jaac
CS 444

Andrew Kane, 96411902
Ondiej Lhoték, 96040603

April 8, 2000

Contents

1 User Documentation 3
1.1 Imtroduction 3
1.2 Command Line Options 3
1.3 Hello World Example 4
1.4 Source File List 8
1.5 Language Features 9

1.5.1 Supported Features 9
1.5.2 Unsupported Features 10

2 Design Documentation 12
2.1 Design Goals o 12
2.2 Structural Overview, 14
2.3 Grammar e e e e e 14
2.4 SLR Table Generator 15
2.0 Scanmer e 16
2.6 Parser e 17

2.6.1 Parse Error Recovery 18

2.7 Attribute Grammar Evaluator 20

2.7.1 Attributes 21

2.7.2 Computation Rule Definition 22

2.8 Attribute Computations 22

2.8.1 Attribute Computations For Declarations 22
2.8.2 Attribute Computations for Expression Type Checking

and Overload Resolution 24

2.8.3 Attributes For Code Production 25

2.9 Major Data Structures 27

2.9.1 Parse Tree 27

2.9.2 Symbol Table oo 28

2.9.3 Cactus Stack 29

2.9.4 Inheritance Hierarchy Of Symbols 29
2.9.5 Efficient String Class 32
2.9.6 Stack and Register Allocation (FrameTop) class 32

2.10 Implementation of Language Features 32
2.10.1 Scalar Values L. 33
2.10.2 Literal Pool 33
2.10.3 Temporarieso 33
2.10.4 Register Allocation 34
2.10.5 Records 36
2.10.6 Subprograms 36
2.10.7 Scope and declare blocks 37
2.10.8 Built-in operatorso 37
2.10.9 If-Then-ElsIf-Else 38
2.10.10 And-Then and Or-Else 39
2.10.11Loops « . . oo 39
2.10.12 Nested Subprograms 40

3 Testing Documentation 42
3.1 File Locations 42
3.2 Scanningo .o 43
3.3 Parsing. 44
3.3.1 ParseTable 44

3.4 Declarations Lo 45
3.4.1 Type Declarations 45
3.4.2 Object Declarations 46

3.5 Expression Type Checking and Overload Resolution 47
3.5.1 Builtinso o 47

3.6 Scope ... 47
3.7 Code Production 48
3.7.1 Declarations oo 48
3.7.2 Statementso 50
3.7.3 Scope ... 51

3.8 Statistics 52

Chapter 1

User Documentation

1.1 Introduction

jaac stands for Just Another Ada Compiler. It is a compiler for the Ada/CS
subset of Ada. The current implementation includes the scanning, pars-
ing, context-sensitive analysis (type checking), code generation and register
statistics.

1.2 Command Line Options

The jaac sources and executable can be found on the undergrad environment
in the directory /u/olhotak/cs444/jaac. The name of the executable is
jaac. It takes the input Ada/CS source from standard input. It accepts the
following command-line options:

-s Prints the output of the scanner
-p Prints the output of the parser (the parse tree)
-t Prints the output of the context-sensitive analysis (a type tree)

-c Prints the output of the code generator, the assembly language code for
the program, suitable as input to an assembler (as)

-r Prints statistics on register allocation

-d Turns on additional debugging output

Any error output is sent to standard error. This includes scanning errors,
parsing errors, type errors, and unsupported features.

The following section shows the output of the compiler for a very simple
example. For more complicated examples (with both input and output),
please see the directories under /u/olhotak/cs444/jaac/test. The scan
directory contains examples of the -s option. The parse directory contains
examples of the -p option. The type directory contains examples of the -t
option. The code, course, and fischer directories contain examples of the
-c option.

1.3 Hello World Example

Listing of hello.ada

-- basic ’hello world’

package Main is body
begin

write("Hello World!'\n");

end Main;

Scanning

Command: ./jaac -s < hello.ada
Output:

package

id : Main

is

body

begin

id : write

1p

string : "Hello World!"
Ip

semicolon

end
id : Main
semicolon
eof

Parsing

Command: ./jaac -p < hello.ada
Output:

-+Compiln
| -+CompilnUnit
| \-+PkgDec
| --package (L3 C7)
| -+PkgSpecOrBody
| |--id : Main (L3 C12)
|--is (L3 C15)
| --SpecDecS
| --PvtPart0
| -+BodyOpt
| |--body (L3 CO)
| --BodyDecS
\-+BeginStmts0
| --begin (L4 CO)
| -+StmtS
| |-+Stmt
| \-+CallStmt
| -+Name
| |-+Name
| | \-+SimpName
| 1 \--id : write (L6 C13)
| |--1p (L6 C14)
| |-+ExprList
| | \-+Expr
| \-+Reln
| \-+SimpExpr
| \-+SimpExprNoUnary
| \-+Term

| || \-+Factor
| I \-+Primary
| || \-+Literal
| |
| | \--rp (L6 C29)
| \--semicolon (L6 C30)
| \--StmtS
\--XptnPart0
|--end (L8 C3)
\-+Id0pt
| \--id : Main (L8 C8)
\--semicolon (L8 C9)
--CompilnUnitS

Type Checking

Command: ./jaac -t < hello.ada
Output:

--Function call has type Type: VOID
|--String Literal Hello World!

Code Production

Command to compile to assembly:
./jaac -c < hello.ada > hello.s
Output (hello.s):

.section ".data"
.align 4
INTREADBUF: .word O
.section ".text"
.align 4
PERCENTS: .asciz '"¥s"
PERCENTI: .asciz "%i"
TRUE: .asciz "true"
FALSE: .asciz '"false"
LS0x81872c0_LITERAL:
.asciz "Hello World!\n"

| \--string :

"Hello World!" (L6 C28)

.align 4

.align 4

.global main
main:

save %sp,-104,%sp

mov }fp, hr7 ! %r7 is reserved for global frame pointer
! PLEASE DO NOT OVERWRITE %r7

st %fp, [hfp-4]

! Calling StringWriteRef
set LS0x81872cO0_LITERAL, %r9
set PERCENTS, %r8
call printf,0
nop
ret
restore

Command to assemble and link hello.s:
gcc -o hello hello.s
Execution of hello:
Command: ./hello
Output: Hello World!

Register Statistics

Note that in this case, the sample program uses no variables, parameters, or
subexpression temporaries, so all the statistics are zero. If this were a more
realistic program, the statistics would reflect the allocation of memory to its
variables, parameters, and temporaries.

Command: ./jaac -r < hello.ada

Output:

Register allocation statistics:
Type of value Number Total bytes

Must be on stack

Placed in register

Could be in %i reg but none free
Could be in any reg but none free

1.4 Source File List

jaac.h common declarations used everywhere
adacs.slr SLR(1) grammar for Ada/CS used as input to slr

adacs.h output from SLR containing all the information in the grammar in
a form recognizable by C++, along with the parser transition table

scan.{cc,h} scanner
parse.{cc,h} LR parser with error recovery
error.cc code to report errors and print debugging information

symbols.{cc,h} base classes for symbols and productions with implemen-
tation of base class member functions — this includes the attribute
grammar evaluator

attributes.h declaration of all the attributes in the attribute grammar,
along with their type (synthetic, inherited, etc.) and default values

terms.{cc,h} class declarations of terminal symbol classes and their imple-
mentation

nonterms.{cc,h} class declarations of non-terminal symbol and production
rule classes and their implementation — this includes the implementa-
tion of the attribute grammar rules

cactus.h cactus stack template used for the symbol table and parser error
recovery

ST.{cc,h} symbol table

symref.{cc,h} declarations and implementation of symbol records repre-
senting anything appearing as an identifier or literal in the source —
also includes definitions of primitive Ada/CS functions and operators

symcode.cc This file includes all the functions that produce assembly code.

cstring.{cc,h} tree-based implementation of an efficient string class which
can concatenate strings in constant time, used to build up long strings
such as a parse table or the output code

FT.{cc,h} The FrameTop class which assigns space to variables (either on
the stack or in registers)

jaac.cc main program

makefile GNU makefile

1.5 Language Features

Deciding which features to include was a knapsack problem constrained by
the limited time which we had to complete the project. We tried to assign a
value to features based on how interesting they were to implement, how much
we would learn from implementing them, and how important they would be
to someone trying to use our compiler. Attempting to use an unsupported
feature causes the compiler to halt with a message specifying the unsupported
feature which the user was attempting to invoke.

