Scala with Explicit Nulls
Abel Nieto

University of Waterloo, Canada
anietoro@Quwaterloo.ca

Yaoyu Zhao
University of Waterloo, Canada
y437zhao@edu.uwaterloo.ca

Ondrej Lhotak
University of Waterloo, Canada
olhotak@uwaterloo.ca

Angela Chang
University of Waterloo, Canada
yue.chang@edu.uwaterloo.ca

Justin Pu
University of Waterloo, Canada
justin.pu@edu.uwaterloo.ca

—— Abstract

The Scala programming language makes all reference types implicitly nullable. This is a problem,
because null references do not support most operations that do make sense on regular objects,
leading to runtime errors. In this paper, we present a modification to the Scala type system that
makes nullability explicit in the types. Specifically, we make reference types non-nullable by default,
while still allowing for nullable types via union types. We have implemented this design for explicit
nulls as a fork of the Dotty (Scala 3) compiler. We evaluate our scheme by migrating a number of
Scala libraries to use explicit nulls. Finally, we give a denotational semantics of type nullification,
the interoperability layer between Java and Scala with explicit nulls. We show a soundness theorem
stating that, for variants of System F,, that model Java and Scala, nullification preserves values of
types.

2012 ACM Subject Classification Software and its engineering — General programming languages;
Theory of computation — Denotational semantics; Theory of computation — Type theory; Software
and its engineering — Interoperability

Keywords and phrases Scala, Java, nullability, language interoperability, type systems
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2020.25

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.14.

Funding This research was supported by the Natural Sciences and Engineering Research Council of
Canada and by the Waterloo-Huawei Joint Innovation Lab.

Acknowledgements We would like to thank Sébastien Doeraene, Fengyun Liu, Guillaume Martres,
and Martin Odersky for their feedback on our explicit nulls design.

1 Introduction

Scala inherited elements of good design from Java, but it also inherited at least one misfeature:
the null reference. In Scala, like in many other object-oriented programming languages, the
null reference can be typed with any reference type. This leads to runtime errors, because

© Abel Nieto, Yaoyu Zhao, Ondrej Lhotak, Angela Chang, and Justin Pu;
37 licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).

Editors: Robert Hirschfeld and Tobias Pape; Article No. 25; pp. 25:1-25:26

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2741-8119
mailto:anietoro@uwaterloo.ca
mailto:y437zhao@edu.uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
mailto:yue.chang@edu.uwaterloo.ca
mailto:justin.pu@edu.uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/DARTS.6.2.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2

Scala with Explicit Nulls

null does not (and cannot) support almost any operations. For example, the program below
tries to read the length field of a string, only to find out that the underlying reference is
null. The program then terminates with the infamous NullPointerException!.

val s: String = null // ok: String is a nullable type
println (s"s has length " + s.length) // throws a NullPointerException

Errors of this kind are very common, and can sometimes lead to security vulnerabilit-
ies. Indeed, “Null Pointer Dereference” appears in position 14 of the 2019 CWE Top 25
Most Dangerous Software Errors, a list of vulnerability classes maintained by the MITRE
Corporation [21]. As of November 2019, a search for “null pointer dereference” in MITRE’s
vulnerability database? returned 1429 entries.

The root of the problem lies in the way that Scala structures its type hierarchy. The
null reference has type Null, and Null is considered to be a subtype of any reference type.
In the example above, Null is a subtype of String, and so the initializer val s: String
= null is allowed. We could say that in Scala, (reference) types are implicitly nullable.
The alternative is to have a language where nullability has to be explicitly indicated. For
example, we can re-imagine the previous example in a system with explicit nulls (the notation
String|Null stands for the union type “String or Null”):

val s: String = null // error: Null is not a subtype of String

val s: String |[Null = null // ok: s is explicitly marked as nullable

println ("s has length " + s.length) // error: String |Null does not have a ‘length’ field
if (s != null) println ("s has length " + s.length) // ok: we checked that s is not null

In a world with explicit nulls, the type system can keep track of which variables are
potentially null, turning runtime errors into compile-time errors.

Our contributions, implemented on top of the Dotty (Scala 3) compiler and currently
under consideration for inclusion in Scala 3, are as follows:

We retrofitted Scala’s type system with a mechanism for tracking nullability, using union

types. To improve usability of nullable values in Scala code, we also added a simple form

of flow typing to Scala.

So that Scala programs can interoperate with Java code, where nulls remain implicit,

we present a type nullification function that turns Java types into equivalent Scala types.

We evaluate the design by migrating multiple Scala libraries to explicit nulls. The main

findings are that most of the effort in migrating Scala code to explicit nulls comes from

Java interoperability, and that the effort is significant for some libraries.

Finally, we formalize type nullification using variants of System F,, that have been

augmented to model implicit and explicit nulls. Using denotational semantics, we prove a

soundness theorem for nullification, saying that nullification preserves values of types.

2 A New Type Hierarchy

To understand the special status of the Null type, we can inspect the current Scala type
hierarchy, shown in Figure 1. Roughly, Scala types can be divided into value types (subtypes
of AnyVal) and reference types (subtypes of AnyRef). The type Any then stands at the top
of the hierarchy, and is a supertype of both AnyVal and AnyRef (in fact, a supertype of

! https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
2 https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+Pointer+Dereference

https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+Pointer+Dereference

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

Implicit nulls Explicit nulls
An

y
/ \
AnyVal AnyRef

o\ st .

Boolean String

@@ Nothing

Nothing

Figure 1 Alternative Scala type hierarchies with implicit and (our design) explicit nulls.

every other type). Conversely, Nothing is a subtype of all types. Finally, Null occupies an
intermediate position: it is a subtype of all reference types, but not of the value types. This
justifies the following typing judgments:

val s: String = null // ok: String is a reference type
val i: Int =null // error: Int is a value type

This is what makes nulls in Scala implicit. In order to make nulls explicit, we need to
dislodge the Null type from its special position, so that it is no longer a subtype of all
reference types. We achieve this by making Null a direct subtype of Any. This new type
hierarchy, which underlies our design, is also shown in Figure 1. With the new type hierarchy
we get new typing judgments:

val s: String = null // error: reference types like String are no longer nullable

val i: Int = null // error: Int is a value type
val sn: String |Null = null // ok: Null <: String|Null

String|Null is a union type. In general, the union type A|B (read “A or B”) contains all

values of both A and B, as indicated by the subtyping judgements A <: A|B and B <: A|B.

Union types are a new feature present in Dotty but not in Scala 2 and, as the example shows,
they allows us to encode nullability.
The explicit nulls hierarchy is still unsound in the presence of uninitialized values:

1 class Person {
2 val name: String = getName()
3 def getName(): String = "Person" + name.length // ‘name’ is null here

4}

5 val p = new Person() // throws a NullPointerException

Because, after allocation, the fields of Scala classes are initialized to their “default” values,
and the default value for reference types is null, when we try to access name.length
in line 3, name is null. This produces a NullPointerException. While ensuring sound
initialization is an interesting challenge, it is not one we tackle in this paper. Developing a
sound initialization scheme for Scala, while balancing soundness with expressivity, remains
future work. We review some of the existing approaches in Section 7.

25:3

ECOOP 2020

25:4

Scala with Explicit Nulls

2.1 Fixing a Soundness Hole

Even though explicit nulls do not make the Scala type system sound (e.g. there remain
null-related soundness holes related to incomplete initialization of class fields), they do
remove the specific source of unsoundness identified by Amin and Tate [3]. This class of
bugs, reported in 2016 and still present in Scala and Dotty, happens due to a combination of
implicit nullability and type members with arbitrary lower and upper bounds. For example,
the example presented by Amin and Tate [3] crucially relies on being able to construct a term
t that has both type e.g. LowerBound [Int] and UpperBound [String], two type applications
unrelated by subtyping. Because of implicit nullability, null has both types, which makes
the unsoundness possible. With our explicit nulls design, the typing above is no longer
possible, so the runtime error becomes a compile-time error.

3 Java Interoperability

One of Scala’s strengths is its ability to seamlessly use Java libraries. Because both languages
are compiled down to Java Virtual Machine (JVM) bytecode [18], Java libraries appear to
Scala code as any other Scala library would. The interaction can also happen in the opposite
direction: Java code can use Scala libraries.

Because reference types remain implicitly nullable in Java, we need a way to “interpret”
Java types as Scala types, where nullability is explicit. For example, if a Java method returns
a String, then the Java type system will allow null as a return value. If we use said method
from Scala, we need to interpret the method’s type as String|Null.

In the opposite direction, when Java code uses Scala libraries, the problem is simpler
because Java types are less precise than Scala types. In particular, both the Scala types
String and String|Null can be interpreted as the Java type String, which includes the
null value.

