
jaa

CS 444

Andrew Kane, 96411902

Ond�rej Lhot�ak, 96040603

April 8, 2000

Contents

1 User Doumentation 3

1.1 Introdution . 3

1.2 Command Line Options . 3

1.3 Hello World Example . 4

1.4 Soure File List . 8

1.5 Language Features . 9

1.5.1 Supported Features . 9

1.5.2 Unsupported Features 10

2 Design Doumentation 12

2.1 Design Goals . 12

2.2 Strutural Overview . 14

2.3 Grammar . 14

2.4 SLR Table Generator . 15

2.5 Sanner . 16

2.6 Parser . 17

2.6.1 Parse Error Reovery 18

2.7 Attribute Grammar Evaluator 20

2.7.1 Attributes . 21

2.7.2 Computation Rule De�nition 22

2.8 Attribute Computations . 22

2.8.1 Attribute Computations For Delarations 22

2.8.2 Attribute Computations for Expression Type Cheking

and Overload Resolution 24

2.8.3 Attributes For Code Prodution 25

2.9 Major Data Strutures . 27

2.9.1 Parse Tree . 27

2.9.2 Symbol Table . 28

1

2.9.3 Catus Stak . 29

2.9.4 Inheritane Hierarhy Of Symbols 29

2.9.5 EÆient String Class 32

2.9.6 Stak and Register Alloation (FrameTop) lass 32

2.10 Implementation of Language Features 32

2.10.1 Salar Values . 33

2.10.2 Literal Pool . 33

2.10.3 Temporaries . 33

2.10.4 Register Alloation . 34

2.10.5 Reords . 36

2.10.6 Subprograms . 36

2.10.7 Sope and delare bloks 37

2.10.8 Built-in operators . 37

2.10.9 If-Then-ElsIf-Else . 38

2.10.10And-Then and Or-Else 39

2.10.11 Loops . 39

2.10.12Nested Subprograms 40

3 Testing Doumentation 42

3.1 File Loations . 42

3.2 Sanning . 43

3.3 Parsing . 44

3.3.1 Parse Table . 44

3.4 Delarations . 45

3.4.1 Type Delarations . 45

3.4.2 Objet Delarations . 46

3.5 Expression Type Cheking and Overload Resolution 47

3.5.1 Built ins . 47

3.6 Sope . 47

3.7 Code Prodution . 48

3.7.1 Delarations . 48

3.7.2 Statements . 50

3.7.3 Sope . 51

3.8 Statistis . 52

2

Chapter 1

User Doumentation

1.1 Introdution

jaa stands for Just Another Ada Compiler. It is a ompiler for the Ada/CS

subset of Ada. The urrent implementation inludes the sanning, pars-

ing, ontext-sensitive analysis (type heking), ode generation and register

statistis.

1.2 Command Line Options

The jaa soures and exeutable an be found on the undergrad environment

in the diretory /u/olhotak/s444/jaa. The name of the exeutable is

jaa. It takes the input Ada/CS soure from standard input. It aepts the

following ommand-line options:

-s Prints the output of the sanner

-p Prints the output of the parser (the parse tree)

-t Prints the output of the ontext-sensitive analysis (a type tree)

- Prints the output of the ode generator, the assembly language ode for

the program, suitable as input to an assembler (as)

-r Prints statistis on register alloation

-d Turns on additional debugging output

3

Any error output is sent to standard error. This inludes sanning errors,

parsing errors, type errors, and unsupported features.

The following setion shows the output of the ompiler for a very simple

example. For more ompliated examples (with both input and output),

please see the diretories under /u/olhotak/s444/jaa/test. The san

diretory ontains examples of the -s option. The parse diretory ontains

examples of the -p option. The type diretory ontains examples of the -t

option. The ode, ourse, and fisher diretories ontain examples of the

- option.

1.3 Hello World Example

Listing of hello.ada

-- basi 'hello world'

pakage Main is body

begin

write("Hello World!\n");

end Main;

Sanning

Command: ./jaa -s < hello.ada

Output:

pakage

id : Main

is

body

begin

id : write

lp

string : "Hello World!"

rp

semiolon

4

end

id : Main

semiolon

eof

Parsing

Command: ./jaa -p < hello.ada

Output:

-+Compiln

|-+CompilnUnit

| \-+PkgDe

| |--pakage (L3 C7)

| |-+PkgSpeOrBody

| | |--id : Main (L3 C12)

| | |--is (L3 C15)

| | |--SpeDeS

| | |--PvtPartO

| | |-+BodyOpt

| | | |--body (L3 C0)

| | | |--BodyDeS

| | | \-+BeginStmtsO

| | | |--begin (L4 C0)

| | | |-+StmtS

| | | | |-+Stmt

| | | | | \-+CallStmt

| | | | | |-+Name

| | | | | | |-+Name

| | | | | | | \-+SimpName

| | | | | | | \--id : write (L6 C13)

| | | | | | |--lp (L6 C14)

| | | | | | |-+ExprList

| | | | | | | \-+Expr

| | | | | | | \-+Reln

| | | | | | | \-+SimpExpr

| | | | | | | \-+SimpExprNoUnary

| | | | | | | \-+Term

5

| | | | | | | \-+Fator

| | | | | | | \-+Primary

| | | | | | | \-+Literal

| | | | | | | \--string : "Hello World!" (L6 C28)

| | | | | | \--rp (L6 C29)

| | | | | \--semiolon (L6 C30)

| | | | \--StmtS

| | | \--XptnPartO

| | |--end (L8 C3)

| | \-+IdOpt

| | \--id : Main (L8 C8)

| \--semiolon (L8 C9)

\--CompilnUnitS

Type Cheking

Command: ./jaa -t < hello.ada

Output:

--Funtion all has type Type: VOID

|--String Literal Hello World!

Code Prodution

Command to ompile to assembly:

./jaa - < hello.ada > hello.s

Output (hello.s):

.setion ".data"

.align 4

INTREADBUF: .word 0

.setion ".text"

.align 4

PERCENTS: .asiz "%s"

PERCENTI: .asiz "%i"

TRUE: .asiz "true"

FALSE: .asiz "false"

LS0x818720_LITERAL:

.asiz "Hello World!\n"

6

.align 4

.align 4

.global main

main:

save %sp,-104,%sp

mov %fp, %r7 ! %r7 is reserved for global frame pointer

! PLEASE DO NOT OVERWRITE %r7

st %fp, [%fp-4℄

! Calling StringWriteRef

set LS0x818720_LITERAL, %r9

set PERCENTS, %r8

all printf,0

nop

ret

restore

Command to assemble and link hello.s:

g -o hello hello.s

Exeution of hello:

Command: ./hello

Output: Hello World!

Register Statistis

Note that in this ase, the sample program uses no variables, parameters, or

subexpression temporaries, so all the statistis are zero. If this were a more

realisti program, the statistis would reet the alloation of memory to its

variables, parameters, and temporaries.

Command: ./jaa -r < hello.ada

Output:

===

Register alloation statistis:

Type of value Number Total bytes

===

7

Must be on stak 0 0

Plaed in register 0 0

Could be in %i reg but none free 0 0

Could be in any reg but none free 0 0

===

1.4 Soure File List

jaa.h ommon delarations used everywhere

adas.slr SLR(1) grammar for Ada/CS used as input to slr

adas.h output from SLR ontaining all the information in the grammar in

a form reognizable by C++, along with the parser transition table

san.f,hg sanner

parse.f,hg LR parser with error reovery

error. ode to report errors and print debugging information

symbols.f,hg base lasses for symbols and produtions with implemen-

tation of base lass member funtions { this inludes the attribute

grammar evaluator

attributes.h delaration of all the attributes in the attribute grammar,

along with their type (syntheti, inherited, et.) and default values

terms.f,hg lass delarations of terminal symbol lasses and their imple-

mentation

nonterms.f,hg lass delarations of non-terminal symbol and prodution

rule lasses and their implementation { this inludes the implementa-

tion of the attribute grammar rules

atus.h atus stak template used for the symbol table and parser error

reovery

ST.f,hg symbol table

8

symref.f,hg delarations and implementation of symbol reords repre-

senting anything appearing as an identi�er or literal in the soure {

also inludes de�nitions of primitive Ada/CS funtions and operators

symode. This �le inludes all the funtions that produe assembly ode.

string.f,hg tree-based implementation of an eÆient string lass whih

an onatenate strings in onstant time, used to build up long strings

suh as a parse table or the output ode

FT.f,hg The FrameTop lass whih assigns spae to variables (either on

the stak or in registers)

jaa. main program

makefile GNU make�le

1.5 Language Features

Deiding whih features to inlude was a knapsak problem onstrained by

the limited time whih we had to omplete the projet. We tried to assign a

value to features based on how interesting they were to implement, how muh

we would learn from implementing them, and how important they would be

to someone trying to use our ompiler. Attempting to use an unsupported

feature auses the ompiler to halt with a message speifying the unsupported

feature whih the user was attempting to invoke.

