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Abstract—The use of randomized backtracking in state space
traversal is a technique for efficient detection of errors that
we proposed recently. In this paper we summarize the basic
approach and results of our initial experiments, and then we
discuss possible extensions and optimizations.
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I. INTRODUCTION

There exist many techniques based on state space traversal
that aim to find errors in a reasonable time and avoid state
explosion — directed search with heuristics that navigate to-
wards the error state [6] [4] [5], random and parallel search [3]
[7] [16], and context-bounded model checking [15] [9].

We proposed randomized backtracking [13] as yet another
way to detect errors quickly with state space traversal. It allows
backtracking also from states that still have some unexplored
outgoing transitions, and uses random number choice to decide
whether to backtrack early (and thus prune a part of the state
space) or continue forward along some unexplored transition.
Our experiments with a prototype implementation of the
approach in Java Pathfinder (JPF) show that use of randomized
backtracking significantly improves performance over existing
techniques for many benchmark programs, i.e. fewer states are
explored before some error is found. Still, much work remains
to be done before the approach can be successfully applied to
large concurrent programs.

In this paper we summarize the basic approach introduced
in [13], outline possible extensions and optimizations of the
basic approach, and discuss our future plans.

II. STATE SPACE TRAVERSAL WITH RANDOMIZED
BACKTRACKING

We introduced randomized backtracking only for explicit
state depth-first traversal. We assume that each state is a
snapshot of program variables and threads at one point on
one execution path, and that each transition is a sequence of
instructions executed by one thread where the last instruction
is associated with a non-deterministic choice (e.g., thread
scheduling choice).

A. Algorithm

Figure 1 shows the overall algorithm. Differences from
the standard algorithm for depth-first state space traversal are
highlighted by underlining.

The function enabled returns a set of transitions enabled
in the state s that must be explored. A typical basic imple-
mentation of this function under our assumptions returns a

set that contains (a) one transition for each thread runnable
in the given state s in the case of a scheduling choice or
(b) one transition for each non-deterministically selected data
value (all of them being associated with the same thread).
The function order implements the search order — it takes
the given set of transitions and returns a list that determines
the order in which the transitions are explored.

DFS RB( threshold , strategy , ratio ) :
visited = {}
stack = [ ]
push ( stack , s0 )
explore (s0 )

procedure explore (s )
if error (s ) then

counterexample = stack
terminate

end if
transitions = order (enabled (s ) )
for tr ∈ transitions do

depth = size(stack)
if depth >= threshold then

if rnd(0, 1) > ratio(depth) return
end if
s′ = execute ( tr )
if s′ /∈ visited then

visited = visited ∪ s′

push ( stack , s′ )
explore (s′ )
pop ( stack )
if backtrackAgain(strategy) return

end if
end for

end proc

Fig. 1. Algorithm for state space traversal with randomized backtracking

For each transition tr from the state s, the algorithm uses
random number choice to decide whether (a) to move forward
and execute the transition or (b) backtrack early to some
previous state on the current path and ignore the remaining
unexplored transitions from s. The function call rnd(0,1)
returns a random number from the interval 〈0, 1〉. After each
backtracking step, i.e. after the recursive call to explore returns,
the backtrackAgain procedure is used to determine whether the
algorithm should backtrack further.

The process of state space traversal with randomized back-
tracking is controlled by three parameters: threshold, strategy,
and ratio. Specific values of the parameters make a configu-
ration of randomized backtracking.



B. Parameters
The value of the threshold parameter determines the least

search depth (i.e., the number of transitions between the initial
state and the current state) at which early backtracking is
enabled. If the current search depth is smaller than the value
of the threshold parameter, then backtracking is possible only
when all outgoing transitions have already been explored.

The strategy parameter determines the length of backtrack
jumps. When the algorithm decides to backtrack early from
the state s, it can jump back over any number of previous
transitions on the current path. We considered three strategies
in our initial work: fixed, random, and Luby. Using the
fixed strategy, the algorithm always backtracks over a single
transition. When using the random strategy, a backtrack jump
has a random length. When the Luby strategy [8] is used, the
length of a backtrack jump with the index N (overall) is the
number at the corresponding position in the Luby sequence
l1, l2, . . ., which is defined by the following expression:

li = 2n−1, if i = 2n − 1

li = li−2n−1+1 if 2n−1 ≤ i < 2n − 1

The ratio parameter expresses the general preference for
going forward along some unexplored transition over early
backtracking. When the current state s has some unexplored
outgoing transitions, then the algorithm backtracks early from
s only if the randomly selected number from the interval 〈0, 1〉
is greater than the ratio R. The value of the ratio parameter can
be defined as a constant number, or as a function of the search
depth that is represented by an expression R = 1−d/c, where
d is the current search depth and c is an integer constant. The
algorithm decides about early backtracking separately for each
transition from s. A consequence is that each transition from
s has a different probability of being explored — for the first
transition in the list returned by the order function for s, the
probability of being explored is equal to the ratio R, while for
a transition with the index i the probability is Ri.

