
ar
X

iv
:1

61
1.

07
61

0v
1

 [
cs

.P
L

]
 2

3
N

ov
 2

01
6

Mutable WadlerFest DOT

Marianna Rapoport and Ondřej Lhoták

{mrapoport, olhotak}@uwaterloo.ca
University of Waterloo

Abstract. The Dependent Object Types (DOT) calculus aims to model
the essence of Scala, with a focus on abstract type members, path-
dependent types, and subtyping. Other Scala features could be defined
by translation to DOT.
Mutation is a fundamental feature of Scala currently missing in DOT.
Mutation in DOT is needed not only to model effectful computation
and mutation in Scala programs, but even to precisely specify how Scala
initializes immutable variables and fields (vals).
We present an extension to DOT that adds typed mutable reference cells.
We have proven the extension sound with a mechanized proof in Coq.
We present the key features of our extended calculus and its soundness
proof, and discuss the challenges that we encountered in our search for
a sound design and the alternative solutions that we considered.

Keywords: DOT calculus, mutation, path-dependent types, Scala

1 Introduction

Abstract type members, parametric polymorphism, and mix-in composition are
only a few features of Scala’s complex type system. The presence of path-
dependent types has made it particularly hard to understand the interaction be-
tween the numerous language components and to come up with a precise formal-
ization for Scala. The lack of a theoretical foundation for the language has in turn
led to unsound design choices (Odersky, 2016; Amin, 2016b; Amin and Tate,
2016).

To model the interaction between Scala’s core features soundly, researchers
have worked for over ten years to devise formal calculi (Odersky et al., 2003;
Cremet et al., 2006; Moors et al., 2008; Amin et al., 2012, 2014; Rompf and Amin,
2015, 2016a; Amin et al., 2016; Rompf and Amin, 2016b; Amin, 2016a). We re-
fer to the specific calculus of Amin et al. (2016) as WadlerFest DOT because
several different calculi have used the name DOT. WadlerFest DOT models the
key components of the Scala type system, such as type members, path-dependent
types, and subtyping. The eventual intent is to formalize other constituents of
the full language, such as classes and inheritance, by a translation to the core
features of DOT.

However, WadlerFest DOT is still lacking some fundamental Scala features,
one of which is mutation. Without mutation, it is difficult to model (mutable)
variables and fields, or to reason about side effects in general.

http://arxiv.org/abs/1611.07610v1

2 M. Rapoport, O. Lhoták

Interestingly, mutation is even necessary to model a sound class initialization
order for immutable fields, which are mutated once when they are initialized.
At the moment, Scala’s complex initialization order can lead to programs with
unintuitive behaviour of fields (Petrashko, 2016); in particular, current versions
of the Scala compiler permit programs in which immutable fields are read before
they have been initialized. In order for the Scala community to discuss alternative
designs of the initialization order, it needs a means to specify candidate designs
precisely and evaluate them formally. A sound formalization of initialization
order, in turn, requires reasoning about overwriting of class members that first
hold a null value from the time that they are allocated to the time that they are
initialized, which is not directly possible in WadlerFest DOT.

This paper presents the Mutable DOT calculus, which is an extension to
WadlerFest DOT with typed mutable references. To that end, we augment the
calculus with a mutable heap and the possibility to create, update, and derefer-
ence mutable memory cells, or locations. A Scala mutable variable (var) can then
be modelled by an immutable variable (already included in WadlerFest DOT),
containing a mutable memory cell. For example, a Scala object

object O {

val x = 1

var y = 2

}

can be represented in mutable-DOT pseudocode as follows:1

new {this: {x: Int} ∧ {y: Ref Int}} // structural type of object

{x = 1} ∧ {y = ref 2 Int} // definitions in object body

An unusual characteristic of our heap implementation is that it maps locations to
variables instead of values. This design choice is induced by WadlerFest DOT’s
type system, which disallows subtyping between recursive types. We show how,
as a result, storing values on the heap would significantly limit the expressiveness
of our calculus, and explain the correctness of storing variables on the heap.

It is not surprising that adding mutable references to a DOT calculus is pos-
sible. Indeed, in an update to their technical report, Rompf and Amin (2016a)
report that they added them to a different DOT calculus with a big-step seman-
tics.

WadlerFest DOT is well suited as a basis for future extension, both to specify
existing higher-level Scala features by translation to a core calculus, and to
formally explore new proposed extensions to Scala. It comes with a soundness
proof formalized and verified in Coq. WadlerFest DOT is simpler than the other
full DOT calculi, and its semantics is small-step, so the soundness proof is based
on the familiar approach of progress and preservation (Wright and Felleisen,
1994).

1 The Scala type system is nominal while WadlerFest DOT is (mostly) structural.
Therefore, the Scala example assigns the object a name, while WadlerFest DOT
does not.

Mutable WadlerFest DOT 3

The contributions of this paper are:

– We define an operational semantics and type system for Mutable DOT, an
extension of the small-step WadlerFest DOT calculus with mutable refer-
ences.

– We provide a mechanized type safety proof in Coq, in the form of an exten-
sion of the original WadlerFest DOT proof, which is suitable to be used for
extensions of WadlerFest DOT that require mutation.2

– We discuss the challenges that we encountered in adding mutation to Wadler-
Fest DOT, and the design choices that we made to overcome them. We
conjecture that this reported experience will be helpful for adding muta-
tion to other DOT calculi, including the OOPSLA DOT, which is to ap-
pear (Rompf and Amin, 2016b).

The rest of the paper is organized as follows. Section 2 is a brief introduction
to the original WadlerFest DOT calculus. Section 3 presents the mutable DOT
calculus Mutable DOT, and Section 4 outlines its type-safety proof. We discuss
Mutable DOT’s design in Section 5 and present an example of using mutable
references in Mutable DOT in Section 6. Related work is discussed in Section 7.