1.5.1 Supported Features
Our compiler supports the following features of Ada/CS:

e declare blocks (scopes)
e built-in types

— integer
— string !

— boolean

'Only string constants are supported; they cannot be manipulated

e all Ada/CS built-in operators
— overloading of operators
e enumeration types
e record types
e variables
e named constants
e initialization of variables and constants within declarations
e loops

— for 2

— while

— exit and exit when statements

named loops with exit out of specific named loop
e subprograms

— recursion
— nested subprograms and potentially recursive calls between them

— overloading and overload resolution

e Read for built-in types (except string)

Write for all built-in types

1.5.2 Unsupported Features

We did not have sufficient resources to make our compiler support the fol-
lowing features of Ada/CS. We have avoided design decisions which would
make it difficult to add these features.

o floating point numbers

2QOunly simple ranges of the form Expression .. Expression are supported

10

access types

array types

subtypes

aggregates

case statements

quoted attributes ('first, "last, etc)
(use) packages

exceptions

11

Chapter 2

Design Documentation

2.1 Design Goals

The purpose of this project was for us to learn how to write a compiler for a
full-featured language like Ada, and to demonstrate that we did in fact learn
what we did. With this in mind, our priorities in making design decisions

were, in general, as follows:

1.

Ease of maintenance and ease of implementation — We mention ease
of maintenance first, as it is the most significant contributor to ease
of implementation in a large project. We put a lot of thought into
making our compiler easy to maintain and to write. For example, we
went to a great deal of effort to make it possible to locally modify parts
of the grammar with very little effort even after the code generation
phase was complete (see sections 2.3 and 2.4). Our formal automatic
memoizing attribute grammar evaluator made it much easier to write
all the semantic functionality — the bulk of the implementation effort
— than it would have been with ad hoc methods. We wanted it to be
possible to implement the compiler in the six man-months that we had
available, without having to work more than we would have had to at
a full-time job. At 8715 lines of (non-automatically-generated) source,
and 4166 lines of distinct test programs, we were not fully successful
in meeting this goal. However, we did manage to implement the most
important features thoroughly enough to fulfil our main purpose as
stated above.

12

2. Extendibility — For every design decision we made, we considered how
it would affect the implementation of additional features, especially the
ones that we did not end up implementing. We wanted it to be possible
to implement the rest of Ada/CS given additional time without having
to undo any of the decisions that we made. In a broader sense, we
wanted the pieces of our compiler to be reusable for completely different
languages. Our parser table generator, parser, and attribute grammar
evaluator are completely general. The general design of our scanner
can be used for other languages with slight modifications. Our symbol
table, register and stack allocator, and value description objects can be
also be reused for other languages with only slight modifications.

3. Educational and demonstrative value — In choosing features to imple-
ment, we chose ones which would teach us the most for the time re-
quired to implement them, and which would show what we had learned.
For example, we implemented records as an example of a non-scalar
type that does not fit in a register. We did not implement case state-
ments, because they involve many tedious details, and they only require
slightly more thought than if statements.

4. Usefulness of implemented features — We wanted to have a compiler
complete enough to be able to compile real programs. We therefore
considered essential, commonly-used features first, such as variables,
subprograms, and control flow structures, before considering more un-
usual features.

5. Runtime efficiency of generated code — This is an issue with almost
any compiler, and we felt it important to consider this issue in order to
understand the construction of real compilers. Although this objective
is listed last, in many cases, it did not conflict with the other objectives.
For example, our static chaining implementation of nested subprograms
is very efficient, yet also simple and easy to maintain. Also, in some
cases, we made efficiency a priority. For example, we didn’t have to
use registers at all to store values (and store them all in main memory
instead), but we felt that if we did this, we would be missing out on an
important part of compiler design.

13

2.2 Structural Overview

The following diagram depicts the structure of jaac:

User Source Grammar
Header File
Scanner
Attribute Grammar Template
Parser
+ Attribute Computation Rules
Parse Tree

Attribute Grammar Evaluator

Filled Symbol Table Code
Annotated Parse Tree
The creation of the compiler begins with the grammar. The SLR Gen-
erator creates an SLR parse table from the grammar, and encodes all the
information contained in the grammar in a C header file. This header file is
then included in the scanner and parser, and is also used to create a template
for the attribute grammar computation rules. The scanner and parser create
a parse tree from a user’s source program. The attribute grammar evalu-
ator applies the attribute computation rules to the parse tree, annotating
it with attributes describing the semantic properties of the source program.
These attributes include a symbol table, which contains symbol objects for
all symbols used in the program. Finally, there is a code attribute, which
uses all the semantic information from the annotated parse tree, including
the symbols, and creates assembly language code, which can then be used as
input to an assembler.

2.3 Grammar

The grammar is based on the Ada/CS grammar found in the file
/u/cs444/AdaCS.Grammar on undergrad.math machines. The first step in
adapting the grammar was to convert it to standard Backus-Naur form. The

14

resulting grammar is not SLR(1); in fact, it is ambiguous. The next step was
therefore to convert it to an equivalent unambiguous SLR(1) grammar, taking
care to make it reflect the associativity and precedence rules for Ada/CS. In
order to remove the ambiguities, we had to loosen the grammar, so it accepts
certain strings not accepted by the original grammar. Although it is likely
that an SLR(1) grammar exists which accepts the same language as the
original grammar, it would be much more complicated than the original,
and the structure of the parse tree created using such a grammar would not
reflect the meaning of the source program. Furthermore, being context-free,
the original grammar necessarily accepts a wider language than the language
of all valid Ada/CS programs, because this language is not context-free. This
means that the validity of an Ada/CS program cannot be fully tested with
a context-free parser. A context-sensitive analysis stage is necessary. By
loosening the grammar to accept a larger language, we move some of the
analysis from the parser to the context-sensitive analysis stage.

2.4 SLR Table Generator

The SLR table generator is a modified version of the one given in slr.c on
the course web page. The only modification is the addition of a function
called writehdr () which writes out the information produced by the SLR
table generator in the format of a C header file (adacs.h). This header file
includes:

¢ Enumerated type with numeric values for each terminal and non-terminal
symbol

A class declaration for each terminal and non-terminal symbol

Enumerated type with numeric values for each production rule in the
grammar

A class declaration for each production rule in the grammar
e A preprocessor macro containing code to fill a parser transition table

e A preprocessor macro which converts the numeric value of each symbol
into a test string describing the symbol type

15

e A preprocessor macro which creates a new non-terminal symbol object
of a given type specified by the numeric value of the type

e A preprocessor macro which creates a new production rule object of a
given type specified by the numeric value of the type

Each class declaration includes two functions which return the type and
string representation of the symbol or production rule. These allow us to
determine the type of an object derived from a base class, giving us the same
functionality as the typecase command in Modula-3, which is unavailable
in C++. The classes for production rules also contain a function returning
the type of the left-hand-side non-terminal symbol of that rule. This is used
in constructing the parse tree from the bottom up.

We want to be able to add functions to the classes for specific symbols
and production rules to represent attributes and perform attribute compu-
tations. To facilitate this, the header file defines preprocessor macros con-
taining the class declarations rather than the class declarations themselves.
The macros actually get expanded in other header files (currently terms.h
and nonterms.h), and other member variables and member functions may
be added in these header files. This design allows us to modify the member
functions generated by slr.c for each class and regenerate the header file
without affecting the additional members for specific classes introduced in
terms.h and nonterms.h.