3.1 Type Nullification

Type nullification is the process of translating Java types to their Scala equivalents, in the
presence of explicit nulls. By equivalent, we mean that if type nullification sends type A to
type B, the values of A and B must be the same. Below are two examples of the behaviour
we want from nullification:
The values of the Stringj.,. type® are all finite-length strings (e.g. "hello world"
and ""), plus the value null. By contrast, the values of Stringgca.1a are just all finite-
length strings (but not null). This means that nullification must map Stringjaya to
Stringscaia |Null.
Similarly, we can think of a Java method with signature
String;,,, getName(String;, . s)
as representing a function from String, . to String;, . (i.e. getName: String, . —
String;,..). Suppose that f € String,, . — String;, .. Notice that f can take null
as an argument, and return null as a result. This means that nullification should return
Stringg ,,,|Null — Stringg,,;,|Null in this case.

Here is why “preserves values of a type” is a useful correctness criterion for nullification.
Suppose that nullification instead wunderapproximated a type’s values. For example, we
could turn String,, . into Stringg.,,,. We might then call e.g. the length method on the

3 We write Tjava and Tsca1a for Java’s and Scala’s view of the same type T, respectively.

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

Foun(R) = R|Null if R is a reference type (FN-Ref)
Foui(R) =R if R is a value type (FN-Val)
Foun(T) = T|Null if T is a type parameter (FN-Par)
Frun(C<R>) = C<Apui (R)>|Null if C is Java-defined (FN-JG)
Frun(C<R>) = C<Fpu1i(R)>|Null if C' is Scala-defined (FN-SG)
Frun(A&B) = (Apun(A)& Anun(B))|Null (FN-And)
Anut(R) =R if R is a reference type (AN-Ref)
Avat(T) =T if T is a type parameter (AN-Par)
Anun(C<R>) = C<Anuna (R)> if C is Java-defined (AN-JG)
Anun(C<R>) = C<Fpua (R)> if C' is Scala-defined (AN-SG)
Anun(R) = Frun(R) otherwise (AN-FN)

FLun is applied to the types of fields, and argument and return types of methods of every
Java-defined class. We try the rules in top-to-bottom order, until one matches.

Figure 2 Type nullification functions.

Stringg.,,,, only to find out that the underlying reference was null. Another way of saying
this is that underapproximations are unsound for reads. Similarly, consider what would
happen were nullification to overapprozimate types. For example, we could map String;,,,
to Scala’s Any. This is sound for reads, because we cannot call length on an Any. However,
if the Java type were to appear contravariantly, e.g. as a method argument, then the Scala
code could pass an Any (a value of any type), where the Java code expects a String, .,
leading to runtime errors. That is, overapproximations are unsound for writes. This leads us
back to our desired goal of preserving values of types. For now, we only argue informally
that nullification preserves values of types. Section 6 formalizes this idea using denotational
semantics and proves soundness of the rules on a core calculus.

Nullification can be described with a pair of mutually-recursive functions (Fyun, Anun)
that map Java types to Scala types. The functions are defined in Figure 2 and described
below. But first, a word about how nullification is applied. The Dotty compiler can load
Java classes in two ways: from source or from bytecode. In either case, when a Java class is

loaded, we apply Fphu to the types of fields and the argument and result type of methods.

The resulting class with modified fields and methods is then made accessible to the Scala
code. Below is some intuition and example for the different nullification rules.
Case (FN-Ref and FN-Val) These two rules are easy: we nullify reference types but

not value types, because only reference types are nullable in Java. Here is an example Java
class and its translation (given in Java syntax enhanced with union types and a Null type):

// Java class // After nullification
class C { class C{

String s; String | Null s;

int x; int x;
} }

Case (FN-Par) Since type parameters are always nullable in Java, we need to nullify
them as well.

25:5

ECOOP 2020

25:6

Scala with Explicit Nulls

// Java class // After nullification
class C<T> { class C<T> {

T foo() {...} T|Null foo() {...}
} }

For example, if we have c: C<Boolean>, then c.foo() now returns a Boolean|Null, as
opposed to just Boolean like it used to.

Case (FN-JG) This rule handles generics C<T>, where C is a class defined in Java
(Java-defined). The rule is designed to reduce the number of redundant nullable types we
need to add. Let us look at an example:

// Java // After nullification

class Box<T> { T get(); } class Box<T> { T|Null get(); }

class BoxFactory<T> { class BoxFactory<T> {
Box<T> makeBox(); Box<T>|Null makeBox();

} }

Suppose we have a BoxFactory<String>. Notice that calling makeBox on it returns a
Box<String>|Null, not a Box<String|Null>|Null, because of FN-JG. This seems at first
glance unsound, because the box itself could contain null. However, it is sound because
calling get on a Box<String> returns a String|Null.

Generalizing from the example, we can see that it is enough to nullify the type application
C<T> as C<T>|Null. That is, it is enough to mark the type as nullable only at the top level,
since uses of T in the body of C will be nullified as well, if C is Java-defined. Notice that the
correctness argument relies on our ability to patch all Java-defined classes that transitively
appear in the argument or return type of a field or method accessible from the Scala code
being compiled. All such classes must be visible to the Scala compiler in any case, and will
thus be nullified, so this requirement is satisfied by the implementation.

In fact, the rule is a bit more complicated than we have explained so far. The full rule is
Foun(C<R>) = C<Apuii (R)>|Null. Notice that in fact we do transform the type argument,
but do so using Ap,y instead of Fiuy. Anpun is a version of Fi,; that does not add |Null
at the top level. Ap,y is needed for cases where we have nested type applications, and it
is explained in more detail below. Here is a sample application of Fj, to a nested type
application, assuming that C, D, and String are all Java-defined:

Foun(C<D<String>>) = C<Apu1 (D<String>)>|Null
= C<D<Apu1 (String)>>|Null
= C<D<String>>|Null

Notice how we only add |Null at the outermost level. This minimizes the number of changes
required to migrate existing Scala code with Java dependencies.

Case (FN-SG) This rule handles the mirror case, where the Java code refers to a generic
C<T> in which C is a class defined in Scala (Scala-defined). For example, assuming that Box
is Scala-defined, we get:

// Java code that refers to Scala class Box // After nullification
class BoxFactory<T> { class BoxFactory<T> {
Box<T> makeBox(); Box<T|Null>|Null makeBox();

} }

Notice that unlike the previous rule, FN-SG adds |[Null to the type argument, and not
just to the top level. This is needed because nullification is only applied to Java classes, and
not to Scala classes. We then need a way to indicate that, in the example, the returned Box
may contain null.

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

Case (FN-And) This rule just recurses structurally on the components of the type.

Even though Java does not have intersection types, we sometimes encounter them during
nullification, because the Scala compiler desugars some Java types using intersections. For
example, the Java type Array[T], where T has no supertype, is represented in Scala as
Array[T & Object].

As previously mentioned, A, is a helper function that behaves mostly like F,p, but
never nullifies types at the top level. A, is useful because we want to avoid adding
superfluous |[Null unions whenever possible.

4 Flow Typing

To improve usability of nullable types, we added a simple form of flow-sensitive type inference
to Scala [15]. The general idea is that sometimes, by looking at the control flow, we can infer
that a value previously thought to be nullable (due to its type) is no longer so.

4.1 Supported Cases

Below we list the cases supported by flow typing. In the examples, the notation 777 stands
for an unspecified expression of the appropriate type:
Branches of an if-expression. If an if-expression has a condition s !'= null, where s
satisfies some restrictions (see below), then in the then branch we can assume that s is
non-nullable.

val s: String |Null = 7?7
if (s !=null) {
val | = s.length // ok: s has type String in the ‘then’ branch
}
val | =s.length // error: s has type String |Null
We can reason similarly about the else branch if the test is p == null.

Logical operators. We also support the logical operators &&, ||, and ! in conditions: e.g.

given a condition if (s !'= null && s2 !'= null), we infer that both s and s2 are
non-null in the then branch.

Propagation within conditions. We support type specialization within a condition, taking
into account that && and || are short-circuiting: e.g. in the condition s '= null &&
s.length > 0, the test s.length is type correct because the right-hand side of the
condition will only be evaluated if s is non-null.

Nested conditions. Our inference works in the presence of arbitrarily-nested conditions:
given the condition !(a = null || b = null) && (c '= null), we infer that all of a,
b, and c are non-null in the then branch.

Early exit from blocks. If a statement conditionally performs an early exit from a block
based on whether a value is null, we can soundly assume that the value is non-null from
that point on. This is the case for both return statements and exceptions:

if (s == null) return 0
return s.length // ok: s inferred to have type String from this point on

In general, if we have a block si,...,58;, Si+1,...,5,, Where the s; are statements, and
s; is of the form if (cond) exp, where exp has type Nothing, then depending on cond,
we might be able to infer additional nullability facts for statements s;41,...,s,. Here,

4 7277 is actually valid Scala code, and is simply a method with return type Nothing.

25:7

ECOOP 2020

25:8

Scala with Explicit Nulls

the condition cond can contain nested conditions such as those discussed in the previous
point. The reason is that type Nothing has no values, so an expression of type Nothing
cannot terminate normally (it either throws or loops). It is then safe to assume that
statement s; 1 executes only if cond is false.