1.5.1 Supported Features

Our ompiler supports the following features of Ada/CS:

� delare bloks (sopes)

� built-in types

{ integer

{ string

1

{ boolean

1

Only string onstants are supported; they annot be manipulated

9

� all Ada/CS built-in operators

{ overloading of operators

� enumeration types

� reord types

� variables

� named onstants

� initialization of variables and onstants within delarations

� loops

{ for

2

{ while

{ exit and exit when statements

{ named loops with exit out of spei� named loop

� subprograms

{ reursion

{ nested subprograms and potentially reursive alls between them

{ overloading and overload resolution

� Read for built-in types (exept string)

� Write for all built-in types

1.5.2 Unsupported Features

We did not have suÆient resoures to make our ompiler support the fol-

lowing features of Ada/CS. We have avoided design deisions whih would

make it diÆult to add these features.

� oating point numbers

2

Only simple ranges of the form Expression .. Expression are supported

10

� aess types

� array types

� subtypes

� aggregates

� ase statements

� quoted attributes ('�rst, 'last, et)

� (use) pakages

� exeptions

11

Chapter 2

Design Doumentation

2.1 Design Goals

The purpose of this projet was for us to learn how to write a ompiler for a

full-featured language like Ada, and to demonstrate that we did in fat learn

what we did. With this in mind, our priorities in making design deisions

were, in general, as follows:

1. Ease of maintenane and ease of implementation { We mention ease

of maintenane �rst, as it is the most signi�ant ontributor to ease

of implementation in a large projet. We put a lot of thought into

making our ompiler easy to maintain and to write. For example, we

went to a great deal of e�ort to make it possible to loally modify parts

of the grammar with very little e�ort even after the ode generation

phase was omplete (see setions 2.3 and 2.4). Our formal automati

memoizing attribute grammar evaluator made it muh easier to write

all the semanti funtionality { the bulk of the implementation e�ort

{ than it would have been with ad ho methods. We wanted it to be

possible to implement the ompiler in the six man-months that we had

available, without having to work more than we would have had to at

a full-time job. At 8715 lines of (non-automatially-generated) soure,

and 4166 lines of distint test programs, we were not fully suessful

in meeting this goal. However, we did manage to implement the most

important features thoroughly enough to ful�l our main purpose as

stated above.

12

2. Extendibility { For every design deision we made, we onsidered how

it would a�et the implementation of additional features, espeially the

ones that we did not end up implementing. We wanted it to be possible

to implement the rest of Ada/CS given additional time without having

to undo any of the deisions that we made. In a broader sense, we

wanted the piees of our ompiler to be reusable for ompletely di�erent

languages. Our parser table generator, parser, and attribute grammar

evaluator are ompletely general. The general design of our sanner

an be used for other languages with slight modi�ations. Our symbol

table, register and stak alloator, and value desription objets an be

also be reused for other languages with only slight modi�ations.

3. Eduational and demonstrative value { In hoosing features to imple-

ment, we hose ones whih would teah us the most for the time re-

quired to implement them, and whih would show what we had learned.

For example, we implemented reords as an example of a non-salar

type that does not �t in a register. We did not implement ase state-

ments, beause they involvemany tedious details, and they only require

slightly more thought than if statements.

4. Usefulness of implemented features { We wanted to have a ompiler

omplete enough to be able to ompile real programs. We therefore

onsidered essential, ommonly-used features �rst, suh as variables,

subprograms, and ontrol ow strutures, before onsidering more un-

usual features.

5. Runtime eÆieny of generated ode { This is an issue with almost

any ompiler, and we felt it important to onsider this issue in order to

understand the onstrution of real ompilers. Although this objetive

is listed last, in many ases, it did not onit with the other objetives.

For example, our stati haining implementation of nested subprograms

is very eÆient, yet also simple and easy to maintain. Also, in some

ases, we made eÆieny a priority. For example, we didn't have to

use registers at all to store values (and store them all in main memory

instead), but we felt that if we did this, we would be missing out on an

important part of ompiler design.

13

2.2 Strutural Overview

The following diagram depits the struture of jaa:

Scanner

Parser

Code

User Source Grammar

Attribute Grammar Evaluator

Annotated Parse Tree

Header File

Attribute Grammar Template

Attribute Computation Rules

Parse Tree

Filled Symbol Table

The reation of the ompiler begins with the grammar. The SLR Gen-

erator reates an SLR parse table from the grammar, and enodes all the

information ontained in the grammar in a C header �le. This header �le is

then inluded in the sanner and parser, and is also used to reate a template

for the attribute grammar omputation rules. The sanner and parser reate

a parse tree from a user's soure program. The attribute grammar evalu-

ator applies the attribute omputation rules to the parse tree, annotating

it with attributes desribing the semanti properties of the soure program.

These attributes inlude a symbol table, whih ontains symbol objets for

all symbols used in the program. Finally, there is a ode attribute, whih

uses all the semanti information from the annotated parse tree, inluding

the symbols, and reates assembly language ode, whih an then be used as

input to an assembler.

2.3 Grammar

The grammar is based on the Ada/CS grammar found in the �le

/u/s444/AdaCS.Grammar on undergrad.math mahines. The �rst step in

adapting the grammar was to onvert it to standard Bakus-Naur form. The

14

resulting grammar is not SLR(1); in fat, it is ambiguous. The next step was

therefore to onvert it to an equivalent unambiguous SLR(1) grammar, taking

are to make it reet the assoiativity and preedene rules for Ada/CS. In

order to remove the ambiguities, we had to loosen the grammar, so it aepts

ertain strings not aepted by the original grammar. Although it is likely

that an SLR(1) grammar exists whih aepts the same language as the

original grammar, it would be muh more ompliated than the original,

and the struture of the parse tree reated using suh a grammar would not

reet the meaning of the soure program. Furthermore, being ontext-free,

the original grammar neessarily aepts a wider language than the language

of all valid Ada/CS programs, beause this language is not ontext-free. This

means that the validity of an Ada/CS program annot be fully tested with

a ontext-free parser. A ontext-sensitive analysis stage is neessary. By

loosening the grammar to aept a larger language, we move some of the

analysis from the parser to the ontext-sensitive analysis stage.

2.4 SLR Table Generator

The SLR table generator is a modi�ed version of the one given in slr. on

the ourse web page. The only modi�ation is the addition of a funtion

alled writehdr() whih writes out the information produed by the SLR

table generator in the format of a C header �le (adas.h). This header �le

inludes:

� Enumerated type with numeri values for eah terminal and non-terminal

symbol

� A lass delaration for eah terminal and non-terminal symbol

� Enumerated type with numeri values for eah prodution rule in the

grammar

� A lass delaration for eah prodution rule in the grammar

� A preproessor maro ontaining ode to �ll a parser transition table

� A preproessor maro whih onverts the numeri value of eah symbol

into a test string desribing the symbol type

15

� A preproessor maro whih reates a new non-terminal symbol objet

of a given type spei�ed by the numeri value of the type

� A preproessor maro whih reates a new prodution rule objet of a

given type spei�ed by the numeri value of the type

Eah lass delaration inludes two funtions whih return the type and

string representation of the symbol or prodution rule. These allow us to

determine the type of an objet derived from a base lass, giving us the same

funtionality as the typease ommand in Modula-3, whih is unavailable

in C++. The lasses for prodution rules also ontain a funtion returning

the type of the left-hand-side non-terminal symbol of that rule. This is used

in onstruting the parse tree from the bottom up.

We want to be able to add funtions to the lasses for spei� symbols

and prodution rules to represent attributes and perform attribute ompu-

tations. To failitate this, the header �le de�nes preproessor maros on-

taining the lass delarations rather than the lass delarations themselves.

