
Points-to Analysis Demystified
308-601 presentation

Ondřej Lhoták

April 24, 2002

Points-to Analysis Demystified – p.1/52



Introduction

If points-to analysis doesn’t confuse you...

you just haven’t seen enough of it yet!

Points-to Analysis Demystified – p.2/52



Introduction

If points-to analysis doesn’t confuse you...

you just haven’t seen enough of it yet!

Points-to Analysis Demystified – p.2/52



Presentation Goals

to help you (and me) understand points-to

analysis in general

to compare some recent points-to analyses to

the standard ones

Points-to Analysis Demystified – p.3/52



Presentation Goals

to help you (and me) understand points-to

analysis in general

to compare some recent points-to analyses to

the standard ones

Points-to Analysis Demystified – p.3/52



References

Das. Unification-based Pointer Analysis with Directional

Assignments. PLDI 00.

Liang, Pennings, Harrold. Extending and Evaluating

Flow-insensitive and Context-insensitive Points-to Analyses for

Java. PASTE 01.

Andersen. Program Analysis and Specialization for the C

Programming Language. PhD thesis, DIKU, University of

Copenhagen, 1994.

Steensgaard. Points-to Analysis in Almost Linear Time. POPL 96.

Points-to Analysis Demystified – p.4/52



Outline

Models of points-to analyses

Flow-graph model

Andersen’s and Steensgaard’s analyses

One-level flow analysis [Das]

Various analyses for Java [Liang et al]

Conclusions

Points-to Analysis Demystified – p.5/52



Analysis Goal

Our focus is limited to analyses that are

May-point-to analyses

Flow-insensitive

Context-insensitive

Goal: For each variable, determine allocation

sites from which objects can reach it.

Points-to Analysis Demystified – p.6/52



Models

Points-to graph

Type inference

Algorithm

Constraint graph

Flow graph

Points-to Analysis Demystified – p.7/52



Models

Points-to graph

Type inference

Algorithm

Constraint graph

Flow graph

Points-to Analysis Demystified – p.7/52



Models

Points-to graph

Type inference

Algorithm

Constraint graph

Flow graph

Points-to Analysis Demystified – p.7/52



Models

Points-to graph

Type inference

Algorithm

Constraint graph

Flow graph

Points-to Analysis Demystified – p.7/52



Models

Points-to graph

Type inference

Algorithm

Constraint graph

Flow graph

Points-to Analysis Demystified – p.7/52



Flow graph

new 1 p

1

r

1

new 2 s

2

t

1 2

new 1 p

1

r

1

new 2 s

2

t

1 2

Nodes represent references and locations

Edges represent data flow (assignments)

Nodes contain sets of reaching refs
p

1 2 3

Points-to Analysis Demystified – p.8/52



Flow graph

new 1 p

1

r

1

new 2 s

2

t

1 2

new 1 p

1

r

1

new 2 s

2

t

1 2

Points-to Analysis Demystified – p.9/52



Flow graph

new 1 p

1

r

1

new 2 s

2

t

1 2

new 1 p

1

r
1

new 2 s

2

t
1 2

Points-to Analysis Demystified – p.10/52



Flow graph

new 1 p

1

r

1

new 2 s

2

t

1 2

new 1 p

1

r
1

new 2 s

2

t
1 2

new 1 p
1

r

1

new 2 s
2

t

1 2

Points-to Analysis Demystified – p.11/52



Node types

p &p p

new 1 1

Points-to Analysis Demystified – p.12/52



Node types

C

p
Java

p

Green nodes represent simple variables

Points-to Analysis Demystified – p.13/52



Node types

C

&p
Java

Cyan nodes represent addresses of variables

Points-to Analysis Demystified – p.14/52



Node types

C

p
Java

p.f
Red nodes represent pointer dereferences

Points-to Analysis Demystified – p.15/52



Node types

C

malloc 1

Java

new 1
Blue nodes represent addresses of heap

objects

Points-to Analysis Demystified – p.16/52



Node types

C

1
Java

1.f

Yellow nodes represent contents of heap

objects
Points-to Analysis Demystified – p.17/52



Normalizing programs

p = foo( q );

Object

foo( Object r )

{

return r;

}

Points-to Analysis Demystified – p.18/52



Normalizing programs

p = foo( q );

Object

foo( Object r )

{

return r;

}

foo@1 = q;

r = foo@1;

foo@ret = r;

p = foo@ret;

Points-to Analysis Demystified – p.19/52



Example

p = &s1;

p = &s2;

q = &s3;

q = p;

*p = new 4;

*q = new 5;

