement occurs when the tracematch reg-
ular expression contains a subexpression of the form a∗,
which causes a self-loop in the finite automaton. We have
proved that a transition statement that does not change the
abstract tracematch state cannot change the concrete trace-
match state [30, Proposition 7]. It is therefore sound to omit
a transition statement that does not change the abstract trace-
match state from the relevant transition statements.

It may happen that a transition statement in a loop
changes the tracematch state in the first iteration but not
in any subsequent iteration. An optimized dynamic imple-
mentation should execute the first, relevant transition, but
should avoid executing the redundant transitions in subse-
quent iterations of the loop. This can be achieved by peeling
one iteration of every loop containing a transition statement
prior to performing the IDE analysis. The analysis will mark
the transition as relevant in the peeled iteration and unnec-
essary in the remaining loop.

5. Empirical Evaluation
We empirically evaluated the precision of our analysis and
compared it to Bodden et al.’s existing tracematch anal-
ysis [8], which uses may-point-to information to rule out
possibly matching transition statements. The evaluation was
performed on the tracematches from [8] plus one new one
(FailSafeEnumHashtable), summarized below:

ASyncIteration: A synchronized collection should not be
iterated over without owning its lock.

FailSafeEnum: A vector should not be updated while enu-
merating it.

FailSafeEnumHashtable: A hashtable should not be up-
dated while enumerating its keys or values.

FailSafeIter: A collection should not be updated while iter-
ating over it.

HasNext: The hasNext method should be called prior to
every call to next on an iterator.

HasNextElem: The hasNextElem method should be called
prior to every call to nextElement on an enumeration.

LeakingSync: A synchronized collection should only be
accessed through its synchronized wrapper.

Reader: A Reader should not be used after its InputStream
has been closed.

Writer: A Writer should not be used after its OutputStream
has been closed.

We applied the above tracematches to the benchmarks
antlr, bloat, hsqldb, luindex, jython, and pmd from the Da-
Capo benchmark suite, version 2006-10-MR2 [7]. Most of
the benchmarks use reflection to load key classes. We in-
strumented the benchmarks using ProBe [28] and *J [15]
to record actual uses of reflection at run time, and provided
the resulting reflection summary to the static analysis. The
jython benchmark generates code at run time which it then
executes; for this benchmark, we made the unsound assump-
tion that the generated code has no effect on aliasing or trace-
match state.

Each of the 6 benchmarks was analyzed with each of the
9 tracematches, a total of 54 cases (tracematch/benchmark
pairs). The 54 cases evaluated contained a total of 5409 final
transition statements. We define a transition statement 〈a, b〉
as final if the tracematch automaton contains a transition to
an accepting state on a. Thus, a match can be completed only
at a final transition statement and implies a violation of the
specified property. We count only final transition statements
in the reachable part of the call graph. Of these, our analysis
proved that 4815 (89 %) will never complete a match. Thus,
a programmer wishing to check the tracematch properties
need only examine 11 % of the uses of the features checked
by the tracematches.



Bodden’s analysis comprises three stages. The first stage
(QC) considers only the set of tracematch symbols present
in the program; if every word satisfying the tracematch pat-
tern contains a given symbol and that symbol does not ap-
pear anywhere in the program, the tracematch cannot match
and hence the safety property enforced, cannot be violated.
The second stage (FI) considers the may-point-to sets of the
variables in each transition statement. If a sequence of tran-
sitions is to lead to a violation, they must have consistent
bindings, which is possible only if their points-to sets over-
lap. Bodden observed this stage to reduce the number of
matching transition statements in seven of nine cases (trace-
match/benchmark pairs); in one case, it completely elimi-
nated all possibility of a match. The third stage (FS) con-
siders the order in which symbols occur during execution,
but does not coordinate this order with the flow of individual
objects; Bodden observed no precision improvement over FI.
Since our analysis subsumes QC and the precision of FI and
FS is equivalent in practice, the evaluation in this section
compares our analysis with FI.

Of the 54 cases, 36 actually used the features described by
the tracematch, in the sense that QC did not rule out a match.
These cases contained 1509 final transition statements, and
our analysis proved that 915 will never complete a match and
hence do not violate the tracematch property. Each of the 36
cases is represented by a circle in Table 1. Beside each circle
is a fraction giving the number of transition statements at
which a match could not be ruled out and the total number
of final transition statements. In 15 of the 36 cases, our
analysis ruled out all matches; i.e. it successfully verified
that the benchmark is free of any violations of the property
specified by the tracematch. These cases are represented by
the 15 fully white circles. In comparison, the FI analysis
ruled out all matches in only 1 of the 36 cases where QC
was unsuccessful.