The maros atually get expanded in other header �les (urrently terms.h

and nonterms.h), and other member variables and member funtions may

be added in these header �les. This design allows us to modify the member

funtions generated by slr. for eah lass and regenerate the header �le

without a�eting the additional members for spei� lasses introdued in

terms.h and nonterms.h.

2.5 Sanner

The purpose of the sanner is to onvert a �le of Ada/CS soure into a stream

of tokens.

We deided to ode the sanner diretly in C++ rather than write a

generi �nite state mahine interpreter and a �nite state mahine for it.

The main reason for this was simpliity; sine the tokens in Ada/CS have a

reasonably simple struture, the �nite state token reognizer is simple enough

that it is less work to write it in C++ than to write a formal transition

funtion along with a general driver. To redue this work further, we wrote

preproessor maros and funtions to easily handle the kinds of tokens that

ommonly appear in programming languages, suh as integers, identi�ers,

and operators omposed of two symbols of whih eah is a symbol on its own.

Although this approah is not as general as a formal �nite state mahine,

16

our funtions and maros an be reused to write sanners for many ommon

languages. A formal �nite state mahine would not normally permit suh

reuse. Furthermore, writing the sanner in C++ makes it easier to handle

speial language features whih annot be expressed e�etively in a �nite

state mahine, suh as the '..' problem in Ada/CS (if you read 1., you don't

know whether the '.' is part of the oating point literal '1.0', or part of the

'..' operator, as in the range '1..5'). Beause the sanner does not use a

formal �nite state onstrution, it is infeasible to reognize keywords diretly

while sanning. Instead, we �rst reognize them as identi�ers, and then look

them up in a table to return the orret keyword token.

The sanner keeps trak of the urrent line and olumn for the purpose

of reporting errors to the user. It provides detailed error messages when it

is unable to group the soure text into a token. These inlude unterminated

string literals, malformed oating point literals, and unreognized haraters.

When suh an error ours, the sanner returns a token ontaining the longest

set of haraters it ould read before enountering a problem, and ontinues

sanning at the following harater in an attempt to reover from the error.

In this way, the sanner will hopefully unover and report all the errors rather

than just the �rst one.

For eah token reognized, the sanner reates an objet of the appropri-

ate type, and returns it to the parser.

2.6 Parser

The parser onstruts a parse tree from the terminals returned to it by the

sanner. It uses the LR parsing algorithm given in lass, and the SLR(1)

parse table produed by SLR and stored in the adas.h header �le. The

transition table ontains about 100,000 entries, so no attempt is made to

ompress it, sine it only takes 200 kB of memory. About 4,500 of the

entries are non-error entries.

Whenever the parser �nds a handle, it reates an objet for the prodution

rule for that handle, as well as a non-terminal objet for the left-hand side of

the rule. It links these objets together with the objets for the right-hand

side, so that at the end of the parse, the parser is left with a linked parse

tree, whih it returns.

We hose to use an LR parser beause an LL(1) grammar is not expressive

enough to desribe ertain onstruts niely, suh as operator assoiativity.

17

Also, an LR parser is simple and fast, and the 200 kB memory requirement

for the parser transition table is easily justi�ed on today's mahines with tens

or hundreds of megabytes of memory. If memory were sare, the transition

table ould have been ompressed in some sort of sparse matrix representa-

tion. Out of the LR parsers, we hose SLR(1) beause an easy-to-use tool for

reating SLR tables was readily available, beause it produed the smallest

transition table, and beause it was powerful enough to aept our grammar.

2.6.1 Parse Error Reovery

When a parse error ours, the parse tables provide no way for the parser to

ontinue. If this happens, we try to loally modify the input token stream into

something that will parse without error in order to ontinue the parse. We do

this by baking up in the input, inserting tokens, and deleting tokens. We try

all possible ombinations of baking up various amounts, inserting all strings

of tokens up to a maximum length, and deleting up to a maximum sequene

of tokens. For eah modi�ation attempted, we hek how far the parser an

ontinue before another parse error ours. We have a minimumthreshold for

how far the parser must get in order for it to aept a modi�ation. We also

have a maximum number of tokens that we try to parse after a modi�ation

to judge the quality of the modi�ation.

Of all the possible modi�ations, we �rst selet those whih allow the

parser to parse the longest number of tokens after the modi�ation, up to

the maximum threshold. From these, we selet the ones whih minimize

the sum of the number of tokens baked over, the number of insertions, and

the number of deletions. From the remaining set of modi�ations, we selet

the ones with the minimum amount of baktraking, then with the minimum

number of insertions. Finally, from the remainingmodi�ations, we selet one

arbitrarily as the modi�ation to use. The parameters of the error reovery

mehanism an be set in the de�nes in parse.. We deided to baktrak

up to 5 tokens, insert up to 3 tokens, delete up to 5 tokens, and ontinue

parsing from between 2 and 30 additional tokens. With 74 non-terminals,

this means that we searh a spae of almost 15 million possible strings of up

to 30 tokens eah. However, many of these strings ause parse errors very

early. Sine the proabability of a parse error at eah token is about 95.5%,

the expeted number of strings to atually hek for eah error is only around

1400. These parameters ensure that reovery time is well under half a seond

per error even on a slow mahine like undergrad.

18

Along with the error message, we give a line number and olumn, a list-

ing of the piee of ode that was modi�ed and a listing of the modi�ed

version, with one extra token on eah end for ontext. Our experiene has

been that an overwhelming majority of syntax errors whih we've made in

our test programs were orreted in the way in whih we would have or-

reted them ourselves. Also, in all programs that we were able to write,

the parser always found modi�ations whih allowed it to parse to the end

of the input, reporting all additional errors. There was one test program,

test/parse/parse test error.ada, with a large number of deliberate parse

errors for whih the parser ould not parse to the end of the input, but it

was able to parse 110 of the 143 lines.

The most unusual feature of our error-reovery mehanism is the bak-

traking. With this feature, we an reover from about 90% of errors or-

retly, ompared to about 55% without it. In order to implement baktrak-

ing, we used the atus stak abstration that we use in our symbol table

to eÆiently keep trak of the parse stak after eah token we parse. This

allows us to easily move the parser into a previous state, while using time

and spae linear in the size of the input.

Example

Input:

pakage Main = body -- equal instead of is

x : integer := 6;

funtion f is begin -- no return type

if x = 7 them -- misspelled then

x := 5;

end if;

return x;

end;

begin

x := f -- missing semiolon

end Main;

Output:

19

==

Error(L1 C14): Parse Error disovered here

I baktraked 0, inserted 1, and deleted 1 token(s) and I'm ontinuing.

I replaed

id : Main eq body

with

id : Main is body

==

Error(L5 C17): Parse Error disovered here

I baktraked 0, inserted 2, and deleted 0 token(s) and I'm ontinuing.

I replaed

id : f is

with

id : f return id is

==

Error(L6 C21): Parse Error disovered here

I baktraked 0, inserted 1, and deleted 1 token(s) and I'm ontinuing.

I replaed

integer : 7 id : them id : x

with

integer : 7 then id : x

==

Error(L14 C3): Parse Error disovered here

I baktraked 0, inserted 1, and deleted 0 token(s) and I'm ontinuing.

I replaed

id : f end

with

id : f semiolon end

2.7 Attribute Grammar Evaluator

After the parser has produed the parse tree, we apply our attribute grammar

evaluator to it to evaluate an attribute grammar whih spei�es the non-

ontext sensitive analysis of the program. The attribute grammar evaluator

uses reursion to automatially resolve dependenies between attributes. It

automatially memoizes all results of attribute evaluation to permit eÆient

evaluation. It also has built-in detetion of attempts to evaluate irular

20

referenes in the attribute grammar. The bulk of the attribute grammar

evaluator is implemented in the preproessor maros in symbols.h.

2.7.1 Attributes

All attributes are delared using preproessor maros in attributes.h. We

rede�ne these maros and inlude this �le in various plaes within the at-

tribute grammar evaluator to generate the appropriate attribute ode in eah

plae where it is needed. Every attribute is delared for all non-terminals in

the parse tree, so there is no need to delare attributes separately for eah

non-terminal that uses them. The value of the attribute need only be de�ned

for a subset of the non-terminals, and it only gets alulated for the ones in

whih it is required by other alulations. Default attribute omputations are

provided for all attributes; they are to be overridden for ertain produtions

in order to perform atual omputation.