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

Points-to Analysis Demystified – p.20/52



Andersen

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

Points-to Analysis Demystified – p.21/52



Andersen

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

Points-to Analysis Demystified – p.22/52



Andersen

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2 3

q

1 2

3

Points-to Analysis Demystified – p.23/52



Andersen

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2 3

q

1 2

3

Points-to Analysis Demystified – p.24/52



Andersen

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2 3

q

1 2

3

new 4 4 new 5 5

p q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3
4

5

p
1 2 3

q
1 2 3

Points-to Analysis Demystified – p.25/52



Steensgaard

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

Points-to Analysis Demystified – p.26/52



Steensgaard

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

Points-to Analysis Demystified – p.27/52



Steensgaard

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2 3

q

1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2

3

q
1 2 3

Points-to Analysis Demystified – p.28/52



Steensgaard

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2 3

q

1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2

3

q
1 2 3

Points-to Analysis Demystified – p.29/52



Steensgaard

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2 3

q

1 2

3

new 4 4 new 5 5

p q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3
4

5

p
1 2 3

q
1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2

3

q
1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3

4

5

p
1 2 3

q
1 2 3

Points-to Analysis Demystified – p.30/52



Das

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

Points-to Analysis Demystified – p.31/52



Das

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

Points-to Analysis Demystified – p.32/52



Das

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

Points-to Analysis Demystified – p.33/52



Das

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

Points-to Analysis Demystified – p.34/52



Das

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3
4

5

p
1 2 3

q
1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3

4

5

p
1 2 3

q
1 2 3

Points-to Analysis Demystified – p.35/52



Das

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p

1 2

3

q
1 2

3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3
4 5

p
1 2 3

q

1 2

3

new 4 4 new 5 5

p q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3
4

5

p
1 2 3

q
1 2 3

new 4 4 new 5 5

p q

&s1 s1
4 5

&s2 s2
4 5

&s3 s3

4

5

p
1 2 3

q
1 2 3

Points-to Analysis Demystified – p.36/52



Das

Points-to Analysis Demystified – p.37/52



Liang, Pennings, Harrold

Issues in Java points-to analyses:

Steensgaard vs. Andersen

Fields

Call graph

Library

Casts and declared types

Points-to Analysis Demystified – p.38/52



Liang, Pennings, Harrold

Problem with Steensgaard’s analysis:

new 1 new 2 new 3

Object:<init>
this

Solution: remove this from the graph unless it

is needed (assigned or dereferenced).

Points-to Analysis Demystified – p.39/52



Liang, Pennings, Harrold

Problem with Steensgaard’s analysis:

new 1 new 2 new 3

Object:<init>
this

Solution: remove this from the graph unless it

is needed (assigned or dereferenced).

Points-to Analysis Demystified – p.39/52



Fields

Option 1: Represent as variables (green nodes)

p = new 1;

q = new 2;

p.f = new 3;

r = q.f;

new 1 new 2 new 3

p
1

q
2

.f
3

r
3

Points-to Analysis Demystified – p.40/52



Fields

Option 2: Represent as objects (yellow nodes)

p = new 1;

q = new 2;

p.f = new 3;

r = q.f;

new 1
1.f

3
1.g new 3 3.g

p
1

q.f
q
2

r p.f new 2 2.f

Points-to Analysis Demystified – p.41/52



Fields

Option 1:

No dashed lines no iteration

Only blue and green nodes simpler

Option 2:

More precise (r doesn’t get 3)

Points-to Analysis Demystified – p.42/52



Call Graph

CHA

RTA

On-the-fly

Most precise but more complicated

More iteration

Points-to Analysis Demystified – p.43/52



Call Graph

CHA

RTA

On-the-fly

Most precise but more complicated

More iteration

Points-to Analysis Demystified – p.43/52



Call Graph

CHA

RTA

On-the-fly

Most precise but more complicated

More iteration

Points-to Analysis Demystified – p.43/52



Call Graph

CHA

RTA

On-the-fly

Most precise but more complicated

More iteration

Points-to Analysis Demystified – p.43/52



Call Graph

CHA

RTA

On-the-fly

Most precise but more complicated

More iteration

Points-to Analysis Demystified – p.43/52



Library

Collections simulated as arrays

Faster

More precise

Lots of work, error-prone

Points-to Analysis Demystified – p.44/52



Library

Collections simulated as arrays

Faster

More precise

Lots of work, error-prone

Points-to Analysis Demystified – p.44/52



Library

Collections simulated as arrays

Faster

More precise

Lots of work, error-prone

Points-to Analysis Demystified – p.44/52



Library

Collections simulated as arrays

Faster

More precise

Lots of work, error-prone

Points-to Analysis Demystified – p.44/52



Casts and declared types

Each location ( green or yellow ) has declared type

Can only hold references ( blue or cyan ) of

compatible actual type

Difficult if nodes are merged (Steensgaard)