There is one extra complication here, which is that Scala allows forward references to
method definitions, which combined with nested methods can lead to non-intuitive control
flow. In our implementation, we have logic for detecting forward references and disabling
flow typing in such cases to preserve soundness. In the presence of forward references, we
discard the more precise type inferred for a specific program point by flow typing and
fall back to the flow-insensitive declared type that is conservatively sound at all program
points.

4.1.1 Stable Paths

Scala has four kinds of definitions: vals, lazy vals, vars, and defs. vals are eagerly
evaluated and immutable. lazy vals are like vals, but lazily evaluated and then memoized.
vars are eagerly evaluated and mutable. Finally, defs are lazily evaluated, but not memoized,
so they are used to define methods.

We use flow typing on vals and lazy vals, but not on vars or defs. Using naive flow
typing on a var would be unsound, because the underlying value might change between the
moment it is tested (where it might be non-null) and the later use of the var (where it might
be again null). Similarly, flow typing on defs would be problematic, because a def is not
guaranteed to return the same value after every invocation.

In general, given a path p = v.sl.s2..... Sn, where v is a local or global symbol, and
the s; are selectors, it is safe to do flow inference on p only if p is stable. That is, all of
v,sl,...,s, need to be vals or lazy vals. If p is stable, then we know that p is immutable
and so the results of a check against null are persistent and can be trusted.

4.2 Inferring Flow Facts

The goal of flow typing is to discover nullability facts about stable paths that are in scope.
A fact is an assertion that a specific path is non-null at a given program point.

At the core of flow typing, we have a function N : Exp x Bool — P(Path). N takes a
Scala expression e (where e evaluates to a boolean) and a boolean b, and returns a set of
paths known to be non-nullable if e evaluates to b. That is, N (e, true) returns the set of
paths that are non-null if e evaluates to true, and N (e, false) returns the set of paths
known to be non-null if e evaluates to false. N is defined in Figure 3.

We can use N to support the flow typing scenarios we previously outlined:

Given an if expression if (cond) el else e2, we compute F ipen = N (cond, true) and

Fise = N(cond, false). The former gives us a set of paths that are known to be non-null

if cond is true. This means that we can use Fipe, when typing e;. Similarly, we can use

Fiise when typing es.

To reason about nullability within a condition el && e2, notice that ez is evaluated

only if e; is true. This means that we can use the facts in A (el,true) when typing es.

Similarly, in a condition el || e2, we only evaluate eq if e; is false. Therefore, we can

use N (el,false) when typing es.

Given a block with statements if (cond) e; s, where e has type Nothing, or a block

of the form if (cond) return; s, we know that s will only execute if cond is false.

Therefore, we can use N (cond, false) when typing s.

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

N(p == null, true) = {}
N(p == null, false) = {p} if p is stable
N(p !'= null,true) = {p} if p is stable
N(p !'= null,false) = {
N (A && B,true) = N (A, true) UN (B, true)
N(A && B, false) = N (A, false) NN (B, false)
N(A || B,true) = N(4,true) N N (B, true)
)
)
)
)
b) =

—

N (1A, true) = N (4, false)
N (A, true)
N (cond, b)

= {} otherwise

N (1A, false
N({s1l; ...; sn; cond},b

Ne,

(
(
(
N(A || B,false) = N(A, false) UN (B, false)
(
(
(

Figure 3 Flow facts inference. Correctness follows from De Morgan’s laws.

4.3 Asserting Non-Nullability

For cases where flow typing is not powerful enough to infer non-nullability, we added a .nn
(“assert non-nullable”) method to cast away nullability from any term.

var s: String |Null = 7?7
val | = s.nn.length // ok: .nn method casts away nullability

In general, if e is an expression with type T|Null, then e.nn has type T. The nn method is
defined as an extension method. This is a kind of implicit definition that makes nn available
for any receiver of type TINull. nn does a checked cast, so e.nn fails with an exception if
the receiver e evaluates to null.

5 Evaluation

In this section, we empirically evaluate the expressiveness of the explicit nulls system and
the effort required to migrate existing Scala programs to it. We test the popular belief that
Scala programs tend not to use null references much themselves except for interaction with
Java code. The explicit nulls system requires a program to explicitly specify what is to be
done if a null reference arises at each program location where it is not ruled out statically;
we quantify how many such locations there are in typical Scala programs.

We perform our evaluation on the programs in the Dotty community build,® a suite of
Scala programs that have been ported from Scala 2 to compile with the Dotty compiler
(without explicit nulls), and are regularly tested as part of the Dotty regression tests. The
community build programs are summarized in Table 1.

We divide our evaluation into three parts. First, in Section 5.1, we evaluate null references
possibly coming from interaction with Java code. Second, in Section 5.2, we evaluate the
effectiveness of flow-sensitive typing in ruling out the possibility of null references. Third, in
Section 5.3, we examine other causes of null-related compilation errors that are not related
to interaction with Java and are not ruled out by flow typing.

5 https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/
communitybuild

25:9

ECOOP 2020

https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/communitybuild
https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/communitybuild

25:10

Scala with Explicit Nulls

Table 1 Community build libraries.

Name Description Size (LOC) | Files
scala-pb Scala protocols buffer compiler 37,029 275
squants DSL for quantities 14,367 222
fastparse Parser combinators 13,701 80
effpi Verified message passing 5,760 60
betterfiles 10 library 3,321 29
algebra Algebraic type classes 3,032 75
scopt Command-line options parsing 3,445 28
shapeless Type-level generic programming 2,328 18
scalap Class file decoder 2,210 22
semanticdb Data model for semantic information 2,154 49
intent Test framework 1,866 48
minitest Test framework 1,171 32
xml-interpolator | XML string interpolator 993 20
stdLib213 Scala standard library 31,723 588
scala-xml XML support 6,989 115
scalactic Utility library 3,952 53
Total 134,041 | 1,714

5.1

We evaluate the interaction with Java code by counting the number of compilation errors in
several variants of the explicit nulls system. The error counts per thousand lines of code for
each program and each variant are shown in Table 2.

The Baseline column shows the error counts for the explicit nulls system as described
in this paper so far. There is significant variance between the different programs, from two
or fewer errors per thousand lines of code in more abstract, Scala-like programs, to tens of
errors per thousand lines of code in more low-level programs, particularly those that interact
significantly with Java. We conjecture that interaction with Java is the main cause of the
errors, and evaluate several variations of the system to test this conjecture.

Our first attempt to reduce the number of errors is with nullness annotations in Java code.
The Annotations column shows the error counts when the Scala programs are compiled
with a variant of the Java standard library with annotations specifying that the return
values of certain methods cannot be null. The annotations are taken from the Checker
Framework Project [23], which publishes an annotated version of the Java standard library,
with nullness annotations on 4414 methods and 1712 fields in 847 classes. There are many
different standards for annotating Java code with nullability; our implementation supports
reading 12 such annotation formats and additional formats can be added easily. On some of

Evaluation of Java interaction

the programs with high error counts, the annotations reduce the error count significantly,
by up to half on scalap, but on others, they make little difference, such as on ScalaPB.
One reason for this is that some programs interact with Java code other than the standard
library, and the other Java libraries are not annotated. Another reason is that although
the Checker Framework provides thousands of annotations, it still leaves a large part of
the standard library unannotated, and the Scala programs interact with these unannotated
methods. Annotating the entire standard library would be a huge effort, and even then, more
annotations would be needed for any other Java libraries that a Scala program interacts
with.

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

Table 2 Error frequency by configuration in errors per thousand LOC. The mean is weighted by
the number of LOC in each program. The Baseline column reflects the configuration described in
this paper so far. The Annotations column adds annotations to the Java standard library to specify
methods that do not return null. The JavaNull column reflects a configuration in which method
selections are (unsoundly) allowed on possibly null references returned by Java methods. The
Non-null Ret. column reflects a configuration in which all calls of Java methods are (unsoundly)
assumed to never return a null reference. The Ann. No Flow column reflects a configuration like
the Annotations column, except with the flow typing discussed in Section 4 disabled.

