
Practical Extensions to the IFDS Algorithm

Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez

University of Waterloo, Canada
{nanaeem,olhotak,j2rodrig}@uwaterloo.ca

Abstract. This paper presents four extensions to the Interprocedural Finite Dis-
tributive Subset (IFDS) algorithm that make it applicable to a wider class of
analysis problems. IFDS is a dynamic programming algorithm that implements
context-sensitive flow-sensitive interprocedural dataflow analysis. The first exten-
sion constructs the nodes of the supergraph on demand as the analysis requires
them, eliminating the need to build a full supergraph before the analysis. The
second extension provides the procedure-return flow function with additional in-
formation about the program state before the procedure was called. The third
extension improves the precision with which φ instructions are modelled when
analyzing a program in SSA form. The fourth extension speeds up the algorithm
on domains in which some of the dataflow facts subsume each other. These ex-
tensions are often necessary when applying the IFDS algorithm to non-separable
(i.e. non-bit-vector) problems. We have found them necessary for alias set anal-
ysis and multi-object typestate analysis. In this paper, we illustrate and evaluate
the extensions on a simpler problem, a variation of variable type analysis.

1 Introduction
The Interprocedural Finite Distributive Subset (IFDS) algorithm [15] is an efficient and
precise, context-sensitive and flow-sensitive dataflow analysis algorithm for the class of
problems that satisfy its restrictions. Although this class includes the classic bit-vector
dataflow problems, the original IFDS algorithm is not directly suitable for more inter-
esting problems for which context- and flow-sensitivity would be useful, particularly
problems involving objects and pointers. The algorithm can be extended to solve this
larger class of problems, however, and in this paper, we present four such extensions.

The IFDS algorithm is an efficient dynamic programming instantiation of the func-
tional approach to interprocedural analysis [19]. The fundamental restrictions of the
algorithm, which we do not seek to eliminate in this paper, are that the analysis domain
must be a powerset of some finite set D, and that the dataflow functions must be dis-
tributive. We present a detailed overview of the IFDS algorithm in Section 2, and further
illustrate the algorithm with a running example variable type analysis in Section 3.

A more practical restriction is that the set D must be small, because the algorithm
requires as input a so-called exploded supergraph, and the number of nodes in this
supergraph is approximately the product of the size ofD and the number of instructions
in the program. Our first extension, presented in Section 4, removes the restriction on the
size of D by enabling the algorithm to compute only those parts of the supergraph that
are actually reached in the analysis. This allows the algorithm to be used for problems
in which D is theoretically large, but only a small subset of D is encountered during
the analysis, which is typical of analyses modelling objects and pointers.

2 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

A second practical restriction of the original IFDS algorithm is that it provides lim-
ited information to flow functions modelling return flow from a procedure. For many
analyses, mapping dataflow facts from the callee back to the caller requires informa-
tion about the state before the procedure was called. In Section 5, we extend the IFDS
algorithm to provide this information to the return flow function.

A third limitation of many standard dataflow analysis algorithms, IFDS included, is
that they can be less precise on a program in Static Single Assignment (SSA) form [2]
than on the original non-SSA form of the program. When an instruction has multiple
control flow predecessors, incoming dataflow facts are merged before the flow function
is applied; this imprecisely models the semantics of φ instructions in SSA form. In
Section 6, we present an example that exhibits this imprecision, and we extend the
IFDS algorithm to avoid it, so that it is equally precise on SSA form as on non-SSA
form programs. SSA form is not only a convenience; in prior work, we showed that
SSA form can be used to improve running time and space requirements of analyses
such as alias set analysis [13].

Finally, the IFDS algorithm does not take advantage of any structure in the set D.
In many analyses of objects and pointers, some elements of D subsume others. In Sec-
tion 7, we present an extension that exploits such structure to reduce analysis time.

We have implemented the IFDS algorithm with all four of these extensions, as well
as the running example variable type analysis. In Section 8, we report on an empirical
evaluation of the benefits of the extensions. We survey related work in Section 9 and
conclude in Section 10.

2 Background: The Original IFDS Algorithm
The IFDS algorithm of Reps et al. [15] is a dynamic programming algorithm that com-
putes a merge-over-all-valid paths solution to interprocedural, finite, distributive, subset
problems. The merge is over valid paths in that procedure calls and returns are correctly
matched (i.e. the analysis is context sensitive). The algorithm requires that the domain
of dataflow facts be the powerset of a finite set D, with set union as the merge operator.
The data flow functions must be distributive over set union: f(a) ∪ f(b) = f(a ∪ b).

The algorithm follows the summary function approach to context-sensitive interpro-
cedural analysis [19], in that it computes functions in P(D) → P(D) that summarize
the effect of ever-longer sections of code on any given subset of D. The key to the effi-
ciency of the algorithm is the compact representation of these functions, made possible
by their distributivity. For example, suppose the set S = {a, b, c} is a subset of D. By
distributivity, f(S) can be computed as f(S) = f({}) ∪ f({a}) ∪ f({b}) ∪ f({c}).
Thus every distributive function in P(D) → P(D) is uniquely defined by its value on
the empty set and on every singleton subset of D. Equivalently, the function can be
defined by a bipartite graph 〈D ∪ {0}, D,E〉, where E is a set of edges from elements
of D∪{0} to elements of (a second copy of) D. The graph contains an edge from d1 to
d2 if and only if d2 ∈ f({d1}). The special 0 vertex represents the empty set: the edge
0→ d indicates that d ∈ f({}). The function represented by the graph is defined to be
f(S) = {b : (a, b) ∈ E ∧ (a = 0 ∨ a ∈ S)}. For example, the graph in Figure 1(a)
represents the function g(S) = {x : x ∈ {b, c} ∨ (x = d ∧ d ∈ S)}, which can be
written more simply as g(S) = (S \ {a}) ∪ {b, c}.

Practical Extensions to the IFDS Algorithm 3

0 a b c d

0 a b c d

g = λS.(S \ {a}) ∪ {b, c}
(a)

0 a b c d

0 a b c d

f = λS.(S \ {d}) ∪ {b}
(b)

0 a b c d

0 a b c d

f ◦ g = λS.(S \ {a, d}) ∪ {b, c}
(c)

Fig. 1. Compact representation of functions and their composition

The composition f ◦g of two functions can be computed by combining their graphs,
merging the nodes of the range of g with the corresponding nodes of the domain of f ,
then computing reachability from the nodes of the domain of g to the nodes of the range
of f . That is, a relational product of the sets of edges representing the two functions
gives a set of edges representing their composition. An example is shown in Figure 1.
The graph in Figure 1(c), representing f ◦ g, contains an edge from x to y whenever
there is an edge from x to some z in the representation of g in Figure 1(a) and an edge
from the same z to y in the representation of f in Figure 1(b).

