
jaa

CS 444

Andrew Kane, 96411902

Ond�rej Lhot�ak, 96040603

April 8, 2000

Contents

1 User Do
umentation 3

1.1 Introdu
tion . 3

1.2 Command Line Options . 3

1.3 Hello World Example . 4

1.4 Sour
e File List . 8

1.5 Language Features . 9

1.5.1 Supported Features . 9

1.5.2 Unsupported Features 10

2 Design Do
umentation 12

2.1 Design Goals . 12

2.2 Stru
tural Overview . 14

2.3 Grammar . 14

2.4 SLR Table Generator . 15

2.5 S
anner . 16

2.6 Parser . 17

2.6.1 Parse Error Re
overy 18

2.7 Attribute Grammar Evaluator 20

2.7.1 Attributes . 21

2.7.2 Computation Rule De�nition 22

2.8 Attribute Computations . 22

2.8.1 Attribute Computations For De
larations 22

2.8.2 Attribute Computations for Expression Type Che
king

and Overload Resolution 24

2.8.3 Attributes For Code Produ
tion 25

2.9 Major Data Stru
tures . 27

2.9.1 Parse Tree . 27

2.9.2 Symbol Table . 28

1

2.9.3 Ca
tus Sta
k . 29

2.9.4 Inheritan
e Hierar
hy Of Symbols 29

2.9.5 EÆ
ient String Class 32

2.9.6 Sta
k and Register Allo
ation (FrameTop)
lass 32

2.10 Implementation of Language Features 32

2.10.1 S
alar Values . 33

2.10.2 Literal Pool . 33

2.10.3 Temporaries . 33

2.10.4 Register Allo
ation . 34

2.10.5 Re
ords . 36

2.10.6 Subprograms . 36

2.10.7 S
ope and de
lare blo
ks 37

2.10.8 Built-in operators . 37

2.10.9 If-Then-ElsIf-Else . 38

2.10.10And-Then and Or-Else 39

2.10.11 Loops . 39

2.10.12Nested Subprograms 40

3 Testing Do
umentation 42

3.1 File Lo
ations . 42

3.2 S
anning . 43

3.3 Parsing . 44

3.3.1 Parse Table . 44

3.4 De
larations . 45

3.4.1 Type De
larations . 45

3.4.2 Obje
t De
larations . 46

3.5 Expression Type Che
king and Overload Resolution 47

3.5.1 Built ins . 47

3.6 S
ope . 47

3.7 Code Produ
tion . 48

3.7.1 De
larations . 48

3.7.2 Statements . 50

3.7.3 S
ope . 51

3.8 Statisti
s . 52

2

Chapter 1

User Do
umentation

1.1 Introdu
tion

jaa
 stands for Just Another Ada Compiler. It is a
ompiler for the Ada/CS

subset of Ada. The
urrent implementation in
ludes the s
anning, pars-

ing,
ontext-sensitive analysis (type
he
king),
ode generation and register

statisti
s.

1.2 Command Line Options

The jaa
 sour
es and exe
utable
an be found on the undergrad environment

in the dire
tory /u/olhotak/
s444/jaa
. The name of the exe
utable is

jaa
. It takes the input Ada/CS sour
e from standard input. It a

epts the

following
ommand-line options:

-s Prints the output of the s
anner

-p Prints the output of the parser (the parse tree)

-t Prints the output of the
ontext-sensitive analysis (a type tree)

-
 Prints the output of the
ode generator, the assembly language
ode for

the program, suitable as input to an assembler (as)

-r Prints statisti
s on register allo
ation

-d Turns on additional debugging output

3

Any error output is sent to standard error. This in
ludes s
anning errors,

parsing errors, type errors, and unsupported features.

The following se
tion shows the output of the
ompiler for a very simple

example. For more
ompli
ated examples (with both input and output),

please see the dire
tories under /u/olhotak/
s444/jaa
/test. The s
an

dire
tory
ontains examples of the -s option. The parse dire
tory
ontains

examples of the -p option. The type dire
tory
ontains examples of the -t

option. The
ode,
ourse, and fis
her dire
tories
ontain examples of the

-
 option.

1.3 Hello World Example

Listing of hello.ada

-- basi
 'hello world'

pa
kage Main is body

begin

write("Hello World!\n");

end Main;

S
anning

Command: ./jaa
 -s < hello.ada

Output:

pa
kage

id : Main

is

body

begin

id : write

lp

string : "Hello World!"

rp

semi
olon

4

end

id : Main

semi
olon

eof

Parsing

Command: ./jaa
 -p < hello.ada

Output:

-+Compiln

|-+CompilnUnit

| \-+PkgDe

| |--pa
kage (L3 C7)

| |-+PkgSpe
OrBody

| | |--id : Main (L3 C12)

| | |--is (L3 C15)

| | |--Spe
De
S

| | |--PvtPartO

| | |-+BodyOpt

| | | |--body (L3 C0)

| | | |--BodyDe
S

| | | \-+BeginStmtsO

| | | |--begin (L4 C0)

| | | |-+StmtS

| | | | |-+Stmt

| | | | | \-+CallStmt

| | | | | |-+Name

| | | | | | |-+Name

| | | | | | | \-+SimpName

| | | | | | | \--id : write (L6 C13)

| | | | | | |--lp (L6 C14)

| | | | | | |-+ExprList

| | | | | | | \-+Expr

| | | | | | | \-+Reln

| | | | | | | \-+SimpExpr

| | | | | | | \-+SimpExprNoUnary

| | | | | | | \-+Term

5

| | | | | | | \-+Fa
tor

| | | | | | | \-+Primary

| | | | | | | \-+Literal

| | | | | | | \--string : "Hello World!" (L6 C28)

| | | | | | \--rp (L6 C29)

| | | | | \--semi
olon (L6 C30)

| | | | \--StmtS

| | | \--XptnPartO

| | |--end (L8 C3)

| | \-+IdOpt

| | \--id : Main (L8 C8)

| \--semi
olon (L8 C9)

\--CompilnUnitS

Type Che
king

Command: ./jaa
 -t < hello.ada

Output:

--Fun
tion
all has type Type: VOID

|--String Literal Hello World!

Code Produ
tion

Command to
ompile to assembly:

./jaa
 -
 < hello.ada > hello.s

Output (hello.s):

.se
tion ".data"

.align 4

INTREADBUF: .word 0

.se
tion ".text"

.align 4

PERCENTS: .as
iz "%s"

PERCENTI: .as
iz "%i"

TRUE: .as
iz "true"

FALSE: .as
iz "false"

LS0x81872
0_LITERAL:

.as
iz "Hello World!\n"

6

.align 4

.align 4

.global main

main:

save %sp,-104,%sp

mov %fp, %r7 ! %r7 is reserved for global frame pointer

! PLEASE DO NOT OVERWRITE %r7

st %fp, [%fp-4℄

! Calling StringWriteRef

set LS0x81872
0_LITERAL, %r9

set PERCENTS, %r8

all printf,0

nop

ret

restore

Command to assemble and link hello.s:

g

 -o hello hello.s

Exe
ution of hello:

Command: ./hello

Output: Hello World!

Register Statisti
s

Note that in this
ase, the sample program uses no variables, parameters, or

subexpression temporaries, so all the statisti
s are zero. If this were a more

realisti
 program, the statisti
s would re
e
t the allo
ation of memory to its

variables, parameters, and temporaries.

Command: ./jaa
 -r < hello.ada

Output:

===

Register allo
ation statisti
s:

Type of value Number Total bytes

===

7

Must be on sta
k 0 0

Pla
ed in register 0 0

Could be in %i reg but none free 0 0

Could be in any reg but none free 0 0

===

1.4 Sour
e File List

jaa
.h
ommon de
larations used everywhere

ada
s.slr SLR(1) grammar for Ada/CS used as input to slr

ada
s.h output from SLR
ontaining all the information in the grammar in

a form re
ognizable by C++, along with the parser transition table

s
an.f

,hg s
anner

parse.f

,hg LR parser with error re
overy

error.

ode to report errors and print debugging information

symbols.f

,hg base
lasses for symbols and produ
tions with implemen-

tation of base
lass member fun
tions { this in
ludes the attribute

grammar evaluator

attributes.h de
laration of all the attributes in the attribute grammar,

along with their type (syntheti
, inherited, et
.) and default values

terms.f

,hg
lass de
larations of terminal symbol
lasses and their imple-

mentation

nonterms.f

,hg
lass de
larations of non-terminal symbol and produ
tion

rule
lasses and their implementation { this in
ludes the implementa-

tion of the attribute grammar rules

a
tus.h
a
tus sta
k template used for the symbol table and parser error

re
overy

ST.f

,hg symbol table

8

symref.f

,hg de
larations and implementation of symbol re
ords repre-

senting anything appearing as an identi�er or literal in the sour
e {

also in
ludes de�nitions of primitive Ada/CS fun
tions and operators

sym
ode.

 This �le in
ludes all the fun
tions that produ
e assembly
ode.

string.f

,hg tree-based implementation of an eÆ
ient string
lass whi
h

an
on
atenate strings in
onstant time, used to build up long strings

su
h as a parse table or the output
ode

FT.f

,hg The FrameTop
lass whi
h assigns spa
e to variables (either on

the sta
k or in registers)

jaa
.

 main program

makefile GNU make�le

1.5 Language Features

De
iding whi
h features to in
lude was a knapsa
k problem
onstrained by

the limited time whi
h we had to
omplete the proje
t. We tried to assign a

value to features based on how interesting they were to implement, how mu
h

we would learn from implementing them, and how important they would be

to someone trying to use our
ompiler. Attempting to use an unsupported

feature
auses the
ompiler to halt with a message spe
ifying the unsupported

feature whi
h the user was attempting to invoke.