However, the two analyses are complementary in that
they are successful on different transition statements. Our
analysis fares better when the temporal order in which events
occur is relevant in ruling out the match. When the feature
monitored by the tracematch is used in many distinct ways in
different parts of the program, like iterators, FI is sometimes
better at distinguishing the different uses based on the alloca-
tion sites of the objects involved. More specific examples are
discussed in the rest of this section. The two analyses can be
run together, and the combination is more precise than each
analysis on its own.

5.1 Discussion of Results
In this section we take a closer look at some of the results
from Table 1. Of the 21 remaining cases in which all vi-
olations could not be removed, 4 involve the HasNext and
HasNextElem tracematches. In one case (HasNext/pmd), all
possible matches are actual violations of the tracematch pat-
tern. The code uses isEmpty to ensure that a collection is
not empty, then calls next on an iterator without calling

hasNext first. Similar violations occur in the other three
cases (in jython and in HasNext/bloat). In addition, these
cases contain false positives due to iterators stored only
in fields and not local variables. In the HasNext and Has-
NextElem tracematches, flow-sensitive tracking of individ-
ual objects is crucial to ensure that the hasNext call occurs
on the same object as the calls to next. Thus, while our anal-
ysis ruled out matches at 441 of the 476 final transition state-
ments, FI could not rule out a match at any of them.2

In 11 cases involving the FailSafe* tracematches, the
analysis found both violations and likely false positives due
to aliasing. Some collections, such as java.util.Hash-
table, keep a singleton enumeration and iterator which are
reused every time the collection is empty. This violates the
tracematch because an iterator is being used even though a
collection with which it was previously associated has since
been updated. This accounts for many but not all of the
detected matches; the associated transition statements are
shown in gray in Table 1.

At many of the other transition statements, a match can-
not be ruled out because a loop iterating over a collection
contains calls leading to very deep call chains comprising
many methods, some of which update collections. The anal-
ysis is not able to prove that all these collections are distinct
from the collection being iterated. In some of these loops,
may point-to information would help: FI ruled out matches
at 19 transition statements in 3 cases that our analysis did
not. On the other hand, our analysis ruled out matches at 54
transition statements in 2 cases that FI did not. Since so many
methods are transitively called from the loop, it is difficult to
examine them all by hand to determine whether any of the
updated collections may in fact alias the iterated collection.
We are working on a convenient user interface to visualize
the potential update locations and the call chains connecting
them to the original loop.

The cases involving the Reader and Writer tracematches
can be classified into three categories. The first category in-
cludes readers/writers of files, which are closed after the last
access. In these instances, our analysis proved all accesses
occur before the close, thereby ruling out a violation. Since
FI ignores the order of the events, it could not rule out a
violation. The second category includes readers/writers of
the standard input/output streams. These are never closed,
and the FI analysis proves this fact, thus ruling out a match.
These streams are often referenced only by their static field
in the System class, and not by any local variables. There-
fore, our analysis cannot distinguish them from other read-
ers/writers on which close is called, and cannot rule out a
match. The third category includes readers/writers for which
neither analysis can rule out a violation. We noticed the fol-
lowing pattern in several benchmarks. A loop repeatedly

2 Some transition statements were ruled out in [8] because they were deter-
mined to be in code that could not be reached at run time. Our evaluation
considers only reachable code.



antlr bloat hsqldb jython luindex pmd

ASyncIteration
0
37

FailSafeEnum
8
43

0
3

24
26

5
9

0
3

FailSafeEnumHashtable
8
43

3
3

24
26

4
9

FailSafeIter
297
316

0
1

14
15

6
11

44
49

HasNext
18
315

0
1

4
15

0
11

2
49

HasNextElem
0
43

0
1

0
3

11
26

0
9

0
3

LeakingSync
0

200

Reader
1
10

18
22

5
13

0
3

2
6

Writer
25
77

71
104

0
3

0
1

Table 1. Fraction of final transition statements that may complete a match. The white part of each circle represents those
that cannot complete a match. The black part represents those at which a match cannot be ruled out, due either to analysis
imprecision or an actual violation. The gray part represents those at which a violation is known to exist.

calls a helper method that uses the reader/writer. Both the
loop and the helper method contain a try block. An ex-
ception during the input/output operation is caught in the
helper, which closes the stream and re-throws the excep-
tion. The try block protecting the loop catches the excep-
tion, thereby terminating the loop and preventing any fur-
ther use of the reader/writer. Because our analysis does not
distinguish normal and exceptional returns, it conservatively
assumes that the loop could continue iterating and therefore
use the reader/writer after the stream was closed. Overall,
our analysis proves three Reader/Writer cases correct com-
pared to two for FI, but FI rules out slightly more final tran-
sition statements than our analysis.