We have reproduced the original IFDS algorithm [15] in Figure 2. The input to the
algorithm is a so-called exploded supergraph that represents both the program being
analyzed and the dataflow functions. The supergraph is constructed from the interpro-
cedural control flow graph (ICFG) of the program by replacing each instruction with
the graph representation of its flow function. Thus the vertices of the supergraph are
pairs 〈l, d〉, where l is a label in the program and d ∈ D∪{0}. The supergraph contains
an edge 〈l, d〉 → 〈l′, d′〉 if the ICFG contains an edge l → l′ and d′ ∈ f({d}) (or
d′ ∈ f({}) when d = 0), where f is the flow function of the instruction at l. For each
interprocedural call or return edge in the ICFG, the supergraph contains a set of edges
representing the flow function associated with the call or return. The flow function on
the call edge typically maps facts about actuals in the caller to facts about formals in the
callee. The merge-over-all-valid paths solution at label l contains exactly the elements
d of D for which there exists a valid path from 〈s, 0〉 to 〈l, d〉 in the supergraph. The
dataflow analysis therefore reduces to valid-path reachability on the supergraph.

The IFDS algorithm works by incrementally constructing two tables, PathEdge and
SummaryEdge, representing the flow functions of ever longer sequences of code. The
PathEdge table contains triples 〈d, l, d′〉, indicating that there is a path from 〈sp, d〉
to 〈l, d′〉, where sp is the start node of the procedure containing l. These triples are
often written in the form 〈sp, d〉 → 〈l, d′〉 for clarity, but the start node sp is uniquely
determined by l, so it is not stored in an actual implementation. The SummaryEdge
table contains triples 〈c, d, d′〉, where c is the label of a call site. Such a triple indicates
that d′ ∈ f({d}), where f is a flow function summarizing the effect of the procedure
called at c. These triples are often written 〈c, d〉 → 〈r, d′〉, where r is the instruction
following c. For convenience, Reps’s presentation of the IFDS algorithm [15] assumes
that in the ICFG, every call site c has a single successor, a no-op “return site” node r.

The PathEdge and SummaryEdge tables are interdependent. Consider the edge 〈sp, d1〉 →
〈ep, d2〉 added to PathEdge, in which ep is the exit node of some procedure p. This edge
means that d2 ∈ fp({d1}), where fp is the flow function representing the effect of the
entire procedure p. As a result, for every call site c calling procedure p, a corresponding

4 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

declare PathEdge, WorkList, SummaryEdge: global edge set
algorithm Tabulate(G]IP)
begin

1 Let (N], E]) = G]IP
2 PathEdge:={ 〈smain, 0〉 → 〈smain, 0〉 }
3 WorkList:={ 〈smain, 0〉 → 〈smain, 0〉 }
4 SummaryEdge:= ∅
5 ForwardTabulateSLRPs()
6 foreach n ∈ N] do
7 Xn := { d2 ∈ D|∃d1 ∈ (D ∪ {0}) s.t.

˙
sprocOf(n), d1

¸
→ 〈n, d2〉 ∈ PathEdge

8 od
end
procedure Propagate(e)
begin

9 if e /∈ PathEdge then Insert e into PathEdge; Insert e into WorkList; fi
end
procedure ForwardTabulateSLRPs()
begin

10 while WorkList 6= ∅ do
11 Select and remove an edge 〈sp, d1〉 → 〈n, d2〉 from WorkList
12 switch n
13 case n ∈ Callp :
14 foreach d3 s.t. 〈n, d2〉 →

˙
scalledProc(n), d3

¸
∈ E] do

15 Propagate
`˙
scalledProc(n), d3

¸
→
˙
scalledProc(n), d3

¸´
16 od
17 foreach d3 s.t. 〈n, d2〉 → 〈returnSite(n), d3〉 ∈ (E] ∪ SummaryEdge) do
18 Propagate(〈sp, d1〉 → 〈returnSite(n), d3〉)
19 od
20 end case
21 case n ∈ ep :
22 foreach c ∈ callers(p) do
23 foreach d4,d5 s.t. 〈c, d4〉 → 〈sp, d1〉 ∈ E] and

〈ep, d2〉 → 〈returnSite(c), d5〉 ∈ E] do
24 if 〈c, d4〉 → 〈returnSite(c), d5〉 /∈ SummaryEdge then
25 Insert 〈c, d4〉 → 〈returnSite(c), d5〉 into SummaryEdge
26 foreach d3 s.t.

˙
sprocOf(c), d3

¸
→ 〈c, d4〉 ∈ PathEdge do

27 Propagate
`˙
sprocOf(c), d3

¸
→ 〈returnSite(c), d5〉

´
28 od
29 fi
30 od
31 od
32 end case
33 case n ∈ (Np − Callp − {ep}) :
34 foreach 〈m, d3〉 s.t. 〈n, d2〉 → 〈m, d3〉 ∈ E] do
35 Propagate(〈sp, d1〉 → 〈m, d3〉)
36 od
37 end case
38 end switch
39 od

end
Fig. 2. Original IFDS Algorithm reproduced from [15]

Practical Extensions to the IFDS Algorithm 5

triple must be added to SummaryEdge indicating the newly-discovered effect at that call
site. In fact, several such triples may be needed for a single edge added to PathEdge,
since the effect of a procedure at c is represented not just by fp, but by the composition
fr ◦ fp ◦ fc, where fc and fr are the flow functions representing the function call and
return. This composition is computed by combining the graphs representing fc and fr
from the supergraph with the newly discovered edge 〈d1, d2〉 of fp. That is, for each d4

and d5 such that 〈d4, d1〉 ∈ fc and 〈d2, d5〉 ∈ fr, 〈c, d4, d5〉 is added to SummaryEdge.
This is performed in lines 23 to 25 of the algorithm.

Conversely, consider a triple 〈c, d4, d5〉 added to SummaryEdge, indicating a new
effect of the call at c. As a result, for each d3 such that there is a path from 〈s, d3〉 to
〈c, d4〉, where s is the start node of the procedure containing c, there is now a valid path
from 〈s, d3〉 to 〈r, d5〉, where r is the successor of c. Thus 〈s, d3〉 → 〈r, d5〉 must be
added to PathEdge. This is performed in lines 26 to 28 of the algorithm.

3 Running Example: Type Analysis
The extensions to the IFDS algorithm presented in this paper were originally motivated
by context-sensitive alias set analysis [13] and multi-object typestate analysis [12]. The
same extensions are applicable to many other kinds of analyses. In this paper, we will
use a much simpler analysis as a running example to illustrate the IFDS extensions.

The example analysis is a variation of Variable Type Analysis (VTA) [21] for Java.
The analysis computes the set of possible types for each variable. This information can
be used to construct a call graph or to check the validity of casts. At each program point
p, the analysis computes a subset of D, where D is defined as the set of all pairs 〈v, t〉,
where v is a variable in the program and t is a class in the program. The presence of the
pair 〈v, t〉 in the subset indicates that the variable v may point to an object of type t.

For the sake of the example, we would like the analysis to analyze only the applica-
tion code and not the large standard library. The analysis therefore makes conservative
assumptions about the unanalyzed code based on statically declared types. For exam-
ple, if m() is in the library, the analysis assumes that m() could return an object of the
declared return type of m() or any of its subtypes. To this end we amend the meaning
of a pair 〈v, t〉 to indicate that v may point to an object of type t or any of its subtypes.

The unanalyzed code could write to fields in the heap, either directly or by calling
back into application code. To keep the analysis sound yet simple, we make the con-
servative assumption that a field can point to any object whose type is consistent with
its declared type. We model a field read x = y.f with the pair 〈x, t〉, where t is the
declared type of f. We make these simplifications because the analysis is intended to
illustrate the extensions to the IFDS algorithm, not necessarily as a practical analysis.