1.5.1 Supported Features

Our
ompiler supports the following features of Ada/CS:

� de
lare blo
ks (s
opes)

� built-in types

{ integer

{ string

1

{ boolean

1

Only string
onstants are supported; they
annot be manipulated

9

� all Ada/CS built-in operators

{ overloading of operators

� enumeration types

� re
ord types

� variables

� named
onstants

� initialization of variables and
onstants within de
larations

� loops

{ for

2

{ while

{ exit and exit when statements

{ named loops with exit out of spe
i�
 named loop

� subprograms

{ re
ursion

{ nested subprograms and potentially re
ursive
alls between them

{ overloading and overload resolution

� Read for built-in types (ex
ept string)

� Write for all built-in types

1.5.2 Unsupported Features

We did not have suÆ
ient resour
es to make our
ompiler support the fol-

lowing features of Ada/CS. We have avoided design de
isions whi
h would

make it diÆ
ult to add these features.

�
oating point numbers

2

Only simple ranges of the form Expression .. Expression are supported

10

� a

ess types

� array types

� subtypes

� aggregates

�
ase statements

� quoted attributes ('�rst, 'last, et
)

� (use) pa
kages

� ex
eptions

11

Chapter 2

Design Do
umentation

2.1 Design Goals

The purpose of this proje
t was for us to learn how to write a
ompiler for a

full-featured language like Ada, and to demonstrate that we did in fa
t learn

what we did. With this in mind, our priorities in making design de
isions

were, in general, as follows:

1. Ease of maintenan
e and ease of implementation { We mention ease

of maintenan
e �rst, as it is the most signi�
ant
ontributor to ease

of implementation in a large proje
t. We put a lot of thought into

making our
ompiler easy to maintain and to write. For example, we

went to a great deal of e�ort to make it possible to lo
ally modify parts

of the grammar with very little e�ort even after the
ode generation

phase was
omplete (see se
tions 2.3 and 2.4). Our formal automati

memoizing attribute grammar evaluator made it mu
h easier to write

all the semanti
 fun
tionality { the bulk of the implementation e�ort

{ than it would have been with ad ho
 methods. We wanted it to be

possible to implement the
ompiler in the six man-months that we had

available, without having to work more than we would have had to at

a full-time job. At 8715 lines of (non-automati
ally-generated) sour
e,

and 4166 lines of distin
t test programs, we were not fully su

essful

in meeting this goal. However, we did manage to implement the most

important features thoroughly enough to ful�l our main purpose as

stated above.

12

2. Extendibility { For every design de
ision we made, we
onsidered how

it would a�e
t the implementation of additional features, espe
ially the

ones that we did not end up implementing. We wanted it to be possible

to implement the rest of Ada/CS given additional time without having

to undo any of the de
isions that we made. In a broader sense, we

wanted the pie
es of our
ompiler to be reusable for
ompletely di�erent

languages. Our parser table generator, parser, and attribute grammar

evaluator are
ompletely general. The general design of our s
anner

an be used for other languages with slight modi�
ations. Our symbol

table, register and sta
k allo
ator, and value des
ription obje
ts
an be

also be reused for other languages with only slight modi�
ations.

3. Edu
ational and demonstrative value { In
hoosing features to imple-

ment, we
hose ones whi
h would tea
h us the most for the time re-

quired to implement them, and whi
h would show what we had learned.

For example, we implemented re
ords as an example of a non-s
alar

type that does not �t in a register. We did not implement
ase state-

ments, be
ause they involvemany tedious details, and they only require

slightly more thought than if statements.

4. Usefulness of implemented features { We wanted to have a
ompiler

omplete enough to be able to
ompile real programs. We therefore

onsidered essential,
ommonly-used features �rst, su
h as variables,

subprograms, and
ontrol
ow stru
tures, before
onsidering more un-

usual features.

5. Runtime eÆ
ien
y of generated
ode { This is an issue with almost

any
ompiler, and we felt it important to
onsider this issue in order to

understand the
onstru
tion of real
ompilers. Although this obje
tive

is listed last, in many
ases, it did not
on
i
t with the other obje
tives.

For example, our stati

haining implementation of nested subprograms

is very eÆ
ient, yet also simple and easy to maintain. Also, in some

ases, we made eÆ
ien
y a priority. For example, we didn't have to

use registers at all to store values (and store them all in main memory

instead), but we felt that if we did this, we would be missing out on an

important part of
ompiler design.

13

2.2 Stru
tural Overview

The following diagram depi
ts the stru
ture of jaa
:

Scanner

Parser

Code

User Source Grammar

Attribute Grammar Evaluator

Annotated Parse Tree

Header File

Attribute Grammar Template

Attribute Computation Rules

Parse Tree

Filled Symbol Table

The
reation of the
ompiler begins with the grammar. The SLR Gen-

erator
reates an SLR parse table from the grammar, and en
odes all the

information
ontained in the grammar in a C header �le. This header �le is

then in
luded in the s
anner and parser, and is also used to
reate a template

for the attribute grammar
omputation rules. The s
anner and parser
reate

a parse tree from a user's sour
e program. The attribute grammar evalu-

ator applies the attribute
omputation rules to the parse tree, annotating

it with attributes des
ribing the semanti
 properties of the sour
e program.

These attributes in
lude a symbol table, whi
h
ontains symbol obje
ts for

all symbols used in the program. Finally, there is a
ode attribute, whi
h

uses all the semanti
 information from the annotated parse tree, in
luding

the symbols, and
reates assembly language
ode, whi
h
an then be used as

input to an assembler.

2.3 Grammar

The grammar is based on the Ada/CS grammar found in the �le

/u/
s444/AdaCS.Grammar on undergrad.math ma
hines. The �rst step in

adapting the grammar was to
onvert it to standard Ba
kus-Naur form. The

14

resulting grammar is not SLR(1); in fa
t, it is ambiguous. The next step was

therefore to
onvert it to an equivalent unambiguous SLR(1) grammar, taking

are to make it re
e
t the asso
iativity and pre
eden
e rules for Ada/CS. In

order to remove the ambiguities, we had to loosen the grammar, so it a

epts

ertain strings not a

epted by the original grammar. Although it is likely

that an SLR(1) grammar exists whi
h a

epts the same language as the

original grammar, it would be mu
h more
ompli
ated than the original,

and the stru
ture of the parse tree
reated using su
h a grammar would not

re
e
t the meaning of the sour
e program. Furthermore, being
ontext-free,

the original grammar ne
essarily a

epts a wider language than the language

of all valid Ada/CS programs, be
ause this language is not
ontext-free. This

means that the validity of an Ada/CS program
annot be fully tested with

a
ontext-free parser. A
ontext-sensitive analysis stage is ne
essary. By

loosening the grammar to a

ept a larger language, we move some of the

analysis from the parser to the
ontext-sensitive analysis stage.

2.4 SLR Table Generator

The SLR table generator is a modi�ed version of the one given in slr.
 on

the
ourse web page. The only modi�
ation is the addition of a fun
tion

alled writehdr() whi
h writes out the information produ
ed by the SLR

table generator in the format of a C header �le (ada
s.h). This header �le

in
ludes:

� Enumerated type with numeri
 values for ea
h terminal and non-terminal

symbol

� A
lass de
laration for ea
h terminal and non-terminal symbol

� Enumerated type with numeri
 values for ea
h produ
tion rule in the

grammar

� A
lass de
laration for ea
h produ
tion rule in the grammar

� A prepro
essor ma
ro
ontaining
ode to �ll a parser transition table

� A prepro
essor ma
ro whi
h
onverts the numeri
 value of ea
h symbol

into a test string des
ribing the symbol type

15

� A prepro
essor ma
ro whi
h
reates a new non-terminal symbol obje
t

of a given type spe
i�ed by the numeri
 value of the type

� A prepro
essor ma
ro whi
h
reates a new produ
tion rule obje
t of a

given type spe
i�ed by the numeri
 value of the type

Ea
h
lass de
laration in
ludes two fun
tions whi
h return the type and

string representation of the symbol or produ
tion rule. These allow us to

determine the type of an obje
t derived from a base
lass, giving us the same

fun
tionality as the type
ase
ommand in Modula-3, whi
h is unavailable

in C++. The
lasses for produ
tion rules also
ontain a fun
tion returning

the type of the left-hand-side non-terminal symbol of that rule. This is used

in
onstru
ting the parse tree from the bottom up.

We want to be able to add fun
tions to the
lasses for spe
i�
 symbols

and produ
tion rules to represent attributes and perform attribute
ompu-

tations. To fa
ilitate this, the header �le de�nes prepro
essor ma
ros
on-

taining the
lass de
larations rather than the
lass de
larations themselves.

The ma
ros a
tually get expanded in other header �les (
urrently terms.h

and nonterms.h), and other member variables and member fun
tions may

be added in these header �les. This design allows us to modify the member

fun
tions generated by slr.
 for ea
h
lass and regenerate the header �le

without a�e
ting the additional members for spe
i�

lasses introdu
ed in

terms.h and nonterms.h.

