From Whence It Came:

Detecting Source Code Clones by Analyzing Assembler

Ian J. Davis and Michael W. Godfrey

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
{ijdavis, migod}@uwaterloo.ca

Abstract

To date, most clone detection techniques have concentrated
on various forms of source code analysis, often by
analyzing token streams. In this paper, we introduce a
complementary technique of analyzing generated
assembler for clones. This approach is appealing as it is
mostly impervious to trivial changes in the source, with
compilation serving as a kind of normalization technique.
We have built detectors to analyze both Java VM code as
well as GCC Linux assembler for C and C++. In the paper,
we describe our approach and show how it can serve as a
valuable complementary semantic approach to syntactic
source code based detection.

Keywords: Clone Detection, Reverse Engineering

1. Introduction

Source code clone detection is the attempt to
discover similar logic within different parts of a code
base, either so that cloned source code might be
consolidated, making the resulting code cleaner [4],
or so that the strong similarities between code in
diverse parts of the code base might at least be
recognized and documented to aid future maintainers.
Clone detection has several potential benefits: it can
ease software maintenance; the correcting of errors in
all similar places where they occur may be more
likely; and when performed on assembler it can aid in
reverse engineering large systems for which there is
no source code. In addition clone detection may serve
as a possible metric of cohesion when evaluating
unfamiliar code [3] [6] [7].

Two immediate challenges of any tool that performs
source code clone detection are to discard non-
significant differences in the source code, and to
discover commonality within the logic that remains.
These challenges can be addressed by developing a
sophisticated clone detection tool that is capable of
understanding all the intricacies of specific
programming languages, or by having the clone
detection tool operate on an intermediate

representation of the source code [9] in which
irrelevant differences in the source code are removed
through normalization and complex control flow
patterns are reduced to simple sequences of
operations.

We have taken the latter approach for several
reasons: clone detection can be cleanly divided into
two independent sub-problems, simplifying the
process; it permits the clone detection tool to operate
on simplified input; and source code written in
different languages — such as C, C++, and C# —
can be treated in a homogenous rather than a
heterogeneous manner. While it has been suggested
[10] that this intermediate representation might itself
be chosen so as to be of most use to achieving clone
detection, there is some benefit in exploiting the
intermediary assembler (or interpretive language)
that is produced when source is compiled [2] [8].

This approach has the disadvantage that we must
have access to existing binaries, or must be able to
compile the source code. Clone detection tools that
use token-based approaches do not make this
requirement. Our approach also has the disadvantage
that some compilers (notably not Java) generate
assembler languages that are platform specific, while
different compilers for the same machine might
produce very different assembler.

However, our approach has the advantage that the
input operated upon by the clone detector is known
to be a genuine representation of the source code as
used in the actual build process, accurately reflecting
files included, macros employed, data types used, etc.
This input can readily be derived from source code
written in various languages without any need to
develop, support and maintain custom translation
tools for each such language. Many syntactic
differences in the source are normalized in the
assembler. A further advantage of this approach is
that it permits clone detection to also be performed
on object code for which source code is lacking. It

also cleanly permits clone detection to be performed
on source code that contains embedded assembler.
Finally, it is believed that semantic analysis of
assembler permits discovery of logically equivalent
code more easily than would be possible at the source
code level.

The rest of the paper is structured as follows: In
Sections 2 and 3, we discuss our approaches for
analyzing assembler produced from Java and C/C++
source respectively. In Sections 4, we discuss the
general approach that we take in detecting clones in
assembly languages. Finally, in Section 5, we
summarize our contributions.

2. Java

Java source code is typically compiled into one or
more Java class files. It is these class files that the
Java Virtual Machine reads when interpretively
executing a program. These class files contain all of
the semantic knowledge about what an arbitrary Java
program is to do when executed. In addition, when
Java programs are compiled in a manner that permits
them to be later debugged, considerable extra
information is embedded within the Java class files.
This information permits correlation between the
contents of these class files and the source code from
which they are produced, as well as preservation of
syntactic information such as the names of variables
used in the source code.