Baseline Annotations JavaNull Non-null Ret. | Ann. No Flow
scalactic 72.37 57.19 57.19 3.04 57.19
betterfiles 43.36 38.54 37.04 7.23 38.54
stdLib213 37.26 34.01 33.54 17.24 34.36
ScalaPB 24.98 24.76 24.76 1.38 24.76
minitest 18.79 13.66 12.81 6.83 13.66
scalap 15.84 7.69 7.24 1.81 7.69
scala-xml 13.59 11.45 11.30 9.30 11.88
semanticdb 12.07 7.43 6.04 1.39 7.43
intent 8.57 6.97 6.97 0.54 6.97
scopt 5.52 4.93 4.64 2.32 4.93
xml-interpolator 2.01 2.01 2.01 2.01 2.01
shapeless 1.72 0.00 0.00 0.00 0.00
fastparse 1.61 1.53 1.53 1.46 1.53
effpi 1.39 1.39 1.04 0.00 1.56
algebra 0.33 0.33 0.33 0.00 0.33
squants 0.00 0.00 0.00 0.00 0.00
Mean 20.79 18.96 18.74 5.56 19.07

Another conjecture is that it is common to chain calls to Java methods. For example, if s
is of type String, we may call s.trim.toUppercase, where trim is a Java method on strings
that returns another string, on which we wish to call the Java method toUppercase. Such a
pattern is rejected by the explicit nulls system if trim can return a null reference, since a null
reference does not have a toUppercase method, but if this pattern is common, it may be
pragmatic to allow it, even if it is potentially unsound. We evaluate a variant of the explicit
nulls system that adds a special JavaNull annotation to mark Null types returned from
Java methods. The Dotty type system treats these annotated Null types the same as any
other Null types, with the exception that a method in a class C can be called on a receiver of
type C | Null if the Null has the special annotation. This variant permits the sequence of
calls s.trim.toUppercase, since the nullable return type of trim has the special JavaNull
annotation. Note that this pragmatic design decision sacrifices soundness. The error counts
for this variant of the explicit nulls system, together with the standard library annotations
from the Checker Framework, are shown in the JavaNull column. Although the JavaNull
annotation does reduce error counts for some programs, the reduction is small. This suggests
that there are important things other than method selections that Scala programs do with
the values returned from Java methods, and thus the JavaNull annotation to enable method
selections is not sufficient to significantly reduce error counts.

Finally, we measure an upper bound on the reduction in error count that can be achieved
by annotating Java methods that return non-null values. We evaluate a configuration of
the explicit nulls system that assumes that every call to a Java method returns a non-null

25:11

ECOOP 2020

25:12

Scala with Explicit Nulls

value. This is equivalent to annotating every possible Java method with a non-null return
type annotation. It is also equivalent to an extreme case of the special JavaNull annotation,
which exceptionally allows method selection on nullable values returned from Java methods:
if we were to allow JavaNull types in all places that currently require non-null types, rather
than only in method selections, this would be equivalent to assuming that return values of
Java methods cannot be null.

The resulting error counts are shown in the Non-null Ret. column. The impact of
this configuration is very large: it causes a major reduction in error counts in all of the
programs that still have large numbers of compilation errors. The scalactic library, which
had over 72 errors per thousand lines of code in the baseline configuration, has only just over
3 errors per thousand lines of code. The mean error count goes from about 21 in the Baseline
configuration and about 19 in the Annotations and JavaNull configurations down to 6 in
the Non-null Ret. configuration. These results show that the conservative assumption that
Java methods might return null is by far the most frequent cause of compilation errors in
the explicit nulls system. Furthermore, once these errors are removed, fewer than ten errors
per thousand lines of code remain in all programs except the Scala standard library. This is
quite a small number, and we consider it reasonable to expect that Scala programmers can
fix the remaining errors by hand.

5.2 Evaluation of Flow-sensitive typing

In this section, we evaluate the usefulness of the flow-sensitive typing design that was
described in Section 4. We have turned off flow-sensitive typing, so that each variable has a
single type everywhere it is in scope, independent of any nullness tests, and again count the
number of compilation errors. The error frequency with flow-sensitive typing turned off is
shown in the last column of Table 2, Ann. No Flow. The configuration uses the annotations
from the Checker Framework to specify which methods in the Java standard library return
non-null values; therefore, this column is directly comparable to the Annotations column.
The Annotations configuration was selected as the most precise variant of typing calls to
Java methods that is still sound (assuming the Checker Framework annotations are correct).

Flow-sensitive typing makes a difference in three of the benchmarks, stdLib213, scala-
xml, and effpi, and even there, the difference is small relative to the total number of
errors. One possible reason that flow-sensitive typing has such a small impact could be
that our specific flow-sensitive analysis is not sufficiently precise, so compilation errors are
reported even in code that tests that references are not null; however, we will see in the
next section that this is not the case. Examining the code of the community build programs,
we observe that Scala programs rarely expect to encounter null references and thus rarely
test for them, and when they do, they often use a different idiom than a test of the form
if(x != null) Specifically, many of the programs pass possibly null values to the
constructor of the Option class, which turns a null value into the None object and a non-null
value into an instance of Some. This common idiom does not require flow-sensitive typing to
ensure safety.

5.3 Evaluation of other causes of nullness errors

The error counts in the Non-null Ret. column, where we assume that Java methods
never return null, are low enough that it is quite feasible to manually fix the programs to
remove the compilation errors. We have done this for all the programs except stdLib213
and classified the individual causes of each compilation error. We exclude stdLib213 not

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu 25:13

Table 3 Error classification. Libraries were migrated under Non-null Ret. configuration.
Normalized count is in errors per thousand LOC.

Error Category Total Count Count per 1000 LOC
Declaration of nullable field or local symbol 74 0.81
Use of nullable field or local symbol (.nn) 52 0.57
Overriding error due to nullability 46 0.5
Generic received from Java with nullable inner type 19 0.6
Generic passed to Java requires nullable inner type 6 0.07
Incorrect Scala standard library definition 4 0.04
Limitation of flow typing 1 0.01
Total 202 2.21

Modified Total %
LOC 484 91,337 0.53
Files 88 958 9.19

only because it has the highest error rate per thousand lines of code, but also because with

31,723 lines of code, it also has a high absolute number of errors. This analysis enables us to

determine the common causes of the remaining compilation errors.
The number of errors in each category is shown in Table 3. We now explain the categories.
Declaration of nullable field or local symbol. These are cases where the Scala code declares
a var or val (as a field, or locally within a method) that is provably nullable because
the code explicitly assigns null to it. For example, we might have a class field that is
immediately initialized to null. The fix for this error is to change the type to a nullable
type to reflect that the variable does (sometimes) contain a null reference.
Use of nullable field or local symbol (.nn). This is the dual of the previous category. After
we change the type of a variable that is sometimes null to a nullable type, all uses of that
variable become nullable. Each existing use of that variable in a context that requires a
non-null value then results in a compilation error, since the variable could be null. The
fix for this error is to dynamically check and cast away the nullability using .nn.
Overriding error due to nullability. This error happens when a Scala class overrides a
Java-defined method that takes a reference type as an argument. Because nullification
makes the argument types of the overridden method nullable, the argument types in the
overriding method must also be made nullable to match the signature of the overridden
method.
Generic received from Java with nullable inner type. Sometimes we encounter a Java
method that returns a generic with a nullified inner type. The common example are
Java methods returning arrays of reference types. For example, the split method of the
String class returns an Array [String], which is nullified to Array [String|Null] [Null.
This, in turn, leads to errors in Scala code that reads elements of this array and expects
them to be non-null.
Generic passed to Java requires nullable inner type. This happens when a Java method
expects as argument a generic of some reference type (usually an Array). We fix these
errors using asInstanceOf casts. An improvement to the type inference algorithm that
was added to the Dotty compiler after our evaluation fixes most of these errors.%

5 https://github.com/lampepfl/dotty/pull/8635

ECOOP 2020

https://github.com/lampepfl/dotty/pull/8635

25:14

Scala with Explicit Nulls

Incorrect Scala standard library definition. This class contains type errors that could
be prevented by modifying some definition in the Scala standard library to use a more
precise type. For example, the Option.apply method is parameterized by a type T, takes
an argument of type T, and returns a value of type Option[T]. If the argument is null, it
returns None; otherwise, it returns the argument wrapped in Some, but it never returns
Some (null). When this method is called on a nullable argument, for example of type
String|Null, its return type is Option[String|Null], but a more precise return type
would be Option[String]. These errors could be fixed by future versions of the Scala
standard library.

Limitation of flow typing. These are cases where our implementation of flow-sensitive
typing is not precise enough to model the null checks that occur in the program and
prove that a value cannot be null. We only found one error in this class, which is due to
an undiagnosed bug in our implementation that is not yet fixed.

5.4 Summary

Our results confirm the common belief that null references are used rarely in Scala code
except for interaction with Java. For the uses of null that are unrelated to Java, our system
reports very few compilation errors, and few changes were needed to make the community
build programs compile with the explicit nulls system.

However, a large number of nullness errors are caused by values returned from calls to
Java methods. Scala programmers have several options for handling these return values.
The first option is to harden Scala programs to always expect and handle possible null
references returned from Java methods. The second option is to annotate Java methods
known to never return null references. Both these options require a significant effort. On
the other hand, a third option, which requires minimal effort, is the optimistic assumption
that most Java method calls will not return null. This option is the status quo, the state
of the existing Scala code, which is not required by the compiler to explicitly consider the
possibility of null values. There is no free lunch: there are many places in Scala code where
a Java method could return null; one either makes the considerable effort to check and
annotate or harden each such place, or one accepts the risk of a null reference occurring at
one of those places at run time.