2.5 S
anner

The purpose of the s
anner is to
onvert a �le of Ada/CS sour
e into a stream

of tokens.

We de
ided to
ode the s
anner dire
tly in C++ rather than write a

generi
 �nite state ma
hine interpreter and a �nite state ma
hine for it.

The main reason for this was simpli
ity; sin
e the tokens in Ada/CS have a

reasonably simple stru
ture, the �nite state token re
ognizer is simple enough

that it is less work to write it in C++ than to write a formal transition

fun
tion along with a general driver. To redu
e this work further, we wrote

prepro
essor ma
ros and fun
tions to easily handle the kinds of tokens that

ommonly appear in programming languages, su
h as integers, identi�ers,

and operators
omposed of two symbols of whi
h ea
h is a symbol on its own.

Although this approa
h is not as general as a formal �nite state ma
hine,

16

our fun
tions and ma
ros
an be reused to write s
anners for many
ommon

languages. A formal �nite state ma
hine would not normally permit su
h

reuse. Furthermore, writing the s
anner in C++ makes it easier to handle

spe
ial language features whi
h
annot be expressed e�e
tively in a �nite

state ma
hine, su
h as the '..' problem in Ada/CS (if you read 1., you don't

know whether the '.' is part of the
oating point literal '1.0', or part of the

'..' operator, as in the range '1..5'). Be
ause the s
anner does not use a

formal �nite state
onstru
tion, it is infeasible to re
ognize keywords dire
tly

while s
anning. Instead, we �rst re
ognize them as identi�ers, and then look

them up in a table to return the
orre
t keyword token.

The s
anner keeps tra
k of the
urrent line and
olumn for the purpose

of reporting errors to the user. It provides detailed error messages when it

is unable to group the sour
e text into a token. These in
lude unterminated

string literals, malformed
oating point literals, and unre
ognized
hara
ters.

When su
h an error o

urs, the s
anner returns a token
ontaining the longest

set of
hara
ters it
ould read before en
ountering a problem, and
ontinues

s
anning at the following
hara
ter in an attempt to re
over from the error.

In this way, the s
anner will hopefully un
over and report all the errors rather

than just the �rst one.

For ea
h token re
ognized, the s
anner
reates an obje
t of the appropri-

ate type, and returns it to the parser.

2.6 Parser

The parser
onstru
ts a parse tree from the terminals returned to it by the

s
anner. It uses the LR parsing algorithm given in
lass, and the SLR(1)

parse table produ
ed by SLR and stored in the ada
s.h header �le. The

transition table
ontains about 100,000 entries, so no attempt is made to

ompress it, sin
e it only takes 200 kB of memory. About 4,500 of the

entries are non-error entries.

Whenever the parser �nds a handle, it
reates an obje
t for the produ
tion

rule for that handle, as well as a non-terminal obje
t for the left-hand side of

the rule. It links these obje
ts together with the obje
ts for the right-hand

side, so that at the end of the parse, the parser is left with a linked parse

tree, whi
h it returns.

We
hose to use an LR parser be
ause an LL(1) grammar is not expressive

enough to des
ribe
ertain
onstru
ts ni
ely, su
h as operator asso
iativity.

17

Also, an LR parser is simple and fast, and the 200 kB memory requirement

for the parser transition table is easily justi�ed on today's ma
hines with tens

or hundreds of megabytes of memory. If memory were s
ar
e, the transition

table
ould have been
ompressed in some sort of sparse matrix representa-

tion. Out of the LR parsers, we
hose SLR(1) be
ause an easy-to-use tool for

reating SLR tables was readily available, be
ause it produ
ed the smallest

transition table, and be
ause it was powerful enough to a

ept our grammar.

2.6.1 Parse Error Re
overy

When a parse error o

urs, the parse tables provide no way for the parser to

ontinue. If this happens, we try to lo
ally modify the input token stream into

something that will parse without error in order to
ontinue the parse. We do

this by ba
king up in the input, inserting tokens, and deleting tokens. We try

all possible
ombinations of ba
king up various amounts, inserting all strings

of tokens up to a maximum length, and deleting up to a maximum sequen
e

of tokens. For ea
h modi�
ation attempted, we
he
k how far the parser
an

ontinue before another parse error o

urs. We have a minimumthreshold for

how far the parser must get in order for it to a

ept a modi�
ation. We also

have a maximum number of tokens that we try to parse after a modi�
ation

to judge the quality of the modi�
ation.

Of all the possible modi�
ations, we �rst sele
t those whi
h allow the

parser to parse the longest number of tokens after the modi�
ation, up to

the maximum threshold. From these, we sele
t the ones whi
h minimize

the sum of the number of tokens ba
ked over, the number of insertions, and

the number of deletions. From the remaining set of modi�
ations, we sele
t

the ones with the minimum amount of ba
ktra
king, then with the minimum

number of insertions. Finally, from the remainingmodi�
ations, we sele
t one

arbitrarily as the modi�
ation to use. The parameters of the error re
overy

me
hanism
an be set in the de�nes in parse.

. We de
ided to ba
ktra
k

up to 5 tokens, insert up to 3 tokens, delete up to 5 tokens, and
ontinue

parsing from between 2 and 30 additional tokens. With 74 non-terminals,

this means that we sear
h a spa
e of almost 15 million possible strings of up

to 30 tokens ea
h. However, many of these strings
ause parse errors very

early. Sin
e the proabability of a parse error at ea
h token is about 95.5%,

the expe
ted number of strings to a
tually
he
k for ea
h error is only around

1400. These parameters ensure that re
overy time is well under half a se
ond

per error even on a slow ma
hine like undergrad.

18

Along with the error message, we give a line number and
olumn, a list-

ing of the pie
e of
ode that was modi�ed and a listing of the modi�ed

version, with one extra token on ea
h end for
ontext. Our experien
e has

been that an overwhelming majority of syntax errors whi
h we've made in

our test programs were
orre
ted in the way in whi
h we would have
or-

re
ted them ourselves. Also, in all programs that we were able to write,

the parser always found modi�
ations whi
h allowed it to parse to the end

of the input, reporting all additional errors. There was one test program,

test/parse/parse test error.ada, with a large number of deliberate parse

errors for whi
h the parser
ould not parse to the end of the input, but it

was able to parse 110 of the 143 lines.

The most unusual feature of our error-re
overy me
hanism is the ba
k-

tra
king. With this feature, we
an re
over from about 90% of errors
or-

re
tly,
ompared to about 55% without it. In order to implement ba
ktra
k-

ing, we used the
a
tus sta
k abstra
tion that we use in our symbol table

to eÆ
iently keep tra
k of the parse sta
k after ea
h token we parse. This

allows us to easily move the parser into a previous state, while using time

and spa
e linear in the size of the input.

Example

Input:

pa
kage Main = body -- equal instead of is

x : integer := 6;

fun
tion f is begin -- no return type

if x = 7 them -- misspelled then

x := 5;

end if;

return x;

end;

begin

x := f -- missing semi
olon

end Main;

Output:

19

==

Error(L1 C14): Parse Error dis
overed here

I ba
ktra
ked 0, inserted 1, and deleted 1 token(s) and I'm
ontinuing.

I repla
ed

id : Main eq body

with

id : Main is body

==

Error(L5 C17): Parse Error dis
overed here

I ba
ktra
ked 0, inserted 2, and deleted 0 token(s) and I'm
ontinuing.

I repla
ed

id : f is

with

id : f return id is

==

Error(L6 C21): Parse Error dis
overed here

I ba
ktra
ked 0, inserted 1, and deleted 1 token(s) and I'm
ontinuing.

I repla
ed

integer : 7 id : them id : x

with

integer : 7 then id : x

==

Error(L14 C3): Parse Error dis
overed here

I ba
ktra
ked 0, inserted 1, and deleted 0 token(s) and I'm
ontinuing.

I repla
ed

id : f end

with

id : f semi
olon end

2.7 Attribute Grammar Evaluator

After the parser has produ
ed the parse tree, we apply our attribute grammar

evaluator to it to evaluate an attribute grammar whi
h spe
i�es the non-

ontext sensitive analysis of the program. The attribute grammar evaluator

uses re
ursion to automati
ally resolve dependen
ies between attributes. It

automati
ally memoizes all results of attribute evaluation to permit eÆ
ient

evaluation. It also has built-in dete
tion of attempts to evaluate
ir
ular

20

referen
es in the attribute grammar. The bulk of the attribute grammar

evaluator is implemented in the prepro
essor ma
ros in symbols.h.

2.7.1 Attributes

All attributes are de
lared using prepro
essor ma
ros in attributes.h. We

rede�ne these ma
ros and in
lude this �le in various pla
es within the at-

tribute grammar evaluator to generate the appropriate attribute
ode in ea
h

pla
e where it is needed. Every attribute is de
lared for all non-terminals in

the parse tree, so there is no need to de
lare attributes separately for ea
h

non-terminal that uses them. The value of the attribute need only be de�ned

for a subset of the non-terminals, and it only gets
al
ulated for the ones in

whi
h it is required by other
al
ulations. Default attribute
omputations are

provided for all attributes; they are to be overridden for
ertain produ
tions

in order to perform a
tual
omputation.

Inherited Attributes

By default, inherited attributes are
opied from the left-hand side of every

produ
tion to ea
h non-terminal on the right-hand side.