When the declared type of a field is an interface, the object read from it could be
of any class that implements the interface. For a read from such a field, we generate
multiple pairs 〈x, ti〉, where the ti are all classes that implement the interface. If class
A extends B and both implement the interface, it is redundant to include 〈x, B〉 since
〈x, A〉 already includes all subclasses of A, including B. For efficiency, we generate
only those pairs 〈x, ti〉 where ti implements the interface and its superclass does not.

The analysis is performed on an intermediate representation comprising the fol-
lowing kinds of instructions, in addition to procedure calls and returns: s ::= x ←
y | y.f ← x | x ← y.f | x ← null | x ← new T | x ← (T)y. The instructions

6 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

copy pointers between variables, store and load objects to and from fields, assign null
to variables, create new objects and cast objects to a given type, respectively. We use
JsKP : P(D) → P(D) to denote the transfer function for the type analysis. The IFDS
algorithm requires the transfer function to be decomposed into its effect on each indi-
vidual element of D and on the empty set. We decompose it as JsK : D ∪ {0} → P(D)
and define JsKP (P) , JsK(0) ∪

⋃
d∈P JsK(d). The decomposed transfer function JsK is

defined in Figure 3.

Jx← yK(〈v, t〉) ,

8<:
{〈x, t〉 , 〈y, t〉} if v = y
{〈v, t〉} if v 6= y and v 6= x
∅ if v 6= y and v = x

Jy.f ← xK(〈v, t〉) ,{〈v, t〉}

Jx← null|new T |y.fK(〈v, t〉) ,

{〈v, t〉} if v 6= x
∅ otherwise

Jx← new T K(0) ,{〈x, T 〉}

Jx← y.fK(0) ,{〈x, c〉 : c ∈ implClasses(type(f))}

Jx← (T)yK(〈v, t〉) ,
[

c∈implClasses(T)

cast(x, y, c)(〈v, t〉)

cast(x, y, t2)(〈v, t1〉) ,

8>>>><>>>>:
{〈v, t1〉} if v 6= x and v 6= y
∅ if v = x and v 6= y

{〈x, t1〉 , 〈y, t1〉} if v = y and t1 <: t2
{〈x, t2〉 , 〈y, t2〉} if v = y and t2 <: t1

∅ if v = y and t1 and t2 are unrelated

JsK(0) , ∅ if s 6= x← y.f and s 6= x← new

Fig. 3. Intraprocedural flow functions for the running example type analysis

The flow function for a copy instruction (x ← y) applied to a pair 〈v, t〉 requires
three cases. When v is the same as y, the pair 〈v, t〉 is preserved and, since the value
of y is copied to x, a new pair 〈x, t〉 is created. If v is neither x nor y, the value of v
is unaffected by the copy and the pair is therefore preserved. If v is x, and x and y are
distinct, then since the existing value of x is overwritten by the new value, the existing
pair 〈v, t〉 describing the old value of v is discarded, and the result is the empty set.

The store instruction (v.f ← x) has no effect on the values of local variables, and
its flow function is therefore the identity. The flow function for an assignment to x
via a load, new or null does not affect 〈v, t〉, unless v is x, in which case the existing
value of x is overwritten, so the pair is dropped from the set. An allocation instruction
x← new T generates the new pair 〈x, T 〉. A load instruction x← y.f creates the pair
〈x, t〉, if the type of the field f is a class t, or the set of pairs 〈x, ti〉, if the type of the
field f is an interface, where the ti are all of the classes implementing the interface, as
explained earlier. The helper function implClasses(t) computes this set of classes.

The most interesting case is the cast instruction (x← (T)y). The first complication
is that T could be an interface. Such a cast is treated as casts to all classes implementing
T . The flow function is the union of the flow functions modelling casts to these classes,
reflecting the fact that the cast to the interface type succeeds if the cast to at least one

Practical Extensions to the IFDS Algorithm 7

of the implementing classes succeeds. For the simpler case of a cast to a type t2 that is
a class, not an interface, there are still several cases. The cast instruction has no effect
on 〈v, t1〉 when v is neither x nor y. When v is x, the pair is dropped because the cast
overwrites the existing value of x. When v is y and t1 <: t2, indicating that we already
know that y points to an object whose type is a subtype of t2, the cast acts as a copy and
the new pair 〈x, t1〉 is generated. When v is y and t2 <: t1, indicating that y is being
cast to a more restrictive type than the type it is already known to point to, we generate
the new pair 〈x, t2〉, indicating that xmust point to a subtype of the more restrictive cast
type. The original pair 〈y, t1〉 can also be changed to the more precise pair 〈y, t2〉, since
if control flow proceeds after the cast, the cast must have succeeded, and therefore y
must point to an object whose type is a subtype of the cast type. For the purposes of the
example, we assume that a failing cast terminates the program rather than being caught
by an exception handler; catching class cast exceptions is rare in practice.

4 Demand Construction of the Supergraph
The number of nodes in the exploded supergraph G] is |Inst| × (|D|+ 1), where |Inst|
is the number of instructions in the program and |D| is the size of D. In many analyses,
D, though finite, is very large. For example, in an alias set analysis [13], D is a union
of the powersets of the sets of variables of all procedures, and therefore exponential in
the number of variables in a procedure. In our example variable type analysis, D =
|Var| × |Class|, where Var is the set of all variables in the program and Class is the set
of all classes in the program, so |D| is over one million even for a moderate program
with a thousand variables and a thousand classes. Constructing and storing a graph
that is a million times larger than the ICFG is not practical. In practice, only a small
subgraph of G] is reachable by valid paths from 〈smain, 0〉 and therefore explored by
the algorithm. Unfortunately, we cannot know exactly which subgraph this is before
running the IFDS algorithm, since determining which nodes are reachable is exactly
what the IFDS algorithm does. Therefore, our first extension to the IFDS algorithm
modifies it to request only those parts of the supergraph that it encounters, instead of
requiring the whole supergraph as input.

The extended IFDS algorithm with all four of our extensions is shown in Figure 4.
Parts of the algorithm that were changed from the original or added are underlined.

The input to the extended algorithm is a function that, given a supergraph node n],
computes all of the edges leaving that node (i.e. the flow function of the desired analy-
sis). For clarity of presentation, we have split this function into four separate functions:

– flow(n]) computes all intraprocedural edges.1

– passArgs(n]) computes call-to-start edges when n] is at a call site.
– returnVal(n]) computes exit-to-return-site edges when n] is at the exit of a procedure.2

– callFlow(n]) computes call-to-return-site edges when n] is at a call site. These edges
model procedure-local information that is not affected by the called procedure.
The original IFDS algorithm queries the edges of the supergraph E] in five places. The
queries on lines 14, 17 and 34, and the second query on line 23 can simply be replaced
by calls to passArgs, callFlow, flow, and returnVal, respectively.

1 In Figure 4, flow has a second parameter π, which will be explained in Section 6.
2 In Figure 4, returnVal has a second node parameter, which will be explained in Section 5.