2.5 Scanner

The purpose of the scanner is to convert a file of Ada/CS source into a stream
of tokens.

We decided to code the scanner directly in C++ rather than write a
generic finite state machine interpreter and a finite state machine for it.
The main reason for this was simplicity; since the tokens in Ada/CS have a
reasonably simple structure, the finite state token recognizer is simple enough
that it is less work to write it in C+-+4 than to write a formal transition
function along with a general driver. To reduce this work further, we wrote
preprocessor macros and functions to easily handle the kinds of tokens that
commonly appear in programming languages, such as integers, identifiers,
and operators composed of two symbols of which each is a symbol on its own.
Although this approach is not as general as a formal finite state machine,

16

our functions and macros can be reused to write scanners for many common
languages. A formal finite state machine would not normally permit such
reuse. Furthermore, writing the scanner in C+4 makes it easier to handle
special language features which cannot be expressed effectively in a finite
state machine, such as the "..” problem in Ada/CS (if you read 1., you don’t
know whether the ".” is part of the floating point literal ’1.0°, or part of the
"..7 operator, as in the range '1..5’). Because the scanner does not use a
formal finite state construction, it is infeasible to recognize keywords directly
while scanning. Instead, we first recognize them as identifiers, and then look
them up in a table to return the correct keyword token.

The scanner keeps track of the current line and column for the purpose
of reporting errors to the user. It provides detailed error messages when it
is unable to group the source text into a token. These include unterminated
string literals, malformed floating point literals, and unrecognized characters.
When such an error occurs, the scanner returns a token containing the longest
set of characters it could read before encountering a problem, and continues
scanning at the following character in an attempt to recover from the error.
In this way, the scanner will hopefully uncover and report all the errors rather
than just the first one.

For each token recognized, the scanner creates an object of the appropri-
ate type, and returns it to the parser.

2.6 Parser

The parser constructs a parse tree from the terminals returned to it by the
scanner. It uses the LR parsing algorithm given in class, and the SLR(1)
parse table produced by SLR and stored in the adacs.h header file. The
transition table contains about 100,000 entries, so no attempt is made to
compress it, since it only takes 200 kB of memory. About 4,500 of the
entries are non-error entries.

Whenever the parser finds a handle, it creates an object for the production
rule for that handle, as well as a non-terminal object for the left-hand side of
the rule. It links these objects together with the objects for the right-hand
side, so that at the end of the parse, the parser is left with a linked parse
tree, which it returns.

We chose to use an LR parser because an LL(1) grammar is not expressive
enough to describe certain constructs nicely, such as operator associativity.

17

Also, an LR parser is simple and fast, and the 200 kB memory requirement
for the parser transition table is easily justified on today’s machines with tens
or hundreds of megabytes of memory. If memory were scarce, the transition
table could have been compressed in some sort of sparse matrix representa-
tion. Out of the LR parsers, we chose SLR(1) because an easy-to-use tool for
creating SLR tables was readily available, because it produced the smallest
transition table, and because it was powerful enough to accept our grammar.

2.6.1 Parse Error Recovery

When a parse error occurs, the parse tables provide no way for the parser to
continue. If this happens, we try to locally modify the input token stream into
something that will parse without error in order to continue the parse. We do
this by backing up in the input, inserting tokens, and deleting tokens. We try
all possible combinations of backing up various amounts, inserting all strings
of tokens up to a maximum length, and deleting up to a maximum sequence
of tokens. For each modification attempted, we check how far the parser can
continue before another parse error occurs. We have a minimum threshold for
how far the parser must get in order for it to accept a modification. We also
have a maximum number of tokens that we try to parse after a modification
to judge the quality of the modification.

Of all the possible modifications, we first select those which allow the
parser to parse the longest number of tokens after the modification, up to
the maximum threshold. From these, we select the ones which minimize
the sum of the number of tokens backed over, the number of insertions, and
the number of deletions. From the remaining set of modifications, we select
the ones with the minimum amount of backtracking, then with the minimum
number of insertions. Finally, from the remaining modifications, we select one
arbitrarily as the modification to use. The parameters of the error recovery
mechanism can be set in the defines in parse.cc. We decided to backtrack
up to 5 tokens, insert up to 3 tokens, delete up to 5 tokens, and continue
parsing from between 2 and 30 additional tokens. With 74 non-terminals,
this means that we search a space of almost 15 million possible strings of up
to 30 tokens each. However, many of these strings cause parse errors very
early. Since the proabability of a parse error at each token is about 95.5%,
the expected number of strings to actually check for each error is only around
1400. These parameters ensure that recovery time is well under half a second
per error even on a slow machine like undergrad.

18

Along with the error message, we give a line number and column, a list-
ing of the piece of code that was modified and a listing of the modified
version, with one extra token on each end for context. Our experience has
been that an overwhelming majority of syntax errors which we’ve made in
our test programs were corrected in the way in which we would have cor-
rected them ourselves. Also, in all programs that we were able to write,
the parser always found modifications which allowed it to parse to the end
of the input, reporting all additional errors. There was one test program,
test/parse/parse test_error.ada, with a large number of deliberate parse
errors for which the parser could not parse to the end of the input, but it
was able to parse 110 of the 143 lines.

The most unusual feature of our error-recovery mechanism is the back-
tracking. With this feature, we can recover from about 90% of errors cor-
rectly, compared to about 55% without it. In order to implement backtrack-
ing, we used the cactus stack abstraction that we use in our symbol table
to efficiently keep track of the parse stack after each token we parse. This
allows us to easily move the parser into a previous state, while using time
and space linear in the size of the input.

Example

Input:

package Main = body -- equal instead of is
X : integer := 6;

function f is begin -- no return type
if x = 7 them -- misspelled then
x := b;
end if;
return Xx;
end;

begin
x := f -- missing semicolon
end Main;

Output:

19

Error(L1l C14): Parse Error discovered here
I backtracked 0, inserted 1, and deleted 1 token(s) and I’m continuing.
I replaced
id : Main eq body
with

Error(L5 C17): Parse Error discovered here
I backtracked 0, inserted 2, and deleted 0 token(s) and I’m continuing.
I replaced
id : f is
with

Error(L6 C21): Parse Error discovered here
I backtracked 0, inserted 1, and deleted 1 token(s) and I’m continuing.
I replaced
integer : 7 id : them id : x
with
integer : 7 then id : x

Error(L14 C3): Parse Error discovered here
I backtracked 0, inserted 1, and deleted 0 token(s) and I’m continuing.
I replaced
id : f end
with
id : f semicolon end

2.7 Attribute Grammar Evaluator

After the parser has produced the parse tree, we apply our attribute grammar
evaluator to it to evaluate an attribute grammar which specifies the non-
context sensitive analysis of the program. The attribute grammar evaluator
uses recursion to automatically resolve dependencies between attributes. It
automatically memoizes all results of attribute evaluation to permit efficient
evaluation. It also has built-in detection of attempts to evaluate circular

20

references in the attribute grammar. The bulk of the attribute grammar
evaluator is implemented in the preprocessor macros in symbols.h.

2.7.1 Attributes

All attributes are declared using preprocessor macros in attributes.h. We
redefine these macros and include this file in various places within the at-
tribute grammar evaluator to generate the appropriate attribute code in each
place where it is needed. Every attribute is declared for all non-terminals in
the parse tree, so there is no need to declare attributes separately for each
non-terminal that uses them. The value of the attribute need only be defined
for a subset of the non-terminals, and it only gets calculated for the ones in
which it is required by other calculations. Default attribute computations are
provided for all attributes; they are to be overridden for certain productions
in order to perform actual computation.

Inherited Attributes

By default, inherited attributes are copied from the left-hand side of every
production to each non-terminal on the right-hand side.