Syntheti
 Attributes

The three types of syntheti
 attributes di�er only in their default rule. A

normal syntheti
 attribute is
opied from the left-most non-terminal on the

right-hand side to the left-hand side. This is useful be
ause many produ
-

tions only have one non-terminal on their left-hand side, so it makes it easy

to pass things up from deep down the parse tree. A default value
an be

spe
i�ed in the attribute de
laration for produ
tions with no non-terminals

on their right-hand side. This default
an be any attribute
omputation.

For example, the SymTblUp attribute has the default lhs->SymTbl(), whi
h

makes it easy to implement "bu
ket brigade" symbol table passing by auto-

mati
ally sending the symbol table up whenever it rea
hes the bottom of the

parse tree.

Summing Syntheti
 Attributes

A summing syntheti
 attribute has a default rule that sums the values of the

attribute over all the non-terminals on the right-hand side of a produ
tion,

21

and assigns the result to the right-hand side. It uses the C++ operator +,

whi
h must be de�ned on the attribute type. Again, a default value may be

spe
i�ed for produ
tions with no non-terminals on the right-hand side. A

summing syntheti
 attribute is useful for
reating strings des
ribing the parse

tree, where the string for a node is usually the
on
atenation of the strings

for its subtrees. A summing syntheti
 attribute would be used to
onstru
t

a printable version of the parse tree, or for putting together the generated

ode for a program from the
ode generated for all the subtrees.

Max Syntheti
 Attributes

This type of attribute is similar to a summing syntheti
 attribute, but the

maximum value from all the right-hand side non-terminals is returned, in-

stead of the sum. This is used for
al
ulating the size of a sta
k frame.

2.7.2 Computation Rule De�nition

Code overriding the default attribute
omputation for an attribute named

Attribute is pla
ed in a member fun
tion
alled Cal
Attribute of the
lass

for the produ
tion rule in whi
h the attribute is to be evaluated. The gen-

erated
lasses for the produ
tion rules
ontain pointers to the symbols on

the left-hand side and right-hand side of the produ
tion. Attributes of any

symbol may be a

essed by
alling the member fun
tion Attribute(), where

Attribute is repla
ed by the name of the attribute being requested. The

evaluator takes
are of the memoization and
ir
ular referen
e dete
tion au-

tomati
ally, with no additional
ode. The Cal
Attribute fun
tion for a

syntheti
 attribute is always
alled on a produ
tion rule to
al
ulate the

value of the attribute for the left-hand side symbol of the produ
tion. For an

inherited attribute, a pointer to the symbol for whi
h the attribute is being

omputed is passed into the Cal
Attribute fun
tion so that it
an tell for

whi
h right-hand side symbol it is being asked to
al
ulate the attribute.

2.8 Attribute Computations

2.8.1 Attribute Computations For De
larations

The attributes for
omputing de
larations ea
h pass information up the parse

tree for other attributes, and the last attribute gets put into the symbol table.

22

The attributes are as follows:

Syntheti
:string Id and

Syntheti
:list<string>* IdList These attributes allow easy a

ess to

the names of a symbol.

Syntheti
:TypeRef* TypeSubt This attribute
reates the type of a de
-

laration. If the de
laration is a type de
laration, then this is put into

the symbol table; otherwise, it is passed up the parse tree.

Syntheti
:ParmList* AParmList This attribute takes ea
h identi�er in

a de
laration and
reates a variable symbol obje
t (ParmRef) whi
h

ontains the TypeSubt attribute and the identi�er. This is then passed

up the parse tree.

Syntheti
:ST* SymTblUp and

Inherited:ST* SymTbl These attributes pass the symbol table up and

down the parse tree. The inherited attribute passes it down, the syn-

theti
 passes it up. The symbol table passes through the de
laration

parts of the parse tree before the
ode/statements se
tion, sin
e the

de
larations are used in the
ode.

Syntheti
:FieldTList* FieldTs This syntheti
 attribute produ
es the list

of �eld types from the de�nition of a re
ord type. The list of �elds is

then inserted into the re
ord type obje
t for the re
ord.

Syntheti
:FunRef* Fun This syntheti
 attribute
reates a subprogram sym-

bol obje
t whi
h des
ribes the subprogram de�ned by the subtree for

whi
h the attribute is de�ned. The subprogram symbol obje
t
on-

tains information su
h as the name of the subprogram, the types of its

parameters and return value, and the label at whi
h its
ode is found.

Inherited:FunRef* FunDown This inherited attribute passes the subprogram

symbol obje
t
omputed by the Fun attribute down the parse tree, so

that the
omputations whi
h generate
ode for the subprogram have

a

ess to it. This is needed mainly to generate
ode for the return

statement, whi
h needs to know where to pla
e the return value.

23

Inherited:int NestingLevel This attribute
al
ulates the stati
 nesting

level of the
urrent pro
edure. It is zero for the global s
ope, one for

a subprogram within the global s
ope, and one higher for ea
h level of

nesting of subprograms.

Syntheti
 Sum:int ContainedPro
edures and

Inherited:bool ContainsPro
edures ContainedPro
edures
al
ulates the

number of subprograms nested within the
urrent subprogram.

ContainsPro
edures is an inherited attribute passed down to the im-

plementation portion of a subprogram. It is true if and only if the

urrent subprogram
ontains nested subprograms. If it does, no vari-

ables are allo
ated in registers; they are all allo
ated on the sta
k in

ase one of the nested subprograms needs to a

ess them.

If the de
laration is an obje
t de
laration, then ea
h element in the Parm-

List is put into the symbol table. If the de
laration is a subprogram, enu-

meration or re
ord, then an appropriate symbol obje
t is
reated and the

ParmList is embedded in it. In the
ase of subprograms, the ParmList is

also added to the bran
hed symbol table for the body of that subprogram.

The enumeration de
laration also adds its EnumLiterals (
ontained in the

ParmList) to the symbol table, but they are inserted into the non-bran
hed

table.

2.8.2 Attribute Computations for Expression Type Che
k-

ing and Overload Resolution

These attributes perform type
he
king on expressions, and sele
t the types

of subexpressions whi
h may not be immediately obvious due to fun
tion

overloading. The overload resolution algorithm is the one given in
lass.

We make a set of all the possible types of an expression, and build it up

based on the possible types of subexpressions. On
e we get to the top of an

expression, we examine the set of possible types. If there is exa
tly one type

whi
h
an be used, we go ba
k down the expression tree narrowing down

the set of possible types. If at any point there is not exa
tly one possible

type for a subexpression, then that subexpression is in
orre
tly typed, and

we report an error, listing the subexpression that
aused the error. The

following attributes are used:

24

Syntheti
:string FunName Propagates the name of a fun
tion up to the

expression involving the fun
tion.

Syntheti
:ValRef* ExprSym This attribute
al
ulates a �nal symbol ob-

je
t for the subexpression. The symbol obje
t
ontains all the details

about the value represented by that expression.

Syntheti
:TypeSet* PossibleTypes This attribute
al
ulates a set of

type symbol obje
ts for all the possible types of a subexpression. This

is built up from the return types of any fun
tions involved in the ex-

pression.

Syntheti
:ve
tor<TypeSet*>* PossibleArgs This attribute
ombines the

PossibleTypes attributes of the parameters to a fun
tion into one unit,

so that we
an look for fun
tions having these types as arguments.

Inherited:TypeRef* RequiredType On
e the
al
ulation of possible types

rea
hes the top of an expression tree, a unique type is determined for

the tree, and this attribute is used to
al
ulate it. It is
al
ulated on

all the subexpressions to determine their a
tual types.

Syntheti
:ve
tor<TypeRef*>* RequiredArgs and

Inherited:ve
tor<TypeRef*>* RequiredArgsDown On
e a unique fun
-

tion has been found for a potentially overloaded fun
tion identi�er,

these attributes give the argument list of the fun
tion. They are used

to do type-
he
king on the expressions whi
h are the arguments.

2.8.3 Attributes For Code Produ
tion

Sta
k and register allo
ation

Inherited:FT* FrameTop and

Syntheti
:FT* FrameTopUp These attributes pass around the FrameTop

lass whi
h assigns lo
ations for variables in registers or on the sta
k.

See se
tion 2.9.6 for more details.

Syntheti
 Max:int FrameSize This attribute
al
ulates the maximum of

the sta
k portion of the FrameTop attribute in the subprogram de�ned

by the subtree. This is used to
al
ulate the sta
k needs of the entire

25

subprogram, so that the sta
k pointer
an be adjusted above the top

of the frame when the subprogram starts exe
uting.

Code generation

Syntheti
 Sum:
string Code This is the generated SPARC assembly
ode

that forms the �nal output.

Syntheti
 Sum:
string InitCode This is the variable initialization
ode.

It is separate from the Code attribute be
ause variable initialization

ode must be pla
ed at the beginning of the body of the subprogram,

after any
ode for other subprograms nested within it.

Syntheti
 Sum:
string In
rementCode This is the
ode to in
rement or

de
rement the loop variable in a for loop. The loop statement
om-

putation for Code pla
es it at the appropriate pla
e at the end of the

loop.

Syntheti
 Sum:
string LiteralPool This
ontains the
ode for all the

literals that appear in the sour
e, ea
h with a label. It is pla
ed before

all of the
ode, so that the
ode
an refer to these literals by their

labels.

Control stru
tures

Inherited:string BeginLabel Computes the label at the beginning of the

loop, so that the
ode
an bran
h to it at the end of the loop.