8 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

declare PathEdge, WorkList, SummaryEdge, Incoming, EndSummary: global
algorithm Tabulate(flow, passArgs, returnVal, callFlow)

...
procedure ForwardTabulateSLRPs()
begin

10 while WorkList 6= ∅ do
11 Select and remove an edge 〈sp, d1〉

π→〈n, d2〉 from WorkList
12 switch n
13 case n ∈ Callp :
14 foreach d3 ∈ passArgs(〈n, d2〉) do

15 Propagate
“˙
scalledProc(n), d3

¸ 0→
˙
scalledProc(n), d3

¸”
15.1 Incoming

ˆ˙
scalledProc(n), d3

¸˜
∪ = 〈n, d2〉

15.2 foreach 〈ep, d4〉 ∈ EndSummary
ˆ˙
scalledProc(n), d3

¸˜
do

15.3 foreach d5 ∈ returnVal(〈ep, d4〉 , 〈n, d2〉) do
15.4 Insert 〈n, d2〉 → 〈returnSite(n), d5〉 into SummaryEdge
15.5 od
15.6 od
16 od
17 foreach d3 s.t. d3 ∈ callFlow(〈n, d2〉) or

〈n, d2〉 → 〈returnSite(n), d3〉 ∈ SummaryEdge do
18 Propagate

“
〈sp, d1〉

n→〈returnSite(n), d3〉
”

19 od
20 end case
21 case n ∈ ep :
21.1 EndSummary [〈sp, d1〉]∪ = 〈ep, d2〉
22 foreach 〈c, d4〉 ∈ Incoming [〈sp, d1〉] do
23 foreach d5 ∈ returnVal(〈ep, d2〉 , 〈c, d4〉) do
24 if 〈c, d4〉 → 〈returnSite(c), d5〉 /∈ SummaryEdge then
25 Insert 〈c, d4〉 → 〈returnSite(c), d5〉 into SummaryEdge
26 foreach d3 s.t.

˙
sprocOf(c), d3

¸
→ 〈c, d4〉 ∈ PathEdge do

27 Propagate
“˙
sprocOf(c), d3

¸ c→〈returnSite(c), d5〉
”

28 od
29 fi
30 od
31 od
32 end case
33 case n ∈ (Np − Callp − {ep}) :
34 foreach m, d3 s.t. n→ m ∈ CFG and d3 ∈ flow(〈n, d2〉 , π) do

35 Propagate
“
〈sp, d1〉

n→〈m, d3〉
”

36 od
37 end case
38 end switch
39 od

end

Fig. 4. Extended IFDS Algorithm

Practical Extensions to the IFDS Algorithm 9

However, the first query on line 23 asks to evaluate the inverse of the flow function:
find all call nodes 〈c, d4〉 from which an edge leads to the procedure start node 〈sp, d1〉.
This would require computing the inverse of the flow function, which can be difficult
for many analyses. Moreover, even though 〈sp, d1〉 is reachable in G], many of its pre-
decessors inE] may not be, and enumerating them may be intractable. For example, for
an alias set analysis, the number of predecessors for most nodes is 2|Var|−1, where |Var|
is the number of variables in the calling procedure. The extended algorithm therefore
maintains a set Incoming[〈sp, d1〉] that records nodes that the analysis has observed to
be reachable and predecessors of 〈sp, d1〉. Whenever the call to passArgs(〈n, d2〉) in
line 14 returns 〈sp, d3〉, 〈n, d2〉 is added in line 15.1 to Incoming(〈sp, d3〉).

An obvious issue with querying the set of nodes already observed to be predecessors
of 〈sp, d1〉 is what must be done when a new predecessor is observed later. The solution
is to keep track of exit nodes for which a given value of Incoming has been queried (line
21.1). Then, whenever a new predecessor is observed, those exit nodes are reprocessed
to reflect the new predecessor. A simple way to reprocess the exit nodes correctly is to
add them to the worklist. However, this approach is very inefficient, because whenever
a new predecessor is added at one call site, the effect of the procedure is reprocessed
for all predecessors at all call sites of the procedure. This intuitively poor performance
was confirmed by our experience with the initial implementation of the algorithm.

A better way to reprocess the exit node is to recognize that when a new predecessor
of 〈sp, d1〉 is observed, the predecessor tells us the relevant call site. Instead of adding
the corresponding exit node to the worklist, we can immediately process that exit node,
but do only the work necessary for that one predecessor. Concretely, we duplicate the
effect of lines 24 through 29 after line 15.1. The effect of lines 24, 25 and 29, adding
the appropriate edge to SummaryEdge, is done in lines 15.3 through 15.5. The effect of
lines 26 through 28 is already done by lines 17 through 19 of the original algorithm.

5 Return Flow Functions

void ensureCircle(Shape y){
Shape z = y;
(Circle) z;

}
Shape x = ...;
ensureCircle(x);

In the original IFDS algorithm, the return flow
function is modelled by interprocedural edges
in the exploded supergraph that lead from the
exit of a procedure to the call site that called the
procedure. In the callee, each flow fact is repre-
sented in terms of the local scope of the callee.
For many analyses, it is necessary to map infor-
mation in the callee back to the caller. For example, in the code on the right, the cast in-
side ensureCircle succeeds only if the object pointed to by z, which is also pointed
to by x and y, is of type Circle or its subtype. Therefore, if ensureCircle returns
normally, we know that x cannot point to an arbitrary Shape, but only to a Circle.
However, the original IFDS algorithm cannot discover this fact: although it determines
that at the exit of ensureCircle, z points to an object of type Circle, there is no
way in the supergraph to associate z in the callee with x in the caller.

Yet with a small extension, this reverse mapping can be recovered. The fact that z
points to a subtype of Circle is expressed by the edge 〈sensureCircle, 〈y,Shape〉〉 →
〈eensureCircle, 〈z,Circle〉〉 in PathEdge. This edge means that at the beginning of
the procedure, there was an object pointed to by y, and at the exit of the procedure,

10 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

the same object is pointed to by z and we know it is of type Circle. In addition,
Incoming[〈sensureCircle, 〈y,Shape〉〉] contains 〈c, 〈x,Shape〉〉. This means that the
object passed in through y from the call site c was pointed to by x in the caller scope.
We can combine the context information provided by Incoming with the intraprocedu-
ral information computed in PathEdge to determine that the object pointed to by x at
the call site is known to be of type Circle after the call.

This extension appears in the extended algorithm in Figure 4 on line 23. The return-
Val function takes, in addition to the node d2 at the exit instruction ep, a second node d4

at the call site c. These arguments indicate not only that the node d2 is reachable at ep,
but that it is reachable from some node d1 at the start instruction sp of the procedure,
and that a passArgs edge leads to the latter node from node d4 at the call site c. Thus the
returnVal function can use the caller-side state from the time the procedure was invoked
to map the callee-side state at the exit of the procedure back to the caller-side context.

This extension is not merely an extension of the IFDS algorithm, but an extension of
the exploded supergraph abstraction that the algorithm is based on. In the supergraph,
for every pair of nodes d2 at an exit node and d5 at a return site, there either is or is not an
edge from d2 to d5; if there is such an edge, the algorithm adds a SummaryEdge from
〈c, d4〉 to 〈returnSite(c), d5〉 for every call site c calling the procedure and for every
reachable node d4 at c. However, the extended algorithm gives the analysis designer
more flexbility, in that the decision to add the SummaryEdge is additionally dependent
on the specific call-site node 〈c, d4〉 being considered. It is as if the supergraph edge
〈ep, d2〉 → 〈returnSite(c), d5〉 can both exist and not exist, depending on which call
site node 〈c, d4〉 is being taken on the path used to reach 〈ep, d2〉.