2 The WadlerFest DOT Calculus

We introduce the features of the WadlerFest DOT calculus through an example.
Suppose we want to keep track of fish that live in aquariums. In Scala, we could
write:

object AquariumModule {

trait Aquarium {

type Fish

val fish : List [Fish]

}

def addFish(a: Aquarium, f: a.Fish) =

new Aquarium {

type Fish = a.Fish

fish = a.fish + f

}

val piranhas = new Aquarium {

type Fish = Piranha

fish = List .empty[Piranha]

}

val goldfish = new Aquarium {

type Fish = Goldfish

2 The mechanized proof can be found in our fork of the WadlerFest DOT proof repos-
itory (see https://github.com/amaurremi/dot-calculus).

https://github.com/amaurremi/dot-calculus

4 M. Rapoport, O. Lhoták

fish = List .empty[Goldfish]

}

}

This program lets us add a fish gf to the goldfish aquarium:

val gf : Goldfish = ...

addFish(goldFish , gf)

but it will result in a type error when trying to add gf to the piranha aquarium:

addFish(piranhas , gf)

// type error : expected: piranhas .Fish , actual : goldFish .Fish

The reason the goldfish is protected from the piranhas is that the type Fish is path
dependent, i.e. specific to the run-time Aquarium object that the fish belongs to.
This allows the addFish method to guarantee at compile time that an aquarium
a accepts only fish of type a.Fish.

The syntax, reduction semantics, and type system of the WadlerFest DOT
calculus can be seen in Figures 1, 2, 3, and 4. The shaded parts are our mutation-
related changes and can be ignored for now.

As a first attempt to define Aquarium in WadlerFest DOT, we can make it
an intersection of two types:

{ Aquarium = {Fish: ⊥..⊤} ∧ {fish : List} }

The first type, {Fish : ⊥..⊤}, declares a type member Fish with lower bound ⊥
(Nothing) and upper bound ⊤ (Any). The second type, {fish : List}, is a field

declaration of type List that represents the list of fish in the aquarium. The type
List is assumed to be defined in a library and contains a type member A for list
elements.

A problem with the current Aquarium implementation is that it does not say
that the type of elements in the fish list should be Fish. More specifically, the
list elements should have the Fish type of the Aquarium runtime object to which
the list belongs. To let the Aquarium type refer to its own runtime object a, we
make Aquarium a recursive type:

{ Aquarium = µ(a: {Fish: ⊥..⊤} ∧

{fish : List ∧ {A: a.Fish .. a.Fish}}}

Here, to express that the type Fish should belong to the object a, we use
the type selection a.Fish. The type a.Fish is then used as a refinement of List’s
element type A. In this way, the list can contain only the fish that are allowed
in the aquarium a.

We can now define addFish as a function that takes an aquarium a and a fish
f of type a.Fish, and creates a new aquarium a2:

{ addFish = λ(a: aq.Aquarium).λ(f: a.Fish).

ν(a2: aq.Aquarium ∧{ Fish: a.Fish .. a.Fish }) {

Fish = a.Fish

fish = ... }}

Mutable WadlerFest DOT 5

The construct ν(x : T)d creates a new object of type T with a self-variable x and
definitions d. In this case, the definitions are used to initialize the Fish type and
fish list of the new aquarium. The Fish type is assigned a.Fish. The new fish list
needs to append the fish f to the old a.fish list.

To be able to add an element to a list, we need access to an append method,
which we will get from List. Suppose that the List type is defined in a collections
library. It can be defined as a recursive type µ(list : . . .) that declares an element
type A and an append function. append takes a parameter a of the element type
list.A and returns a List of elements that are subtypes of a.A:

let collections = ν(col :

{List : µ(list : ({A: ⊥..⊤} ∧

{append: ∀(a: list .A)(col . List ∧ {A: ⊥ .. a.A}))}) ...

in ...

With an append method on Lists, we can fully implement the addFish method.
The field a2.fish should be defined as a.fish.append(f). However, since WadlerFest
DOT uses administrative normal form (ANF), before performing any operations
on terms, we have to bind the terms to variables:

fish = let oldFish = a. fish in

let append = oldFish.append in

append f

For better readability, we introduce the following abbreviations (similar ones
are used in the WadlerFest DOT paper):

{A} ≡ {A : ⊥..⊤} t u ≡ let x = t in

{A : T } ≡ {A : T..T } let y = u in x y

{A <: T } ≡ {A : ⊥..T } t.L ≡ let x = t in x.L

{D1;D2} ≡ {D1} ∧ {D2} ν(x)d : T ≡ ν(x : T)d

where D1, D2 are declarations or definitions of either fields or types, and L is
a label of a type or field.

With those abbreviations, the full aquarium program example looks as fol-
lows:

let collections = ν(col) { ... }:

{List : µ(list : (A; append: ∀(a: list .A)(col . List ; A <: a.A))}

in ν(aq) {

Aquarium = µ(a: {Fish; fish : { collections . List ; A: a.Fish}});

addFish = λ(a: aq.Aquarium).λ(f: a.Fish).

ν(a2) {

Fish = a.Fish

fish = a.fish .append f

}: {aq.Aquarium; Fish: a.Fish}

}: {Aquarium: µ(a: {Fish ; fish : { collections . List ; A: a.Fish}});

6 M. Rapoport, O. Lhoták

addFish: ∀(a: aq.Aquarium)∀(f: a.Fish)

{aq.Aquarium; Fish: a.Fish}}

3 Mutation in WadlerFest DOT

In this section, we present Mutable DOT, our extension of the WadlerFest DOT
calculus with mutable references. The changes in the syntax are inspired by
Pierce’s extension of the simply-typed lambda calculus with references (Pierce,
2002, Chapter 13).

Throughout this paper, we highlight the changes necessary to convertWadler-
Fest DOT into Mutable DOT in grey.

3.1 Abstract syntax

To support mutation, we augment the WadlerFest DOT syntax with references

that point to mutable memory cells, or locations, as shown in Figure 1. Locations
are a new kind of value that is added to the syntax, and are denoted as l. The
syntax comes with three new terms to support the following reference operations:

– ref xT creates a new reference of type T in the store and initializes it with
the variable x. Section 5.3 explains why reference expressions need to contain
a declared type T , unlike the references in Pierce’s book.

– !x reads the contents of a reference x.

– x := y updates the contents of a reference x with the variable y.

The operations that create, read, and update references operate on variables,
not arbitrary terms, in order to preserve ANF.

Newly-created references become locations, or memory addresses, denoted
as l. Locations are stored in the store, denoted as σ, which serves as a heap.

The store is a map from locations to variables. This differs from the common
definition of a store, which maps locations to values. We discuss the motivation
for this design choice in Section 5.1. In order to preserve the commonly expected
intuitive behaviour of a store, we must be sure that while a variable is in the
store, it does not go out of scope or change its value. We show this in Section 5.2.