Inherited:string EndLabel Computes the label at the end of the loop, so

that the
ode
an bran
h to it when it needs to exit the loop (in an

exit statement or a false loop
ondition).

Syntheti
:Variable* LoopVar For a for loop,
omputes the variable sym-

bol obje
t of the loop index variable.

Syntheti
:Variable* EndVar For a for loop,
omputes the variable symbol

obje
t of the temporary holding the end value of the range of the loop.

Syntheti
:ValRef* StartSym For a range expression,
omputes the value

symbol obje
t of the expression spe
ifying the start of the range.

26

Syntheti
:ValRef* EndSym For a range expression,
omputes the value sym-

bol obje
t of the expression spe
ifying the end of the range.

2.9 Major Data Stru
tures

2.9.1 Parse Tree

The main data stru
ture in the
ompiler is the parse tree, whi
h is a linked

olle
tion of symbol and produ
tion rule obje
ts. The following diagram

gives the inheritan
e stru
ture.

Rule

Rule Start bof Compiln eof

Rule Compiln CompilnUnit CompilnUnitS

.

.

.

Symbol

SymT (terminal)

SymT integer

SymT id

.

.

.

SymNT (non-terminal)

SymNT Expr

SymNT Stmt

.

.

.

There are two main base
lasses, Rule and Symbol. Rule represents a

produ
tion rule in the grammar, and Symbol represents a terminal or non-

terminal symbol. There is one
lass for ea
h produ
tion rule that inherits

from Rule. There are two
lasses, SymT and SymNT, whi
h inherit from

Symbol. For ea
h terminal and non-terminal symbol, there is a
lass whi
h

inherits from one of these two. By
onvention, non-terminal symbols start

with a
apital letter, and terminal symbols start with a lower
ase letter.

The following diagram is an example of part of a parse tree representing

27

the produ
tion RangeConstraint -> range Range:

Rule_
RangeConstraint_
range_Range

lhs
r_range
r_Range

SymT_range

parent_rule
parent_sym

SymNT_Range

parent_rule
parent_sym

rule

RangeConstraint

SymNT_

There are pointers to allow ea
h obje
t a

ess to its parent and
hildren

in the tree, so that attribute
al
ulations
an be done in the attribute
om-

putation phase of the
ompiler. Please see se
tion 2.7 for more information.

2.9.2 Symbol Table

The symbol table is based on a
a
tus sta
k, des
ribed later. All identi�ers

de
lared in the program are pushed onto the bran
h of the
a
tus representing

the
urrent s
ope. When a new s
ope is to be
reated, a new bran
h is

added to the
a
tus, and a s
ope barrier is inserted to separate the s
ope

from the old s
ope. This is ne
essary when
he
king for dupli
ately de
lared

identi�ers, sin
e an identi�er
an be de
lared with the name of a pre-existing

identi�er only if the pre-existing identi�er appears in a s
ope other than the

most lo
al one, (or the identi�er represents a subprogram being overloaded,

in whi
h
ase spe
ial rules apply).

The symbol table in
ludes fun
tions for retrieving either the top-most

symbol with a given name, or a set of all the symbols with a given name

(for �nding overloaded subprograms). The sear
h is done linearly through

the
a
tus sta
k, so sear
h time is proportional to the number of symbols

visible in the
urrent s
ope. Though we have found no eviden
e to suggest

that this is una

eptably slow, it
ould easily be speeded up by representing

the symbol table as a hash table, with ea
h bu
ket being a separate
a
tus

sta
k.

When the symbol table is �rst
reated, we insert symbols for all of the

built-in types, operators, and fun
tions (Read and Write). That way, these

28

are available in every s
ope, and may be overloaded. The built-ins
an be

found at the end of the �le symref.

.

2.9.3 Ca
tus Sta
k

The
a
tus sta
k is a C++ template for a sta
k whi
h
an be bran
hed in

onstant time. Bran
hing
reates two sta
ks with the same
ontents as the

original sta
k, but they
an be modi�ed (both pushed and popped) inde-

pendently. It is implemented as a linked list, with the sta
k being identi�ed

by its top. Bran
hing
reates a new top pointing to the old sta
k. We use

referen
e
ounts to allow us to free popped nodes only if there are no other

bran
hes
oming out of them.

The
a
tus sta
k is used in the parser error re
overy to allow ba
ktra
king.

A new bran
h is made after ea
h token is pro
essed, e�e
tively
reating a list

of the state of the parse sta
k after ea
h token, making ba
ktra
king possible.

The
a
tus sta
k is also used to implement the symbol table. Here,

bran
hes in the sta
k represent the
reation of new s
opes.

2.9.4 Inheritan
e Hierar
hy Of Symbols

A symbol obje
t (de
lared in symref.h) is used to represent anything that

appears as an identi�er or a literal in the sour
e. The �gure on page 31 gives

the inheritan
e hierar
hy of these symbol obje
ts. Symbol obje
ts
ontain

a name for the obje
t, and pointers to other symbol obje
ts. For example,

every value has a pointer to its type, a subprogram
ontains a list of pointers

to its parameters, a re
ord
ontains a list of pointers to its �elds, and so

on. Ea
h type is identi�ed by a single type symbol. Sin
e in Ada/CS, every

newly-de�ned type gets a new
ookie, and types are equivalent if and only

if they have the same
ookie, we simply use the address of the type symbol

as the
ookie, and type equivalen
e
an be determined with just a pointer

omparison. If we were implementing a language whi
h, unlike Ada/CS, had

true subtyping, we would need a more
ompli
ated type equivalen
e and type

assignability fun
tion.

The symbol obje
ts for values (in
luding subprograms) play a major role

in
ode generation. Ea
h value symbol
ontains all of its
ompile-time infor-

mation, su
h as where in memory (or in whi
h register) it is stored. Value

symbols also have methods su
h as Fet
h and Store into registers (for s
alar

values), Copy to
opy between two values (not ne
essarily s
alar), CopyIn and

29

CopyOut to pass parameters into and out of subprograms, and Call on sub-

program symbols to generate
ode for a fun
tion
all. The implementation

of all these methods is found in the �le sym
ode.

.

30

Symbol

S
ope Barrier

Void

Type

Any Type

Integer Type

String Type

Float Type

Null Type

Enumerated Type

A

ess Type

Re
ord Field Type

Re
ord Type

Value

Any Value

Subprogram Value

Parameter (Named) Value

Named S
alar Constant

S
alar Variable

Re
ord Field

Re
ord Variable or Constant

Literal Value

Integer Literal

Float Literal

String Literal

Enumeration Label

Null Literal

31

2.9.5 EÆ
ient String Class

The motivation for this
lass was the Code attribute. It has to be passed

around the parse tree, with
ode fragments for bran
hes being
on
atenated

together and passed up the tree. This
on
atenation
an be done with very

large strings sin
e the strings represent
ompiled output (assembler) of the

ompiler. The STL string
lass does not do eÆ
ient
on
atenation; it
re-

ates a new bu�er and
opies both strings into it.

The new string
lass (
string) takes advantage of the fa
t that the Code

attribute never gets manipulated after it is �rst
reated (a
ode fragment is

only
on
atenated with other fragments of
ode). The
string
lass
reates

a binary tree with the leaves having STL string values. With this stru
ture,

we
an
on
atenate strings in
onstant time by just
reating a new node with

the two strings to be
on
atenated as its
hildren. To output the string, we

perform an in-order traversal of the binary tree, outputting the strings at the

leaves.

The
string
lass is now used in many of the fun
tions for outputting in-

formation in
luding dumping the symbol table, the parse tree, the TypeTree

attribute and the TypeTreeIndent attribute.

2.9.6 Sta
k and Register Allo
ation (FrameTop)
lass

The FrameTop
lass (FT) is responsible for assigning spa
e to variables. It

keeps a list of available registers and the
urrent size of the sta
k frame in the

urrent blo
k. Currently the registers are assigned on a �rst
ome �rst served

basis (see se
tion 2.10.4 for details), but the framework
ould be extended to

use a more sophisti
ated method. This
lass is passed around the parse tree

using the FrameTop and FrameTopUp attributes, whose propagation around

the parse tree
ontrols the lifetime of variables and temporaries.

2.10 Implementation of Language Features

This
ompiler produ
es SPARC assembly
ode. Comments have been added

to the produ
ed
ode so that it may be easily read, understood, and de-

bugged.

32

2.10.1 S
alar Values

Whenever a s
alar value is en
ountered in the sour
e �le, a value symbol ob-

je
t is
reated for it. This symbol obje
t may be a literal symbol obje
t, or

a named value symbol obje
t, depending on the value. The obje
t stores all

the
ompile-time information about the value, in
luding its type, its size, its

memory or register lo
ation (as assigned by the FrameTop sta
k and register

allo
ation obje
t), its
onstantness, and, in the
ase of a literal, its value.

S
alar variables are assigned spa
e either in a register, or, if none are avail-

able, on the sta
k, at a spe
i�
 negative o�set from the frame pointer. The

syntheti
 attribute FrameSize
al
ulates the sta
k needs of ea
h subprogram,

and at the start of the subprogram, the sta
k pointer is set to point above

any values potentially used by the subprogram. This means that the amount

of sta
k spa
e required by a subprogram must be known at
ompile time,

whi
h may not be the
ase if the subprogram
ontains lo
al variables whose

size is not known at
ompile time. In order to support this, we would have

to generate
ode to
al
ulate the frame size at runtime and adjust the sta
k

pointer a

ordingly. There is nothing to prevent us from adding this ex
ept

la
k of time.