C. State Space Pruning
The use of randomized backtracking implies that parts of the

state space are pruned by early backtracking from states with
unexplored outgoing transitions, and thus only an incomplete
traversal is performed. Error states may be reached faster due
to early backtracking, if the algorithm prunes (skips) large state
space fragments without any error states and avoids spending
a lot of time exploring them. On the other hand, the algorithm
can also prune state space fragments that contain error states,
but that does not matter if at least some other error states are
reached. It is not guaranteed that an error state will be reached
when the randomized backtracking is used.

Setting the threshold parameter to a specific non-zero value
prevents backtracking too early, so that an interesting part of
the state space that may contain some errors is always reached.
If the ratio is defined as a function of the search depth, then
early backtracking (state space pruning) becomes more likely
from states with a greater depth.

III. INITIAL EXPERIMENTS

We implemented the depth-first state space traversal with
randomized backtracking in JPF. The only change of the
standard JPF is the use of a custom search driver, which
performs the algorithm shown in Figure 1. Parameter values
are specified using the configuration mechanism of JPF. All
the strategies are hardwired in the search driver.

For our initial experiments, we have used seven small
multi-threaded Java programs: the Daisy file system [14], the
Elevator benchmark from the PJBench suite [11], and five
small programs that are publicly available in the CTC repos-
itory [1] — Alarm Clock, Linked List, Producer Consumer,
RAX Extended, and Replicated Workers. Basic characteristics
of the programs are provided in Table I.

TABLE I
BENCHMARK PROGRAMS

Program Source code lines Number of threads
Daisy file system 1150 2
Elevator 320 4
Alarm Clock 180 3
Linked List 185 2
Producer Consumer 135 7
RAX Extended 150 5
Replicated Workers 430 6

Only the Linked List benchmark already contained a con-
currency error (race condition) that JPF could detect, so
we manually injected concurrency errors into all the other
benchmark programs. We created race conditions in all bench-
marks except Linked List and Daisy by modifying the scopes
of synchronized blocks. In the case of Daisy, we inserted
assertions that are violated as a consequence of complex race
conditions that already existed in the code but JPF could not
detect them directly. Some benchmarks contained hard-to-find
errors with a low density of error paths (Daisy, Elevator), while
for others there was a high percentage of state space paths
leading to error states.

The results of our initial experiments [13] show that usage
of randomized backtracking significantly improves perfor-
mance over existing techniques for many benchmark pro-
grams. We measure performance by the number of states that
are explored before an error state is reached. However, the
performance and ability to find errors both depend very much
on the selected configuration and the outcome of the random
number choice — there is a great variability of performance
between different configurations and also between different
JPF runs for a single configuration. Different configurations
yield the best performance for individual benchmarks, but
reasonably good performance for all benchmarks was achieved
with the configuration (H , 0.9, random) for some program-
specific threshold value H .

As an illustration, Table II shows selected results for these
benchmarks: Elevator, Linked List, RAX Extended, and Repli-
cated Workers. Each row contains values of the following
metrics: the number of states processed before an error was
found (mean µ, minimum, and maximum), and the percentage



TABLE II
SELECTED EXPERIMENTAL RESULTS

Configuration Processed states Error found
µ min max

Elevator
(1) default search order 143373 100 %
(2) random search order 2399 1062 3833 100 %
(3) (50, random, 1− d/100) 270 255 293 100 %
(4) (50, fixed, 0.99) 358 253 424 100 %
(5) (100, fixed, 1− d/50) 2263 2227 2338 100 %
(6) (50, random, 0.9) 290 261 312 100 %
(7) (20, random, 0.9) - - - 0 %
Linked List
(1) default search order 328 100 %
(2) random search order 186 15 234 100 %
(3) (10, fixed, 1− d/50) 112 51 215 100 %
(4) (5, fixed, 1− d/50) 74 38 133 56 %
(5) (20, fixed, 0.9) 235 170 408 100 %
(6) (50, random, 0.9) 276 275 279 100 %
(7) (20, random, 0.9) 197 171 266 100 %
RAX Extended
(1) default search order 1617 100 %
(2) thread interleavings 104 100 %
(3) (10, luby, 0.99) 97 86 113 100 %
(4) (5, fixed, 0.5) 60 8 313 67 %
(5) (50, fixed, 0.5) 1617 1617 1617 100 %
(6) (50, random, 0.9) 1617 1617 1617 100 %
(7) (20, random, 0.9) 441 401 491 100 %
Replicated Workers
(1) default search order 9881 100 %
(2) context bound (10) 6585 100 %
(3) (50, fixed, 0.9) 148 95 278 100 %
(4) (50, fixed, 0.5) 339 71 1282 100 %
(5) (50, luby, 1− d/20) 6258 139 19190 100 %
(6) (50, random, 0.9) 1774 146 5891 100 %
(7) (20, random, 0.9) - - - 0 %