The Java virtual machine specification provides
extensive documentation on the internal format and
interpretation of such Java class files. Using this
standard it is straightforward to reverse engineer and
mine the contents of Java class files so as to enhance
the knowledge about the source code from which it is
produced. Armed with this ability to correctly parse
Java class files, we have developed software to
reconstruct quasi-source code from a class file, to
extract graphs that can be viewed visually showing a
wide variety of different types of relationships which
arise in Java source code, and to perform clone
detection on Java.

The underlying common framework for parsing Java
class files permits class files to be automatically
constructed before being read by transparently
compiling the corresponding source files;
furthermore, it permits dynamic inclusion of new
class files in the set to be examined, when referenced
either directly or indirectly by the initial sources

presented to clone detection. This inclusion uses the
same class path mechanism that the Java compiler
uses to discover needed components when compiling
Java source code. Thus our Java clone detector can
detect code duplication not only in the source code
presented to it, but across the totality of all Java used
in the execution of a Java program.

To facilitate better clone detection, we perform a
small amount of post processing on the Java byte-
code. Compression techniques that used different p-
code instructions to describe the same operation are
normalized. If local variable names are available (as
consequence of the class files having been compiled
using the —g option) these can replace internal
variable numbers. Pseudo instructions are also added
to reflect the start and end of try and catch blocks,
since this information is not included within the p-
code, but maintained in separate tables.

3. C, C++, and Assembler

The task of converting C and C++ code to assembler
is automated by capturing a history of all of the
compilation steps performed in the process of
building a system, and then modifying the
compilation parameters so that the desired assembler
(when absent) can be automatically generated from
each source file involved in that build process.

Each assembler file is read into memory, and then
modified to better suit the needs of clone detection.
The assembler is normalized by removing comments
and redundant white space, and jumps are resolved to
the assembler instruction branched to. References to
constant strings are replaced by the strings
themselves to simplify comparison of code that used
such references. References to variables (within the
assembler expressed as machine addresses) are
replaced by the corresponding variable name, using
the symbolic debugging information embedded
within the assembler. Operations performed on parts
of a variable (as for example happens when operating
on double precision numbers or complex structures)
are represented as variable name together with
numeric byte offset within it.

Compiler-generated temporary variables also need
names. Making the presumption that compiler
generated names have scope restricted to the
translation of individual lines of source code, we give
such variables incremental numbers (in the order
encountered), with the incrementing mechanism

being reset each time the assembler being examined
pertains to a new corresponding source line.

It remains unclear whether nested components of
composite structures are best named as they would be
within C and C++, which would cause clone
detection to treat such names differently when any
part of them changed, or as offsets from the root
variable name, which would cause clone detection to
treat them differently if internal memory addresses of
such subcomponents changed as result of
modification of the internal descriptions of the
structures containing them. Possibly variables need
matching against multiple naming schemes.

4. Steps in performing clone detection

The task of clone detection at the assembly language
level is to discover maximal pairings of distinct
matched assembler instructions from two distinct
assembler subsequences (contained within a
function) that occur in the same sequence, subject to
some limit being imposed on the interleaved
assembler instructions that are discovered not to
match. We take a search-based approach [5] to
performing the matching.

We begin by reading each class/assembler file into an
assembler object. Assembler objects form a linked
list which may be traversed. Each assembler object
contained an array of function objects. Function
objects themselves contain an array of p-
code/assembler instructions which clone detection
operated upon. The unit of comparison is typically a
single assembler instruction. However, switch and
case statements that are implemented as a lookup and
branch table in the assembler are treated as composite
instructions involving an ordered sequence of branch
instructions by the clone detection tool.

Each instruction is stored in a hash table that with
high probability will hash instructions deemed not to
match when compared for equivalence to different
hash chains. Each instruction records a back
reference to the function containing it, and each
function likewise contains a back reference to the
assembler or class file containing it. The source and
line number from which each instruction is produced
is also captured, if available.