2.10.2 Literal Pool

We do not keep a literal pool for s
alar values; instead, we simply insert them

into the
ode where they are used. Our
ompiler supports string literals,

and
ould be easily extended to support other non-s
alar types of literals.

These are all
olle
ted using a syntheti
 attribute, and in
luded together as

onstants at the beginning of the assembly output. The asso
iated literal

value obje
ts
ontain the unique label assigned to ea
h literal, so they
an

generate the
ode to a

ess the literals.

2.10.3 Temporaries

Temporary variables (both s
alar and aggregate types) are allo
ated using

the FrameTop obje
t just like any other variables, so they may be pla
ed

in registers, or on the sta
k. Instead of a
ompli
ated temporary allo
ation

and freeing algorithm, we de
ided to simplify things by making the lifetime

of a temporary be a single statement. This makes temporaries very easy to

allo
ate: we allo
ate them using the FrameTop obje
t, the same as variables.

33

We go ba
k to the same FrameTop obje
t at the start of every statement, so

any temporaries allo
ated for pre
eding statements don't appear in it, and

their spa
e is free to be used.

No temporary ever needs to be around for longer than a single statement.

This simpli�
ation is only slightly wasteful in the
ase of very
ompli
ated

expressions, in whi
h some memory lo
ations (whi
h
ould be valuable reg-

isters)
ould be reused for more than one temporary. However, in most

programs, very
ompli
ated expressions are usually split up over multiple

statements for readability. Also, on the SPARC, there are usually enough

registers to a

ommodate most expressions found in typi
al programs.

2.10.4 Register Allo
ation

Only the %i and %l registers are used for s
alar values, as these registers are

automati
ally saved and restored on fun
tion
all by the SPARC's sliding

registers. Variables whi
h are formal parameters (in, out, or both) to a

subprogram must use the %i registers to allow the
aller to
opy into them

dire
tly using what it sees as %o registers. When the fun
tion
all is made,

the %o registers slide to be
ome %i registers. The return value from a fun
tion

is just like an out parameter, so it too
an be pla
ed in an %i register whi
h

slides ba
k to an %o register when the fun
tion returns.

The global registers, %g1-7, are used for global values whi
h never
hange,

or for temporary values whi
h need never be preserved. Registers %g1-4 are

used to do
omputations su
h as addition, subtra
tion, and exponentiation.

Registers %g6 and %g7 are used to implement nested subprograms. See the

se
tion on nested subprograms below for details. Register %g5 is never used.

For s
alar variables and subexpressions, we �rst try to use an %l register

to keep the %i registers free for formal parameters. When all the %l registers

are in use, we try to allo
ate an %i register, and if all of those are in use as

well, we put the value on the sta
k. This de
ision is made in the FrameTop

lass in FT.

. The lifetime of a variable allo
ation is the duration of the

s
ope in whi
h it is de�ned. This is very simple, though not ne
essarily

optimal, sin
e it relies on the programmer to limit the size of the s
ope to

the a
tual required lifetime of the variable. The lifetime of a subexpression

is the statement in whi
h it appears, as dis
ussed in "Temporaries", above.

Any value whi
h does not �t in a register (re
ords) is always pla
ed on

the sta
k. We make no attempt to pla
e spe
i�
 �elds of re
ords in registers,

be
ause we keep re
ord �elds
onse
utive in memory in order to make it

34

possible to implement a

ess types and allow
y
li
 linked stru
tures. If the

�elds of a re
ord were not all in memory, a pointer to a re
ord would have to

be represented as a pointer to ea
h �eld, and
y
li
 linked stru
tures would

be impossible to represent.

If a value is a

essed by a subprogram nested within the subprogram in

whi
h the value is de
lared, the value
annot be pla
ed in a register, be
ause

when we
all the nested subprogram, the value would be slid out out with

the register window, and the nested subprogram would not be able to a

ess

it. Therefore, any variable de
lared in a s
ope in whi
h other subprograms

are nested is de
lared on the sta
k, and never in a register. This is simple,

but less than optimal. A less
onservative and more eÆ
ient solution would

be to
he
k for ea
h variable whether it is a
tually referen
ed by any nested

subprograms, and try to pla
e it in a register if it is not. This would not even

be mu
h more
ompli
ated to implement given the stru
ture of our
ompiler,

but we did not have enough time to do so.

We introdu
ed the -r option to our
ompiler in order to evaluate our

very simple register allo
ation strategy. An example of the output from this

option is shown below:

===

Register allo
ation statisti
s:

Type of value Number Total bytes

===

Must be on sta
k 291 1336

Pla
ed in register 469 1876

Could be in %i reg but none free 2 8

Could be in any reg but none free 8 32

===

This output is a
tually a summary of the register allo
ation statisti
s for

our entire test suite. Noti
e that be
ause we are
ompiling for a non-Intel

pro
essor, there are many registers, and almost all the values that we
an

pla
e in registers a
tually �t there. Noti
e also, however, that there are 291

values that
ould not be pla
ed in registers. Some of these are re
ords, and

the rest are values allo
ated in s
opes
ontaining nested subprograms. It

may a
tually be possible to pla
e some of the latter values in registers if we

ould ensure that the nested subprograms do not a

ess them.

35

2.10.5 Re
ords

We represent a re
ord as the values of its �elds, pla
ed
onse
utively in

memory. We allo
ate memory for the entire re
ord. Ea
h �eld has a spe
ial

memory addressing obje
t whi
h does not a
tually own any memory, but

ontains a pointer to the re
ord type, as well as an o�set of the �eld value

within the re
ord. All of this information is
ompile-time information. If

we were to implement variant re
ords, we would have to add a new kind of

addressing obje
t whi
h would do the o�set
al
ulation at runtime. There is

nothing whi
h would prevent us from doing this other than la
k of time.

We support and test the use of re
ords in all pla
es where s
alar values
an

be used, in
luding assignment, �elds nested within other re
ords, subprogram

parameters (both in and out), and fun
tion return values.

2.10.6 Subprograms

A subprogram is represented at
ompile time by a fun
tion symbol obje
t.

This
ontains information su
h as the subprogram's name, a label at whi
h

the subprogram's
ode is found, and a list of the subprogram's parameters

and/or return value. The parameters and return value are themselves value

symbol obje
ts, so we
an read and write to them both within the subpro-

gram, and at the
all site.

In order to allow parameter passing to subprograms, we have three types

of value
opy fun
tions. The �rst type does a simple assignment,
opying

values as o�sets from %fp. The other two
opy in and out, respe
tively, of a

subprogram, by
opying to or from an o�set of %sp. In the
alled subprogram,

%fp takes on the value of %sp of the
aller, so these
opy fun
tions allow

us to e�e
tively
opy into the frame of the
alled subprogram before we

all it, and
opy ba
k out of it after the subprogram returns. The
opy

fun
tions work with spe
ial types of values: values in registers, and re
ord

types. For registers, a

essing the value in the
alled subprogram's frame

means a

essing the
orresponding %o register instead of the %i register.

Our register allo
ation ensures that parameters and return values are never

pla
ed in any other types of registers. For re
ord types, the
opy fun
tions

generate
ode to
opy all the spa
e used by the re
ord, one word at a time.

The pro
edure for a subprogram
all is therefore as follows:

1. Copy in parameters into the subprogram's frame.

36

2. Set up the display based on the nesting levels of the
aller and the

alled subprogram (see "Nested Subprograms", below).

3. Make a
all using the label of the pro
edure.

4. Copy out parameters out of the subprogram's frame.

5. Copy the return value (if any) out of the subprogram's frame.

2.10.7 S
ope and de
lare blo
ks

Any new s
ope is represented only as a new s
ope marker obje
t pla
ed in

the symbol table. This is to allow us to distinguish symbols de
lared in

the
urrent s
ope from symbols de
lared in outer s
opes, in order to dete
t

dupli
ate de
larations. The symbol table takes
are of �nding the innermost

symbol with a given name when it is referen
ed. A new s
ope does not get

its own frame on the sta
k, be
ause there is no need for one,
reating one

would take time at runtime, and it would be more
ompli
ated to implement.

Instead, a new s
ope inherits the FrameTop register and sta
k allo
ation

obje
t from its surrounding s
ope, so that it does not overwrite any values

allo
ated by the surrounding s
ope.

2.10.8 Built-in operators

The built-in operators are implemented as spe
ial fun
tion symbol obje
ts

whi
h have their Call method overridden. Instead of produ
ing
ode for

a pro
edure
all, these Call methods perform the required
omputations

in-line. The fun
tion symbol obje
ts are pla
ed in the symbol table along

with all other fun
tions, so the built-in operators
an easily be overloaded for

new types just by adding a normal subprogram to handle the
omputation

required of the operator.