Inherited Attributes

By default, inherited attributes are opied from the left-hand side of every

prodution to eah non-terminal on the right-hand side.

Syntheti Attributes

The three types of syntheti attributes di�er only in their default rule. A

normal syntheti attribute is opied from the left-most non-terminal on the

right-hand side to the left-hand side. This is useful beause many produ-

tions only have one non-terminal on their left-hand side, so it makes it easy

to pass things up from deep down the parse tree. A default value an be

spei�ed in the attribute delaration for produtions with no non-terminals

on their right-hand side. This default an be any attribute omputation.

For example, the SymTblUp attribute has the default lhs->SymTbl(), whih

makes it easy to implement "buket brigade" symbol table passing by auto-

matially sending the symbol table up whenever it reahes the bottom of the

parse tree.

Summing Syntheti Attributes

A summing syntheti attribute has a default rule that sums the values of the

attribute over all the non-terminals on the right-hand side of a prodution,

21

and assigns the result to the right-hand side. It uses the C++ operator +,

whih must be de�ned on the attribute type. Again, a default value may be

spei�ed for produtions with no non-terminals on the right-hand side. A

summing syntheti attribute is useful for reating strings desribing the parse

tree, where the string for a node is usually the onatenation of the strings

for its subtrees. A summing syntheti attribute would be used to onstrut

a printable version of the parse tree, or for putting together the generated

ode for a program from the ode generated for all the subtrees.

Max Syntheti Attributes

This type of attribute is similar to a summing syntheti attribute, but the

maximum value from all the right-hand side non-terminals is returned, in-

stead of the sum. This is used for alulating the size of a stak frame.

2.7.2 Computation Rule De�nition

Code overriding the default attribute omputation for an attribute named

Attribute is plaed in a member funtion alled CalAttribute of the lass

for the prodution rule in whih the attribute is to be evaluated. The gen-

erated lasses for the prodution rules ontain pointers to the symbols on

the left-hand side and right-hand side of the prodution. Attributes of any

symbol may be aessed by alling the member funtion Attribute(), where

Attribute is replaed by the name of the attribute being requested. The

evaluator takes are of the memoization and irular referene detetion au-

tomatially, with no additional ode. The CalAttribute funtion for a

syntheti attribute is always alled on a prodution rule to alulate the

value of the attribute for the left-hand side symbol of the prodution. For an

inherited attribute, a pointer to the symbol for whih the attribute is being

omputed is passed into the CalAttribute funtion so that it an tell for

whih right-hand side symbol it is being asked to alulate the attribute.

2.8 Attribute Computations

2.8.1 Attribute Computations For Delarations

The attributes for omputing delarations eah pass information up the parse

tree for other attributes, and the last attribute gets put into the symbol table.

22

The attributes are as follows:

Syntheti:string Id and

Syntheti:list<string>* IdList These attributes allow easy aess to

the names of a symbol.

Syntheti:TypeRef* TypeSubt This attribute reates the type of a de-

laration. If the delaration is a type delaration, then this is put into

the symbol table; otherwise, it is passed up the parse tree.

Syntheti:ParmList* AParmList This attribute takes eah identi�er in

a delaration and reates a variable symbol objet (ParmRef) whih

ontains the TypeSubt attribute and the identi�er. This is then passed

up the parse tree.

Syntheti:ST* SymTblUp and

Inherited:ST* SymTbl These attributes pass the symbol table up and

down the parse tree. The inherited attribute passes it down, the syn-

theti passes it up. The symbol table passes through the delaration

parts of the parse tree before the ode/statements setion, sine the

delarations are used in the ode.

Syntheti:FieldTList* FieldTs This syntheti attribute produes the list

of �eld types from the de�nition of a reord type. The list of �elds is

then inserted into the reord type objet for the reord.

Syntheti:FunRef* Fun This syntheti attribute reates a subprogram sym-

bol objet whih desribes the subprogram de�ned by the subtree for

whih the attribute is de�ned. The subprogram symbol objet on-

tains information suh as the name of the subprogram, the types of its

parameters and return value, and the label at whih its ode is found.

Inherited:FunRef* FunDown This inherited attribute passes the subprogram

symbol objet omputed by the Fun attribute down the parse tree, so

that the omputations whih generate ode for the subprogram have

aess to it. This is needed mainly to generate ode for the return

statement, whih needs to know where to plae the return value.

23

Inherited:int NestingLevel This attribute alulates the stati nesting

level of the urrent proedure. It is zero for the global sope, one for

a subprogram within the global sope, and one higher for eah level of

nesting of subprograms.

Syntheti Sum:int ContainedProedures and

Inherited:bool ContainsProedures ContainedProedures alulates the

number of subprograms nested within the urrent subprogram.

ContainsProedures is an inherited attribute passed down to the im-

plementation portion of a subprogram. It is true if and only if the

urrent subprogram ontains nested subprograms. If it does, no vari-

ables are alloated in registers; they are all alloated on the stak in

ase one of the nested subprograms needs to aess them.

If the delaration is an objet delaration, then eah element in the Parm-

List is put into the symbol table. If the delaration is a subprogram, enu-

meration or reord, then an appropriate symbol objet is reated and the

ParmList is embedded in it. In the ase of subprograms, the ParmList is

also added to the branhed symbol table for the body of that subprogram.

The enumeration delaration also adds its EnumLiterals (ontained in the

ParmList) to the symbol table, but they are inserted into the non-branhed

table.

2.8.2 Attribute Computations for Expression Type Chek-

ing and Overload Resolution

These attributes perform type heking on expressions, and selet the types

of subexpressions whih may not be immediately obvious due to funtion

overloading. The overload resolution algorithm is the one given in lass.

We make a set of all the possible types of an expression, and build it up

based on the possible types of subexpressions. One we get to the top of an

expression, we examine the set of possible types. If there is exatly one type

whih an be used, we go bak down the expression tree narrowing down

the set of possible types. If at any point there is not exatly one possible

type for a subexpression, then that subexpression is inorretly typed, and

we report an error, listing the subexpression that aused the error. The

following attributes are used:

24

Syntheti:string FunName Propagates the name of a funtion up to the

expression involving the funtion.

Syntheti:ValRef* ExprSym This attribute alulates a �nal symbol ob-

jet for the subexpression. The symbol objet ontains all the details

about the value represented by that expression.

Syntheti:TypeSet* PossibleTypes This attribute alulates a set of

type symbol objets for all the possible types of a subexpression. This

is built up from the return types of any funtions involved in the ex-

pression.

Syntheti:vetor<TypeSet*>* PossibleArgs This attribute ombines the

PossibleTypes attributes of the parameters to a funtion into one unit,

so that we an look for funtions having these types as arguments.

Inherited:TypeRef* RequiredType One the alulation of possible types

reahes the top of an expression tree, a unique type is determined for

the tree, and this attribute is used to alulate it. It is alulated on

all the subexpressions to determine their atual types.

Syntheti:vetor<TypeRef*>* RequiredArgs and

Inherited:vetor<TypeRef*>* RequiredArgsDown One a unique fun-

tion has been found for a potentially overloaded funtion identi�er,

these attributes give the argument list of the funtion. They are used

to do type-heking on the expressions whih are the arguments.

2.8.3 Attributes For Code Prodution

Stak and register alloation

Inherited:FT* FrameTop and

Syntheti:FT* FrameTopUp These attributes pass around the FrameTop

lass whih assigns loations for variables in registers or on the stak.

See setion 2.9.6 for more details.

Syntheti Max:int FrameSize This attribute alulates the maximum of

the stak portion of the FrameTop attribute in the subprogram de�ned

by the subtree. This is used to alulate the stak needs of the entire

25

subprogram, so that the stak pointer an be adjusted above the top

of the frame when the subprogram starts exeuting.

Code generation

Syntheti Sum:string Code This is the generated SPARC assembly ode

that forms the �nal output.

Syntheti Sum:string InitCode This is the variable initialization ode.

It is separate from the Code attribute beause variable initialization

ode must be plaed at the beginning of the body of the subprogram,

after any ode for other subprograms nested within it.

Syntheti Sum:string InrementCode This is the ode to inrement or

derement the loop variable in a for loop. The loop statement om-

putation for Code plaes it at the appropriate plae at the end of the

loop.