In summary, although our analysis is often more precise
than FI, the two are complementary in that each is more
effective than the other on certain code patterns. In many
practical cases, our analysis is precise enough to rule out a
match. However, there remain cases where the abstraction
looses all local variable references to an object. Thus, our
analysis would benefit from some information about pointers
from within the heap. We will investigate augmenting the
abstraction with such information in future work.

6. Related Work
When tracematches were introduced, space and time over-
head of their dynamic implementation was a concern [1]. In
general, the overhead varied widely depending on the trace-
match and the number of dynamic updates to the tracematch
state that must be performed; in many cases, the overhead
was prohibitive.

One approach to reduce the overhead has been to im-
prove the dynamic tracematch implementation [4]. In this
approach, the tracematch automaton (but not the base code
to which it is applied) is analyzed statically to generate more
efficient matching code. Specific attention has been paid to
freeing bindings as soon as possible to reduce memory re-
quirements and to detect statically when a tracematch may
lead to unbounded space overhead. Freeing bindings early
has the additional benefit of reducing the time required to
find the binding requiring update when a transition state-
ment is encountered. This time can be reduced further by
maintaining suitable indexes on the binding set. On some re-
alistic tracematches, these techniques yield speed improve-
ments of multiple orders of magnitude. Thus, these tech-
niques are necessary for a practical dynamic implementation
of tracematches. A similar indexing technique is also applied
in JavaMOP [10].

A second approach, of which our work is an example,
is to use static analysis to reduce the number of transition
statements that must be instrumented. Another example is
the work of Bodden et al. [8], which we discussed in Sec-
tion 5. In follow-on work to be presented at SIGSOFT/FSE
2008, Bodden et al. [9] have augmented the analysis with a
suite of intraprocedural flow-sensitive analyses. The analy-
ses combine local alias information with inexpensive whole
program summary information. In their benchmark suite,
tracematches described mostly local patterns, thus a care-
ful combination of these analyses could detect many viola-
tions and with few false positives. Guyer and Lin’s [21, 22]
client-driven pointer analysis is also related. Their analysis
is based on a subset-based may-point-to analysis followed



by flow-sensitive propagation of states on the abstract object
represented by each allocation site. When a property can-
not be proven, the analysis iteratively refines the context-
sensitivity of the points-to analysis in order to improve pre-
cision and hopefully verify the property. Dwyer and Puran-
dare [16] also use static analysis to reduce the cost of dy-
namic typestate verification by proving that certain transi-
tions need not be instrumented because they cannot lead to a
violation.

The static analysis most closely related to our analysis is
Fink et al.’s typestate analysis [17, 18]. Their analysis also
uses an object abstraction in which an abstract object rep-
resents at most one concrete object, and it uses the focus
operation to achieve this. Their object abstraction is more
precise but more costly than ours because it tracks access
paths through fields, rather than only references from local
variables. In addition, the object abstraction contains the al-
location site of each object, which provides the same infor-
mation as a subset-based may-point-to analysis. It would be
possible to replace the object abstraction in our tracematch
analysis with that of Fink et al. to improve precision. Un-
like tracematches, typestate applies only to a single object.
Therefore, rather than requiring a separate tracematch ab-
straction, Fink et al. simply augment the abstraction of each
object with its typestate.

Another object abstraction similar to ours is used by
Cherem and Rugina [11] to statically insert free instructions
to deallocate some objects earlier than the garbage collector
can get to them. This application makes use of the property
that the abstract object corresponding to a given concrete ob-
ject can be traced through the control flow graph. The object
abstraction is also more precise than ours, but less so than
Fink’s; it maintains reference counts from individual fields
rather than full access paths. This object abstraction could
also be substituted in the tracematch analysis.