All values have a Suggest method, whi
h suggests to the built-in pro
e-

dures whi
h registers they should use. If the value is in a register, it suggests

that the built-in use that register for the
omputation. If the value is not in a

register, a default register
hosen from %g1-4 is used. Sin
e many values are

in registers, this suggestion me
hanism generates mu
h more eÆ
ient
ode

than if �xed registers were always used. For example, if the variable X is

stored in %l1, for the statement X := X + X;, we would generate:

37

add %l1,%l1,%l1

instead of

mov %l1,%g1

mov %l1,%g2

add %g1,%g2,%g3

mov %g3,%l1

We should have { but did not have time to { extended the suggestion

me
hanism to support suggesting small literals whi
h
ould be pla
ed in the

ode in-line. For example, for X := X + 1, we should generate:

add %l1,1,%l1

instead of

set 1,%g2

add %l1,%g2,%l1

2.10.9 If-Then-ElsIf-Else

We represent boolean values the same way as any other enumerated type.

We do not try to represent them as bran
hes taken or not taken. Although

this would be slightly more eÆ
ient, it would take extra work to be able to

evaluate
ompli
ated boolean expressions using this representation. When

we en
ounter an if statement, we �rst evaluate the
onditional expression.

We then test whether it is true or false, and if it is false, we bran
h past the

then
lause. At this point, there may be
ode for an elsif
lause, the else

lause, or simply the end of the if statement. At the end of ea
h
lause

ex
ept the else
lause, we bran
h out to the end of the whole if statement.

The formal attribute grammar evaluator makes it very easy to keep tra
k

of all the required labels, requiring only two attributes, BeginLabel and

EndLabel.

38

2.10.10 And-Then and Or-Else

And-then and or-else di�er from the standard and and or in two ways. First,

they
annot be overloaded, so they are not implemented as fun
tion symbol

obje
ts in the symbol table like the other built-in operators. Se
ond, these

boolean operators use short-
ir
uit evaluation. If the �rst
lause evaluates

to true (or) or false (and), we simply use its value as the result of the overall

expression, and skip over the evaluation of the se
ond
lause. If we have to

evaluate the se
ond
lause, then the value of the se
ond
lause is the value

of the overall expression.

2.10.11 Loops

The overall stru
ture of all loops is the same, for simpli
ity:

1. Initialization
ode (optional)

2. Loop start label (optional)

3. Loop
ondition (optional)

4. Loop body
ode (may
ontain exits)

5. Loop in
rement/de
rement
ode (optional)

6. Bran
h to start label

7. End label

This may not be the most eÆ
ient representation in all
ases, but it

is general enough to be able to support all types of loops with the same

stru
ture. A simple loop does not implement any of the optional parts. A

while loop only needs to implement the loop
ondition se
tion, and bran
h to

the end label if the
ondition is false. A for loop implements all the optional

se
tions.

The loop start and end labels are propagated inside the loop generation

ode using the inherited attributes BeginLabel and EndLabel. Also, a
opy

of the end label is pla
ed in the symbol table for the loop body as a loop exit

symbol obje
t. This is to allow an exit from a named loop, rather than the

innermost loop.

39

A for loop
reates a new s
ope in the symbol table, and the loop variable

is pla
ed in the new s
ope, so it may hide any existing o

urren
e of the same

name.

2.10.12 Nested Subprograms

Our
ompiler provides full support for nested subprograms, with several op-

timizations.

We use stati

haining to implement nested subprograms. In ea
h frame,

at [%fp-4℄, we store a pointer to the frame of the stati
 parent subprogram.

We
an follow these pointers to rea
h the frame of any stati
 an
estor of the

urrently exe
uting subprogram to a

ess its variables. The %g6 register is

used for this
al
ulation.

In ea
h value symbol obje
t, we store the stati
 nesting level of where

that symbol is de
lared. Also, anywhere in the parse tree where we generate

ode, we have an inherited attribute
al
ulating the stati
 nesting level of

that parti
ular pie
e of
ode. For all value a

esses, we pass in the stati

nesting level of the
ode being generated, and the value obje
t knows its own

stati
 nesting level. The value obje
t
an therefore generate
ode to a

ess

itself at the
orre
t number of levels up from the level of the
ode being

generated.

The overhead of this s
heme is minimal. Values at the
urrent nesting

level are a

essed with no overhead whatsoever. The overhead for a

essing

values at higher levels is 1 + n instru
tions, where n is the number of levels

we have to go up. As an additional optimization, we set the %g7 register to

point to the frame of the outermost (global) nesting level at the beginning

of the program, and we use that register to a

ess all values dire
tly at the

global level. This avoids having to follow a potentially long stati

hain to

a

ess these values. The majority of variable a

esses in typi
al programs are

to either the innermost nesting level, or to the global nesting level, and both

of these
an be a

essed dire
tly with no overhead. The remaining a

esses

are often to more inner nesting levels as opposed to more outer ones, and the

more inner the nesting level is, the less overhead there is.

A
all to a subprogram with a higher nesting level than the
urrent one

requires a single instru
tion to store the
urrent %fp in the frame of the

alled subprogram. A
all to a subprogram with the same nesting level as

the
urrent subprogram requires two instru
tions to
opy the
urrent stati

link pointer from the
urrent frame to the new frame. These are the two most

40

ommon types of subprogram
all. A
all to a subprogram with a smaller

(outer-more) nesting level than the
urrent one requires us to follow the stati

links to �nd the stati
 link pointer
orresponding to the level of the
alled

subprogram, and
opy it into the frame of the
alled subprogram. This takes

a few extra instru
tions, but these types of
alls are rare. Be
ause the stati

link pointer is stored on the sta
k in the frame of ea
h subprogram, it is

automati
ally restored to its previous value on return from a subprogram.

41

Chapter 3

Testing Do
umentation

3.1 File Lo
ations

Unless otherwise indi
ated, test �les are found in the dire
tory :

/u/olhotak/
s444/jaa
/test/.

The exe
utable is found at: /u/olhotak/
s444/jaa
/jaa
. See the user

do
umentation for more details.

The s
ript ./runtest in the dire
tory /u/olhotak/
s444/jaa
/ runs a

set of test �les through the
ompiler, produ
ing di�s of the output against

expe
ted output. runtest is explained in more detail at the and of this

se
tion. It takes one parameter, listed below:

s
an = run s
an test on �les in test/s
an/

parse = run parse test on �les in test/parse/

type = run type test on �les in test/type/

ode, �s
her,
ourse =
ompile ada programs in test/<spe
ified>/ di-

re
tory, outputting .s (SPARC assembly), assemble and link these into

exe
utables using g

, and then run the exe
utables

The programs in the fis
her dire
tory
ome from the web page for the

ourse textbook, and were slightly modi�ed to �x synta
ti
 errors in them.

The programs in the
ourse dire
tory
ome from the
ourse a

ount on

undergrad. The programs in the
ode dire
tory are ones that we wrote

ourselves to demonstrate the spe
i�
 features of our
ompiler.

42

S
an, parse and type produ
e <filename>.ada.out and

<filename>.ada.errors.out�les, whi
h are then
ompared against .
orre
t

�les.

Code, fis
her,
ourse produ
e <filename>.s �les, whi
h are then
om-

piled to exe
utable �les. These exe
utable �les are run with any

<filename>.*.in �les piped in as standard input. The output is piped to

<filename>.*.out, and
ompared to the .
orre
t �les. If the exe
utable

has no <filename>.*.in �les, then it is exe
uted with no standard input

piped in. The output is similarly piped to <filename>.out and
ompared

to the .
orre
t �les.

3.2 S
anning

The s
an test �les
an be found in the dire
tory s
an/.

<filename>.ada = Ada �les

<filename>.ada.out = output for <filename>.ada

<filename>.ada.out.
orre
t = output has been
he
ked as being
orre
t

S
anning is quite easy to test; one runs Ada programs (or �les with similar

keywords and symbols) through jaa
 -s, and then
he
ks that the output is

orre
t for the input. There are a few tri
ky areas:
omments,
oats, ranges

(the ..
an easily be
onfused with a
oat de
imal point), strings and the eof

symbol (whi
h is added at the end of the �le). These are the areas most of

out tests fo
us on.

Comments: The �le
omments.ada tests
omments interspersed with de
-

larations and statements, as well as
omments found at the end of a

�le.

Floats and Ranges: The �le float.ada tests
oating point numbers and

numbers with in them. Some of the
ases are invalid
oats like

300e--23 and 1.0e.1. This �le also tests ranges (<simple expr>..<simple

expr>).

Strings: The �le string.ada tests strings with double quotes, single quotes,

unusual
hara
ters and non terminating strings (s
anner
uts this to

the end of the line).

End of �le: All the tests produ
e the eof symbol.

43

Other: The other �les test a range of Ada
ode, some
ontaining invalid

hara
ters like / in bad.ada.

3.3 Parsing

The parse test �les
an be found in the dire
tory parse/.

<filename>.ada = Ada �les

<filename>.ada.out = output for <filename>.ada

<filename>.ada.out.
orre
t = output has been
he
ked as being
orre
t

3.3.1 Parse Table

There are two levels of testing for our parser:
he
king if �les pass through

the parser without produ
ing parse errors, and
he
king if the parse tree

is an a

urate representation of the program. All the test
ases have been

he
ked for the �rst level (see next paragraph), but only the Ada �les with

<filename>.ada.out.
orre
t �les have been
he
ked for the se
ond level.

The following is a list of some of the parsing errors from our test
ases,

along with a reason for ea
h error:

<filename>:Error(<lo
ation in file>) Reason for error

de
l04.ada.out:Error(L40 C35): a = b, should be a := b

parse test.ada.out:Error(L23 C0): no semi
olon to end re
ord

parse test error.ada.out: many di�erent types of

ommon parse errors;

good demonstration of

error re
overy

test26.ada.out:Error(L16 C58): ; instead of ,

test38.ada.out:Error(L3 C6): pragmas not supported

test39.ada.out:Error(L12 C15): Ada/CS does not allow obje
t

de
larations in a private item

The error re
overy system re
overs sensibly from most of the parse errors.