Syntheti Sum:string LiteralPool This ontains the ode for all the

literals that appear in the soure, eah with a label. It is plaed before

all of the ode, so that the ode an refer to these literals by their

labels.

Control strutures

Inherited:string BeginLabel Computes the label at the beginning of the

loop, so that the ode an branh to it at the end of the loop.

Inherited:string EndLabel Computes the label at the end of the loop, so

that the ode an branh to it when it needs to exit the loop (in an

exit statement or a false loop ondition).

Syntheti:Variable* LoopVar For a for loop, omputes the variable sym-

bol objet of the loop index variable.

Syntheti:Variable* EndVar For a for loop, omputes the variable symbol

objet of the temporary holding the end value of the range of the loop.

Syntheti:ValRef* StartSym For a range expression, omputes the value

symbol objet of the expression speifying the start of the range.

26

Syntheti:ValRef* EndSym For a range expression, omputes the value sym-

bol objet of the expression speifying the end of the range.

2.9 Major Data Strutures

2.9.1 Parse Tree

The main data struture in the ompiler is the parse tree, whih is a linked

olletion of symbol and prodution rule objets. The following diagram

gives the inheritane struture.

Rule

Rule Start bof Compiln eof

Rule Compiln CompilnUnit CompilnUnitS

.

.

.

Symbol

SymT (terminal)

SymT integer

SymT id

.

.

.

SymNT (non-terminal)

SymNT Expr

SymNT Stmt

.

.

.

There are two main base lasses, Rule and Symbol. Rule represents a

prodution rule in the grammar, and Symbol represents a terminal or non-

terminal symbol. There is one lass for eah prodution rule that inherits

from Rule. There are two lasses, SymT and SymNT, whih inherit from

Symbol. For eah terminal and non-terminal symbol, there is a lass whih

inherits from one of these two. By onvention, non-terminal symbols start

with a apital letter, and terminal symbols start with a lowerase letter.

The following diagram is an example of part of a parse tree representing

27

the prodution RangeConstraint -> range Range:

Rule_
RangeConstraint_
range_Range

lhs
r_range
r_Range

SymT_range

parent_rule
parent_sym

SymNT_Range

parent_rule
parent_sym

rule

RangeConstraint

SymNT_

There are pointers to allow eah objet aess to its parent and hildren

in the tree, so that attribute alulations an be done in the attribute om-

putation phase of the ompiler. Please see setion 2.7 for more information.

2.9.2 Symbol Table

The symbol table is based on a atus stak, desribed later. All identi�ers

delared in the program are pushed onto the branh of the atus representing

the urrent sope. When a new sope is to be reated, a new branh is

added to the atus, and a sope barrier is inserted to separate the sope

from the old sope. This is neessary when heking for dupliately delared

identi�ers, sine an identi�er an be delared with the name of a pre-existing

identi�er only if the pre-existing identi�er appears in a sope other than the

most loal one, (or the identi�er represents a subprogram being overloaded,

in whih ase speial rules apply).

The symbol table inludes funtions for retrieving either the top-most

symbol with a given name, or a set of all the symbols with a given name

(for �nding overloaded subprograms). The searh is done linearly through

the atus stak, so searh time is proportional to the number of symbols

visible in the urrent sope. Though we have found no evidene to suggest

that this is unaeptably slow, it ould easily be speeded up by representing

the symbol table as a hash table, with eah buket being a separate atus

stak.

When the symbol table is �rst reated, we insert symbols for all of the

built-in types, operators, and funtions (Read and Write). That way, these

28

are available in every sope, and may be overloaded. The built-ins an be

found at the end of the �le symref..

2.9.3 Catus Stak

The atus stak is a C++ template for a stak whih an be branhed in

onstant time. Branhing reates two staks with the same ontents as the

original stak, but they an be modi�ed (both pushed and popped) inde-

pendently. It is implemented as a linked list, with the stak being identi�ed

by its top. Branhing reates a new top pointing to the old stak. We use

referene ounts to allow us to free popped nodes only if there are no other

branhes oming out of them.

The atus stak is used in the parser error reovery to allow baktraking.

A new branh is made after eah token is proessed, e�etively reating a list

of the state of the parse stak after eah token, making baktraking possible.

The atus stak is also used to implement the symbol table. Here,

branhes in the stak represent the reation of new sopes.

2.9.4 Inheritane Hierarhy Of Symbols

A symbol objet (delared in symref.h) is used to represent anything that

appears as an identi�er or a literal in the soure. The �gure on page 31 gives

the inheritane hierarhy of these symbol objets. Symbol objets ontain

a name for the objet, and pointers to other symbol objets. For example,

every value has a pointer to its type, a subprogram ontains a list of pointers

to its parameters, a reord ontains a list of pointers to its �elds, and so

on. Eah type is identi�ed by a single type symbol. Sine in Ada/CS, every

newly-de�ned type gets a new ookie, and types are equivalent if and only

if they have the same ookie, we simply use the address of the type symbol

as the ookie, and type equivalene an be determined with just a pointer

omparison. If we were implementing a language whih, unlike Ada/CS, had

true subtyping, we would need a more ompliated type equivalene and type

assignability funtion.

The symbol objets for values (inluding subprograms) play a major role

in ode generation. Eah value symbol ontains all of its ompile-time infor-

mation, suh as where in memory (or in whih register) it is stored. Value

symbols also have methods suh as Feth and Store into registers (for salar

values), Copy to opy between two values (not neessarily salar), CopyIn and

29

CopyOut to pass parameters into and out of subprograms, and Call on sub-

program symbols to generate ode for a funtion all. The implementation

of all these methods is found in the �le symode..

30

Symbol

Sope Barrier

Void

Type

Any Type

Integer Type

String Type

Float Type

Null Type

Enumerated Type

Aess Type

Reord Field Type

Reord Type

Value

Any Value

Subprogram Value

Parameter (Named) Value

Named Salar Constant

Salar Variable

Reord Field

Reord Variable or Constant

Literal Value

Integer Literal

Float Literal

String Literal

Enumeration Label

Null Literal

31

2.9.5 EÆient String Class

The motivation for this lass was the Code attribute. It has to be passed

around the parse tree, with ode fragments for branhes being onatenated

together and passed up the tree. This onatenation an be done with very

large strings sine the strings represent ompiled output (assembler) of the

ompiler. The STL string lass does not do eÆient onatenation; it re-

ates a new bu�er and opies both strings into it.

The new string lass (string) takes advantage of the fat that the Code

attribute never gets manipulated after it is �rst reated (a ode fragment is

only onatenated with other fragments of ode). The string lass reates

a binary tree with the leaves having STL string values. With this struture,

we an onatenate strings in onstant time by just reating a new node with

the two strings to be onatenated as its hildren. To output the string, we

perform an in-order traversal of the binary tree, outputting the strings at the

leaves.

The string lass is now used in many of the funtions for outputting in-

formation inluding dumping the symbol table, the parse tree, the TypeTree

attribute and the TypeTreeIndent attribute.

2.9.6 Stak and Register Alloation (FrameTop) lass

The FrameTop lass (FT) is responsible for assigning spae to variables. It

keeps a list of available registers and the urrent size of the stak frame in the

urrent blok. Currently the registers are assigned on a �rst ome �rst served

basis (see setion 2.10.4 for details), but the framework ould be extended to

use a more sophistiated method. This lass is passed around the parse tree

using the FrameTop and FrameTopUp attributes, whose propagation around

the parse tree ontrols the lifetime of variables and temporaries.

2.10 Implementation of Language Features

This ompiler produes SPARC assembly ode. Comments have been added

to the produed ode so that it may be easily read, understood, and de-

bugged.

32

2.10.1 Salar Values

Whenever a salar value is enountered in the soure �le, a value symbol ob-

jet is reated for it. This symbol objet may be a literal symbol objet, or

a named value symbol objet, depending on the value. The objet stores all

the ompile-time information about the value, inluding its type, its size, its

memory or register loation (as assigned by the FrameTop stak and register

alloation objet), its onstantness, and, in the ase of a literal, its value.

Salar variables are assigned spae either in a register, or, if none are avail-

able, on the stak, at a spei� negative o�set from the frame pointer. The

syntheti attribute FrameSize alulates the stak needs of eah subprogram,

and at the start of the subprogram, the stak pointer is set to point above

any values potentially used by the subprogram. This means that the amount

of stak spae required by a subprogram must be known at ompile time,

whih may not be the ase if the subprogram ontains loal variables whose

size is not known at ompile time. In order to support this, we would have

to generate ode to alulate the frame size at runtime and adjust the stak

pointer aordingly. There is nothing to prevent us from adding this exept

lak of time.