of JPF runs for the given configuration that found an error. If
no error was found by any JPF run for a given configuration,
then columns for metrics related to the number of processed
states contain the character ”-”. Rows of the table associated
with each benchmark provide results for: (1) traversal with the
default search order in JPF, (2) the existing technique with the
best performance out of those currently implemented in JPF,
(3) the configuration of randomized backtracking with the best
average performance out of those where 100% of JPF runs
found an error, (4) the configuration for which some JPF run
achieved the best performance on the given benchmark over all
configurations of randomized backtracking and all JPF runs for
these configurations, (5) the configuration for which some JPF
run achieved the worst performance on the given benchmark
over all configurations of randomized backtracking and all JPF
runs for these configurations, (6) configuration (H , random,
0.9) with the threshold H = 50, and (7) configuration (H ,
random, 0.9) with the threshold H = 20.

For example, the data in rows 1–4 for the benchmarks
Elevator and Replicated Workers show the performance im-
provement over existing techniques. Rows 4–5 for Eleva-
tor and Replicated Workers show the variability between
configurations and also between different JPF runs for one
configuration. The data in row 4 for Linked List and RAX
Extended show that the ability to find errors with randomized

backtracking also varies over configurations, i.e. that some JPF
runs do not find any error. Row 4 for RAX Extended also
shows that better performance can be achieved when only at
least 50 % of JPF runs are required to find some error.

Our implementation and the complete set of experimental
results are available at the web site http://plg.uwaterloo.ca/
∼pparizek/jpf/spin11/.

When using our current algorithm with the configuration
(H , random, 0.9), the selection of a good threshold value
H with regard to the given program is very important. It
influences the chance that JPF will find an error and also its
performance. If the threshold is too low, almost no JPF run will
find an error due to backtracking too early. If the threshold is
too high, randomized backtracking will have almost no effect
during traversal, because JPF will find an error at a search
depth lower than the threshold value. These two cases are
captured by row 7 for Elevator and row 6 for RAX Extended,
respectively.

Although the use of randomized backtracking does not guar-
antee that an error is discovered, results of our experiments
show that some error is discovered by all JPF runs (or by a
very high percentage of JPF runs), as long as the threshold
value is not too small. The values of the other two parameters
of randomized backtracking (ratio and strategy) have much
less influence on the ability to find errors than threshold.

IV. NEXT STEPS

Our initial experiments gave promising results, but much
work still remains to be done before the approach can be
successfully used to detect errors in large concurrent programs.
The possible improvements that we have identified can be
divided into the following categories: general extensions and
optimizations, determining parameter values, integration with
existing techniques, extension towards complete verification,
and empirical evaluation on more complex programs. In the
rest of this section we discuss our plans in each category.

A. General Extensions and Optimizations

Randomized backtracking is currently defined and imple-
mented only for depth-first explicit state traversal, but it may
work equally well or even better with other search algorithms.
We will introduce randomness in a similar manner to breadth-
first search (BFS) and mixed search algorithms, and perform
experiments to see how useful these variants really are.

In the case of BFS, we will use random numbers in the
selection of the next state to be explored from the queue. The
parameters of randomized backtracking will most probably
have a different meaning for BFS.

In the case of depth-first search with randomized backtrack-
ing, we will create a new version of the existing algorithm
where the threads associated with transitions are considered in
the decision whether to backtrack early or continue forward.
This means, for example, to define two values of the ratio
parameter — one for the case when the next transition
according to the search order is associated with a different
thread than the previous transition, and one for the case when



the same thread is associated with both transitions. We might
also try different strategies for the length of backtrack jumps.

We could even try a mixed search that involves both DFS
and BFS. The state space fragment with depth smaller than
the given threshold would be explored using BFS, and then
DFS would be performed from any state with depth greater
than the threshold.