Updating a store σ that contains a mapping l 7→ x with a new mapping l 7→ y
overwrites x with y:

(σ[l → x])(l′) =

{

x if l = l′

σ(l′) otherwise.

Locations are typed with the reference type Ref T . The underlying type T
indicates that the location stores variables of type T .

Mutable WadlerFest DOT 7

σ ::= Store

∅ empty store

σ[l 7→ x]
extended or updated store

x, y, z Variable

a, b, c Term member

A, B, C Type member

S, T, U ::= Type

⊤ top type

⊥ bottom type

{a : T} field declaration

{A : S..T}
type declaration

x.A type projection

S ∧ T intersection

µ(x : T) recursive type

∀(x : S)T
dependent function

Ref T reference type

v ::= Value

ν(x : T)d object

λ(x : T).t lambda

l location

s, t, u ::= Term

x variable

v value

x.a selection

x y application

let x = t in u let binding

ref xT reference

!x dereferencing

x := y assignment

d ::= Definition

{a = t} field definition

{A = T} type definition

d ∧ d′ aggregate definition

Fig. 1: Abstract syntax of Mutable DOT

8 M. Rapoport, O. Lhoták

To write concise Mutable DOT programs, we extend the abbreviations from
Section 2 with the following rules:

ref t T ≡ let x = t in ref xT

t := u ≡ let x = t in let y = u in x := y

!t ≡ let x = t in !x

t; u ≡ let x = t in u

3.2 Reduction rules

Since the meaning of an Mutable DOT term depends on the store contents, we
represent a program state as a tuple σ | t, denoting a term t that can point to
memory contents in the store σ.

The new reduction semantics is shown in Figure 2:

– A newly created reference ref xT reduces to a fresh location with an updated
store that maps l to x (Ref).

– Dereferencing a variable using !x is possible if x is bound to a location l by
a let expression. If so, !x reduces to σ(l), the variable stored at location l
(Deref).

– Similarly, if x is bound to l by a let, then the assignment operation x := y
updates the store at location l with the variable y (Store).

Programs written in the Mutable DOT calculus generally do not contain
explicit location values in the original program text. Locations are included
as values in the Mutable DOT syntax only because terms such as ref xT will
evaluate to fresh locations during reduction.

The remaining rules are the WadlerFest DOT evaluation rules, with the only
change that they pass along a store.

3.3 Type rules

The Mutable DOT typing rules, depicted in Figure 3, depend on a store typing Σ
in addition to a type environment Γ . A store typing maps locations to the types
of the variables that they store.

The store typing spares us the need to re-typecheck locations and allows to
typecheck cyclic references (Pierce, 2002).

As an example, the following Mutable DOT program cannot be easily type-
checked without an explicit store typing (using only the runtime store and the
type environment):

p =

let id = λ(x : ⊤).x in

let r = ref id (⊤ → ⊤) in
let id′ = λ(x : ⊤).(!r)x in

r := id′

Mutable WadlerFest DOT 9

e ::= [] | let x = [] in t | let x = v in e Evaluation context

σ | t 7−→ σ′ | t′

σ | e[t] 7−→ σ′ | e[t′]
(Term)

v = λ(z : T).t

σ | let x = v in e[x y] 7−→ σ | let x = v in e[[y/z] t]
(Apply)

v = ν(x : T) . . . {a = t} . . .

σ | let x = v in e[x.a] 7−→ σ | let x = v in e[t]
(Project)

σ | let x = y in t 7−→ σ | [y/x] t (Let-Var)

σ | let x = let y = s in t in u 7−→ σ | let y = s in let x = t in u (Let-Let)

l /∈ dom(σ)

σ | ref xT 7−→ σ[l 7→ x] | l
(Ref)

σ | let x = l in e[x := y] 7−→ σ[l 7→ y] | let x = l in e[y] (Store)

σ(l) = y

σ | let x = l in e[!x] 7−→ σ | let x = l in e[y]
(Deref)

Fig. 2: Reduction rules for Mutable DOT

10 M. Rapoport, O. Lhoták

Γ ::= ∅ | (Γ, x : T)

Type environment

Σ ::= ∅ | (Σ, l 7→ T)

Store typing

Γ (x) = T

Γ, Σ ⊢ x : T
(Var)

Σ(l) = T

Γ,Σ ⊢ l : Ref T
(Loc)

(Γ, x : T), Σ ⊢ t : U x /∈ fv(T)

Γ, Σ ⊢ λ(x : T).t : ∀(x : T)U
(All-I)

Γ, Σ ⊢ x : ∀(z : S)T Γ, Σ ⊢ y : S

Γ, Σ ⊢ x y : [y/z]T
(All-E)

(Γ, x : T), Σ ⊢ d : T

Γ, Σ ⊢ ν(x : T)d : µ(x : T)
({}-I)

Γ, Σ ⊢ x : {a : T}

Γ, Σ ⊢ x.a : T
({}-E)

Γ, Σ ⊢ t : T

(Γ, x : T), Σ ⊢ u : U x /∈ fv(U)

Γ, Σ ⊢ let x = t in u : U
(Let)

Γ, Σ ⊢ x : T

Γ, Σ ⊢ x : µ(x : T)
(Rec-I)

Γ, Σ ⊢ x : µ(x : T)

Γ, Σ ⊢ x : T
(Rec-E)

Γ, Σ ⊢ x : T Γ, Σ ⊢ x : U

Γ, Σ ⊢ x : T ∧ U
(&-I)

Γ, Σ ⊢ t : T Γ, Σ ⊢ T <: U

Γ, Σ ⊢ t : U
(Sub)

Γ, Σ ⊢ t : T

Γ, Σ ⊢ {a = t} : {a : T}
(Fld-I)

Γ, Σ ⊢ {A = T} : {A : T..T} (Typ-I)

Γ, Σ ⊢ d1 : T1 Γ, Σ ⊢ d1 : T2

dom(d1), dom(d2) disjoint

Γ, Σ ⊢ d1 ∧ d2 : T1 ∧ T2

(AndDef-I)

Γ, Σ ⊢ x : T

Γ, Σ ⊢ ref xT : Ref T
(Ref-I)

Γ, Σ ⊢ x : Ref T

Γ, Σ ⊢ !x : T
(Ref-E)

Γ, Σ ⊢ x : Ref T Γ, Σ ⊢ y : T

Γ, Σ ⊢ x := y : T

(Asgn)

Fig. 3: Type rules for Mutable DOT

Mutable WadlerFest DOT 11

Starting with an empty store, after two reduction steps we get

∅ | p 7−→∗ {l → id′} | p′,

where

p′ =

let id = λ(x : ⊤).x in

let r = l in

let id′ = λ(x : ⊤).(!r)x in

id′

We would see by looking into the store that to typecheck the location l, we
needed to typecheck id′. id′ depends on r, which in turn refers to the location l,
creating a cyclic dependency.