Improves precision

Reduces graph growth if fields represented as

objects
Points-to Analysis Demystified – p.45/52



Casts and declared types

p = new 1;

q = new 2;

p = q;

q = p;

p.f = p;

q.g = q;

new 1 1.f

1 2

1.g
1 2

new 2 2.g

1 2

2.f
1 2

p

1 2

q

1 2

p.f q.g

Points-to Analysis Demystified – p.46/52



Casts and declared types

p = new 1;

q = new 2;

p = q;

q = p;

p.f = p;

q.g = q;

new 1 1.f

1 2

1.g
1 2

new 2 2.g

1 2

2.f
1 2

p

1 2

q

1 2

p.f q.g

new 1 1.f
1 2

1.g
1 2

new 2 2.g
1 2

2.f
1 2

p

1 2

q

1 2

p.f q.g

Points-to Analysis Demystified – p.47/52



Casts and declared types

p = new 1;

q = new 2;

p = q;

q = p;

p.f = p;

q.g = q;

new 1 1.f

1 2

1.g

1 2

new 2 2.g

1 2

2.f

1 2

p

1 2

q

1 2

p.f q.g

new 1 1.f
1 2

1.g
1 2

new 2 2.g
1 2

2.f
1 2

p

1 2

q

1 2

p.f q.g

new 1 1.f
1 2

1.g
1 2

new 2 2.g
1 2

2.f
1 2

p
1 2

q
1 2

p.f q.g

Points-to Analysis Demystified – p.48/52



Casts and declared types

p = new 1;

q = new 2;

p = q;

q = p;

p.f = p;

q.g = q;

new 1 1.f

1 2

1.g

1 2

new 2 2.g

1 2

2.f

1 2

p

1 2

q

1 2

p.f q.g

new 1 1.f
1 2

1.g
1 2

new 2 2.g
1 2

2.f
1 2

p

1 2

q

1 2

p.f q.g

new 1 1.f
1 2

1.g
1 2

new 2 2.g
1 2

2.f
1 2

p
1 2

q
1 2

p.f q.g

new 1 1.f

1 2

1.g

1 2

new 2 2.g

1 2

2.f

1 2

p
1 2

q
1 2

p.f q.g

Points-to Analysis Demystified – p.49/52



Liang, Pennings, Harrold

Points-to Analysis Demystified – p.50/52



Liang, Pennings, Harrold

Steensgaard’s with this trick better than

nothing

Andersen’s: fields as objects made almost no

difference in precision for virtual call resolution

and escape analysis

Fields as objects up to 5 times slower (but

they don’t give implementation details. . . )

Points-to Analysis Demystified – p.51/52



Liang, Pennings, Harrold

Steensgaard’s with this trick better than

nothing

Andersen’s: fields as objects made almost no

difference in precision for virtual call resolution

and escape analysis

Fields as objects up to 5 times slower (but

they don’t give implementation details. . . )

Points-to Analysis Demystified – p.51/52



Liang, Pennings, Harrold

Steensgaard’s with this trick better than

nothing

Andersen’s: fields as objects made almost no

difference in precision for virtual call resolution

and escape analysis

Fields as objects up to 5 times slower (but

they don’t give implementation details. . . )

Points-to Analysis Demystified – p.51/52



Conclusions

Flow graph can represent various points-to

analyses

Steensgaard’s analysis is fast but imprecise

Andersen’s analysis is precise but slow

In-between analyses can be fast and precise

Java is not exactly like C

Points-to Analysis Demystified – p.52/52


	Introduction
	Presentation Goals
	References
	Outline
	Analysis Goal
	Models
	Flow graph
	Flow graph
	Flow graph
	Flow graph
	Node types
	Node types
	Node types
	Node types
	Node types
	Node types
	Normalizing programs
	Normalizing programs
	Example
	Andersen
	Andersen
	Andersen
	Andersen
	Andersen
	Steensgaard
	Steensgaard
	Steensgaard
	Steensgaard
	Steensgaard
	Das
	Das
	Das
	Das
	Das
	Das
	Das
	Liang, Pennings, Harrold
	Liang, Pennings, Harrold
	Fields
	Fields
	Fields
	Call Graph
	Library
	Casts and declared types
	Casts and declared types
	Casts and declared types
	Casts and declared types
	Casts and declared types
	Liang, Pennings, Harrold
	Liang, Pennings, Harrold
	Conclusions

