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Introduction

If points-to analysis doesn’t confuse you...

you just haven’t seen enough of it yet!
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Presentation Goals

to help you (and me) understand points-to

analysis in general

to compare some recent points-to analyses to

the standard ones
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Outline

Models of points-to analyses

Flow-graph model

Andersen’s and Steensgaard’s analyses

One-level flow analysis [Das]

Various analyses for Java [Liang et al]

Conclusions
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Analysis Goal

Our focus is limited to analyses that are

May-point-to analyses

Flow-insensitive

Context-insensitive

Goal: For each variable, determine allocation

sites from which objects can reach it.
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Models

Points-to graph

Type inference

Algorithm

Constraint graph

Flow graph
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Flow graph

new 1 p

1

r

1

new 2 s

2
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new 1 p

1

r
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new 2 s

2
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Nodes represent references and locations

Edges represent data flow (assignments)

Nodes contain sets of reaching refs
p

1 2 3
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Node types

p &p p

new 1 1
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Node types

C

p
Java

p

Green nodes represent simple variables
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Node types

C

&p
Java

Cyan nodes represent addresses of variables
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Node types

C

p
Java

p.f
Red nodes represent pointer dereferences
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Node types

C

malloc 1

Java

new 1
Blue nodes represent addresses of heap

objects
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Node types

C

1
Java

1.f

Yellow nodes represent contents of heap

objects
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Normalizing programs

p = foo( q );

Object

foo( Object r )

{

return r;

}
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Normalizing programs

p = foo( q );

Object

foo( Object r )

{

return r;

}

foo@1 = q;

r = foo@1;

foo@ret = r;

p = foo@ret;
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Example

p = &s1;

p = &s2;

q = &s3;

q = p;

*p = new 4;

*q = new 5;

new 4 � 4 new 5 � 5

� p � q

&s1 s1

4 5

&s2 s2

4 5

&s3 s3

4 5

p

1 2 3

q

1 2 3
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Andersen
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� p � q
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1 2 3

q
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new 4 � 4 new 5 � 5
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4 5
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1 2 3

q
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Steensgaard
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Das
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Das
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Liang, Pennings, Harrold

Issues in Java points-to analyses:

Steensgaard vs. Andersen

Fields

Call graph

Library

Casts and declared types
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Liang, Pennings, Harrold

Problem with Steensgaard’s analysis:

new 1 new 2 new 3

Object:<init>
this

Solution: remove this from the graph unless it

is needed (assigned or dereferenced).
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Fields

Option 1: Represent as variables (green nodes)

p = new 1;

q = new 2;

p.f = new 3;

r = q.f;

new 1 new 2 new 3

p
1

q
2

.f
3

r
3
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Fields

Option 2: Represent as objects (yellow nodes)

p = new 1;

q = new 2;

p.f = new 3;

r = q.f;

new 1
1.f

3
1.g new 3 3.g

p
1

q.f
q
2

r p.f new 2 2.f

Points-to Analysis Demystified – p.41/52



Fields

Option 1:

No dashed lines no iteration

Only blue and green nodes simpler

Option 2:

More precise (r doesn’t get 3)
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Call Graph

CHA

RTA

On-the-fly

Most precise but more complicated

More iteration
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Library

Collections simulated as arrays

Faster

More precise

Lots of work, error-prone
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Casts and declared types

Each location ( green or yellow ) has declared type

Can only hold references ( blue or cyan ) of

compatible actual type

Difficult if nodes are merged (Steensgaard)

Improves precision

Reduces graph growth if fields represented as

objects
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Casts and declared types

p = new 1;

q = new 2;

p = q;

q = p;

p.f = p;

q.g = q;

new 1 1.f

1 2

1.g
1 2

new 2 2.g

1 2

2.f
1 2

p

1 2

q

1 2

p.f q.g
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Casts and declared types
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Liang, Pennings, Harrold
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Liang, Pennings, Harrold

Steensgaard’s with this trick better than

nothing

Andersen’s: fields as objects made almost no

difference in precision for virtual call resolution

and escape analysis

Fields as objects up to 5 times slower (but

they don’t give implementation details. . . )
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Conclusions

Flow graph can represent various points-to

analyses

Steensgaard’s analysis is fast but imprecise

Andersen’s analysis is precise but slow

In-between analyses can be fast and precise

Java is not exactly like C
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