We therefore augment our typing rules with a store typing, allowing us to
typecheck each location once and for all, at the time of a reference creation. In
the example, we would know that l is mapped to (⊤ → ⊤) from the let-binding
of r and remember this typing in Σ. To express that a term t has type T under
the type environment Γ and store typing Σ, we write Γ,Σ ⊢ t : T .

The typing rules for Mutable DOT are shown in Figure 3. The WadlerFest
DOT rules are intact except that all typing derivations carry a store typing. The
new rules related to mutable references are as follows:

– We typecheck locations by looking them up in the store typing. If, according
to Σ, a location l stores a variable of type T , then l has type Ref T (Loc).

– A newly created reference ref xT can be initialized with the variable x if x
has type T . In particular, if x’s precise type U is a subtype of T , then x has
type T by Sub, so we can still create a ref xT (Ref-I).

– Conversely, dereferencing a variable of a reference type Ref T yields the
type T (Ref-E).

– Finally, if x is a reference of type Ref T , we are allowed to store a variable
y into it if y has type T . To avoid the need to add a Unit type to the type
system, we define an assignment x := y to reduce to y, so the type of the
assignment is T (Asgn).

3.4 Subtyping rules

The subtyping rules of Mutable DOT include an added store typing, and a
subtyping rule for references. The rules are shown in Figure 4.

Subtyping between reference types is invariant: usually, Ref T <: Ref U if
and only if T = U . Invariance is required because reference types need to be
(i) covariant for reading, or dereferencing, and (ii) contravariant for writing, or
assignment.

However, in WadlerFest DOT, co- and contra-variance between types does
not imply type equality: the calculus contains examples of types that are not
equal, yet are equivalent with respect to subtyping. For example, for any types

12 M. Rapoport, O. Lhoták

Γ, Σ ⊢ T <: ⊤ (Top)

Γ, Σ ⊢ ⊥ <: T (Bot)

Γ, Σ ⊢ T <: T (Refl)

Γ, Σ ⊢ S <: T Γ, Σ ⊢ T <: U

Γ, Σ ⊢ S <: U
(Trans)

Γ, Σ ⊢ T ∧ U <: T (And1-<:)

Γ, Σ ⊢ T ∧ U <: U (And2-<:)

Γ, Σ ⊢ S <: T Γ, Σ ⊢ S <: U

Γ, Σ ⊢ S <: T ∧ U
(<:-And)

Γ, Σ ⊢ x : {A : S..T}

Γ, Σ ⊢ S <: x.A
(<:-Sel)

Γ, Σ ⊢ x : {A : S..T}

Γ, Σ ⊢ x.A <: T
(Sel-<:)

Γ, Σ ⊢ S <: T Γ, Σ ⊢ S <: U

Γ, Σ ⊢ S <: T ∧ U
(<:-And)

Γ, Σ ⊢ T <: U

Γ, Σ ⊢ {a : T} <: {a : U}
(Fld-<:-Fld)

Γ, Σ ⊢ S2 <: S1

Γ, Σ ⊢ T1 <: T2

Γ, Σ ⊢ {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ)

Γ, Σ ⊢ S2 <: S1

(Γ, x : S2), Σ ⊢ T1 <: T2

Γ, Σ ⊢ ∀(x : S1)T1 <: ∀(x : S2)T2

(All-<:-All)

Γ,Σ ⊢ T <: U Γ,Σ ⊢ U <: T

Γ,Σ ⊢ Ref T <: Ref U

(Ref-Sub)

Fig. 4: Subtyping rules for Mutable DOT

Mutable WadlerFest DOT 13

T and U , T ∧ U <: U ∧ T <: T ∧ U . Yet, T ∧ U 6= U ∧ T . Therefore, subtyping
between reference types requires both covariance and contravariance:

Γ,Σ ⊢ T <: U Γ,Σ ⊢ U <: T

Γ,Σ ⊢ Ref T <: Ref U
(Ref-Sub)

4 Type Safety

In this section, we outline the soundness proof of Mutable DOT as an extension
of the WadlerFest DOT soundness proof (Amin et al., 2016).

To formulate the progress theorem, Amin et al. introduce the notion of an
answer :

n ::= x | v | let x = v in n.

The type safety of Mutable DOT is expressed as an extension to the Wadler-
Fest DOT progress and preservation theorems. The theorems include a store σ
and a store typing Σ, where Σ, unlike Γ , can be non-empty.

Theorem 1 (Progress). If ∅, Σ ⊢ t : T , then either t is an answer, or for

any store σ such that ∅, Σ ⊢ σ , there is a term t′ and a store σ′ such that

σ | t 7−→ σ′ | t′.

Theorem 2 (Preservation). If

– ∅, Σ ⊢ t : T

– ∅, Σ ⊢ σ

– σ | t 7−→ σ′ | t′,

then for some Σ′ ⊇ Σ ,

– ∅, Σ′ ⊢ t′ : T

– ∅, Σ′ ⊢ σ′ .