Multiobject temporal constraints have been studied by
Jaspan and Aldrich [25, 26] in the context of plugins for
object-oriented frameworks. The motivation for their work
is that since large frameworks introduce complex constraints
that are difficult to understand and document, it is diffi-
cult for programmers to develop plugins which conform to
the constraints laid down by the framework. They present
a lightweight specification system which allows the frame-
work developers to specify runtime interactions between ob-
jects and the framework constraints that depend on these in-
teractions. A static analysis is presented that uses these spec-
ifications and analyzes the plugin code for any violations of
the constraints laid down by the framework developer. The
analysis has been shown to work on real world examples
from the ASP.NET and Eclipse framework.

Ramalingam et al. [31] present a verification technique
for checking that a client program follows conventions re-
quired by an API. The effects and requirements of the API
methods are specified using a declarative language. The sys-

tem constructs a predicate abstraction of the API internals
from the specification. The predicate abstraction is used to
prove that a client program satisfies the requirements. The
system was used to check correct usage of iterators in client
programs of up to 2396 LOC.

The Metal system [24] is an unsound state-based bug
finder for C. The core system does not consider aliasing; in-
stead an automaton is maintained for each variable, regard-
less of the object to which it may be pointing. It uses heuris-
tics such as synonyms (an unsound variation of must-alias
analysis) to partially recover from this unsoundness. Metal
was successful in finding many locking bugs in the Linux
kernel.

An alternative to analyzing arbitrary aliasing is to use a
specialized type system to restrict aliasing. An advantage
of this approach is modularity: a violation of the type sys-
tem is local, as are violations of the typestate property when
the aliasing restrictions are obeyed. A disadvantage is that it
is difficult to apply to existing, unannotated code, although
sometimes annotations can be inferred automatically. The
Vault system [12] uses keys, unique pointers to objects. The
type system prevents duplication of keys, and each typestate
change is correlated with a set of keys held at the point of the
change. The same authors propose a system for specifying
typestates of object-oriented programs, focusing especially
on object-oriented features such as subtyping [13]. To han-
dle aliasing, they allow objects to be either unaliased and up-
dateable, or possibly aliased and non-updateable. CQual [19]
is another system similar to but simpler than Vault. Bierhoff
and Aldrich [5,6] present a type system in which both alias-
ing and typestate information are specified using types. A
key innovation of their system are access permissions, which
specify whether a pointer is unique or whether it is aliased
but with fine-grained restrictions on which aliases may read
or write to the object. Access permissions can be split for
multiple aliases and later recombined, making them more
flexible than earlier aliasing control mechanisms.

7. Conclusions and Future Work
We have presented a static analysis of temporal specifica-
tions of multiple interacting objects expressed using trace-
matches. The analysis has been proven sound with respect to
the tracematch semantics. A fully context-sensitive version
of the analysis has been implemented as two instances of
IFDS [32] and IDE [33] algorithms. The analysis was eval-
uated on the tracematches of Bodden et al. [8] and found
to be very precise. The analysis ruled out the possibility of
a violation at 89% of the final transition statements in the
benchmarks that we evaluated. Thus, a programmer wishing
to check the properties specified by the tracematches would
have to examine only the remaining 11% of final transition
statements. Of the 36 tracematch/benchmark pairs in which
the benchmark used features checked by the tracematch, the
analysis fully verified 15 to contain no possible violations.



Remaining imprecisions are mainly due to two factors.
First, the analysis loses precision when all local variable ref-
erences to an object are lost. This can be remedied either by
making use of may-point-to information, or by adding more
precise information about heap references to the object ab-
straction. Even type information may help in some cases.
Second, the analysis fails to verify some tracematches due
to imprecise handling of interprocedural exceptional control
flow. The precision of exceptional control flow can be im-
proved with suitable modifications to the IFDS and IDE al-
gorithms. We plan to investigate these improvements in the
future.

To make the analysis useful to programmers, and to ease
our work of interpreting the results, we are developing an
Eclipse plugin for presenting the analysis results and for nav-
igating the call graph and control flow graph of the program.
A screenshot from the current prototype of the plugin ana-
lyzing the example from Figures 1 and 2 is shown in Fig-
ure 14. The top view shows the code being analyzed in the
Eclipse source editor and the bottom view shows the results
of the tracematch analysis. In this example, the analysis has
found one possible final transition statement, in line 23, that
could violate the property. For this final transition statement,
the view also displays the update shadows that could have
led to the match, collected through the IDE analysis dis-
cussed in Section 4.1. A programmer investigating the vi-
olation in line 23 would examine the update transitions to
find that the update in line 24 modified the list being iter-
ated, leading to a violation the next time line 23 is executed.
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