6 Denotational Semantics of Nullification

Type nullification is the key component that interfaces Java’s type system, where null is
implicit, and Scala’s type system, where null is explicit. In this section, we give a theoretical
foundation for nullification using denotational semantics. Specifically, we present A; and A,
two type systems based on a variant of System F, restricted to second-order type operators.
In A;, nullability is implicit, as in Java. By contrast, in A nullability is explicit, like in
Scala. Nullification can then be formalized as a function that maps \; types to A, types.
Following a denotational approach, we give a set-theoretic model of A; and A;. We then prove
a soundness theorem stating that the meaning of types is largely unchanged by nullification.

We choose System F,, as the basis for our formalization, rather than object-oriented
calculi such as DOT [2, 27, 25] or Featherweight Generic Java [16], because type application
is the challenging case for nullification. Since nullification turns Java types into Scala types,
it does not need to handle many Scala-specific types (e.g. path-dependent types), so DOT is
not needed for the formalization. Similarly, Featherweight Generic Java has features like
inheritance that do not interact with nullification.

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

S, T = A; Types o, 7= X Types
int; int Null null
Stringj string inty int
S x; T product String, string
S —; T function o+ T union
IT;(X :: %p).S generic o Xs7 product
App,(S,T) type application o —s 7 function
X type variable II(X:: *).0 generic

App,(o,7) type application
X type variable

Figure 4 Types of A\; and A,. Differences are highlighted.

6.1 System F,, \;, and A,

We will model the Java and Scala type systems as variants of System F,, [14, 26], the higher-
order polymorphic lambda calculus. System F,, supports universal quantification on types:
e.g. we can type the (polymorphic) identity function as IIX. X — X. The variant that we use
has second-order type operators, which means that in the type operator I1X.S, X ranges over
all types that are not themselves type operators. By contrast, in the unrestricted version of
the calculus, X can range over other type operators. By restricting type operators, we incur
a loss of expressivity: notably, we can no longer typecheck recursive data structures (which
are ubiquitous in both Java and Scala). On the other hand, giving a denotational semantics
for the restricted variant is much easier, because one can use a naive set-based model. More
importantly, the main difficulty in designing nullification was handling Java generics. Given
a generic such as List<T>, Java only allows instantiations of List with a reference type that
is not itself generic. For example, List<String> is a valid type application, but List<List>
is not. This is precisely the kind of restriction imposed by our version of System F.

That said, System F,, is too spartan: it does not distinguish between value and reference
types, does not have records (present in both Java and Scala), and does not have union types
(needed for explicit nulls). To remedy this we can come up with slight variations of System F,,
that have the above-mentioned features. We call these A; (“lambda j”) and A (“lambda s”),
and they are intended to stand for the Java and Scala type systems, respectively. Figure 4
shows the types of these two calculi. From now on we will focus solely on the types and will
forget about terms, because nullification is a function from types to types.

A; extends System F,, with integers, strings, and products (which stand in for objects).
Type applications are written App,(S,T).

As differs from A; by adding a Null type, type unions (written o + 7), and by making
types be explicitly nullable, just like our version of Scala. Explicit nullability is indicated via
kinds, as explained below.

6.1.1 Kinding Rules

In subsequent sections, we will assign meaning to types. However, we can only interpret
types that are well-kinded. Intuitively, we need a way to differentiate between a type like
IT; (X :: %,).X, where all variables are bound, from II; (X :: %,).Y, where Y is free and so
cannot be assigned a meaning.

The kinding rules in Figure 5 fulfill precisely this purpose. The judgment I' F; T" :: K (resp.
It o :: K) establishes that type T has kind K under context I', and is thus well-kinded in
Aj (resp. As). The different kinds K describe: nullable types (%,), non-nullable types (x,),

25:15

ECOOP 2020

25:16 Scala with Explicit Nulls

I'H; St K I'Fsou K

N }—j int; it ky (KJ-INT) I ints ik (KS—INT)
I'Fj String; @ #, (KJ-STRING) Il String, ©: #, (KS-STRING)
T'k; 8% IhH;T (KJ-PRoD) Dby Null i #n (KS-NULLTYPE)
T Sx;T i xp
Th; S Dh; T I'ks o Ky
(KJ-Fun) s 7 Ko

DhE; S =T %, K1, K2 € {%n, *u,*}

I'Fso+7:0: K1® Ks

(KS-UNION)
DX uspb; Su K

T (K ce)Sim s kP
3 (X 5 4n). 5 = where K&K = K, K1®Ky = Ko® K1, K@y = *n,
and *, @ * = *
Mk Sox, =K FI—jT::*n(KJA)
-AppP
I't; App,; (S, T) = K ks o x Ths 7% KS.P
D(X) = #p Dk Sixg LSy Dhso XsT i %y (KS-Prop)
I'kj X iy Tk 8 Dk 8o
(KJ-VAR) (KJ-NuLr) (KJ-NONNULL) Phooux Theros
(KS-Fun)
Thso—s 7%,
K = Kinds
*n kind of nullable types I'Xu xbsou K KS.P
%, kind of non-nullable types Fhe (X i %)o s % = K (KS-P1)
* kind of proper types
**n = g tm: Oi Eype Opera‘zors (i\\]) I'kFsou ¥ = K PEs7mo* KS-A
s -AppP
= ind of type operators (\s) T App. (o7 7 K ()
I::= Contexts NX)= x Thg 0%, T kg o:x,
& empty context Ths X o % I'kFsoox T'hsomx
I', X %, nullable type binding (KS-VAR) (KS-NurL) (KS-NoNNuLL)

Figure 5 Kinding rules of A; and As. Differences are highlighted.

proper (non-generic) types (), and type operators (generics). In \;, type operators have
kinds of the form *, = K, modelling the fact that type arguments in Java must be reference
types (e.g. List<boolean> is not well-kinded). By contrast, in As (and in Scala), generics
can also take value types as arguments (e.g. List [Boolean]), so type operators have kinds
of the form x = K.

The second role of the kind system is to track the nullability of types. Here, the difference
between \; and A, is witnessed, for instance, by the KS-String rule: while in \;, strings are
nullable (-; String; :: x,), strings in As are non-nullable (F5 String, :: *,). In A, like in
Scala, nullability can be recovered via type unions: e.g. g String, + Null :: *,.

The rule KS-Union computes the kind of type unions. If either o or 7 contains the null
value, then their union o + 7 also contains the null value, so K & *,, = *,,. If one of o or 7
definitely does not contain the null value (i.e., is of kind *,) and the other may or may not
contain the null value (i.e., is of kind «), then their union o + 7 also may or may not contain
the null value, so %, & * = .

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

Two other rules that we want to highlight are KJ-Null and KJ-NonNull (and their A,
counterparts). These rules give us a limited form of “subkinding”, so that -; T :: %, or
B T i imply 5 T,

» Definition 6.1 (Base kinds). We say K is a base kind if K € {x, %, %, }.

6.2 Denotational Semantics

Before we can prove properties of nullification, we need a semantics for our types and kinds.

That is, so far, types and kinds are just syntactic objects, and kinding rules are syntactic
rules devoid of meaning. For this task of assigning meaning we turn to the machinery of
denotational semantics. The technical presentation is based on the treatment of predicative
System F in Mitchell [20].

Here is a summary of the rest of this section. First, we construct set-theoretic models
for both calculi. In this case, a model is just a family of sets that contains denotations of
types and kinds. We then show how to map kinds and types to their denotations in the
model. The mapping is roughly as follows: kinds — families of sets, proper types — sets,
and generic types — functions from sets to sets. Finally, we prove a soundness lemma for
kinding rules that says that if a type is well-kinded, then its denotation is defined and,
further, it is contained in the denotation of the corresponding kind: i.e. I' =; T :: K =
[T];n € [K];. The proofs of all results in this section can be found in the first author’s
thesis [22].

6.2.1 Semantic Model
» Definition 6.2 (String literals). strings denotes the set of finite-length strings.

The model for \; is a pair J = (Uy, Uz) of universes (families of sets).

U; is the universe of proper types. It is the least set containing {null},Z, and strings
that is closed under union, product, and functions (i.e. if w and v are in Uy, then the set of all
functions between v and v, written u?, is also in U;). Additionally, we define two families of
sets that contain nullable and non-nullable types, respectively: U = {u|u € Uy,null € u},
and Uy = {u|u € Uy,null ¢ u}. Notice that both U and Uy® are subsets of U, and
that Uy = Up y Uyel,

The universe Us is a superset of U; that, additionally, contains all generic types. First,

we define a family of sets {US}, for i > 0: UY = Uy, and U™ = U U {f : UM — Ui}

Then we set U = (J;>q Us-
The model for A is very similar to the previous one. It is a pair S = (Uy, U}), where U is as

defined before. U} is almost the same as Uy, except that we set Uy Tt = USU{f : U, — UL}.

Highlighted is the fact that generics in A, take arguments from Uj, as opposed to U,

6.2.2 Meaning of Kinds

» Definition 6.3 (Number of arrows in a kind). Let K be a kind. Then arr(K) denotes the
number of arrows (=) in K.