Below we describe how to extend the WadlerFest DOT proof to prove Mu-
table DOT soundness. Our paper comes with a mechanized Coq proof, which is
also an extension of the WadlerFest DOT proof. The Coq proof can be found in
our fork of the WadlerFest DOT proof repository:

https://github.com/amaurremi/dot-calculus

4.1 Main ideas of the WadlerFest DOT soundness proof

We start by introducing the key ideas of the WadlerFest DOT proof. We will
later show how to adapt them to prove Mutable DOT type safety.

https://github.com/amaurremi/dot-calculus

14 M. Rapoport, O. Lhoták

Bad bounds One of the challenges of proving DOT sound is the problem of “bad
bounds” (Amin et al., 2012). For every pair of arbitrary types T and U , there
exists an environment Γ such that Γ ⊢ T <: U . Specifically, when type checking
the function λ(y : {A : T..U}).t, the body t of the function is type checked in
a type environment Γ in which Γ (y) = {A : T..U}. Then Γ ⊢ T <: y.A and
Γ ⊢ y.A <: U , so Γ ⊢ T <: U (using (<:-Sel), (Sel-<:), and (Trans)). In
particular, if T and U are chosen as ⊤ and ⊥, respectively, then we get Γ ⊢ ⊤ <:
⊥. Since every type is a subtype of ⊤ and a supertype of ⊥, this means that all
types become equivalent with respect to subtyping in this environment. Thus, if
arbitrary type environments were possible, the type system would collapse, all
types would be subtypes of each other, and types would give us no information
about terms.

To avoid bad bounds, Amin et al. observe that such a type environment can-
not occur for an evaluation context during a concrete execution of the program.
Specifically, if t′ is a subterm of some term t, then the type checking rules for
∅ ⊢ t : T require the subterm t′ to be type checked in some specific environment
Γ (i.e. Γ ⊢ t′ : T ′). If there is some variable y such that Γ ⊢ y : {A : T..U}, then
y must be bound somewhere in t outside of t′. If t′ is in an evaluation context
of t (i.e. t = e[t′]), then the syntactic definition of an evaluation context ensures
that y can only be bound to a value by a binding of the form let y = v in u.
Since v is a value, it binds A with some specific type S, so its type is {A : S..S}
by (Typ-I).

Precise typing In order to reason about “good” bounds, the paper introduces
the precise typing relation, denoted as ⊢!. A precise typing derivation is allowed
to use only a subset of WadlerFest DOT’s type rules, so as to eliminate the rules
that can lead to non-equal lower and upper type bounds.

The typing derivation of a value is said to be precise if its root is either ({}-I)
(typing an object) or (All-E) (typing an abstraction).3 Since the only other rule
that could complete a value’s typing derivation is subsumption (Sub), precise
typing computes a value’s most specific type.

Stack-based reduction rules To make more explicit the evaluation order of sub-
terms in evaluation contexts, Amin et al. define an equivalent reduction seman-
tics without evaluation contexts that uses a variable environment as syntactic
sugar for a series of let bindings whose expressions have already been evaluated
to values. In the WadlerFest DOT paper, the variable environment is called a
store. We call it a stack, and reserve the term store for the mutable heap. The
stack-based reduction relation (including our Mutable DOT extensions) is shown
in Figure 5. As soon as a let-bound variable x evaluates to a value v, the binding
x 7→ v is moved onto the stack γ using the Rule (Let-Value).

Although the stack and store appear similar, they have important differences.
A stack needs to support only the lookup and append operations, since we never

3 We omit the definition of precise typing for variables because our proof modifications
hardly affect it. Please refer to Amin et al.’s paper for the full definition.

Mutable WadlerFest DOT 15

γ ::= ∅ | (γ, x 7→ v) Stack

σ ::= ∅ | σ[l 7→ x] Store

γ(x) = ν(x : T) . . . {a = t} . . .

σ | γ | x.a 7−→ σ | γ | t
(Project)

γ(x) = λ(z : T).t

σ | γ | x y 7−→ σ | γ | [y/z] t
(Apply)

σ | γ | let x = y in t 7−→ σ | γ | [y/x] t (Let-Var)

σ | γ | let x = v in t 7−→ σ | (γ, x 7→ v) | t (Let-Value)

σ | γ | t 7−→ σ′ | γ′ | t′

σ | γ | let x = t in u 7−→ σ′ | γ′ | let x = t′ in u
(Ctx)

l /∈ dom(σ)

σ | γ | ref xT 7−→ σ[l 7→ x] | γ | l
(Ref)

γ(x) = l

σ | γ | x := y 7−→ σ[l 7→ x] | γ | y
(Store)

γ(x) = l σ(l) = y

σ | γ |!x 7−→ σ | γ | y
(Deref)

Fig. 5: Reduction rules for Mutable DOT in which the evaluation context is
replaced with a stack for let bindings. The underlying DOT reduction rules
are taken from the Coq proof that accompanies the paper of Amin et al.
(2016).

16 M. Rapoport, O. Lhoták

perform updates on the stack. A stack also needs to have a notion of order
since values can refer to variables defined earlier in the stack. A store on the
other hand needs to support appending and overwriting locations with different
variables. The store does not need to be ordered because variables cannot refer
to locations. For those reasons, in the Coq formalization of the soundness proof,
the stack is represented as a list, and the store as a map data structure.

The stack is an optional element of the calculus, while the store is necessary.
A stack is just syntactic sugar for let-bindings: t and γ | t′ can be alternative, but
equivalent ways of writing the same term. However, there is no way to write a
term σ | t as just a t. Consequently, we can write σ | t and σ | γ | t′ as equivalent
programs.

Stack correspondence The precise type of a value v cannot have bad bounds
because to every type member A that v defines, it assigns a concrete type T ,
so the upper and lower bounds in the precise type of v must both be T : Γ ⊢!

v : {A : T..T }. A type environment Γ is said to correspond to a stack γ (written
Γ ∼ γ) if it assigns to every variable x the precise type of the corresponding
value γ(x). In such a type environment, variables cannot have type members
with bad bounds.

Possible types To prove the Canonical Forms Lemmas, the WadlerFest DOT
paper introduces the set of possible types Ts(Γ, x, v). Informally, this set is
defined to contain the types that one would expect x to have if it is bound to v,
in the absence of bad bounds in Γ . The paper then proves that if Γ ∼ γ, then
all of the types T such that Γ ⊢ x : T are actually included in Ts(Γ, x, γ)(x).

4.2 Adjusting Definitions to Mutable DOT

To extend the WadlerFest DOT proof to an Mutable DOT proof, we need to
adjust the definitions from above.

Precise typing needs to be defined for location values.

Definition 1 (Precise Value Typing). Γ, Σ ⊢! v : T if Γ, Σ ⊢ v : T and

the typing derivation of t ends in ({}-I), (All-E), or (LOC) .

Since the typing relation depends on a store typing, the stack correspondence

relation needs to include Σ.

Definition 2 (Stack Correspondence). A stack γ = xi 7→ vi corresponds to

a type environment Γ = xi : Ti and store typing Σ , written Γ, Σ ∼ γ, if for

each i, Γ, Σ ⊢! vi : T .