6 Static Single Assignment (SSA) Form
Static Single Assignment (SSA) form [2] is a popular intermediate representation that
makes many program analyses simpler and more efficient. Standard dataflow analysis
algorithms such as the original IFDS can be applied unchanged to programs in SSA
form, but without appropriate extensions, such an analysis may be less precise than
when the same analysis is done on the original, non-SSA version of the program. In this
section, we discuss the reasons for the precision loss and propose an extension to the
IFDS algorithm that fully restores the lost precision. The extended algorithm analyzes
a program in SSA form as precisely as in its original, non-SSA form.

The defining feature of SSA form is that every variable is written to in only one
instruction in the program. To convert a program to SSA form, every variable is renamed
at each of its definitions, so each definition writes to a fresh, unique variable. Every
use of a variable must also be renamed to match the reaching definition. A problem
arises when multiple definitions reach a use: to which of the new names should the
variable at the use be renamed? The solution is to add φ pseudo-instructions to select the
reaching definition based on the control flow path taken. A φ instruction at a control flow
merge point defines a new variable whose value is selected from among the reaching
definitions depending on the edge taken into the merge point. Thus only the φ definition
of the variable reaches the instructions following the merge.

The φ pseudo-instruction differs from normal instructions in two ways. First, if mul-
tiple variables require φ assigments at a given merge point, the φ assignments are per-
formed simultaneously, in parallel. The set of φ instructions at the merge point defines,

Practical Extensions to the IFDS Algorithm 11

for each incoming control-flow edge, a permutation of the variables. Thus it is clearer
to group all of the φ instructions at a given merge point into a single multi-variable
φ instruction. Multiple instructions in sequence would suggest that the operations are
performed one after the other, which is an incorrect semantics for φ instructions.

Second, unlike other instructions, the effect of a φ depends on the control-flow edge
taken to reach the instruction. This causes many dataflow analysis algorithms, including
the original IFDS, to lose precision when analyzing a program in SSA form, compared
to analyzing the same program in its original non-SSA form. We will present an exam-
ple program that exhibits such precision loss in Section 6.1. In most dataflow analyses,
at a control flow merge point, the analysis first merges the dataflow facts from the in-
coming edges, then passes the merged value to the flow function of the instruction after
the merge (i.e. out[s] = fs(

⋃
p∈pred(s) out[p])). Merging before applying the flow func-

tion reflects the structure of the control flow graph, and is appropriate when the merge
is followed by a non-φ instruction. When the merge is followed by a φ instruction, how-
ever, the merge preceding the flow function application makes it impossible for the flow
function fs to depend on the control flow predecessor that its input came from, since the
inputs from all the predecessors have been merged into a single dataflow value. Most
dataflow analyses treat a φ instruction such as x3 = φ(x1, x2) as an assignment from
both x1 and x2 to x3, ignoring the control flow edges on which those values of x1 and
x2 arrived.

To analyze SSA-form code as precisely as non-SSA-form code, the merge must be
delayed until after the φ instruction. That is, the φ flow function is applied separately to
the dataflow value on each incoming control flow path, and the merge is performed on
the outputs of the φ flow function, not on its input. As a result, the incoming control flow
edge associated with each dataflow value can be made available to the flow function fφ
modelling the φ instruction. Formally, out[φ] =

⋃
p∈pred(φ) fφ(p, out[p]).

Extending the IFDS algorithm to perform dataflow merges after φ instructions in-
stead of before them requires two modifications. First, every edge added to PathEdge
is annotated with a control flow predecessor. The edge 〈sp, d1〉

n→ 〈m, d2〉 indicates
that there is a path in the supergraph starting at the dataflow fact d1 at the start node sp,
leading to the dataflow fact d2 at node m, and that the second-last node on the path is
at node n. In other words, the dataflow fact d2 reaches m along the incoming control
flow edge from n. Two PathEdge edges that differ only in the control flow predecessor
are considered to be distinct. The PathEdge edges created in lines 18, 27, and 35 of the
algorithm are annotated with the control flow predecessor, shown above the arrow. The
PathEdge edge created in line 15 corresponds to the empty path from 〈s, d3〉 to itself, so
there is no control flow predecessor to record. We therefore use a dummy predecessor,
which we write as 0. However, the target of this edge is the start node of the procedure,
which is never a φ instruction, so the predecessor will never be needed for this node.

Second, the flow function is extended with a second parameter, and when the func-
tion is called in line 34, the control-flow predecessor π of the PathEdge edge currently
being processed is passed in. Thus the flow function for the φ instruction can depend
on the control-flow predecessor π associated with the dataflow value d2 reaching n.

12 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

Object x = new Circle
if (cond) ... = (Square) x;
else x = new Triangle;
x.draw();

(a) Original Source Code

(b) Non-SSA Type Results (c) SSA Type Results
Fig. 5. The effect on precision due to the choice of merge strategy at φ nodes.

An obvious optimization is to annotate only those edges 〈sp, d1〉 → 〈m, d2〉 in
which m is a φ instruction, and leave all other edges unannotated. We do this in our
implementation, but have not shown it in Figure 4 to avoid cluttering the algorithm.

6.1 Example of precision loss

An example of how merging dataflow information before rather than after a φ instruc-
tion reduces precision is shown in Figure 5. The original non-SSA source code of the
example program is in Figure 5(a). A variable x is initialized as a Circle. In the left
branch of the conditional, x is cast to Square. In the right branch, x is redefined as a
Triangle. Figure 5(b) shows the results of running the type analysis on the code. The
flow function for the cast operation kills the flow fact 〈x,Circle〉, since a Circle
cannot be successfully cast to a Square. Therefore, the type analysis indicates that
the only possible type for receiver x at instruction x.draw() is Triangle. This is
sound since the cast operation can never succeed and therefore a program executing the
left branch can never reach the draw call. Conversely, if the program reaches the draw
call it must have taken the right branch and the receiver must be a Triangle.

Figure 5(c) shows the same code after SSA conversion. The receiver x3 for the call
x3.draw() is x1 when the path follows the left branch and x2 when the path follows
the right branch, as reflected in the φ function. The left predecessor of the φ function has
no flow facts because the cast kills 〈x1,Circle〉 as before. The right predecessor has
the facts 〈x1,Circle〉 and 〈x2,Triangle〉. The original IFDS algorithm would first
merge the incoming flow facts from the two branches, then apply the flow function that
models the φ as a copy from both x1 and x2. At the call to x3.draw(), the analysis

Practical Extensions to the IFDS Algorithm 13

would compute the facts 〈x3,Circle〉 and 〈x3,Triangle〉, which is less precise
than the non-SSA version of the analysis that was able to rule out x being a Circle.

In the extended IFDS algorithm, the merge is not performed before the flow function
of the φ instruction, so the flow function has information about the control flow edge
on which each dataflow fact arrives. For facts coming in from the left edge, it models a
copy from x1 to x3; for facts coming in from the right edge, it models a copy from x2

to x3. Thus only the fact 〈x2,Triangle〉 coming from the right edge leads to a new
fact 〈x3,Triangle〉. The fact 〈x1,Circle〉 does not give rise to 〈x3,Circle〉, as
it did before, because it comes in from the right edge, which is not associated with a
copy from x1 to x3. Thus the extended IFDS algorithm achieves the same precision on
the SSA-form version of the program as on the original non-SSA-form version.