For example, the unsupported pragma statement is just removed and the

parsing
ontinues.

The following lists parts of the grammar and an Ada �le whi
h tests it.

Not all the Ada �les a
tually used in testing are listed here.

44

Part of Grammar <filename>.ada

Pa
kage De
larations (interfa
e and body) de
l03.ada

De
larations of Variables test03.ada

de
l03.ada

Subprograms test30.ada

test28.ada

de
l03.ada

Types, subtypes de
l03.ada

Ranges test11.ada

If Statements test20.ada

Case Statements test25.ada

Loops Statements test22.ada

test23.ada

3.4 De
larations

3.4.1 Type De
larations

It is quite hard to test type de
larations by themselves, sin
e they just
reate

entries in the symbol table. They do use ea
h other, but almost never in a

ompli
ated way. In fa
t, the top level of de
larations never get tested or

used within other de
larations. There is a small amount of type
he
king

here, for example, a : bla;
he
ks that bla is a
tually a type that has

already been de
lared and inserted into the symbol table before
reating

a value symbol obje
t for a and embedding the type bla within it. Sin
e

de
larations are hard to test by themselves, testing of de
larations usually

involves type
he
king and overload resolution (se
tion 3.5).

Below are the di�erent types of de
larations with explanations of how

and where they are tested.

Subprogram De
laration

Subprograms have a name, a parameter list (ordered), a return type and

some
ode. They
an be overloaded to have the same name, but within one

s
ope, fun
tions of the same name must di�er in their return type or their

parameter list. (See �le type/multiDef.ada)

The return type of a fun
tion must type
he
k with the variable you are

45

assigning it to. The type
he
ker
an sele
t between fun
tions overloaded

with di�erent parameters, or with the same parameters, but di�erent return

type. Fun
tions may not be
alled as pro
edures, with the return value

thrown away (this is allowed in C, but not in languages like Modula-3 and

Ada/CS). (See �le type/pro
Overload.ada)

Arrays

Arrays are not yet supported, but if they are used, jaa
 will say so and exit

leanly. (See �le type/arrays.ada)

Re
ords

Re
ord de
larations asso
iate a name with a list of �eld de
larations. We

must test both the naming and the list of �elds. We also test
reation of

variables of type re
ord, assignment of variables of type re
ord to ea
h other

(if they are not the same re
ord type, this should fail, even if they have the

same stru
ture) and referring to �elds in the re
ord. Currently, the variant

part of re
ords is not implemented, and the
ompiler gives an error indi
ating

this. (See �le type/re
ords.ada)

Enumerations

Enumerations asso
iate a name (whi
h be
omes a type) to a list of other

names (whi
h be
ome
onstant variables). A variable given the type of the

enumeration
an be assigned only values from the list asso
iated with that

enumeration. (See �le type/enums.ada)

A

ess Types

An a

ess type is a pointer type. These
an
urrently be de
lared, but not in-

stantiated, be
ause we do not
urrently support dynami
 memory allo
ation.

A message to that e�e
t is printed if someone tries to
reate a new obje
t of

some type to assign to an a

ess variable. (See �le type/a

ess.ada)

3.4.2 Obje
t De
larations

Obje
t de
larations assign a variable name to a type. Only one variable
an

have the same name in ea
h s
ope. (See �le type/multiDef.ada) These are

46

used everywhere, so almost every one of our test
ases will use an obje
t

de
laration.

3.5 Expression Type Che
king and Overload

Resolution

Overload resolution has already been dis
ussed in the subprogram testing

se
tion above.

Expression type
he
king is used in most of the �les referred to that test

de
larations. The ones used in these �les are simple (usually just assignment

or addition). More
ompli
ated type
he
king involves
ombining all the

de
larations, s
ope and built ins. (See all .ada �les in the type/ dire
tory

as well as the /u/
s444/Test3.ada/ dire
tory)

3.5.1 Built ins

There are many built in fun
tions and variables. For example Boolean:

(True, False) is a built in enumeration, + is built in for integers, read,

write, et
. Ea
h of these is de�ned for a
ertain set of built-in types, as

de�ned by the language. All built-in operators
an be overloaded. (See �le

type/builtin.ada)

3.6 S
ope

There are three main areas where s
ope
omes into play: pa
kages, subpro-

gram de
larations (fun
tions/pro
edures) and loops/blo
ks.

Pa
kages have de
larations that are visible within the
ode for that pa
k-

age. Pa
kages
an export their de
larations to other pa
kages with the use

lause. This is not
urrently implemented and jaa
 will return an error stat-

ing this. Pa
kages
an also have private de
larations whi
h are visible only

within the pa
kage. Sin
e use is not implemented this
annot be tested.

The parameters of a fun
tion are put into the s
ope of the fun
tion's body

and are only visible within that body.

The for loop de�nes a variable to iterate on and this variable is only

visible within the s
ope of the loop.

See �le type/s
opeOfVars.ada for examples of all of these.

47

3.7 Code Produ
tion

Testing
ode produ
tion is done through exhaustive test input. The input is

ompiled, and the produ
ed exe
utables are
he
ked to see if they behave as

expe
ted. Below is a list of language features with Ada �les whi
h test them.

Only a few Ada �les are listed for ea
h feature; there may in fa
t be other

test �les that use the feature indire
tly. Some of the tests below produ
e

NYI (not yet implemented) errors, showing that jaa
 will gra
efully fail for

unimplemented features.

The �les in the
ode/ dire
tory are tests we
reated, in
ourse/ are tests

from the
ourse a

ount, and in fis
her/ are tests from the textbook web

site.

3.7.1 De
larations

pa
kages

de
laration before implementation

use
lause (NYI)

ourse/test41b.ada

ourse/test50.ada

private(NYI)/publi

ourse/de
l01.ada

fis
her/test29.ada

subprograms

return values

ourse/fa
torial.ada

type/fun
tion.ada

ode/fun
tion2s.ada

parameters

in, out, in/out

ode/inout1.ada

ode/display2.ada

no parameters

ode/fun
tions3.ada

non-s
alar parameters/return values

ode/re
ords1.ada

de
laration before implementation (forward de
laration)

48

ode/fun
tions1.ada

ode/display3.ada

ode/fa
torial.ada

de
laration w/o implementation (should give error)

ode/fun
tions1.ada

operators

ode/operators.ada

operator overloading

ode/overloading2.ada

overloading

ode/overloading1.ada

re
ursion

ode/fa
torial.ada

pro
edure has no return type

ode/fun
tions2.ada

obje
t de
larations (variables)

single name/multiple names (given same type)

ode/de
l.ada

initial value (with multiple names)

ode/initialize.ada

ode/readwrite.ada

ode/de
l.ada

a

ess types (NYI)

ourse/test05.ada

onstant variables

fis
her/test18.ada

ourse/test13.ada

type de
larations

enums

ode/enums.ada

re
ords

ode/re
ords1.ada

re
ords as �elds of other re
ords

ode/re
ords1.ada

variant re
ords

ourse/test46.ada

arrays

ourse/de
l02.ada

49

ourse/test05.ada

in
omplete type de
laration (NYI)

ourse/test08.ada

subtypes (NYI)

ourse/de
l03.ada

range
onstraint

ourse/test09.ada

ex
eptions (NYI)

ompile time

ourse/test43.ada

runtime

Not Implemented

3.7.2 Statements

pragma (NYI)

parse/test38.ada

null statement

ode/null.ada

assign statement

ode/fa
torial.ada

assignment of non-s
alars

ode/re
ords1.ada

all statement

fis
her/test12.ada

de
lare blo
k

ode/blo
k.ada

loop

for loops (forward/reverse)

ode/loops.ada

ode/loops3.ada

while loops

ode/loops.ada

loop w/o while or for

ode/loops4.ada

loop exits (w/o id, with id)

50

ode/loops2.ada

ode/loops4.ada

if statements (if, else, elsif (multiple))

ode/enums.ada

exit statements

ode/loops2.ada

return statement

ode/enums.ada

ode/fa
torial.ada

ode/re
ords1.ada

ase statement (NYI)

ourse/test25.ada

raise statement (NYI)

ourse/test43.ada

aggregates (NYI)

short-
ir
uit evaluation (and then; or else)

ode/short
ir
uit.ada

string literals

ode/readwrite.ada

ode/test01.ada

ode/test04.ada

builtin fun
tions

operators

ode/operators.ada

ode/power.ada

enum '=' and '/=' operators

ode/enums.ada

read/write

ode/readwrite.ada

3.7.3 S
ope

hiding variables and subprograms in s
ope

ode/display*.ada

ode/blo
k.ada

nested pro
edures/fun
tions

51

ode/display*.ada

s
ope of for loop variable

ode/loops3.ada

3.8 Statisti
s

Test �le statisti
s:

lines words bytes

s
an/*.ada 290 759 5797

parse/*.ada 2500 7051 40187

type/*.ada 280 804 5408

ode/*.ada 978 2665 17271

ourse/*.ada 2156 5928 36448

�s
her/*.ada 1032 4705 27560

total: 7236 21912 132671

52