The set of possible types needs to include a store typing and two additional
cases for references. First, if a value is a reference to variables of type T , then
the reference type Ref T should be in the set of possible types: if Σ(l) = T , then
T ∈ Ts(Γ, Σ, x, l). Second, we need to account for reference subtyping. If the

Mutable WadlerFest DOT 17

set of possible types includes a reference type Ref T , and U is both a sub- and
supertype of T , then Ref U is also in the set of possible types.

The updated definition of possible types is as follows.

Definition 3 (Possible Types). The possible types Ts(Γ, Σ , x, v) of a vari-

able x bound in an environment Γ and corresponding to a value v is the smallest

set S such that

1. If v = ν(x : T)d then T ∈ S.

2. If v = ν(x : T)d and {a = t} ∈ d and Γ, Σ ⊢ t : T ′ then {a : T ′} ∈ S.

3. If v = ν(x : T)d and {A = T ′} ∈ d and Γ, Σ ⊢ S <: T ′, Γ, Σ ⊢ T ′ <: U
then {A : S..U} ∈ S.

4. If v = λ(x : S).t and (Γ, x : S), Σ ⊢ t : T and Γ, Σ ⊢ S′ <: S and

(Γ, x : S′), Σ ⊢ T <: T ′ then ∀(x : S′)T ′ ∈ S.

5. If v = l and Σ(l) = T then Ref T ∈ S.

6. If Ref T ∈ S, Γ,Σ ⊢ T <: U , and Γ,Σ ⊢ U <: T , then Ref U ∈ S.
7. If S1 ∈ S and S2 ∈ S then S1 ∧ S2 ∈ S.
8. If S ∈ S and Γ, Σ ⊢! y : {A : S..S} then y.A ∈ S.
9. If T ∈ S then µ(x : T) ∈ S.

4.3 Stores and well-typedness

It is standard in proofs of progress and preservation to require that an environ-
ment be well-formed with respect to a typing: ∀x.Γ ⊢ γ(x) : Γ (x). For stacks
and stack typings, this condition follows from the definition of Γ ∼ γ. We need
to also define well-formedness for stores and store typings:

Definition 4 (Well-Typed Store). A store σ = {li 7→ xi} is well-typed with

respect to an environment Γ and store typing Σ = li 7→ Ti, written Γ, Σ ⊢ σ, if
for each i, Γ,Σ ⊢ xi : Ti.

The stronger corresponding stacks condition is not required for stores. For
stacks, it is needed to ensure absence of bad bounds, because a type can depend
on a stack variable (e.g. x.A depends on x). No similar strengthening of well-
typed stores is needed because types cannot depend on store locations.

4.4 Proof

In this section, we present the central lemmas required to prove the Mutable
DOT soundness theorems.

The Canonical Forms Lemma requires a well-typed store, and a statement
that values corresponding to reference types must be locations.

Lemma 1 (Canonical Forms). If Γ, Σ ∼ γ and Γ, Σ ⊢ σ , then

18 M. Rapoport, O. Lhoták

1. If Γ, Σ ⊢ x : ∀(x : T)U then γ(x) = λ(x : T ′).t for some T ′ and t such that

Γ, Σ ⊢ T <: T ′ and (Γ, x : T), Σ ⊢ t : U .

2. If Γ, Σ ⊢ x : {a : T } then γ(x) = ν(x : S)d for some S, d, t such that

Γ, Σ ⊢ d : S, {a = t} ∈ d, Γ, Σ ⊢ t : T .

3.
If Γ,Σ ⊢ x : Ref T then γ(x) = l and σ(l) = y for some l, y such that

Γ,Σ ⊢ l : Ref T and Γ,Σ ⊢ y : T .

The Substitution Lemma requires substitution inside of the store typing,
since the types in Σ can refer to the substituted variable.

Lemma 2 (Substitution). If (Γ, x : S), Σ ⊢ t : T and Γ, [y/x]Σ ⊢ y : [y/x]S

then Γ, [y/x]Σ ⊢ [y/x] t : [y/x]T .

The following proposition is the main soundness result of the Mutable DOT
proof. It is also an extension of the original proposition of the WadlerFest DOT
soundness proof.

Proposition 1. Let

– Γ, Σ ⊢ t : T ,

– Γ, Σ ∼ γ, and

– Γ, Σ ⊢ σ .

Then either

– t is an answer, or

– there exist a stack γ′, store σ′ and a term t′ such that σ | γ | t 7−→ σ′ |

γ′ | t′ and for any such γ′, σ′ , t′ there exist environments Γ ′ and Σ′ such

that

• (Γ, Γ ′), (Σ, Σ′) ⊢ t′ : T ,

• (Γ, Γ ′), (Σ, Σ′) ∼ γ, and

• (Γ, Γ ′), (Σ, Σ′) ⊢ σ .

Progress and preservation (Theorems 1 and 2) follow directly from Proposi-
tion 1, if we assume Γ to be empty.

5 Discussion

In this section, we explain the design choices of Mutable DOT in more detail
and discuss possible alternative implementations.

Mutable WadlerFest DOT 19

5.1 Motivation for a store of variables

One unusual aspect of the design of Mutable DOT is that the store contains
variables rather than values. We experimented with alternative designs that
contained values, and observed the following undesirable interactions with the
existing design of WadlerFest DOT.

A key desirable property is that the store should be well-typed with respect
to a store typing: ∀l. Γ,Σ ⊢ σ(l) : Σ(l).

Many of the WadlerFest DOT type assignment rules apply only to variables,
and not to values. For example, the type {a : ⊤} is not inhabited by any value,
but a variable can have this type. This is because an object value has a recursive
type, and the (Rec-E) rule that opens a recursive type µ(x : {a : ⊤}) into {a : ⊤}
applies only to variables, not to values. In particular, in the term

let x = ν(y : {a : ⊤}){a = t} in ref x {a : ⊤}

x has type {a : ⊤} but ν(y : {a : ⊤}){a = t} does not, even though the let binding
suggests that the variable and the value should be equal. If memory cells were
to contain values, a cell of type {a : ⊤} would not make sense, because no values
have that type. However, since WadlerFest DOT prohibits subtyping between
recursive types, this would severely restrict the polymorphism of memory cells.
In particular, it would be impossible to define a memory cell containing objects
with a field a of type ⊤ and possibly additional fields. Extending the subtyping
rules to apply to values as well as variables would disrupt the delicate WadlerFest
DOT soundness proofs.