7 Exploiting Structure in the Set D
The IFDS algorithm requires that the dataflow domain be the powerset of a finite set
D. The elements of D are treated independently and equally. The algorithm does not
assume or take advantage of any relationships between the elements of D. This is ap-
propriate for bit-vector dataflow problems. For example, the liveness of variable x at
some program point implies nothing about the liveness of a different variable y.

However, some domains have more structure in the form of subsumption relation-
ships between elements. In the example type analysis, the fact 〈x,Circle〉 subsumes
the fact 〈x,Shape〉, since knowing that x points to an object whose type is some
subtype of Circle implies that its type is also a subtype of Shape. Therefore, if
the analysis computes, for some program point, the set {〈x,Circle〉 , 〈x,Shape〉},
which means that x points to a subtype of Circle or that x points to a subtype of
Shape, then this set provides no additional information compared to the smaller set
{〈x,Shape〉} that could have been computed; the two sets are equivalent.

Formally, we can define for an arbitrary analysis the partial order a ≤ b, meaning
that a subsumes b (for example, 〈x,Circle〉 ≤ 〈x,Shape〉). We require all of the
dataflow functions to be monotone in the partial order: a ≤ b =⇒ flow(a) ≤ flow(b).
We consider two sets computed by the analysis to be equivalent, written D1 ∼ D2, if
every element of each set is subsumed by some element of the other set:

D1 ≤ D2 ⇐⇒ ∀d1 ∈ D1∃d2 ∈ D2 s.t. d1 ≤ d2

D1 ∼ D2 ⇐⇒ D1 ≤ D2 ∧D2 ≤ D1

The original IFDS algorithm handles analyses in whichD has structure correctly but
not as efficiently as possible. Because it ignores the subsumption relationship, it com-
pute {〈x,Circle〉 , 〈x,Shape〉} instead of the equivalent smaller set {〈x,Shape〉}.
We have extended the algorithm to use subsumption relationships in D to find smaller
equivalent sets. The extension reduces the size not only of the final result, but of the
intermediate sets during execution of the algorithm. The performance improvement is
cumulative since smaller intermediate sets require less further processing.

The extended algorithm is as precise as the original IFDS algorithm in the sense
that if the algorithms compute dataflow facts Dext and Dorig, respectively, for a given
program point, then Dext ∼ Dorig.

Extending the algorithm to exploit subsumption requires two steps. First, the Prop-
agate function is changed to only add an edge to PathEdge if it does not subsume any

14 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

already existing edge, as shown in Figure 6.3 Any edges in PathEdge and in the Work-
List subsuming the newly-added edge are redundant and can be removed in line 9.1.

procedure Propagate(〈sp, d1〉 → 〈n, d2〉)
begin

9 if 6 ∃ 〈sp, d1〉 → 〈n, d3〉 ∈ PathEdge s.t. d2 ≤ d3 then
Insert e into PathEdge; Insert e into WorkList; fi

9.1 Remove all edges 〈sp, d1〉 → 〈n, d3〉 s.t. d3 ≤ d2 from PathEdge and from WorkList
end

Fig. 6. Extended Propagate Procedure

Second, the worklist is modified so that subsumed elements are processed before
subsuming ones. Without an appropriate worklist ordering, the algorithm might do the
work of constructing the full sets and only afterwards discover an element that the
existing elements subsume, making the existing elements unnecessary. Thus only after
all of the work was done would the algorithm discover that the work was not necessary.

To define a suitable worklist ordering, we define an estimate function mapping each
element of D to an integer with the property that d1 ≤ d2 =⇒ estimate(d1) ≤
estimate(d2). For all analyses we have encountered, we have found it easy to define
such an estimate. For the example type analysis, we use the following estimate: the
class Object has estimate 0, and the estimate of each other class is one less than the
estimate of its superclass. For a given estimate function, the worklist is implemented as
a priority queue that makes the algorithm process edges with the highest estimate first.

This ordering heuristic does not completely guarantee that the algorithm will never
call Propagate with an edge that makes a previous edge unnecessary, but it does ensure
this property in most cases, and works well in practice. Recall that each flow function
is monotonic, so that a ≤ b =⇒ flow(a) ≤ flow(b). We can be sure to compute
flow(b) and flow(a) in the correct order (that is, flow(b) first) by following the or-
dering heuristic to remove b from the worklist before a. However, at a control flow
merge point, it is possible that a and b appear at two different control flow predeces-
sors p, p′, which are modelled by different flow functions. There is no guarantee that
a ≤ b =⇒ flowp(a) ≤ flowp′(b), so we cannot guarantee that it is more efficient to
compute flowp′(b) before flowp(a).

8 Empirical Evaluation
We have performed experiments on the variable type analysis to measure the following:

– How large is the supergraph, and what fraction of it is reachable along valid paths?
– How does taking advantage of subsumption relationships in D reduce the number of

dataflow facts that must be processed and the running time of the IFDS algorithm?
We implemented the extended IFDS algorithm and the example type analysis in

Scala [14] using Soot [22] as a front-end to parse and convert Java classes into 3-address
code and construct a control flow graph (CFG). Both normal Java control flow and con-
trol flow due to exceptions was represented by edges in the CFG. We ran the extended

3 Though it may seem counterintuitive, it is correct to only add elements that do not subsume an
existing element, rather than elements not themselves subsumed by an existing element. The
interpretation of the PathEdge set is a disjunction of the possible types for each variable: any
element in the set is a possible abstraction of runtime behaviour. If a subsumes b, then adding
a to a disjunction already containing b does not change the meaning of the disjunction.

Practical Extensions to the IFDS Algorithm 15

Benchmark Methods Variables Instructions Possible Types
antlr 949 10839 16621 257
bloat 3142 33727 46550 623
chart 9419 91280 129850 2292
fop 13556 131901 185129 3400
hsqldb 768 8004 11552 443
jython 5487 56090 74031 1079
luindex 1306 12519 18131 617
lusearch 1633 14850 21368 676
pmd 3643 33945 49640 998
xalan 786 7708 11084 451

Table 1. Benchmark Characteristics

algorithm on the DaCapo Benchmark Suite, version 2006-10-MR2 [1]. Since most of
the benchmarks use reflection, we provided Soot with summaries of uses of reflec-
tion obtained by instrumenting the benchmarks using ProBe [11] and *J [5].4 Statistics
about the benchmarks are presented in Table 1. The Methods column shows the number
of methods in the part of the call graph analyzed by the IFDS analysis; since the type
analysis does not analyze the library, we cut off the call graph at any call into the library.
Not analyzing the library is a characteristic of our example analysis, and not a limita-
tion of the IFDS algorithm in general. In earlier work [12], we evaluated two IFDS
analyses that successfully analyze the whole program including the standard library.
The Variables column shows the number of SSA variables in the analyzed methods.
The Instructions column shows the number of instructions after conversion to the inter-
mediate representation presented in Section 3. The Possible Types column shows the
number of concrete classes in the benchmark. These are the classes that could appear
as the type associated with a variable in the analysis results.