2.10.2 Literal Pool

We do not keep a literal pool for salar values; instead, we simply insert them

into the ode where they are used. Our ompiler supports string literals,

and ould be easily extended to support other non-salar types of literals.

These are all olleted using a syntheti attribute, and inluded together as

onstants at the beginning of the assembly output. The assoiated literal

value objets ontain the unique label assigned to eah literal, so they an

generate the ode to aess the literals.

2.10.3 Temporaries

Temporary variables (both salar and aggregate types) are alloated using

the FrameTop objet just like any other variables, so they may be plaed

in registers, or on the stak. Instead of a ompliated temporary alloation

and freeing algorithm, we deided to simplify things by making the lifetime

of a temporary be a single statement. This makes temporaries very easy to

alloate: we alloate them using the FrameTop objet, the same as variables.

33

We go bak to the same FrameTop objet at the start of every statement, so

any temporaries alloated for preeding statements don't appear in it, and

their spae is free to be used.

No temporary ever needs to be around for longer than a single statement.

This simpli�ation is only slightly wasteful in the ase of very ompliated

expressions, in whih some memory loations (whih ould be valuable reg-

isters) ould be reused for more than one temporary. However, in most

programs, very ompliated expressions are usually split up over multiple

statements for readability. Also, on the SPARC, there are usually enough

registers to aommodate most expressions found in typial programs.

2.10.4 Register Alloation

Only the %i and %l registers are used for salar values, as these registers are

automatially saved and restored on funtion all by the SPARC's sliding

registers. Variables whih are formal parameters (in, out, or both) to a

subprogram must use the %i registers to allow the aller to opy into them

diretly using what it sees as %o registers. When the funtion all is made,

the %o registers slide to beome %i registers. The return value from a funtion

is just like an out parameter, so it too an be plaed in an %i register whih

slides bak to an %o register when the funtion returns.

The global registers, %g1-7, are used for global values whih never hange,

or for temporary values whih need never be preserved. Registers %g1-4 are

used to do omputations suh as addition, subtration, and exponentiation.

Registers %g6 and %g7 are used to implement nested subprograms. See the

setion on nested subprograms below for details. Register %g5 is never used.

For salar variables and subexpressions, we �rst try to use an %l register

to keep the %i registers free for formal parameters. When all the %l registers

are in use, we try to alloate an %i register, and if all of those are in use as

well, we put the value on the stak. This deision is made in the FrameTop

lass in FT.. The lifetime of a variable alloation is the duration of the

sope in whih it is de�ned. This is very simple, though not neessarily

optimal, sine it relies on the programmer to limit the size of the sope to

the atual required lifetime of the variable. The lifetime of a subexpression

is the statement in whih it appears, as disussed in "Temporaries", above.

Any value whih does not �t in a register (reords) is always plaed on

the stak. We make no attempt to plae spei� �elds of reords in registers,

beause we keep reord �elds onseutive in memory in order to make it

34

possible to implement aess types and allow yli linked strutures. If the

�elds of a reord were not all in memory, a pointer to a reord would have to

be represented as a pointer to eah �eld, and yli linked strutures would

be impossible to represent.

If a value is aessed by a subprogram nested within the subprogram in

whih the value is delared, the value annot be plaed in a register, beause

when we all the nested subprogram, the value would be slid out out with

the register window, and the nested subprogram would not be able to aess

it. Therefore, any variable delared in a sope in whih other subprograms

are nested is delared on the stak, and never in a register. This is simple,

but less than optimal. A less onservative and more eÆient solution would

be to hek for eah variable whether it is atually referened by any nested

subprograms, and try to plae it in a register if it is not. This would not even

be muh more ompliated to implement given the struture of our ompiler,

but we did not have enough time to do so.

We introdued the -r option to our ompiler in order to evaluate our

very simple register alloation strategy. An example of the output from this

option is shown below:

===

Register alloation statistis:

Type of value Number Total bytes

===

Must be on stak 291 1336

Plaed in register 469 1876

Could be in %i reg but none free 2 8

Could be in any reg but none free 8 32

===

This output is atually a summary of the register alloation statistis for

our entire test suite. Notie that beause we are ompiling for a non-Intel

proessor, there are many registers, and almost all the values that we an

plae in registers atually �t there. Notie also, however, that there are 291

values that ould not be plaed in registers. Some of these are reords, and

the rest are values alloated in sopes ontaining nested subprograms. It

may atually be possible to plae some of the latter values in registers if we

ould ensure that the nested subprograms do not aess them.

35

2.10.5 Reords

We represent a reord as the values of its �elds, plaed onseutively in

memory. We alloate memory for the entire reord. Eah �eld has a speial

memory addressing objet whih does not atually own any memory, but

ontains a pointer to the reord type, as well as an o�set of the �eld value

within the reord. All of this information is ompile-time information. If

we were to implement variant reords, we would have to add a new kind of

addressing objet whih would do the o�set alulation at runtime. There is

nothing whih would prevent us from doing this other than lak of time.

We support and test the use of reords in all plaes where salar values an

be used, inluding assignment, �elds nested within other reords, subprogram

parameters (both in and out), and funtion return values.

2.10.6 Subprograms

A subprogram is represented at ompile time by a funtion symbol objet.

This ontains information suh as the subprogram's name, a label at whih

the subprogram's ode is found, and a list of the subprogram's parameters

and/or return value. The parameters and return value are themselves value

symbol objets, so we an read and write to them both within the subpro-

gram, and at the all site.

In order to allow parameter passing to subprograms, we have three types

of value opy funtions. The �rst type does a simple assignment, opying

values as o�sets from %fp. The other two opy in and out, respetively, of a

subprogram, by opying to or from an o�set of %sp. In the alled subprogram,

%fp takes on the value of %sp of the aller, so these opy funtions allow

us to e�etively opy into the frame of the alled subprogram before we

all it, and opy bak out of it after the subprogram returns. The opy

funtions work with speial types of values: values in registers, and reord

types. For registers, aessing the value in the alled subprogram's frame

means aessing the orresponding %o register instead of the %i register.

Our register alloation ensures that parameters and return values are never

plaed in any other types of registers. For reord types, the opy funtions

generate ode to opy all the spae used by the reord, one word at a time.

The proedure for a subprogram all is therefore as follows:

1. Copy in parameters into the subprogram's frame.

36

2. Set up the display based on the nesting levels of the aller and the

alled subprogram (see "Nested Subprograms", below).

3. Make a all using the label of the proedure.

4. Copy out parameters out of the subprogram's frame.

5. Copy the return value (if any) out of the subprogram's frame.

2.10.7 Sope and delare bloks

Any new sope is represented only as a new sope marker objet plaed in

the symbol table. This is to allow us to distinguish symbols delared in

the urrent sope from symbols delared in outer sopes, in order to detet

dupliate delarations. The symbol table takes are of �nding the innermost

symbol with a given name when it is referened. A new sope does not get

its own frame on the stak, beause there is no need for one, reating one

would take time at runtime, and it would be more ompliated to implement.

Instead, a new sope inherits the FrameTop register and stak alloation

objet from its surrounding sope, so that it does not overwrite any values

alloated by the surrounding sope.

2.10.8 Built-in operators

The built-in operators are implemented as speial funtion symbol objets

whih have their Call method overridden. Instead of produing ode for

a proedure all, these Call methods perform the required omputations

in-line. The funtion symbol objets are plaed in the symbol table along

with all other funtions, so the built-in operators an easily be overloaded for

new types just by adding a normal subprogram to handle the omputation

required of the operator.

All values have a Suggest method, whih suggests to the built-in proe-

dures whih registers they should use. If the value is in a register, it suggests

that the built-in use that register for the omputation. If the value is not in a

register, a default register hosen from %g1-4 is used. Sine many values are

in registers, this suggestion mehanism generates muh more eÆient ode

than if �xed registers were always used. For example, if the variable X is

stored in %l1, for the statement X := X + X;, we would generate:

37

add %l1,%l1,%l1

instead of

mov %l1,%g1

mov %l1,%g2

add %g1,%g2,%g3

mov %g3,%l1

We should have { but did not have time to { extended the suggestion

mehanism to support suggesting small literals whih ould be plaed in the

ode in-line. For example, for X := X + 1, we should generate:

add %l1,1,%l1

instead of

set 1,%g2

add %l1,%g2,%l1

2.10.9 If-Then-ElsIf-Else

We represent boolean values the same way as any other enumerated type.