» Definition 6.4 (Meaning of kinds). We give meaning to \; and \s kinds via functions [];
and []s, respectively. These functions are inductively defined on the structure of a kind K.

25:17

ECOOP 2020

25:18

Scala with Explicit Nulls

by Ao
[int;];m =7 [Null]sn = {null}
[String;];n = {null} U strings [int.]sn -7
[[S Xj Tﬂﬂi = {null} U ([[5]11'77 X [[T]]jn) [Stringsﬂsn = strings
[S —; Tlm = [SLint"hsm o xs T]sn = [o]sn x [r]sn
[05(X = %0).S1im = Ma € UP).[SLi (X = al) [S, 7]um = [o]sntmlem
[App; (S, T)ln = [STn([TTm) [[L(X :: %).0]sn = Aa € U).[o]s(nX = a])
. 1 (Aep, (.7l = [olen(lrlon)
[o+7lsn = [olsnUlrlsn
[XTsm =n(X)

Figure 6 Type denotations for \; and As. Differences are highlighted.

[[*nﬂj — Ulnull [[*n]]s — Ulnull
[]; = U [x]s = U
[+]; = U [+ls = Uh
[+n = K]; = {f : UI"" — [K];} [+= Kls = {f: Ur —[K]s}

We can show that the meaning of kinds is contained within the corresponding model.

» Lemma 6.5 (Kinds are well-defined). If K is a \; kind, then [K]; C US™X) If K is a
\s kind, then [K], C U35

6.2.3 Meaning of types

We now give denotations for types. To handle types that are not closed, we make the
denotation functions take two arguments: the type whose meaning is being computed and an
environment that gives meaning to the free variables. Additionally, we make the simplifying
assumption that types have been alpha-renamed so that there are no name collisions.

» Definition 6.6 ()\; Environments). A \; environment n : Var — UM is a map from
variables to elements of UM, The empty environment is denoted by (). An environment can
be extended with the notation n[X — a], provided that X was not already in the domain.

» Definition 6.7 (\; Environment). A \g environment n: Var — Uy is a map from variables
to elements of Uy.

» Definition 6.8 (Environment Conformance). An environment n (from A; or As) conforms
to a context I, written n E T, if dom(n) = dom(T).

» Definition 6.9 (Meaning of types). We define the meaning of types via functions []; :
Typesy; — Envy; — Uz and [: Typesx, — Envy, — Us. These are shown in Figure 6.

» Example 6.10.
[0 (X = %,).X];0 = Ma € UP).[X],0[X — d]
= Xa € UP™™).0[X — a](X)
= Aa € UM"").a
=1id

That is, the denotation of IT; (X :: ,).X is the identity function that maps sets (types)
in UM to themselves.

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu 25:19

The following lemma says that the kinding rules correctly assign kinds to our types.

» Lemma 6.11 (Soundness of kinding rules). The following hold:
' T K and n ET implies [T];n € [K];
'k, T K and nET implies [T]sn € [K]s

6.3 Type Nullification

Now that we have formal definitions for both A; and A,, we can also formally define type
nullification. Recall that type nullification makes nullability explicit as we go from a type
system where null is implicit (A;’s) to one where null is explicit (As’s). For example,
(int;) x; (String; —; String;) becomes (ints) x5 (String, + Null —; String, + Null).

That is, type nullification is a function that turns A\; types into \s types. In the imple-
mentation (described in Section 3.1), we decided not to nullify arguments in type applications.
That is, given a Java class List<T>, type applications such as List<String> are translated
as List<String>, and not as List<String|Null>. The motivation for special casing type
arguments is maximizing backwards-compatibility. Because of the different treatment for
types based on whether they are in an argument position or not, we will model nullification
as a pair of functions (Fhuy, Anun). These are defined below.

» Definition 6.12 (Type nullification).

Fruu(int;) = dnts Anan(int;) = ints

Fnull(St""Vngj) = String, + Null Anu”(St'ringj) = String,

Frou(X) =X + Null Apurt(S x5 T) = Fpuu(S) Xs Frun(T)
Froui(S —5 T) = Foui(S) —s Fru(T) Anat(S =3 T) = Foui(S) =5 Fruu(T)
Fnull((I) S) = 1II; (X b *)-Fnull(s) Anu”(Appj (S7 T)) = Apps(Fnuu(S), Anu”(T))
Froui(App;(S,T)) = Appy(Fruu(S), Anun(T)) Apun(X) =X

F,m”(S X j) = (Fnu”(S) Xs Fnu”(T)) —+ Null

As the name suggests, Ay, handles types that are arguments to type application, and
Fun handles the rest. A,y differs from Fi,y in that it does not nullify types at the outermost
level (see e.g. the String; case).

» Definition 6.13 (Context nullification). We lift nullification to work on contexts, turning
Aj contexts into (syntactic) As contexts.

Fnull(g) =9
Fnull(Fyx o *n) = Fnull(F),X Dk

» Definition 6.14 (Kind nullification). We also lift nullification to work on kinds, turning \;
kinds into A kinds.

Fru(K)=K if K is a base kind
Fruti(kn = K') = % = Fou(K) otherwise

6.4 Soundness

We can finally prove a soundness result for type nullification. But what should soundness
mean in this case? One plausible, but as it turns out, incorrect, definition is that nullification
leaves the meaning of types unchanged.

» Conjecture 6.15 (Soundness — Incorrect). Let I' =, T':: I, and let 1) be an environment
such that n ET. Then [T];1n = [Fnuu(T)]sn-

ECOOP 2020

25:20

Scala with Explicit Nulls

This conjecture is false because the meaning of generics differs between A\; and A,. In
both cases, generics are denoted by functions on types, but the domains of the functions are
different:

[11; (X = n).S]ym = Ma € UP™").[S];(n[X — a))

[MIs(X :: %).S]sm = A(a € Uy).[S]s(n[X — a])

That is, A; generics take arguments that are in UP! (nullable arguments) and A generics

have wider domains and take arguments from all of U;. This matches the behaviour in
Java and Scala, where the generic class List<A> gets “mapped” by nullification to the Scala
class List [A]. List<int> is then not valid in Java (because int is not a nullable type), but
List<int> s valid in Scala.

We can recover soundness via the following observation. If G is a Java generic, even
though [G]; and [G], are not equal, for any valid type application G<T> in Java, [G < T >
l; = [Faun(G < T >)]s. That is, our soundness theorem will say that nullification leaves
fully-applied generic types unchanged. This is just as well because users can only manipulate
values of type G<T> and never values of type G directly.

Before we state the soundness theorem we need a few ancillary definitions.

» Definition 6.16 (Similar Types). Let S,T € Uy. Then we say S is similar to T, written
S~T,if SU{null} =T U{null}.

That is, two types denotations are similar if they contain the same elements, except for
possibly null. Note that ~ is symmetric.

» Definition 6.17 (Similar Type Vectors). Let S = (S1,...,5,) and T = (Th,...,T,) be
vectors of types, where S and T have the same number of elements. Then S ~ T if they are
similar at every component.

» Definition 6.18 (Similar Environments). Let n,n' be environments (either from A; or Ag).
Then n is similar to 1/, written n ~ ', if dom(n) = dom(n) and for all type variables X in
the domain, we have n(X) ~ n'(X).

Note this relation is also symmetric.

» Definition 6.19 (Similar Kinds). Let Ky and K3 be two base kinds. Then Ky ~ Ko is
defined by case analysis.

K~ % (SK-PRrOP) Ky~ Ky (SK-NuLL1)

%y ~ %k, (SK-NONNULL) s (SK-NuLL2)

Ky~ ok (SK-NuLL3)

The rules in Definition 6.19 capture what happens to the kind of a type after being
transformed by Au. For example, String; has kind *,, in A;, but Anuu(Stringj) = String,
has kind *, in As. This is described by rule (SK-Null2). The ~~ relation is not symmetric.
This reflects the fact that A,y turns *, types into *, types, but can turn a *, type into a

*, type.

» Lemma 6.20. If K is a base kind, then K ~~ K.

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

Before proving soundness, we need to prove a weaker lemma that says that nullification
preserves well-kindedness. This lemma is necessary because if T is well-kinded and nullification
turns T into Fnu(7T), the latter must be well-kinded as well.

» Lemma 6.21 (Nullification preserves well-kindedness). Let T't; T :: K and IV = F,,,;(T).
Then

1. TV }—s Fnu”(T) o Fnu”(K).

2. If K is a base kind, there exists a kind K' with K ~ K’ such that TV b Apu(T) =2 K'.

» Definition 6.22 (Curried type application). If f is a function of m arguments and
Z = (x1,...,%m), we use the notation f(&) to mean the curried function application
flz1)(z2) ... (). In the degenerate case where f is not a function (i.e. m = 0), we

set f(Z) = f.