Synthetic Attributes

The three types of synthetic attributes differ only in their default rule. A
normal synthetic attribute is copied from the left-most non-terminal on the
right-hand side to the left-hand side. This is useful because many produc-
tions only have one non-terminal on their left-hand side, so it makes it easy
to pass things up from deep down the parse tree. A default value can be
specified in the attribute declaration for productions with no non-terminals
on their right-hand side. This default can be any attribute computation.
For example, the SymTb1Up attribute has the default 1hs->SymTbl (), which
makes it easy to implement "bucket brigade” symbol table passing by auto-
matically sending the symbol table up whenever it reaches the bottom of the
parse tree.

Summing Synthetic Attributes

A summing synthetic attribute has a default rule that sums the values of the
attribute over all the non-terminals on the right-hand side of a production,

21

and assigns the result to the right-hand side. It uses the C++ operator +,
which must be defined on the attribute type. Again, a default value may be
specified for productions with no non-terminals on the right-hand side. A
summing synthetic attribute is useful for creating strings describing the parse
tree, where the string for a node is usually the concatenation of the strings
for its subtrees. A summing synthetic attribute would be used to construct
a printable version of the parse tree, or for putting together the generated
code for a program from the code generated for all the subtrees.

Max Synthetic Attributes

This type of attribute is similar to a summing synthetic attribute, but the
maximum value from all the right-hand side non-terminals is returned, in-
stead of the sum. This is used for calculating the size of a stack frame.

2.7.2 Computation Rule Definition

Code overriding the default attribute computation for an attribute named
Attributeis placed in a member function called CalcAttribute of the class
for the production rule in which the attribute is to be evaluated. The gen-
erated classes for the production rules contain pointers to the symbols on
the left-hand side and right-hand side of the production. Attributes of any
symbol may be accessed by calling the member function Attribute (), where
Attribute is replaced by the name of the attribute being requested. The
evaluator takes care of the memoization and circular reference detection au-
tomatically, with no additional code. The CalcAttribute function for a
synthetic attribute is always called on a production rule to calculate the
value of the attribute for the left-hand side symbol of the production. For an
inherited attribute, a pointer to the symbol for which the attribute is being
computed is passed into the CalcAttribute function so that it can tell for
which right-hand side symbol it is being asked to calculate the attribute.

2.8 Attribute Computations

2.8.1 Attribute Computations For Declarations

The attributes for computing declarations each pass information up the parse
tree for other attributes, and the last attribute gets put into the symbol table.

22

The attributes are as follows:

Synthetic:string Id and

Synthetic:1ist<string>* IdList These attributes allow easy access to
the names of a symbol.

Synthetic:TypeRef* TypeSubt This attribute creates the type of a dec-
laration. If the declaration is a type declaration, then this is put into
the symbol table; otherwise, it is passed up the parse tree.

Synthetic:ParmList* AParmList This attribute takes each identifier in
a declaration and creates a variable symbol object (ParmRef) which
contains the TypeSubt attribute and the identifier. This is then passed
up the parse tree.

Synthetic:ST* SymTblUp and

Inherited:ST* SymTbl These attributes pass the symbol table up and
down the parse tree. The inherited attribute passes it down, the syn-
thetic passes it up. The symbol table passes through the declaration
parts of the parse tree before the code/statements section, since the
declarations are used in the code.

Synthetic:FieldTList* FieldTs This synthetic attribute produces the list
of field types from the definition of a record type. The list of fields is
then inserted into the record type object for the record.

Synthetic:FunRef* Fun This synthetic attribute creates a subprogram sym-
bol object which describes the subprogram defined by the subtree for
which the attribute is defined. The subprogram symbol object con-
tains information such as the name of the subprogram, the types of its
parameters and return value, and the label at which its code is found.

Inherited:FunRef* FunDown This inherited attribute passes the subprogram
symbol object computed by the Fun attribute down the parse tree, so
that the computations which generate code for the subprogram have
access to it. This is needed mainly to generate code for the return
statement, which needs to know where to place the return value.

23

Inherited:int Nestinglevel This attribute calculates the static nesting
level of the current procedure. It is zero for the global scope, one for
a subprogram within the global scope, and one higher for each level of
nesting of subprograms.

Synthetic Sum:int ContainedProcedures and

Inherited:bool ContainsProcedures ContainedProcedures calculates the
number of subprograms nested within the current subprogram.
ContainsProcedures is an inherited attribute passed down to the im-
plementation portion of a subprogram. It is true if and only if the
current subprogram contains nested subprograms. If it does, no vari-
ables are allocated in registers; they are all allocated on the stack in
case one of the nested subprograms needs to access them.

If the declaration is an object declaration, then each element in the Parm-
List is put into the symbol table. If the declaration is a subprogram, enu-
meration or record, then an appropriate symbol object is created and the
ParmlList is embedded in it. In the case of subprograms, the ParmList is
also added to the branched symbol table for the body of that subprogram.
The enumeration declaration also adds its EnumLiterals (contained in the
ParmlList) to the symbol table, but they are inserted into the non-branched
table.

2.8.2 Attribute Computations for Expression Type Check-
ing and Overload Resolution

These attributes perform type checking on expressions, and select the types
of subexpressions which may not be immediately obvious due to function
overloading. The overload resolution algorithm is the one given in class.
We make a set of all the possible types of an expression, and build it up
based on the possible types of subexpressions. Once we get to the top of an
expression, we examine the set of possible types. If there is exactly one type
which can be used, we go back down the expression tree narrowing down
the set of possible types. If at any point there is not exactly one possible
type for a subexpression, then that subexpression is incorrectly typed, and
we report an error, listing the subexpression that caused the error. The
following attributes are used:

24

Synthetic:string FunName Propagates the name of a function up to the
expression involving the function.

Synthetic:ValRef* ExprSym This attribute calculates a final symbol ob-
ject for the subexpression. The symbol object contains all the details
about the value represented by that expression.

Synthetic:TypeSet* PossibleTypes This attribute calculates a set of
type symbol objects for all the possible types of a subexpression. This
is built up from the return types of any functions involved in the ex-
pression.

Synthetic:vector<TypeSet*>x PossibleArgs This attribute combines the
PossibleTypes attributes of the parameters to a function into one unit,
so that we can look for functions having these types as arguments.

Inherited:TypeRef* RequiredType Once the calculation of possible types
reaches the top of an expression tree, a unique type is determined for
the tree, and this attribute is used to calculate it. It is calculated on
all the subexpressions to determine their actual types.

Synthetic:vector<TypeRef*>* RequiredArgs and

Inherited:vector<TypeRef*>* RequiredArgsDown Once a unique func-
tion has been found for a potentially overloaded function identifier,
these attributes give the argument list of the function. They are used
to do type-checking on the expressions which are the arguments.

2.8.3 Attributes For Code Production

Stack and register allocation

Inherited:FT* FrameTop and

Synthetic:FT* FrameTopUp These attributes pass around the FrameTop
class which assigns locations for variables in registers or on the stack.
See section 2.9.6 for more details.

Synthetic Max:int FrameSize This attribute calculates the maximum of
the stack portion of the FrameTop attribute in the subprogram defined
by the subtree. This is used to calculate the stack needs of the entire

25

subprogram, so that the stack pointer can be adjusted above the top
of the frame when the subprogram starts executing.

Code generation

Synthetic Sum:cstring Code This is the generated SPARC assembly code
that forms the final output.

Synthetic Sum:cstring InitCode This is the variable initialization code.
It is separate from the Code attribute because variable initialization
code must be placed at the beginning of the body of the subprogram,
after any code for other subprograms nested within it.

Synthetic Sum:cstring IncrementCode This is the code to increment or
decrement the loop variable in a for loop. The loop statement com-
putation for Code places it at the appropriate place at the end of the
loop.

Synthetic Sum:cstring LiteralPool This contains the code for all the
literals that appear in the source, each with a label. It is placed before

all of the code, so that the code can refer to these literals by their
labels.

Control structures

Inherited:string BeginLabel Computes the label at the beginning of the
loop, so that the code can branch to it at the end of the loop.