We do not try to represent them as branhes taken or not taken. Although

this would be slightly more eÆient, it would take extra work to be able to

evaluate ompliated boolean expressions using this representation. When

we enounter an if statement, we �rst evaluate the onditional expression.

We then test whether it is true or false, and if it is false, we branh past the

then lause. At this point, there may be ode for an elsif lause, the else

lause, or simply the end of the if statement. At the end of eah lause

exept the else lause, we branh out to the end of the whole if statement.

The formal attribute grammar evaluator makes it very easy to keep trak

of all the required labels, requiring only two attributes, BeginLabel and

EndLabel.

38

2.10.10 And-Then and Or-Else

And-then and or-else di�er from the standard and and or in two ways. First,

they annot be overloaded, so they are not implemented as funtion symbol

objets in the symbol table like the other built-in operators. Seond, these

boolean operators use short-iruit evaluation. If the �rst lause evaluates

to true (or) or false (and), we simply use its value as the result of the overall

expression, and skip over the evaluation of the seond lause. If we have to

evaluate the seond lause, then the value of the seond lause is the value

of the overall expression.

2.10.11 Loops

The overall struture of all loops is the same, for simpliity:

1. Initialization ode (optional)

2. Loop start label (optional)

3. Loop ondition (optional)

4. Loop body ode (may ontain exits)

5. Loop inrement/derement ode (optional)

6. Branh to start label

7. End label

This may not be the most eÆient representation in all ases, but it

is general enough to be able to support all types of loops with the same

struture. A simple loop does not implement any of the optional parts. A

while loop only needs to implement the loop ondition setion, and branh to

the end label if the ondition is false. A for loop implements all the optional

setions.

The loop start and end labels are propagated inside the loop generation

ode using the inherited attributes BeginLabel and EndLabel. Also, a opy

of the end label is plaed in the symbol table for the loop body as a loop exit

symbol objet. This is to allow an exit from a named loop, rather than the

innermost loop.

39

A for loop reates a new sope in the symbol table, and the loop variable

is plaed in the new sope, so it may hide any existing ourrene of the same

name.

2.10.12 Nested Subprograms

Our ompiler provides full support for nested subprograms, with several op-

timizations.

We use stati haining to implement nested subprograms. In eah frame,

at [%fp-4℄, we store a pointer to the frame of the stati parent subprogram.

We an follow these pointers to reah the frame of any stati anestor of the

urrently exeuting subprogram to aess its variables. The %g6 register is

used for this alulation.

In eah value symbol objet, we store the stati nesting level of where

that symbol is delared. Also, anywhere in the parse tree where we generate

ode, we have an inherited attribute alulating the stati nesting level of

that partiular piee of ode. For all value aesses, we pass in the stati

nesting level of the ode being generated, and the value objet knows its own

stati nesting level. The value objet an therefore generate ode to aess

itself at the orret number of levels up from the level of the ode being

generated.

The overhead of this sheme is minimal. Values at the urrent nesting

level are aessed with no overhead whatsoever. The overhead for aessing

values at higher levels is 1 + n instrutions, where n is the number of levels

we have to go up. As an additional optimization, we set the %g7 register to

point to the frame of the outermost (global) nesting level at the beginning

of the program, and we use that register to aess all values diretly at the

global level. This avoids having to follow a potentially long stati hain to

aess these values. The majority of variable aesses in typial programs are

to either the innermost nesting level, or to the global nesting level, and both

of these an be aessed diretly with no overhead. The remaining aesses

are often to more inner nesting levels as opposed to more outer ones, and the

more inner the nesting level is, the less overhead there is.

A all to a subprogram with a higher nesting level than the urrent one

requires a single instrution to store the urrent %fp in the frame of the

alled subprogram. A all to a subprogram with the same nesting level as

the urrent subprogram requires two instrutions to opy the urrent stati

link pointer from the urrent frame to the new frame. These are the two most

40

ommon types of subprogram all. A all to a subprogram with a smaller

(outer-more) nesting level than the urrent one requires us to follow the stati

links to �nd the stati link pointer orresponding to the level of the alled

subprogram, and opy it into the frame of the alled subprogram. This takes

a few extra instrutions, but these types of alls are rare. Beause the stati

link pointer is stored on the stak in the frame of eah subprogram, it is

automatially restored to its previous value on return from a subprogram.

41

Chapter 3

Testing Doumentation

3.1 File Loations

Unless otherwise indiated, test �les are found in the diretory :

/u/olhotak/s444/jaa/test/.

The exeutable is found at: /u/olhotak/s444/jaa/jaa. See the user

doumentation for more details.

The sript ./runtest in the diretory /u/olhotak/s444/jaa/ runs a

set of test �les through the ompiler, produing di�s of the output against

expeted output. runtest is explained in more detail at the and of this

setion. It takes one parameter, listed below:

san = run san test on �les in test/san/

parse = run parse test on �les in test/parse/

type = run type test on �les in test/type/

ode, �sher, ourse = ompile ada programs in test/<speified>/ di-

retory, outputting .s (SPARC assembly), assemble and link these into

exeutables using g, and then run the exeutables

The programs in the fisher diretory ome from the web page for the

ourse textbook, and were slightly modi�ed to �x syntati errors in them.

The programs in the ourse diretory ome from the ourse aount on

undergrad. The programs in the ode diretory are ones that we wrote

ourselves to demonstrate the spei� features of our ompiler.

42

San, parse and type produe <filename>.ada.out and

<filename>.ada.errors.out�les, whih are then ompared against .orret

�les.

Code, fisher, ourse produe <filename>.s �les, whih are then om-

piled to exeutable �les. These exeutable �les are run with any

<filename>.*.in �les piped in as standard input. The output is piped to

<filename>.*.out, and ompared to the .orret �les. If the exeutable

has no <filename>.*.in �les, then it is exeuted with no standard input

piped in. The output is similarly piped to <filename>.out and ompared

to the .orret �les.

3.2 Sanning

The san test �les an be found in the diretory san/.

<filename>.ada = Ada �les

<filename>.ada.out = output for <filename>.ada

<filename>.ada.out.orret = output has been heked as being orret

Sanning is quite easy to test; one runs Ada programs (or �les with similar

keywords and symbols) through jaa -s, and then heks that the output is

orret for the input. There are a few triky areas: omments, oats, ranges

(the .. an easily be onfused with a oat deimal point), strings and the eof

symbol (whih is added at the end of the �le). These are the areas most of

out tests fous on.

Comments: The �le omments.ada tests omments interspersed with de-

larations and statements, as well as omments found at the end of a

�le.

Floats and Ranges: The �le float.ada tests oating point numbers and

numbers with in them. Some of the ases are invalid oats like

300e--23 and 1.0e.1. This �le also tests ranges (<simple expr>..<simple

expr>).

Strings: The �le string.ada tests strings with double quotes, single quotes,

unusual haraters and non terminating strings (sanner uts this to

the end of the line).

End of �le: All the tests produe the eof symbol.

43

Other: The other �les test a range of Ada ode, some ontaining invalid

haraters like / in bad.ada.

3.3 Parsing

The parse test �les an be found in the diretory parse/.

<filename>.ada = Ada �les

<filename>.ada.out = output for <filename>.ada

<filename>.ada.out.orret = output has been heked as being orret

3.3.1 Parse Table

There are two levels of testing for our parser: heking if �les pass through

the parser without produing parse errors, and heking if the parse tree

is an aurate representation of the program. All the test ases have been

heked for the �rst level (see next paragraph), but only the Ada �les with

<filename>.ada.out.orret �les have been heked for the seond level.

The following is a list of some of the parsing errors from our test ases,

along with a reason for eah error:

<filename>:Error(<loation in file>) Reason for error

del04.ada.out:Error(L40 C35): a = b, should be a := b

parse test.ada.out:Error(L23 C0): no semiolon to end reord

parse test error.ada.out: many di�erent types of

ommon parse errors;

good demonstration of

error reovery

test26.ada.out:Error(L16 C58): ; instead of ,

test38.ada.out:Error(L3 C6): pragmas not supported

test39.ada.out:Error(L12 C15): Ada/CS does not allow objet

delarations in a private item

The error reovery system reovers sensibly from most of the parse errors.