B. Determining Parameter Values

Much space for future research is in possible ways to
determine useful parameter values and their combinations. We
plan to investigate the following:

• automated setting of reasonable threshold values for the
strategy (H , random, 0.9) based on some heuristics and
static analysis,

• setting threshold and ratio based on (1) the shape of the
state space and (2) some properties of execution paths
(e.g., number of runnable threads), and

• dynamically changing parameter values during a JPF run
based on some properties of the given program and its
state space.

Our general goal is to try to find configurations of randomized
backtracking which satisfy these properties: (1) they yield
consistently good performance for many benchmark programs
and (2) the results of individual JPF runs have small variability.
Use of such configurations could lead to higher predictability
of our approach with respect to error detection in a reasonable
time. The configuration (H , random, 0.9) was picked based
on our initial experiments and it works for the benchmark
programs that we currently have, but it might not yield good
performance for some other programs.

We also plan to explore the relation between parameters of
randomized backtracking and parameters of other approaches.
For example, there might be some relation between threshold
values and bounds on the number of thread preemptions in
context-bounded model checking.

C. Integration with Existing Techniques

Most existing techniques for efficient detection of errors
based on state space traversal are implemented using custom
versions of the functions order and enabled. Randomized back-
tracking does not require any changes in these two functions,
and thus it can be easily combined with existing techniques.

We will evaluate combinations of randomized backtracking
with selected other techniques to see how efficient they are
and to identify the best combinations. The general issue is that
randomized backtracking may negatively impact some existing
techniques, so that they cannot be effectively combined. We
will consider the following existing techniques: traversal with
random search order [3] [16], directed search with a heuristic
that prefers thread switches [6], and maybe some others.

Besides that, we will also try a combination of randomized
backtracking with restarts of the state space traversal process
(see our earlier work in [12]). An obvious possibility is to
reinitialize the random number generator at each restart to

ensure that a different sequence of random choices is explored
after the restart.

D. Extension towards Complete Verification

The use of randomized backtracking does not guarantee
that all errors will be found because of state space pruning.
However, providing certain guarantees about soundness and
coverage is very important for practical usefulness of any
error detection approach. A popular example is bounded
verification, where the algorithm (tool) guarantees finding all
errors up to a certain bound (e.g., on the number of context
switches [9] or the search depth [17]).

We plan to extend the current algorithm towards complete
verification by (1) remembering all states from which JPF
backtracked early and (2) exploring pruned transitions from
those states after the random traversal finishes. This idea is
similar to the approach proposed in [2], where the verifi-
cation process is divided into two steps: a heuristic-based
search is performed first that aims to find many errors very
quickly, followed by an exhaustive traversal (as a long-running
background job) that provides coverage guarantees. It is very
hard to measure the coverage achieved by a run of JPF with
randomized backtracking, i.e. how large a fragment of the state
space was explored before an error was found, as the state
space is constructed dynamically and therefore its size is not
known a priori (or at any moment during the actual search).

Another possibility is to use random number choice also
to control later exploration of pruned transitions. In each
state s, the algorithm would choose between processing the
current state s or going back to some other partially explored
state (that was skipped before and has unexplored outgoing
transitions). If the algorithm decides to go back, then the state
to explore next could also be picked randomly from the list
of states skipped before.

The main difference of our approach from existing tech-
niques is that we would target stateful model checking, i.e. not
stateless search like CHESS [10] and its extensions (e.g. [2]).

E. Empirical Evaluation

We would like to evaluate randomized backtracking with
the proposed improvements on large and more complex Java
programs, both sequential and concurrent.

The main challenge that we now face is to find large Java
programs with interesting behaviors that we could use as
benchmarks. We are looking for more complex benchmark
programs than we currently have, most notably ones where
each thread executes much more instructions. They should be
large Java programs with errors, or at least variants of the Java
programs with errors that really existed in the given original
program at some point. We can inject some errors manually,
but injected errors are often artificial. It is also difficult to
inject hard-to-find errors, for whose discovery model checking
tools are most useful compared to other approaches such as
testing. On the other hand, the programs should not use Java
libraries that are not fully supported by JPF (e.g., networking
and graphics). This problem can be addressed by manual



simplification (removing library calls), but the result may be
very different from the original program in terms of possible
behaviors.

A good solution would be to have a public repository similar
to [1], but one that contains more complex programs or at least
models of complex programs.

Using the more complex benchmarks, we would evaluate
state space traversal with randomized backtracking, and we
would also compare randomized backtracking with other exist-
ing approaches to fast error detection that are not implemented
in JPF (e.g., iterative context bounding [9]).
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