Inherited:string EndLabel Computes the label at the end of the loop, so
that the code can branch to it when it needs to exit the loop (in an
exit statement or a false loop condition).

Synthetic:Variable* LoopVar For a for loop, computes the variable sym-
bol object of the loop index variable.

Synthetic:Variable*x EndVar For a for loop, computes the variable symbol
object of the temporary holding the end value of the range of the loop.

Synthetic:ValRef* StartSym For a range expression, computes the value
symbol object of the expression specifying the start of the range.

26

Synthetic:ValRef* EndSym For a range expression, computes the value sym-
bol object of the expression specifying the end of the range.

2.9 Major Data Structures

2.9.1 Parse Tree

The main data structure in the compiler is the parse tree, which is a linked
collection of symbol and production rule objects. The following diagram
gives the inheritance structure.
Rule

‘ Rule_Start_bof_Compiln_eof

‘ Rule_Compiln_CompilnUnit_CompilnUnitS

]

Symbol

SymT (terminal)

‘ SymT integer ‘

SymNT (non-terminal)
‘ SymNT Expr ‘
‘ SymNT _Stmt ‘

B

There are two main base classes, Rule and Symbol. Rule represents a

production rule in the grammar, and Symbol represents a terminal or non-
terminal symbol. There is one class for each production rule that inherits
from Rule. There are two classes, SymT and SymNT, which inherit from
Symbol. For each terminal and non-terminal symbol, there is a class which
inherits from one of these two. By convention, non-terminal symbols start
with a capital letter, and terminal symbols start with a lowercase letter.
The following diagram is an example of part of a parse tree representing

27

the production RangeConstraint -> range Range:

SymNT_ Rule 4 SymT_range
RangeConstraint | »1 RangeConstraint_
range_Range parent_rule
rule ~< parent_sym
-<1—1hs
r_range
r_Range = SymNT_Range
parent_rule
parent_sym

There are pointers to allow each object access to its parent and children
in the tree, so that attribute calculations can be done in the attribute com-
putation phase of the compiler. Please see section 2.7 for more information.

2.9.2 Symbol Table

The symbol table is based on a cactus stack, described later. All identifiers
declared in the program are pushed onto the branch of the cactus representing
the current scope. When a new scope is to be created, a new branch is
added to the cactus, and a scope barrier is inserted to separate the scope
from the old scope. This is necessary when checking for duplicately declared
identifiers, since an identifier can be declared with the name of a pre-existing
identifier only if the pre-existing identifier appears in a scope other than the
most local one, (or the identifier represents a subprogram being overloaded,
in which case special rules apply).

The symbol table includes functions for retrieving either the top-most
symbol with a given name, or a set of all the symbols with a given name
(for finding overloaded subprograms). The search is done linearly through
the cactus stack, so search time is proportional to the number of symbols
visible in the current scope. Though we have found no evidence to suggest
that this is unacceptably slow, it could easily be speeded up by representing
the symbol table as a hash table, with each bucket being a separate cactus
stack.

When the symbol table is first created, we insert symbols for all of the
built-in types, operators, and functions (Read and Write). That way, these

28

are available in every scope, and may be overloaded. The built-ins can be
found at the end of the file symref.cc.

2.9.3 Cactus Stack

The cactus stack is a C++ template for a stack which can be branched in
constant time. Branching creates two stacks with the same contents as the
original stack, but they can be modified (both pushed and popped) inde-
pendently. It is implemented as a linked list, with the stack being identified
by its top. Branching creates a new top pointing to the old stack. We use
reference counts to allow us to free popped nodes only if there are no other
branches coming out of them.

The cactus stack is used in the parser error recovery to allow backtracking.
A new branch is made after each token is processed, effectively creating a list
of the state of the parse stack after each token, making backtracking possible.

The cactus stack is also used to implement the symbol table. Here,
branches in the stack represent the creation of new scopes.

2.9.4 Inheritance Hierarchy Of Symbols

A symbol object (declared in symref.h) is used to represent anything that
appears as an identifier or a literal in the source. The figure on page 31 gives
the inheritance hierarchy of these symbol objects. Symbol objects contain
a name for the object, and pointers to other symbol objects. For example,
every value has a pointer to its type, a subprogram contains a list of pointers
to its parameters, a record contains a list of pointers to its fields, and so
on. Each type is identified by a single type symbol. Since in Ada/CS, every
newly-defined type gets a new cookie, and types are equivalent if and only
if they have the same cookie, we simply use the address of the type symbol
as the cookie, and type equivalence can be determined with just a pointer
comparison. If we were implementing a language which, unlike Ada/CS, had
true subtyping, we would need a more complicated type equivalence and type
assignability function.

The symbol objects for values (including subprograms) play a major role
in code generation. Fach value symbol contains all of its compile-time infor-
mation, such as where in memory (or in which register) it is stored. Value
symbols also have methods such as Fetch and Store into registers (for scalar
values), Copy to copy between two values (not necessarily scalar), CopyIn and

29

CopyOut to pass parameters into and out of subprograms, and Call on sub-
program symbols to generate code for a function call. The implementation
of all these methods is found in the file symcode.cc.

30

Symbol

‘ Scope Barrier ‘

Type
Any Type

Integer Type ‘

String Type
Float Type
Null Type

‘ Enumerated Type ‘

Access Type

=
@
S
Q
=
o,
2
@
2.
o,
—
<
o
@

‘ Record Type ‘

Value
Any Value

‘ Subprogram Value ‘

Parameter (Named) Value

‘Named Scalar Constant ‘

‘ Scalar Variable‘

‘ Record Field‘

‘ Record Variable or Constant ‘

Literal Value
‘ Integer Literal ‘

‘Float Literal‘
‘ String Literal‘

‘ Enumeration Label ‘

Null Literal

2.9.5 Efficient String Class

The motivation for this class was the Code attribute. It has to be passed
around the parse tree, with code fragments for branches being concatenated
together and passed up the tree. This concatenation can be done with very
large strings since the strings represent compiled output (assembler) of the
compiler. The STL string class does not do efficient concatenation; it cre-
ates a new buffer and copies both strings into it.

The new string class (cstring) takes advantage of the fact that the Code
attribute never gets manipulated after it is first created (a code fragment is
only concatenated with other fragments of code). The cstring class creates
a binary tree with the leaves having STL string values. With this structure,
we can concatenate strings in constant time by just creating a new node with
the two strings to be concatenated as its children. To output the string, we
perform an in-order traversal of the binary tree, outputting the strings at the
leaves.

The cstring class is now used in many of the functions for outputting in-
formation including dumping the symbol table, the parse tree, the TypeTree
attribute and the TypeTreelndent attribute.

2.9.6 Stack and Register Allocation (FrameTop) class

The FrameTop class (FT) is responsible for assigning space to variables. It
keeps a list of available registers and the current size of the stack frame in the
current block. Currently the registers are assigned on a first come first served
basis (see section 2.10.4 for details), but the framework could be extended to
use a more sophisticated method. This class is passed around the parse tree
using the FrameTop and FrameTopUp attributes, whose propagation around
the parse tree controls the lifetime of variables and temporaries.

2.10 Implementation of Language Features

This compiler produces SPARC assembly code. Comments have been added
to the produced code so that it may be easily read, understood, and de-

bugged.

32

2.10.1 Scalar Values

Whenever a scalar value is encountered in the source file, a value symbol ob-
ject is created for it. This symbol object may be a literal symbol object, or
a named value symbol object, depending on the value. The object stores all
the compile-time information about the value, including its type, its size, its
memory or register location (as assigned by the FrameTop stack and register
allocation object), its constantness, and, in the case of a literal, its value.
Scalar variables are assigned space either in a register, or, if none are avail-
able, on the stack, at a specific negative offset from the frame pointer. The
synthetic attribute FrameSize calculates the stack needs of each subprogram,
and at the start of the subprogram, the stack pointer is set to point above
any values potentially used by the subprogram. This means that the amount
of stack space required by a subprogram must be known at compile time,
which may not be the case if the subprogram contains local variables whose
size 1s not known at compile time. In order to support this, we would have
to generate code to calculate the frame size at runtime and adjust the stack
pointer accordingly. There is nothing to prevent us from adding this except
lack of time.