For example, the unsupported pragma statement is just removed and the

parsing ontinues.

The following lists parts of the grammar and an Ada �le whih tests it.

Not all the Ada �les atually used in testing are listed here.

44

Part of Grammar <filename>.ada

Pakage Delarations (interfae and body) del03.ada

Delarations of Variables test03.ada

del03.ada

Subprograms test30.ada

test28.ada

del03.ada

Types, subtypes del03.ada

Ranges test11.ada

If Statements test20.ada

Case Statements test25.ada

Loops Statements test22.ada

test23.ada

3.4 Delarations

3.4.1 Type Delarations

It is quite hard to test type delarations by themselves, sine they just reate

entries in the symbol table. They do use eah other, but almost never in a

ompliated way. In fat, the top level of delarations never get tested or

used within other delarations. There is a small amount of type heking

here, for example, a : bla; heks that bla is atually a type that has

already been delared and inserted into the symbol table before reating

a value symbol objet for a and embedding the type bla within it. Sine

delarations are hard to test by themselves, testing of delarations usually

involves type heking and overload resolution (setion 3.5).

Below are the di�erent types of delarations with explanations of how

and where they are tested.

Subprogram Delaration

Subprograms have a name, a parameter list (ordered), a return type and

some ode. They an be overloaded to have the same name, but within one

sope, funtions of the same name must di�er in their return type or their

parameter list. (See �le type/multiDef.ada)

The return type of a funtion must type hek with the variable you are

45

assigning it to. The type heker an selet between funtions overloaded

with di�erent parameters, or with the same parameters, but di�erent return

type. Funtions may not be alled as proedures, with the return value

thrown away (this is allowed in C, but not in languages like Modula-3 and

Ada/CS). (See �le type/proOverload.ada)

Arrays

Arrays are not yet supported, but if they are used, jaa will say so and exit

leanly. (See �le type/arrays.ada)

Reords

Reord delarations assoiate a name with a list of �eld delarations. We

must test both the naming and the list of �elds. We also test reation of

variables of type reord, assignment of variables of type reord to eah other

(if they are not the same reord type, this should fail, even if they have the

same struture) and referring to �elds in the reord. Currently, the variant

part of reords is not implemented, and the ompiler gives an error indiating

this. (See �le type/reords.ada)

Enumerations

Enumerations assoiate a name (whih beomes a type) to a list of other

names (whih beome onstant variables). A variable given the type of the

enumeration an be assigned only values from the list assoiated with that

enumeration. (See �le type/enums.ada)

Aess Types

An aess type is a pointer type. These an urrently be delared, but not in-

stantiated, beause we do not urrently support dynami memory alloation.

A message to that e�et is printed if someone tries to reate a new objet of

some type to assign to an aess variable. (See �le type/aess.ada)

3.4.2 Objet Delarations

Objet delarations assign a variable name to a type. Only one variable an

have the same name in eah sope. (See �le type/multiDef.ada) These are

46

used everywhere, so almost every one of our test ases will use an objet

delaration.

3.5 Expression Type Cheking and Overload

Resolution

Overload resolution has already been disussed in the subprogram testing

setion above.

Expression type heking is used in most of the �les referred to that test

delarations. The ones used in these �les are simple (usually just assignment

or addition). More ompliated type heking involves ombining all the

delarations, sope and built ins. (See all .ada �les in the type/ diretory

as well as the /u/s444/Test3.ada/ diretory)

3.5.1 Built ins

There are many built in funtions and variables. For example Boolean:

(True, False) is a built in enumeration, + is built in for integers, read,

write, et. Eah of these is de�ned for a ertain set of built-in types, as

de�ned by the language. All built-in operators an be overloaded. (See �le

type/builtin.ada)

3.6 Sope

There are three main areas where sope omes into play: pakages, subpro-

gram delarations (funtions/proedures) and loops/bloks.

Pakages have delarations that are visible within the ode for that pak-

age. Pakages an export their delarations to other pakages with the use

lause. This is not urrently implemented and jaa will return an error stat-

ing this. Pakages an also have private delarations whih are visible only

within the pakage. Sine use is not implemented this annot be tested.

The parameters of a funtion are put into the sope of the funtion's body

and are only visible within that body.

The for loop de�nes a variable to iterate on and this variable is only

visible within the sope of the loop.

See �le type/sopeOfVars.ada for examples of all of these.

47

3.7 Code Prodution

Testing ode prodution is done through exhaustive test input. The input is

ompiled, and the produed exeutables are heked to see if they behave as

expeted. Below is a list of language features with Ada �les whih test them.

Only a few Ada �les are listed for eah feature; there may in fat be other

test �les that use the feature indiretly. Some of the tests below produe

NYI (not yet implemented) errors, showing that jaa will graefully fail for

unimplemented features.

The �les in the ode/ diretory are tests we reated, in ourse/ are tests

from the ourse aount, and in fisher/ are tests from the textbook web

site.

3.7.1 Delarations

pakages

delaration before implementation

use lause (NYI)

ourse/test41b.ada

ourse/test50.ada

private(NYI)/publi

ourse/del01.ada

fisher/test29.ada

subprograms

return values

ourse/fatorial.ada

type/funtion.ada

ode/funtion2s.ada

parameters

in, out, in/out

ode/inout1.ada

ode/display2.ada

no parameters

ode/funtions3.ada

non-salar parameters/return values

ode/reords1.ada

delaration before implementation (forward delaration)

48

ode/funtions1.ada

ode/display3.ada

ode/fatorial.ada

delaration w/o implementation (should give error)

ode/funtions1.ada

operators

ode/operators.ada

operator overloading

ode/overloading2.ada

overloading

ode/overloading1.ada

reursion

ode/fatorial.ada

proedure has no return type

ode/funtions2.ada

objet delarations (variables)

single name/multiple names (given same type)

ode/del.ada

initial value (with multiple names)

ode/initialize.ada

ode/readwrite.ada

ode/del.ada

aess types (NYI)

ourse/test05.ada

onstant variables

fisher/test18.ada

ourse/test13.ada

type delarations

enums

ode/enums.ada

reords

ode/reords1.ada

reords as �elds of other reords

ode/reords1.ada

variant reords

ourse/test46.ada

arrays

ourse/del02.ada

49

ourse/test05.ada

inomplete type delaration (NYI)

ourse/test08.ada

subtypes (NYI)

ourse/del03.ada

range onstraint

ourse/test09.ada

exeptions (NYI)

ompile time

ourse/test43.ada

runtime

Not Implemented

3.7.2 Statements

pragma (NYI)

parse/test38.ada

null statement

ode/null.ada

assign statement

ode/fatorial.ada

assignment of non-salars

ode/reords1.ada

all statement

fisher/test12.ada

delare blok

ode/blok.ada

loop

for loops (forward/reverse)

ode/loops.ada

ode/loops3.ada

while loops

ode/loops.ada

loop w/o while or for

ode/loops4.ada

loop exits (w/o id, with id)

50

ode/loops2.ada

ode/loops4.ada

if statements (if, else, elsif (multiple))

ode/enums.ada

exit statements

ode/loops2.ada

return statement

ode/enums.ada

ode/fatorial.ada

ode/reords1.ada

ase statement (NYI)

ourse/test25.ada

raise statement (NYI)

ourse/test43.ada

aggregates (NYI)

short-iruit evaluation (and then; or else)

ode/shortiruit.ada

string literals

ode/readwrite.ada

ode/test01.ada

ode/test04.ada

builtin funtions

operators

ode/operators.ada

ode/power.ada

enum '=' and '/=' operators

ode/enums.ada

read/write

ode/readwrite.ada

3.7.3 Sope

hiding variables and subprograms in sope

ode/display*.ada

ode/blok.ada

nested proedures/funtions

51

ode/display*.ada

sope of for loop variable

ode/loops3.ada

3.8 Statistis

Test �le statistis:

lines words bytes

san/*.ada 290 759 5797

parse/*.ada 2500 7051 40187

type/*.ada 280 804 5408

ode/*.ada 978 2665 17271

ourse/*.ada 2156 5928 36448

�sher/*.ada 1032 4705 27560

total: 7236 21912 132671

52