We first measured the size of the complete exploded supergraph. In general, the
number of nodes in the exploded graph is given by |Inst| × (|D| + 1) where D =
Var×Class, Var is the set of all variables in the program and Class is the set of all classes.
However, when analyzing a given method, only the local variables of that method need
to be tracked. Thus a much smaller exploded supergraph can be constructed of size∑
m∈Methods |Varm| × |Class| × |Instm|, where |Varm| and |Instm| are the numbers of

variables and instructions in method m. We measured the size of this smaller, more
reasonable exploded supergraph. In addition to the number of nodes, we computed the
number of edges in the exploded supergraph. To do this, we applied the flow function
to every node of the exploded supergraph and counted the number of outgoing edges.
The sizes of the exploded supergraph are shown using diamond shapes in Figure 7.
The sizes range from 138 million to 21 billion nodes. On average (geometric mean),
each exploded supergraph has 1.16 times as many edges as nodes. The largest exploded
supergraphs took over 24 hours to enumerate.

We also measured the sizes of the reachable part of the supergraph that is explored
when the IFDS algorithm has been extended with demand supergraph construction.
These sizes are shown as horizontal lines in Figure 7. The number of edges in the reach-

4 We excluded the Eclipse benchmark because it makes such heavy use of reflection that Soot is
unable to process it.

16 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

Fig. 7. Number of nodes and edges in the exploded supergraph and its reachable subgraph. The
letters N and E after each benchmark name designate nodes and edges, respectively.

able part of the supergraph is 1.09 times the number of nodes. On average (geometric
mean), the complete supergraph contains 2081 times as many nodes as the reachable
part of the supergraph. Constructing the supergraph on demand rather than exhaustively
is key to analyzing benchmarks of this size in reasonable time and memory bounds.

Next, we measured the effect of using subsumption relationships in D to avoid
propagating dataflow facts that subsume existing facts. We ran the type analysis three
times. In the first run, the subsumption extension from Section 7 was turned off, so
all dataflow facts were propagated regardless of their subsumption relationships. In the
second run, the subsumption extension was turned on, but the original first-in first-
out (FIFO) worklist was used. In the third run, both the subsumption extension and
the subsumption-aware worklist ordering from Section 7 were used. For each case, we
measured the running time of the analysis and the total number of pairs 〈v, t〉 computed
(i.e. the sum over all instructions of the number of 〈v, t〉 pairs for that instruction). The
results are shown in Table 2. Empty cells in the table indicate that the analysis did not

Facts (x103) Time (s)
Benchmark w/o subs. w subs. w/o subs. w subs., w/o PQ w subs., w PQ
antlr 546 309 179 44 45
bloat 2037 1544 1518
chart 2817 3377 3197
fop 4408 3247 2847
hsqldb 1758 224 4720 60 60
jython 1015 1225 697
luindex 2900 326 9860 75 70
lusearch 3432 356 9776 78 68
pmd 556 241 211
xalan 1809 218 4813 61 60

Table 2. Effect of taking advantage of subsumption relationships in D.

Practical Extensions to the IFDS Algorithm 17

complete within 10000 seconds of CPU time and 10 GB of memory. The subsumption-
extended analysis completed on all of the benchmarks, but the unextended analysis
completed on only five benchmarks within these time and memory limits. Columns 2
and 3 show the number of 〈v, t〉 pairs without and with the subsumption extension (this
number is independent of the worklist ordering). Columns 4, 5, and 6 show the running
time of the three runs of the analysis. On the five benchmarks on which all algorithms
ran to completion, the unextended analysis had to compute 6.3 times as many pairs as
the extended analysis, so the unextended analysis took 55 times as long as the extended
analysis (geometric mean). In the extended analysis, the subsumption-aware priority
queue worklist reduced the running time by 10% (geometric mean over all benchmarks).
Extremes were jython, where the reduction was 43%, and antlr, where the running time
increased by 2% due to the higher cost of maintaining a priority queue compared to a
FIFO list. The subsumption extension presented in Section 7 is very important for the
speed of the analysis and for its ability to analyze programs of significant size.

9 Related Work
Sharir and Puneli [19] extended Kildall’s framework of intraprocedural dataflow anal-
ysis [9, 10] to two frameworks of context-sensitive interprocedural dataflow analysis,
which they called the call-strings approach and the functional approach. The two frame-
works compute a merge-over-all-valid-paths solution, where a valid path is one in which
procedure calls and returns are correctly matched. The call-strings approach treats calls
and returns from a procedure like all other control flow but restricts propagation to valid
paths by tagging propagated dataflow facts with a call string (an abstraction of the active
call stack). In the functional approach, the effects of each procedure are summarized by
a summary function fp : D → D, where D is the dataflow analysis domain. The sum-
mary function is then used at each call site of the procedure to model the effect of the
call. The key operation in the functional approach is function composition. For exam-
ple, to compute the summary function fr of a caller procedure that contains a call site
to a callee procedure, the summary function fe of the callee procedure must be com-
posed with functions representing the intraprocedural effects of the caller procedure.
Although the functional approach has the potential to be more precise and more effi-
cient than the call strings approach, a key challenge is devising efficient representations
of the summary functions that are amenable to function composition.

The IFDS framework [15] provides such an efficient representation of summary
functions for the functional approach, as discussed in Section 2. When the dataflow
domain is P(D) for a finite set D and all of the dataflow functions are distributive,
they can be compactly represented using bipartite graphs with O(D) nodes. Function
composition can be computed efficiently in this representation, and the composition
of distributive functions is also distributive. Thus the IFDS algorithm makes the func-
tional approach practical for the class of dataflow analyses satisfying these restrictions.
The IFDS algorithm has been used to solve both locally separable problems such as
reaching definitions, available expressions and live variables, and non-locally-separable
problems such as uninitialized variables and copy-constant propagation.

The IDE [18] algorithm generalizes IFDS to a wider class of dataflow analyses.
Whereas in IFDS, the dataflow facts are elements of P(D), the IDE algorithm allows
dataflow facts that are maps drawn from D → L, where D is a finite set and L is a

18 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

finite-height semi-lattice.5 The IDE algorithm has been used to express copy-constant
propagation and linear constant propagation [18]. The IDE literature calls elements of
D → L environments, so the flow functions that are composed in the algorithm are
environment transformers drawn from (D → L) → (D → L). Provided these trans-
formers are distributive, they can be represented efficiently using graphs similar to those
used in the IFDS algorithm, with additional labels on the edges of the graph describing
the effect of the edge on elements of L. Whereas the IFDS problem computes reach-
ability along valid paths, the IDE algorithm additionally evaluates functions L → L
along those paths. The overall structure of both algorithms is very similar, however. All
of the extensions presented in this paper are equally applicable to the IDE algorithm as
well as to the IFDS algorithm. We have implemented the extensions in both algorithms.