2.10.2 Literal Pool

We do not keep a literal pool for scalar values; instead, we simply insert them
into the code where they are used. Our compiler supports string literals,
and could be easily extended to support other non-scalar types of literals.
These are all collected using a synthetic attribute, and included together as
constants at the beginning of the assembly output. The associated literal
value objects contain the unique label assigned to each literal, so they can
generate the code to access the literals.

2.10.3 Temporaries

Temporary variables (both scalar and aggregate types) are allocated using
the FrameTop object just like any other variables, so they may be placed
in registers, or on the stack. Instead of a complicated temporary allocation
and freeing algorithm, we decided to simplify things by making the lifetime
of a temporary be a single statement. This makes temporaries very easy to
allocate: we allocate them using the FrameTop object, the same as variables.

33

We go back to the same FrameTop object at the start of every statement, so
any temporaries allocated for preceding statements don’t appear in it, and
their space is free to be used.

No temporary ever needs to be around for longer than a single statement.
This simplification is only slightly wasteful in the case of very complicated
expressions, in which some memory locations (which could be valuable reg-
isters) could be reused for more than one temporary. However, in most
programs, very complicated expressions are usually split up over multiple
statements for readability. Also, on the SPARC, there are usually enough
registers to accommodate most expressions found in typical programs.

2.10.4 Register Allocation

Ounly the %i and %1 registers are used for scalar values, as these registers are
automatically saved and restored on function call by the SPARC’s sliding
registers. Variables which are formal parameters (in, out, or both) to a
subprogram must use the %1 registers to allow the caller to copy into them
directly using what it sees as %o registers. When the function call is made,
the %o registers slide to become %1 registers. The return value from a function
is just like an out parameter, so it too can be placed in an %1i register which
slides back to an %o register when the function returns.

The global registers, %g1-7, are used for global values which never change,
or for temporary values which need never be preserved. Registers Jigl-4 are
used to do computations such as addition, subtraction, and exponentiation.
Registers %g6 and %g7 are used to implement nested subprograms. See the
section on nested subprograms below for details. Register %g5b is never used.

For scalar variables and subexpressions, we first try to use an %1 register
to keep the %i registers free for formal parameters. When all the %1 registers
are in use, we try to allocate an %i register, and if all of those are in use as
well, we put the value on the stack. This decision is made in the FrameTop
class in FT.cc. The lifetime of a variable allocation is the duration of the
scope in which it is defined. This is very simple, though not necessarily
optimal, since it relies on the programmer to limit the size of the scope to
the actual required lifetime of the variable. The lifetime of a subexpression
is the statement in which it appears, as discussed in " Temporaries”, above.

Any value which does not fit in a register (records) is always placed on
the stack. We make no attempt to place specific fields of records in registers,
because we keep record fields consecutive in memory in order to make it

34

possible to implement access types and allow cyclic linked structures. If the
fields of a record were not all in memory, a pointer to a record would have to
be represented as a pointer to each field, and cyclic linked structures would
be impossible to represent.

If a value is accessed by a subprogram nested within the subprogram in
which the value is declared, the value cannot be placed in a register, because
when we call the nested subprogram, the value would be slid out out with
the register window, and the nested subprogram would not be able to access
it. Therefore, any variable declared in a scope in which other subprograms
are nested 1s declared on the stack, and never in a register. This is simple,
but less than optimal. A less conservative and more efficient solution would
be to check for each variable whether it is actually referenced by any nested
subprograms, and try to place it in a register if it is not. This would not even
be much more complicated to implement given the structure of our compiler,
but we did not have enough time to do so.

We introduced the -r option to our compiler in order to evaluate our
very simple register allocation strategy. An example of the output from this
option is shown below:

Register allocation statistics:

Type of value Number Total bytes
Must be on stack 291 1336
Placed in register 469 1876
Could be in %i reg but none free 2 8
Could be in any reg but none free 8 32

This output is actually a summary of the register allocation statistics for
our entire test suite. Notice that because we are compiling for a non-Intel
processor, there are many registers, and almost all the values that we can
place in registers actually fit there. Notice also, however, that there are 291
values that could not be placed in registers. Some of these are records, and
the rest are values allocated in scopes containing nested subprograms. It
may actually be possible to place some of the latter values in registers if we
could ensure that the nested subprograms do not access them.

35

2.10.5 Records

We represent a record as the values of its fields, placed consecutively in
memory. We allocate memory for the entire record. Each field has a special
memory addressing object which does not actually own any memory, but
contains a pointer to the record type, as well as an offset of the field value
within the record. All of this information is compile-time information. If
we were to implement variant records, we would have to add a new kind of
addressing object which would do the offset calculation at runtime. There is
nothing which would prevent us from doing this other than lack of time.

We support and test the use of records in all places where scalar values can
be used, including assignment, fields nested within other records, subprogram
parameters (both in and out), and function return values.

2.10.6 Subprograms

A subprogram is represented at compile time by a function symbol object.
This contains information such as the subprogram’s name, a label at which
the subprogram’s code is found, and a list of the subprogram’s parameters
and/or return value. The parameters and return value are themselves value
symbol objects, so we can read and write to them both within the subpro-
gram, and at the call site.

In order to allow parameter passing to subprograms, we have three types
of value copy functions. The first type does a simple assignment, copying
values as offsets from %fp. The other two copy in and out, respectively, of a
subprogram, by copying to or from an offset of %sp. In the called subprogram,
%fp takes on the value of %sp of the caller, so these copy functions allow
us to effectively copy into the frame of the called subprogram before we
call it, and copy back out of it after the subprogram returns. The copy
functions work with special types of values: values in registers, and record
types. For registers, accessing the value in the called subprogram’s frame
means accessing the corresponding %o register instead of the %i register.
Our register allocation ensures that parameters and return values are never
placed in any other types of registers. For record types, the copy functions
generate code to copy all the space used by the record, one word at a time.

The procedure for a subprogram call is therefore as follows:

1. Copy in parameters into the subprogram’s frame.

36

2. Set up the display based on the nesting levels of the caller and the
called subprogram (see ”Nested Subprograms”, below).

3. Make a call using the label of the procedure.
4. Copy out parameters out of the subprogram’s frame.

5. Copy the return value (if any) out of the subprogram’s frame.

2.10.7 Scope and declare blocks

Any new scope is represented only as a new scope marker object placed in
the symbol table. This is to allow us to distinguish symbols declared in
the current scope from symbols declared in outer scopes, in order to detect
duplicate declarations. The symbol table takes care of finding the innermost
symbol with a given name when it is referenced. A new scope does not get
its own frame on the stack, because there is no need for one, creating one
would take time at runtime, and it would be more complicated to implement.
Instead, a new scope inherits the FrameTop register and stack allocation
object from its surrounding scope, so that it does not overwrite any values
allocated by the surrounding scope.

2.10.8 Built-in operators

The built-in operators are implemented as special function symbol objects
which have their Call method overridden. Instead of producing code for
a procedure call, these Call methods perform the required computations
in-line. The function symbol objects are placed in the symbol table along
with all other functions, so the built-in operators can easily be overloaded for
new types just by adding a normal subprogram to handle the computation
required of the operator.