The above example let term demonstrates another problem: type preserva-
tion. The type system should admit the term ref x {a : ⊤} because x has type
{a : ⊤}. This term should reduce to a fresh location l of type Ref {a : ⊤}. But a
store that maps l to ν(y : {a : ⊤}){a = t} would not be well typed, because the
value does not have type {a : ⊤}.

5.2 Correctness of a store of variables

Putting variables instead of values in the store raises a concern: when we write
a variable into the store, we expect that when we read it back, it will still be in
scope, and it will still be bound to the same value. For example, in the following
program fragment, the variable x gets saved in the store inside the function f .

let f = λ(x : ⊤).ref xT in

let y = v in

let r = f y in

!r

Will x go out of scope by the time we read it from the store?
The reduction sequence for this program is shown in Figure 6. Notice that

before the body ref xT of the function is reduced, the parameter x is first sub-
stituted with the argument y, which does not go out of scope.

20 M. Rapoport, O. Lhoták

∅ | f 7→ λ(x : ⊤).ref x T , y 7→ v | let r = f y in !r 7−→

∅ | f 7→ λ(x : ⊤).ref x T , y 7→ v | let r = [y/x] ref xT in !r 7−→

∅ | f 7→ λ(x : ⊤).ref x T , y 7→ v | let r = ref y T in !r 7−→

l 7→ y | f 7→ λ(x : ⊤).ref x T , y 7→ v | let r = l in !r 7−→

l 7→ y | f 7→ λ(x : ⊤).ref x T , y 7→ v, r 7→ l | !r 7−→
l 7→ y | f 7→ λ(x : ⊤).ref x T , y 7→ v, r 7→ l | y

Fig. 6: Reduction sequence for example program

More generally, from the stack-based reduction semantics in Figure 5, it is
immediately obvious that when a variable x is saved in the store using ref xT
or y := x, the only variables that are in scope are those on the stack. There are
no function parameters in scope that could go out of scope when the function
finishes.

Moreover, once a variable is on the stack, it never goes out of scope, and
the value that it is bound to never changes. This is because the only reduction
rule that modifies the stack is (Let-Value), and it only adds a new variable
binding, but does not affect any existing bindings.

5.3 Creating references

The Mutable DOT reference creation term ref xT requires both a type T and
an initial variable x. The variable is needed so that a reference cell is always
initialized, to avoid the need to add a null value to DOT. If desired, it is possible
to model uninitialized memory cells in Mutable DOT by explicitly creating a
sentinel null value.

Some other calculi with mutable references (e.g. Types and Programming
Languages (Pierce, 2002)) do not require the type T to be given explicitly, but
just adopt the precise type of x as the type for the new cell. Such a design does
not fit well with subtyping in DOT. In particular, it would prevent the creation
of a cell with some general type T initialized with a variable x of a more specific
subtype of T .

More seriously, such a design (together with subtyping) would break type
preservation. Suppose that Γ,Σ ⊢ y : S and Γ,Σ ⊢ S <: T . Then we could
arrive at the following reduction sequence:

∅ | f 7→ λ(x : T).ref x, y 7→ v | f y 7−→

∅ | f 7→ λ(x : T).ref x, y 7→ v | [y/x] ref x 7−→

∅ | f 7→ λ(x : T).ref x, y 7→ v | ref y

The term at the beginning of the reduction sequence has type Ref T , while the
term at the end, ref y, has type Ref S. Preservation would require Ref S to be

Mutable WadlerFest DOT 21

a subtype of Ref T , but this is not the case in general since the only condition
that this example imposes on S and T is that Γ,Σ ⊢ S <: T .

6 Example

Recall the aquarium example from Section 2. Suppose we wanted to make the
aquarium mutable: instead of returning a new Aquarium, the addFish method
should update the aquarium’s list of fish by appending the new fish object to it.
A possible implementation in Mutable DOT looks as follows:

let collections = ν(col) { ... }:

{List : µ(list : (A;

append: ∀(a: list .A){col. List ; A <: a.A})}

in ν(aq) {

Aquarium = µ(a: {Fish;

fish : Ref { collections . List ; A: a.Fish}});

addFish = λ(a: aq.Aquarium).λ(f: a.Fish).

let old = !(a.fish) in

a.fish := old.append f;

f

}: {Aquarium: µ(a: {Fish ;

fish : Ref { collections . List ; A: a.Fish}});

addFish: ∀(a: aq.Aquarium)∀(f: a.Fish) a.Fish }

The fish member of the new Aquarium version is now a reference to a list of fish,
and the addFish changes the list to include the new fish and returns it.

7 Related Work

The semantics of mutable references presented in this paper is similar to Pierce’s
extension of the simply-typed lambda calculus with typed mutable references (Pierce,
2002, Chapter 13). However, the resemblance is mostly syntactic: the language
presented in the book does not include subtyping or other object-oriented fea-
tures.

An extensive study of object-oriented calculi, including ones that support
mutation, can be found in “A Theory of Objects” (Abadi and Cardelli, 1996).
The book surveys imperative calculi with a range of advanced object-oriented
features, including subtyping and inheritance, self types, and typed mutable ob-
jects (using protected storage cells). Mackay et al. (2012) developed a version of
Featherweight Java (Igarashi et al., 2001) with mutable and immutable objects
and formalized it in Coq. However, neither of the analyzed type systems involved
path-dependent types.

The νObj calculus (Odersky et al., 2003) introduced types as members of
objects, and thus path-dependent types. However, type members had only up-
per bounds, but not lower bounds, as they do in Scala. On the other hand,

22 M. Rapoport, O. Lhoták

the νObj calculus was richer than DOT, including features such as first-class
classes, which are not present even in the full Scala language. Featherweight
Scala (Cremet et al., 2006) was a simpler calculus intended to correspond more
closely to Scala, and with decidable type-checking. However, its type system has
not been proven sound. A related calculus, Scalina (Moors et al., 2008), intended
to explore the design of higher-kinded types in Scala, was also not proven sound.