Demand-driven variations of the IFDS and IDE algorithms have been thoroughly
studied [3, 4, 8, 16, 18]. These algorithms differ from the exhaustive algorithms in that
rather than computing all nodes reachable from the start node, they determine whether a
given node n is reachable. These algorithms can be faster when only a small number of
nodes are queried. The algorithms work by exploring reverse paths along the supergraph
from the given node n, by evaluating inverses of the dataflow functions. The demand-
driven computation of reachability implemented by these algorithms is distinct from
and complementary to the demand-driven exploded supergraph construction that we
presented in Section 4. The purpose of demand supergraph construction is to avoid con-
structing the whole supergraph, which may be much larger than its reachable subgraph;
the demand-driven reachability algorithms do require the whole exploded supergraph to
be constructed ahead of time. Although our extended IFDS algorithm constructs the ex-
ploded supergraph on demand, it then exhaustively computes all nodes reachable along
valid paths, rather than answering reachability queries for specific notes. An interesting
direction for future work would be to combine demand supergraph construction with
demand-driven reachability queries. Such an algorithm appears to be challenging to de-
sign and to tune, however. The key difficulty that we had to overcome in constructing
the exploded supergraph on demand was the need, on line 23 of the original IFDS algo-
rithm, to evaluate the inverse of the dataflow function. The demand-driven supergraph
reachability algorithms require much more evaluation of inverse dataflow functions.

Others have noticed limitations of the original IFDS algorithm, and mention imple-
menting extensions similar to some of those that we have presented here [6,7,17,20,23].
Fink et al. [6, 7] used the IFDS algorithm to verify typestate properties of objects. To
verify that an object respects a temporal property, they build precise abstractions of the
objects in the program and aliasing between them. The analysis computes an object
abstraction containing sets of access paths that must or must-not reference an object.
This abstraction is computed using the IFDS algorithm with extensions for exceptional
control flow and polymorphic dispatch. Though their presentation focuses on the type-
state analysis rather than specifics of their extensions to the IFDS algorithm, their im-
plementation depends on constructing the exploded supergraph on demand, providing
call-site information to return flow functions, and exploiting subsumption between ele-
ments of D. Shoham et al. [20] apply the infrastructure of Fink et al. [6, 7], along with
its IFDS extensions, to statically extract finite-state automata of sequences of API calls.

5 The domain P(D) is isomorphic to D → L if L is chosen to be the two-point lattice.

Practical Extensions to the IFDS Algorithm 19

Some shape analyses that have been implemented as instances of the IFDS algo-
rithm construct the supergraph on demand for scalability. Rinetzky et al. [17] present
an efficient shape analysis for the class of cutpoint-free programs, in which at each pro-
cedure call, the subgraph of the heap reachable in the callee can only be reached in the
caller through arguments of the call. Yang et al. [23] present a different shape analysis
that works for general programs. Both of these analyses are instances of the IFDS algo-
rithm, and both implementations construct only the reachable part of the supergraph.

Several of the analyses just mentioned [6, 7, 17, 20, 23] use partial joins, an exten-
sion similar to subsumption in the analysis domain D that we discussed in Section 7.
Whereas a partial join enables the analysis designer to sacrifice precision for efficiency,
exploiting subsumption does not change analysis precision. A partial join may make
the analysis output depend on the order of exploration; exploiting subsumption does
not. A partial join operator †t is a partial function †t : D × D 9 D with the property
that if a†tb = d, then each of a and b subsume d. Whenever the partial join IFDS al-
gorithm encounters both a and b in a given set, it replaces them with d, reducing the
size of the set. This operation is sound, since if each of a and b subsume d, then so
does their disjunction. However, it may reduce precision. For example, if we also de-
fine a†tc = d, it becomes impossible for the analysis to distinguish {a, b} from {a, c},
even though neither set subsumes the other (i.e. {a, b} 6∼ {a, c}). Our subsumption ex-
tension can be implemented using the following definition of a partial join: if a ≤ b,
then a†tb = b†ta = b, else a†tb is undefined.

Our previous work [12] on verifying temporal properties of groups of interacting
objects also uses the IFDS and IDE algorithms. Verifying typestate-like properties of
multiple objects requires two separate abstractions and analyses: an alias-set abstraction
to track the objects in the program and a second abstraction of the typestate of groups
of objects. We used the IFDS algorithm to compute these abstractions. We used the IDE
algorithm to compute the set of events that might trigger a violation of a temporal prop-
erty. In later work [13] we improved the alias-set analysis using properties of programs
in SSA form. Our extension to the IFDS algorithm to precisely handle φ instructions,
as presented in Section 6, was essential to obtaining precise alias set information.

10 Conclusions
We presented four extensions to the IFDS algorithm that make it applicable to a wider
class of interprocedural dataflow analysis problems, in particular analyses of objects
and pointers. The extended algorithm does not require an exploded supergraph as input,
but builds it on demand, only for those dataflow facts for which it is actually needed.
The extended algorithm provides caller-side context information from before a proce-
dure call to the flow function that maps callee-side state back to the caller after the call.
The extended algorithm analyzes programs in SSA form as precisely as programs not
in SSA form. The extended algorithm takes advantage of structure in the dataflow anal-
ysis domain to significantly speed up analyses exhibiting such structure. We illustrated
our extensions on a variation of variable type analysis, and we have applied them to
more complicated analyses including alias set analysis [13] and multi-object typestate
analysis [12]. The extensions apply not only to the IFDS algorithm but also to the more
general IDE algorithm.

20 Nomair A. Naeem, Ondřej Lhoták, Jonathan Rodriguez

References
1. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan,

D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analysis. OOPSLA ’06,
pages 169–190, 2006.

2. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method
of computing static single assignment form. POPL ’89, pages 25–35, 1989.

3. E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computation of interprocedural
data flow. POPL ’95, pages 37–48, 1995.

4. E. Duesterwald, R. Gupta, and M. L. Soffa. A practical framework for demand-driven inter-
procedural data flow analysis. ACM Trans. Program. Lang. Syst., 19(6):992–1030, 1997.

5. B. Dufour. Objective quantification of program behaviour using dynamic metrics. Master’s
thesis, McGill University, June 2004.

6. S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in
the presence of aliasing. ISSTA’06, pages 133–144, 2006.

7. S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in
the presence of aliasing. ACM Trans. Softw. Eng. Methodol., 17(2):1–34, 2008.

8. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. SIGSOFT
FSE ’95, pages 104–115, 1995.

9. J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Inf., 7:305–317,
1977.

10. G. A. Kildall. A unified approach to global program optimization. POPL ’73, pages 194–
206, 1973.

11. O. Lhoták. Comparing call graphs. PASTE ’07, pages 37–42, 2007.
12. N. A. Naeem and O. Lhoták. Typestate-like analysis of multiple interacting objects. OOP-

SLA ’08, pages 347–366, 2008.
13. N. A. Naeem and O. Lhoták. Efficient alias set analysis using SSA form. ISMM ’09, pages

79–88, 2009.
14. M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima Press, 2008.
15. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph

reachability. POPL ’95, pages 49–61, 1995.
16. T. W. Reps. Solving demand versions of interprocedural analysis problems. CC’94, pages

389–403, 1994.
17. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free pro-

grams. SAS 2005, pages 284–302, 2005.
18. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applica-

tions to constant propagation. Theoretical Computer Science, 167(1–2):131–170, 1996.
19. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. S. S. Much-

nick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7,
pages 189–233. Prentice-Hall, 1981.

20. S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification mining using automata-
based abstractions. ISSTA ’07, pages 174–184, 2007.

21. V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for Java. OOPSLA’00, pages 264–280,
2000.

22. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Opti-
mizing Java bytecode using the Soot framework: is it feasible? CC’00, pages 18–34, 2000.

23. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W. O’Hearn. Scal-
able shape analysis for systems code. CAV ’08, pages 385–398, 2008.