All values have a Suggest method, which suggests to the built-in proce-
dures which registers they should use. If the value is in a register, it suggests
that the built-in use that register for the computation. If the value is not in a
register, a default register chosen from %g1-4 is used. Since many values are
in registers, this suggestion mechanism generates much more efficient code
than if fixed registers were always used. For example, if the variable X is
stored in %11, for the statement X := X + X;, we would generate:

37

add %11,%11,%11

instead of

mov %411,%gl
mov %411,%g2
add %gl,%g2,%g3
mov %g3,%11

We should have — but did not have time to — extended the suggestion
mechanism to support suggesting small literals which could be placed in the
code in-line. For example, for X := X + 1, we should generate:

add %11,1,%11

instead of

set 1,%g2
add %11,%g2,%11

2.10.9 If-Then-ElsIf-Else

We represent boolean values the same way as any other enumerated type.
We do not try to represent them as branches taken or not taken. Although
this would be slightly more efficient, it would take extra work to be able to
evaluate complicated boolean expressions using this representation. When
we encounter an if statement, we first evaluate the conditional expression.
We then test whether it is true or false, and if it is false, we branch past the
then clause. At this point, there may be code for an elsif clause, the else
clause, or simply the end of the if statement. At the end of each clause
except the else clause, we branch out to the end of the whole if statement.

The formal attribute grammar evaluator makes it very easy to keep track
of all the required labels, requiring only two attributes, BeginLabel and
EndLabel.

38

2.10.10 And-Then and Or-Else

And-then and or-else differ from the standard and and or in two ways. First,
they cannot be overloaded, so they are not implemented as function symbol
objects in the symbol table like the other built-in operators. Second, these
boolean operators use short-circuit evaluation. If the first clause evaluates
to true (or) or false (and), we simply use its value as the result of the overall
expression, and skip over the evaluation of the second clause. If we have to
evaluate the second clause, then the value of the second clause is the value
of the overall expression.

2.10.11 Loops

The overall structure of all loops is the same, for simplicity:
1. Initialization code (optional)
2. Loop start label (optional)
3. Loop condition (optional)
4. Loop body code (may contain exits)
5. Loop increment/decrement code (optional)
6. Branch to start label

7. End label

This may not be the most efficient representation in all cases, but it
is general enough to be able to support all types of loops with the same
structure. A simple loop does not implement any of the optional parts. A
while loop only needs to implement the loop condition section, and branch to
the end label if the condition is false. A for loop implements all the optional
sections.

The loop start and end labels are propagated inside the loop generation
code using the inherited attributes BeginLabel and EndLabel. Also, a copy
of the end label is placed in the symbol table for the loop body as a loop exit
symbol object. This is to allow an exit from a named loop, rather than the
innermost loop.

39

A for loop creates a new scope in the symbol table, and the loop variable
is placed in the new scope, so it may hide any existing occurrence of the same
name.

2.10.12 Nested Subprograms

Our compiler provides full support for nested subprograms, with several op-
timizations.

We use static chaining to implement nested subprograms. In each frame,
at [%fp-4], we store a pointer to the frame of the static parent subprogram.
We can follow these pointers to reach the frame of any static ancestor of the
currently executing subprogram to access its variables. The %g6 register is
used for this calculation.

In each value symbol object, we store the static nesting level of where
that symbol is declared. Also, anywhere in the parse tree where we generate
code, we have an inherited attribute calculating the static nesting level of
that particular piece of code. For all value accesses, we pass in the static
nesting level of the code being generated, and the value object knows its own
static nesting level. The value object can therefore generate code to access
itself at the correct number of levels up from the level of the code being
generated.

The overhead of this scheme is minimal. Values at the current nesting
level are accessed with no overhead whatsoever. The overhead for accessing
values at higher levels is 1 4+ n instructions, where n is the number of levels
we have to go up. As an additional optimization, we set the %g7 register to
point to the frame of the outermost (global) nesting level at the beginning
of the program, and we use that register to access all values directly at the
global level. This avoids having to follow a potentially long static chain to
access these values. The majority of variable accesses in typical programs are
to either the innermost nesting level, or to the global nesting level, and both
of these can be accessed directly with no overhead. The remaining accesses
are often to more inner nesting levels as opposed to more outer ones, and the
more inner the nesting level is, the less overhead there is.

A call to a subprogram with a higher nesting level than the current one
requires a single instruction to store the current %fp in the frame of the
called subprogram. A call to a subprogram with the same nesting level as
the current subprogram requires two instructions to copy the current static
link pointer from the current frame to the new frame. These are the two most

40

common types of subprogram call. A call to a subprogram with a smaller
(outer-more) nesting level than the current one requires us to follow the static
links to find the static link pointer corresponding to the level of the called
subprogram, and copy it into the frame of the called subprogram. This takes
a few extra instructions, but these types of calls are rare. Because the static
link pointer is stored on the stack in the frame of each subprogram, it is
automatically restored to its previous value on return from a subprogram.

41

Chapter 3

Testing Documentation

3.1 File Locations

Unless otherwise indicated, test files are found in the directory :
/u/olhotak/cs444/jaac/test/.

The executable is found at: /u/olhotak/cs444/jaac/jaac. See the user
documentation for more details.

The script ./runtest in the directory /u/olhotak/cs444/jaac/ runs a
set of test files through the compiler, producing diffs of the output against
expected output. runtest is explained in more detail at the and of this
section. It takes one parameter, listed below:

scan = run scan test on files in test/scan/
parse = run parse test on files in test/parse/
type = run type test on files in test/type/

code, fischer, course = compile ada programs in test/<specified>/ di-
rectory, outputting .s (SPARC assembly), assemble and link these into
executables using gcce, and then run the executables

The programs in the fischer directory come from the web page for the
course textbook, and were slightly modified to fix syntactic errors in them.
The programs in the course directory come from the course account on
undergrad. The programs in the code directory are ones that we wrote
ourselves to demonstrate the specific features of our compiler.

42

Scan, parse and type produce <filename>.ada.out and
<filename>.ada.errors.out files, which are then compared against .correct
files.

Code, fischer, course produce <filename>.s files, which are then com-
piled to executable files. These executable files are run with any
<filename>.*.in files piped in as standard input. The output is piped to
<filename>.*.out, and compared to the .correct files. If the executable
has no <filename>.*.1in files, then it is executed with no standard input
piped in. The output is similarly piped to <filename>.out and compared
to the .correct files.

3.2 Scanning

The scan test files can be found in the directory scan/.

<filename>.ada = Ada files

<filename>.ada.out = output for <filename>.ada
<filename>.ada.out.correct = output has been checked as being correct

Scanning is quite easy to test; one runs Ada programs (or files with similar
keywords and symbols) through jaac -s, and then checks that the output is
correct for the input. There are a few tricky areas: comments, floats, ranges
(the .. can easily be confused with a float decimal point), strings and the eof
symbol (which is added at the end of the file). These are the areas most of
out tests focus on.

Comments: The file comments.ada tests comments interspersed with dec-
larations and statements, as well as comments found at the end of a

file.

Floats and Ranges: The file float.ada tests floating point numbers and
numbers with _ in them. Some of the cases are invalid floats like
300e--23and 1.0e.1. This file also tests ranges (<simple expr>..<simple
expr>).

Strings: The file string.adatests strings with double quotes, single quotes,
unusual characters and non terminating strings (scanner cuts this to
the end of the line).

End of file: All the tests produce the eof symbol.

43

Other: The other files test a range of Ada code, some containing invalid
characters like / in bad.ada.

3.3 Parsing

The parse test files can be found in the directory parse/.

<filename>.ada = Ada files

<filename>.ada.out = output for <filename>.ada
<filename>.ada.out.correct = output has been checked as being correct

3.3.1 Parse Table

There are two levels of testing for our parser: checking if files pass through
the parser without producing parse errors, and checking if the parse tree
is an accurate representation of the program. All the test cases have been
checked for the first level (see next paragraph), but only the Ada files with
<filename>.ada.out.correct files have been checked for the second level.