Amin et al. (2012) first used the name DOT for a calculus intended to be
simple, and to capture only essential features, namely path-dependent types,
type refinement, intersection, and union. This paper discussed the difficulties
with proving such a calculus sound. The most notable challenge were counterex-
amples to type preservation in a small-step semantics. In general, a term can
reduce to another term with a narrower type. In this DOT calculus, this nar-
rowing could disrupt existing subtyping relationships between type members in
that type.

Amin et al. (2014) examined simpler calculi with subsets of the features of
DOT to determine which features cause type preservation to fail. They identified
the problem of bad bounds, noted that they cannot occur in runtime objects that
are actually instantiated, and conjectured that distinguishing types realizable at
runtime could lead to a successful soundness proof for a DOT calculus with all
of its features. Rompf and Amin (2015) confirmed this conjecture by providing
the first soundness proof of a big-step semantics for a DOT calculus with type
refinement and a type lattice with union and intersection. The use of a big-step
semantics makes it possible to get around the problem of small steps temporarily
violating type preservation, at the cost of a more complex soundness proof. An
update to the technical report Rompf and Amin (2016a) reports that the authors
were also able to add mutable references to this big-step version of the calculus.

WadlerFest DOT (Amin et al., 2016) defines a very specific evaluation order
for the subexpressions of a DOT calculus that satisfies type preservation at
each reduction step, and expressed it in a small-step semantics. The semantics
uses administrative normal form (ANF) to make the necessary evaluation order
explicit and clear, and to distinguish realizable types of objects instantiated at
run time from arbitrary types. In particular, in the context in which a term is
reduced, every ANF variable maps to a value, an actual run-time object, rather
than an arbitrary term; thus, the ANF variables play the role of labels of run-
time values in the semantics and its proof. The paper is accompanied by a Coq
formalization of the full type soundness proof in the familiar style of progress
and preservation Wright and Felleisen (1994), and is thus well suited as a basis
for extensions to the calculus. It is this WadlerFest DOT calculus that we have
extended with mutable references, to serve as a basis for further extensions that
involve mutation.

One limitation of the WadlerFest DOT calculus is the lack of subtyping
between recursive types. The calculus of Rompf and Amin (2016b), which is to
appear, will remove this limitation, while maintaining a small step semantics.
We hope that the experience that we have reported here on the WadlerFest DOT
calculus will also be helpful for adding mutation to this new DOT calculus.

Mutable WadlerFest DOT 23

8 Conclusion

WadlerFest DOT formalizes the essence of Scala, but it lacks mutation, which is
an important feature of object-oriented languages. In this paper, we show how
WadlerFest DOT can be extended to handle mutation in a type-safe way.

As shown in the paper, adding a mutable store to the semantics of WadlerFest
DOT is not straightforward. The lack of subtyping between recursive types leads
to situations where variables and values, even though they are bound together,
have incompatible types. As a result, if WadlerFest DOT were extended with a
conventional store containing values, it would be impossible for a cell of a given
type T to store values of different subtypes of T , thus significantly restricting
the kinds of mutable code that could be expressed.

The key idea of this paper is to enable support for mutation in WadlerFest
DOT by using a store that contains variables instead of values. We have shown
that by using a store of variables, it is possible to extend WadlerFest DOT with
mutable references in a type-safe way. This leads to a formalization of a language
with path-dependent types and mutation, and also brings WadlerFest DOT one
step closer to encoding the full Scala language.

Acknowledgement: This research was supported by the Natural Sciences and
Engineering Research Council of Canada.

Bibliography

Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science,
Springer (1996)

Amin, N.: Dependent Object Types. Ph.D. thesis (2016a)

Amin, N.: Soundness issue with path-dependent type on null path.
https://issues.scala-lang.org/browse/SI-9633 (2016b)

Amin, N., Grütter, S., Odersky, M., Rompf, T., Stucki, S.: The Essence of De-
pendent Object Types. Springer International Publishing, Cham (2016)

Amin, N., Moors, A., Odersky, M.: Dependent Object Types. In: International
Workshop on Foundations of Object-Oriented Languages (FOOL 2012) (2012)

Amin, N., Rompf, T., Odersky, M.: Foundations of path-dependent types. In:
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014. pp. 233–249 (2014)

Amin, N., Tate, R.: Java and scala’s type systems are unsound: The existential
crisis of null pointers. In: to appear in OOPSLA 2016 (2016)

Cremet, V., Garillot, F., Lenglet, S., Odersky, M.: A core calculus for Scala type
checking. In: Mathematical Foundations of Computer Science, 31st Interna-
tional Symposium, Slovakia (2006)

Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core cal-
culus for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450
(2001)

Mackay, J., Mehnert, H., Potanin, A., Groves, L., Cameron, N.R.: Encoding
Featherweight Java with assignment and immutability using the Coq proof
assistant. In: Proceedings of the 14th Workshop on Formal Techniques for
Java-like Programs (2012)

Moors, A., Piessens, F., Odersky, M.: Safe type-level abstraction in scala. In:
InternationalWorkshop on Foundations of Object-Oriented Languages (FOOL
2008) (2008)

Odersky, M.: Scaling DOT to Scala — Soundness.
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html

(2016)

Odersky, M., Cremet, V., Röckl, C., Zenger, M.: A nominal theory of objects
with dependent types. In: Proc. ECOOP’03. Springer LNCS (2003)

Petrashko, D.: Making sense of initialization order in scala.
https://d-d.me/talks/scalar2016/#/ (2016)

Pierce, B.C.: Types and Programming Languages. The MIT Press, 1st edn.
(2002)

Rompf, T., Amin, N.: From F to DOT: type soundness proofs
with definitional interpreters. CoRR abs/1510.05216v1 (2015),
http://arxiv.org/abs/1510.05216v1

https://issues.scala-lang.org/browse/SI-9633
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
https://d-d.me/talks/scalar2016/#/
http://arxiv.org/abs/1510.05216v1

Mutable WadlerFest DOT 25

Rompf, T., Amin, N.: From F to DOT: type soundness proofs
with definitional interpreters. CoRR abs/1510.05216v2 (2016a),
http://arxiv.org/abs/1510.05216v2

Rompf, T., Amin, N.: Type soundness for dependent object types (DOT). In:
to appear in OOPSLA 2016 (2016b)

Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Com-
put. 115(1), 38–94 (1994)

http://arxiv.org/abs/1510.05216v2

	Mutable WadlerFest DOT