We can finally show soundness. We need to strengthen the induction hypothesis to talk
about both Fnu and Apun-

» Theorem 6.23 (Soundness of type nullification). Let T'; T :: K. Let n,n' be environments
such that n ET and n ~n'. Then the following two hold:
1. If K is a base kind, then
a. [T];n = [Fru(T)]sn' and
b. [[T]]ﬂ? ~ [[Anull(T)]]sn/'
2. If K is a type application with arr(K) =m, let & and § be two m-vectors of elements of
Uil and Uy, respectively, with & ~ 4. Then [T];n(Z) = [Fuuu(T)]s7' (7).

The first assertion in the soundness theorem says that the meaning of base (non-
generic) types is unchanged by nullification. For example, the denotations of String;
and Fyun(String;) = String, + Null are equal. The second assertion says that if we start
with a generic type that takes K arguments and apply it fully (i.e. apply it to K arguments),
and then we apply nullification, the meaning of the type application is also unchanged,
provided that the original type application is well-kinded in A;. For example, in A; we
can represent generic pairs by Pair = IL;j (X :: %,).IL;(Y :: %,).X x; Y. The theorem says
that if Pair(r, 1,) = App;(App,(Pair,T1),Tz) is well-kinded in A; (i.e. both T} and T3
are in *,), then the meaning of Pair(p, r,) is also unchanged by nullification. That is,
[Pairr, 2)]; = [Foan(Pairr, 1,))]s-

6.5 Discussion

As Section 3.1 points out, both underapproximations and overapproximations in nullification
would lead to unsoundness, so “preserves elements of types” is a useful soundness criterion
for type nullification.

That the meaning of types with base kinds remains unchanged is important, because
program values always have base kinds. The meaning of generics s changed by nullification.
This reflects the fact that, in As and Scala, type arguments can be either value or reference
types, while in A\; and Java only reference types can be used. The soundness theorem
(Theorem 6.23) in this section shows that fully-applied generics (which have base kinds)
remain unchanged. Extrapolating, this means that Java types corresponding to fully-applied
generics (e.g. ArrayList<String>), can be represented ezactly in Scala. The other direction
does not hold; e.g. the Scala type List[Int] cannot be represented directly in Java
(because Int is a value type). Instead, List [Int] must be translated as List<Integer> or
List<0bject>, where Integer is the Java type for boxed integers. The type translation
from Scala to Java (erasure) is not modelled in this section and remains as future work.

25:21

ECOOP 2020

25:22

Scala with Explicit Nulls

7 Related Work

The related work we have identified can be divided into four classes:
Type systems for nullability in modern, widely used programming languages.
Schemes to guarantee sound initialization. These have been mostly implemented as
research prototypes, or as pluggable type systems.
Pluggable type systems that are not part of the “core” of a programming language, but
are used as checkers that provide additional guarantees (in our case, related to nullability).

Denotations of types.

7.1 Nullability in the Mainstream

Kotlin is an object-oriented, statically-typed programming language for the JVM [17]. Kotlin’s
flow typing handles both vars and vals, while our system currently only supports vals.
Additionally, Kotlin can recognize nullability annotations not just at the top-level, but also
within type arguments to generics. Nullability in Kotlin is expressed with a type modifier:
the reference type T is non-nullable, but T? is nullable. By contrast, in our design explicit
nullability is achieved through a combination of union types and a new type hierarchy. The
two approaches are comparable in their expressiveness, but in a language with support for
union types (such as Scala), our approach expresses nullability as a derived concept and
avoids introducing new kinds of types.

Kotlin handles Java interoperability via platform types. A platform type, written T!,
is a type with unknown nullability. Kotlin turns all Java-originated types into platform
types. Given a type T!, Kotlin allows casting it (automatically) into both a T? and a T.
The cast from T! to T? always succeeds, but the cast from T! to T might fail at runtime,
because the Kotlin compiler automatically inserts a runtime assertion that the value being
cast is non-null. We chose to represent types flowing into Scala code from Java using union
types and the JavaNull annotation. In this way we avoid introducing a new kind of type
(platform types) into the already-crowded Scala type system. Another reason for diverging
from the platform types approach is soundness. Kotlin allows (unsound) member selections
on platform types, just like we do in Scala via JavaNull, but platform types are even more
permissive. For example, Kotlin automatically casts a value of platform type String! to the
non-nullable type String; by contrast, in our design the type String | JavaNull is not a
subtype of String, so the cast needs to be applied manually. We can think of platform types
as a generalization of JavaNull that allows not only member selections, but also subtyping
with respect to non-nullable types. We wanted to strike a balance between soundness and
usability in our design, so we opted for a more restrictive approach than Kotlin’s in the
handling of Java-originated types.

Ceylon is another object-oriented, statically-typed language that also targets the JVM
[12]. Ceylon has union and intersection types, like Scala, and represents explicit nullability
via union types [13]. The main difference between Ceylon’s design and ours is the handling
of interoperability with Java. Ceylon, like Kotlin, takes an “optimistic” approach where all
Java-originated types used in Ceylon code are assumed to be non-nullable (and checked as
such at runtime, with automatically-generated assertions). By contrast, we assume that all
Java reference types are nullable, and so develop a type nullification function that turns Java
types, including generics, into equivalent Scala types. To our knowledge, we are the first to
formally describe type nullification, as well propose and prove a correctness criteria for it
(nullification preserves values of types).

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

Swift is a statically-typed programming language, originally designed for the iOS and
macOS ecosystems [4]. Swift has a nil reference, which is similar to null in Scala [5]. Types
in Swift are non-nullable by default, but one can use optionals to get back nullability. For
example, the type Int?, an optional, is either an integer or nil. Optionals can be force
unwrapped using the ! operator, which potentially raises a runtime error if the underlying
optional is nil. Swift also has a notion of optional binding, which is similar to the monadic
bind operator in Haskell [30], but specialized for optionals. Additionally, Swift has implicitly
unwrapped optionals, which are similar to Kotlin’s platform types. That is, the type Int!,
an implicitly unwrapped optional, need not be forced unwrapped explicitly before a value
can be retrieved, but if the underlying value is nil, it will produce a runtime error.

C# has reference types that are non-nullable by default. Compared to our design, C#
offers more fine-grained control over where explicit nulls are enabled. In our system, explicit
nulls can only be enabled or disabled at the project level. In C#, the user can additionally
opt in to explicit nulls for specific code regions via “pragmas” (program metadata).

7.2 Sound Initialization

Even with a type system that has non-nullable types, there is a possibility of unsoundness
because of incomplete initialization. This can happen, for example, due to dynamic dispatch,
or leaking of the this reference from the constructor to helper methods. The problem is
that in an unitialized (or partially uninitialized) object, the invariants enforced by the type
system need not hold yet. Specifically, fields that are marked as non-null might nevertheless
be null (or contain nonsensical data) because they have not yet been initialized.

Over the years, many solutions have been proposed for the sound initialization problem,
usually involving a combination of type system features and static analyses. These prior
designs include raw types [10], masked types [24], delayed types [11], the Freedom Before
Commitment scheme [29], and X10’s hardhat design [31]. These last two schemes have been
identified as the bases for a sound initialization scheme for Scala [19].

7.3 Pluggable Type Checkers

Another line of work that is relevant to nullability is pluggable type checkers. A pluggable
type checker is a custom-built typechecker that refines the typing rules of a host system [23].

The Checker Framework [23] is a framework for building pluggable type checkers for Java.
Users have the option of writing their typecheckers in a declarative style, which requires less
work (they do not need to write Java code) but is less expressive, or in a procedural style,
where the checker can have arbitrarily complex logic, but is therefore harder to implement.
One of the checkers that comes “pre-packaged” with the framework is the Nullness Checker.
In fact, “the Nullness Checker is the largest checker by far that has been built with the Checker
Framework” [9]. As of 2017, the Nullness Checker implemented a variant of the Freedom
Before Commitment scheme, as well as support for flow typing and multiple heuristics to
improve the accuracy of its static analysis [7, 9]. Dietl et al. [9] conducted an extensive
evaluation of the Nullness Checker in production code, finding multiple errors in the Google
Collections library for Java.

The Granullar project [7] combines the null checker from the Checker Framework with
techniques from gradual typing [28]. Granullar allows the user to migrate only part of a
project to use null checks. To that effect, the code under consideration is divided into checked
and wunchecked regions. Nullability checks are done statically within the checked region,
using the Freedom Before Commitment scheme implemented by the Checker Framework.

25:23

ECOOP 2020

25:24

Scala with Explicit Nulls

No checks are done for the unchecked portion of the code. However, Granullar insulates
the checked region from unsafe interactions with the unchecked region by inserting runtime
non-null checks at the boundary.

NullAway [6] is a nullness checker for Android applications developed at Uber. NullAway is
implemented as a pluggable type system on top of the Error Prone framework [1]. NullAway
trades away soundness for efficiency. Specifically, the tool is unsound in multiple ways:
its initialization checks ignore the problem of leaking the this reference, all unchecked
methods are assumed to return non-null values, and flow typing assumes that all methods
are pure and deterministic. In exchange for the unsoundness, NullAway has a lower build-
time (2.5x) and annotation overheads than similar tools (2.8 - 5.1x) [6]. After extensive
empirical evaluation [6], NullAway’s authors note that the unsound assumptions do not lead
to nullability errors in practice.