The following is a list of some of the parsing errors from our test cases,
along with a reason for each error:

<filename>:Error(<location in file>) Reason for error

decl04.ada.out:Error(L40 C35): a = b, should be a := b
parse_test.ada.out:Error(L23 CO0): no semicolon to end record
parse_test_error.ada.out: many different types of

COIMINON PArse errors;
good demonstration of
erTor recovery

test26.ada.out:Error(L16 C58): ; instead of |
test38.ada.out:Error(L3 C6): pragmas not supported
test39.ada.out:Error(L12 C15): Ada/CS does not allow object

declarations in a private item
The error recovery system recovers sensibly from most of the parse errors.
For example, the unsupported pragma statement is just removed and the
parsing continues.
The following lists parts of the grammar and an Ada file which tests it.
Not all the Ada files actually used in testing are listed here.

44

Part of Grammar <filename>.ada

Package Declarations (interface and body) decl03.ada

Declarations of Variables test03.ada
decl03.ada
Subprograms test30.ada
test28.ada
decl03.ada
Types, subtypes decl03.ada
Ranges testll.ada
If Statements test20.ada
Case Statements test25.ada
Loops Statements test22.ada
test23.ada

3.4 Declarations

3.4.1 Type Declarations

It is quite hard to test type declarations by themselves, since they just create
entries in the symbol table. They do use each other, but almost never in a
complicated way. In fact, the top level of declarations never get tested or
used within other declarations. There is a small amount of type checking
here, for example, a : bla; checks that bla is actually a type that has
already been declared and inserted into the symbol table before creating
a value symbol object for a and embedding the type bla within it. Since
declarations are hard to test by themselves, testing of declarations usually
involves type checking and overload resolution (section 3.5).

Below are the different types of declarations with explanations of how
and where they are tested.

Subprogram Declaration

Subprograms have a name, a parameter list (ordered), a return type and
some code. They can be overloaded to have the same name, but within one
scope, functions of the same name must differ in their return type or their
parameter list. (See file type/multiDef.ada)

The return type of a function must type check with the variable you are

45

assigning it to. The type checker can select between functions overloaded
with different parameters, or with the same parameters, but different return
type. Functions may not be called as procedures, with the return value
thrown away (this is allowed in C, but not in languages like Modula-3 and
Ada/CS). (See file type/procOverload.ada)

Arrays

Arrays are not yet supported, but if they are used, jaac will say so and exit
cleanly. (See file type/arrays.ada)

Records

Record declarations associate a name with a list of field declarations. We
must test both the naming and the list of fields. We also test creation of
variables of type record, assignment of variables of type record to each other
(if they are not the same record type, this should fail, even if they have the
same structure) and referring to fields in the record. Currently, the variant
part of records is not implemented, and the compiler gives an error indicating
this. (See file type/records.ada)

Enumerations

Enumerations associate a name (which becomes a type) to a list of other
names (which become constant variables). A variable given the type of the
enumeration can be assigned only values from the list associated with that
enumeration. (See file type/enums.ada)

Access Types

An access type is a pointer type. These can currently be declared, but not in-
stantiated, because we do not currently support dynamic memory allocation.
A message to that effect is printed if someone tries to create a new object of
some type to assign to an access variable. (See file type/access.ada)

3.4.2 Object Declarations

Object declarations assign a variable name to a type. Only one variable can
have the same name in each scope. (See file type/multiDef.ada) These are

46

used everywhere, so almost every one of our test cases will use an object
declaration.

3.5 Expression Type Checking and Overload
Resolution

Overload resolution has already been discussed in the subprogram testing
section above.

Expression type checking is used in most of the files referred to that test
declarations. The ones used in these files are simple (usually just assignment
or addition). More complicated type checking involves combining all the
declarations, scope and built ins. (See all .ada files in the type/ directory
as well as the /u/cs444/Test3.ada/ directory)

3.5.1 Built ins

There are many built in functions and variables. For example Boolean:
(True, False) is a built in enumeration, + is built in for integers, read,
write, etc. Each of these is defined for a certain set of built-in types, as
defined by the language. All built-in operators can be overloaded. (See file
type/builtin.ada)

3.6 Scope

There are three main areas where scope comes into play: packages, subpro-
gram declarations (functions/procedures) and loops/blocks.

Packages have declarations that are visible within the code for that pack-
age. Packages can export their declarations to other packages with the use
clause. This is not currently implemented and jaac will return an error stat-
ing this. Packages can also have private declarations which are visible only
within the package. Since use is not implemented this cannot be tested.

The parameters of a function are put into the scope of the function’s body
and are only visible within that body.

The for loop defines a variable to iterate on and this variable is only
visible within the scope of the loop.

See file type/scopelfVars.ada for examples of all of these.

47

3.7 Code Production

Testing code production is done through exhaustive test input. The input is
compiled, and the produced executables are checked to see if they behave as
expected. Below is a list of language features with Ada files which test them.
Only a few Ada files are listed for each feature; there may in fact be other
test files that use the feature indirectly. Some of the tests below produce
NYT (not yet implemented) errors, showing that jaac will gracefully fail for
unimplemented features.

The files in the code/ directory are tests we created, in course/ are tests
from the course account, and in fischer/ are tests from the textbook web
site.

3.7.1 Declarations

packages
declaration before implementation
use clause (NYT)
course/test41b.ada
course/test50.ada
private(NYI)/public
course/decl01.ada
fischer/test29.ada
subprograms
return values
course/factorial.ada
type/function.ada
code/function2s.ada
parameters
in, out, in/out
code/inoutl.ada
code/display2.ada
no parameters
code/functions3.ada
non-scalar parameters/return values
code/recordsl.ada
declaration before implementation (forward declaration)

48

code/functionsl.ada
code/display3.ada
code/factorial.ada
declaration w/o implementation (should give error)
code/functionsl.ada
operators
code/operators.ada
operator overloading
code/overloading?2.ada
overloading
code/overloadingl.ada
recursion
code/factorial.ada
procedure has no return type
code/functions?2.ada
object declarations (variables)
single name/multiple names (given same type)
code/decl.ada
initial value (with multiple names)
code/initialize.ada
code/readwrite.ada
code/decl.ada
access types (NYI)
course/test05.ada
constant variables
fischer/test18.ada
course/test13.ada
type declarations
enums
code/enums.ada
records
code/recordsl.ada
records as fields of other records
code/recordsl.ada
variant records
course/test46.ada
arrays
course/decl02.ada

49

course/test05.ada
incomplete type declaration (NYT)
course/test08.ada
subtypes (NYI)
course/decl03.ada
range constraint
course/test09.ada
exceptions (NYT)
compile time
course/test43.ada
runtime
Not Implemented

3.7.2 Statements

pragma (NYI)
parse/test38.ada
null statement
code/null.ada
assign statement
code/factorial.ada
assignment of non-scalars
code/recordsl.ada
call statement
fischer/test12.ada
declare block
code/block.ada
loop
for loops (forward/reverse)
code/loops.ada
code/loops3.ada
while loops
code/loops.ada
loop w/o while or for
code/loops4.ada
loop exits (w/o id, with id)

30

code/loops2.ada

code/loops4.ada
if statements (if, else, elsif (multiple))

code/enums.ada
exit statements

code/loops2.ada
return statement

code/enums.ada

code/factorial.ada

code/recordsl.ada
case statement (NYT)

course/test25.ada
raise statement (NYT)

course/test43.ada
aggregates (NYI)
short-circuit evaluation (and then; or else)

code/shortcircuit.ada
string literals

code/readwrite.ada

code/test01.ada

code/test04.ada
builtin functions

operators

code/operators.ada

code/power.ada
enum =" and ’/=" operators

code/enums.ada
read /write

code/readwrite.ada

3.7.3 Scope

hiding variables and subprograms in scope
code/display*.ada
code/block.ada
nested procedures/functions

o1

scope of for loop variable

3.8 Statistics

Test file statistics:

lines words bytes
scan/*.ada 290 759 5797
parse/*.ada 2500 7051 40187
type/*.ada 280 804 5408
code/*.ada 978 2665 17271
course/*.ada 2156 5928 36448
fischer/*.ada 1032 4705 27560
total: 7236 21912 132671

52

code/display*.ada

code/loops3.ada