7.4 Semantics of Nullification

The model of System F,, that we used is based on the one given by Mitchell [20] for System
F (which, in turn, is based on Bruce et al. [8]). The denotations for sums and product types
are standard in the literature.

There is one deviation from Mitchell [20] in how we construct denotations for generics.
The standard way is to say that the denotation of a generic type is an (infinite) Cartesian
product, whereas we use a simple function on types. That is, instead of saying [IIs(X ::
).S]sn = [acr, [S1;(n[X — al), we define [I1;(X :: %).S]sn = Aa € Up).[S]s(n[X — a]).
The reason for the discrepancy is that A; and A have type applications at the type level (e.g.
App,(S,T)), whereas in System F, type applications are terms (e.g. t [T]). If we use the
variant with the Cartesian product, then [App,(Is(X :: *).X, intg)]s0 would be an element
of [int,]s (an element of Z). However, what we need for the soundness theorem is that
[App,(IIs(X :: %).X, ints)]s0 be equal to [ints]s, hence the second definition.

The novelty of our work is the use of denotational semantics for reasoning specifically
about nullification. We are not aware of any related work that formalizes and proves soundness
of nullification.

8 Conclusions

In this paper, we described a modification to the Scala type system that makes nullability
explicit in the types. Reference types are no longer nullable, and nullability can be recovered
using type unions. Because interoperability with Java is important, a type nullification
phase translates Java types into Scala types. A simple form of flow typing allows for more
idiomatic handling of nullable values. We implemented the design as a modification to the
Dotty compiler.

To evaluate the implementation of explicit nulls, we migrated Scala programs from the
Dotty community build to use the new type system. The results confirm that Scala code uses
null references sparingly and that our system requires few modifications to the Scala internals
of existing programs, with the significant exception of the places where Scala code interacts
with Java code. The Java type system does not provide information about which references
could be null. A Scala programmer faces an inevitable choice: One option is to annotate the
Java code or to defensively check for the possibility of a null reference at every call to a Java
method (and the type system can enforce such checks), but this requires considerable effort
in programs that contain many such calls. Another option is to configure the type system to

A. Nieto, Y. Zhao, O. Lhotak, A. Chang, and J. Pu

optimistically but unsoundly assume that Java methods do not return null, which makes
migration to the type system easy, but retains the possibility of null dereference exceptions
if the Java methods violate the assumption.

We also showed how the intuitive reasoning about nullification based on sets can be given
a solid formal footing, via denotational semantics. First, we presented A; and A,, two type
systems based on System F,, restricted to second-order type operators. These type systems
formalize the implicit and explicit nature of null in Java and Scala, respectively. We then
gave simple set-theoretic models for A; and A,, which in turn allow us to define denotations
for types and kinds. We formalized nullification as a function from A; types to As types.
Finally, we proved a soundness theorem that says that nullification leaves the meaning of
types largely unchanged.

—— References

1 Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. Building
Useful Program Analysis Tools Using an Extensible Java Compiler. In 2012 IEEE 12th
International Working Conference on Source Code Analysis and Manipulation, pages 14—23.
IEEE, 2012.

2 Nada Amin, Samuel Griitter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence
of dependent object types. In A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, pages 249-272, 2016.

3 Nada Amin and Ross Tate. Java and Scala’s Type Systems are Unsound: The Existential Crisis
of Null Pointers. In Eelco Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016, pages 838-848. ACM, 2016. doi:10.1145/2983990.2984004.

4 Apple Inc. About swift. [Online; accessed 5-November-2019]. URL: https://docs.swift.

org/swift-book/.

5 Apple Inc. Swift language guide. [Online; accessed 5-November-2019]. URL: https://docs.

swift.org/swift-book/LanguageGuide/TheBasics.html.

6 Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical Type-Based Null
Safety for Java. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
740-750. ACM, 2019.

7 Dan Brotherston, Werner Dietl, and Ondfej Lhotdk. Granullar: Gradual Nullable Types for
Java. In Proceedings of the 26th International Conference on Compiler Construction, pages
87-97. ACM, 2017.

8 Kim B Bruce, Albert R Meyer, and John C Mitchell. The Semantics of Second-Order Lambda
Calculus. Information and Computation, 85(1):76-134, 1990.

9 Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivang Muglu, and Todd W Schiller.
Building and Using Pluggable Type-Checkers. In Proceedings of the 33rd International
Conference on Software Engineering, pages 681-690. ACM, 2011.

10 Manuel Fahndrich and K. Rustan M. Leino. Declaring and Checking Non-Null Types in an
Object-Oriented Language. In Ron Crocker and Guy L. Steele Jr., editors, Proceedings of the
2003 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2003, October 26-30, 2003, Anaheim, CA, USA, pages 302-312. ACM,
2003. doi:10.1145/949305.949332.

11 Manuel Fahndrich and Songtao Xia. Establishing Object Invariants with Delayed Types. In
Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, pages 337-350. ACM, 2007. doi:10.1145/1297027.1297052.

25:25

ECOOP 2020

https://doi.org/10.1145/2983990.2984004
https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/1297027.1297052

25:26

Scala with Explicit Nulls

12

13

14

15

16

17

18

19

20
21
22

23

24

25

26

27

28

29

30

31

Gavin King. The Ceylon Language. [Online; accessed 30-May-2020]. URL: https:
//ceylon-lang.org/.

Gavin King. Using Java From Ceylon. [Online; accessed 30-May-2020]. URL: https://
ceylon-lang.org/documentation/1.2/reference/interoperability/java-from-ceylon/.
Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing Local Control and State
Using Flow Analysis. In European Symposium on Programming, pages 256—275. Springer,
2011.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396-450, 2001.

Kotlin Foundation. Kotlin programming language. [Online; accessed 5-November-2019]. URL:
https://kotlinlang.org/.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java virtual machine
specification. Pearson Education, 2014.

Fengyun Liu, Aggelos Biboudis, and Martin Odersky. Initialization Patterns in Dotty. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, pages 51-55. ACM,
2018.

John C Mitchell. Foundations for Programming Languages, volume 1. MIT press Cambridge,
1996.

MITRE. 2019 CWE Top 25 Most Dangerous Software Errors. [Online; accessed 17-November-
2019]. URL: https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html.

Abel Nieto Rodriguez. Scala with explicit nulls. Master’s thesis, University of Waterloo, 2019.
Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical Pluggable Types for Java. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 201-212. ACM, 2008.

Xin Qi and Andrew C. Myers. Masked Types for Sound Object Initialization. In Zhong Shao
and Benjamin C. Pierce, editors, Proceedings of the 86th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23,
2009, pages 53-65. ACM, 2009. doi:10.1145/1480881.1480890.

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondfej Lhotdk. A simple soundness proof for
dependent object types. PACMPL, 1{(OOPSLA):46:1-46:27, 2017.

John C Reynolds. Towards a Theory of Type Structure. In Programming Symposium, pages
408-425. Springer, 1974.

Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 80 - November 4, 2016, pages 624—641, 2016.

Jeremy G Siek and Walid Taha. Gradual Typing for Functional Languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81-92, 2006.

Alexander J. Summers and Peter Miiller. Freedom Before Commitment: a Lightweight Type
System for Object Initialisation. In Cristina Videira Lopes and Kathleen Fisher, editors,
Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR,
USA, October 22 - 27, 2011, pages 1013-1032. ACM, 2011. doi:10.1145/2048066.2048142.
Philip Wadler. Monads for Functional Programming. In International School on Advanced
Functional Programming, pages 24-52. Springer, 1995.

Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat. Object Initialization
in X10. In European Conference on Object-Oriented Programming, pages 207-231. Springer,
2012.

https://ceylon-lang.org/
https://ceylon-lang.org/
https://ceylon-lang.org/documentation/1.2/reference/interoperability/java-from-ceylon/
https://ceylon-lang.org/documentation/1.2/reference/interoperability/java-from-ceylon/
https://kotlinlang.org/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/2048066.2048142

	Introduction
	A New Type Hierarchy
	Fixing a Soundness Hole

	Java Interoperability
	Type Nullification

	Flow Typing
	Supported Cases
	Stable Paths

	Inferring Flow Facts
	Asserting Non-Nullability

	Evaluation
	Evaluation of Java interaction
	Evaluation of Flow-sensitive typing
	Evaluation of other causes of nullness errors
	Summary

	Denotational Semantics of Nullification
	System F_omega, lambda_j, and lambda_s
	Kinding Rules

	Denotational Semantics
	Semantic Model
	Meaning of Kinds
	Meaning of types

	Type Nullification
	Soundness
	Discussion

	Related Work
	Nullability in the Mainstream
	Sound Initialization
	Pluggable Type Checkers
	Semantics of Nullification

	Conclusions