Our clone detection algorithm examines each
instruction by walking through each function and
each array of instructions within a function. An

initial instruction P; may be deemed capable of
matching some initial instruction Q; only if both are
the first instruction generated at a given line in the
corresponding source code, neither is derived from
source in a location other than the primary source file
from which the assembler derives (i.e. a macro
defined within a header file) and/or only if both
instructions do not require information from the stack
added by an earlier instruction. These optional
restrictions are designed to avoid matching sequences
of instructions that are deemed not to be strongly
related to the actual source code from which the
assembler is derived.

To avoid the reporting of clones that overlap other
clones, reported pairs of matched instructions may
not subsequently be treated as the start of any other
later clone.

Each matchable instruction is compared to all later
instructions within the same hash chain (thus having
the same hash value). For each pair of instructions
that match, two sub-arrays of instructions are
submitted to clone detection. These start at each
matched instruction and typically run to the last
instruction in the function containing it. However,
when both instructions occur within the same
function, the earlier sub-array has as its last member
the instruction before the later matching instruction.

For most instructions determining if another
instruction matches it is straightforward: it matches if
and only if the instruction type matches, as well as
any arguments associated with these instructions.
Branch instructions, whose argument is an address,
require more complex analysis. Self loops match
only self loops. Branches outside the range of the
instructions that potentially form a clone do not
match. Otherwise two branch instructions match if
they are of the same type, and either both branch
forwards or both branch backwards and the nearest
recognized matched instructions at or prior to the
addresses branched to match one with the other.

Having identified an initial match, the length of the
corresponding clone is determined as follows. A
positive weight (default 1) is associated with cases
where instructions match, and a negative weight
(default -1) 1is associated with cases where
instructions fail to match. More complex schemes
might weight different types of assembler instruction
differently.

A greedy (not necessarily optimal) algorithm is used
that attempts to identify the longest subsequences
beginning at the initially matched instructions having
the property that the weighted sum of matched and
mismatched instructions remains non-negative.

Given two sequences of comparable instructions P
and Q, (by construction) P; matches Q;. So suppose
that we have just successfully matched instructions P;
and Q; If either is the last instruction in one of the
subsequences presented to clone detection we are
done. Otherwise we attempt to extend the matched
sequence by comparing Pi; with Q. If these
instructions also match we increase our weight
associated with the matched subsequences and
repeat. Otherwise we conclude that there must be at
least one mismatched instruction, decrement our
weight, terminate if it becomes negative and compare
(subject to terms existing) Pi;; with Qj, and if
necessary Pi;» with Qj;;. A match in either permits us
to again increment our weight and proceed from
these new matched end points. Failing to match
either pairing, forces us to conclude that at least two
mismatched instructions must occur and so we again
decrement our weight and compare Pi;; with Qj:3,
Piy, with Qjp, and if necessary Pi3 with Qjy.
Generalizing having concluded that at least n
instructions must be skipped in the matching process,
we compare in some implementation order (subject
to the instructions existing) every possible matching
of Pirr with Qjiink for 0 <k < n. For example,
this algorithm will match the solid edges shown in
Figure 1.

Function 1 Function 2
AAA = » AAA
BBB x XXX
YYY ‘\Q cee
Z STy e
ccc & - EEE
BBB /

EEE

Figure 1. Possible matchings

A hill climbing algorithm may be invoked following
execution of the greedy algorithm. Every possible
way in which instructions from the one discovered
clone might be matched with the other is computed,
and these edges between the two clones not currently

matched become candidates to be matched. To some
user-specified maximum, in increasing order of the
number of currently matched edges which block an
edge from being matched (either as consequence of
crossing it or of sharing an end point with it) all such
blocking edges are marked unmatched, and the
candidate edge together with all other now unblocked
edges are marked matched, whenever this change
increases the number of matched edges. Thus this
algorithm will replace two of the solid edges shown
in Figure 1, with the three dotted edges shown.

The hill climbing algorithm terminates when any of
four conditions hold: when insufficient memory
exists to implement it; when a user-specified number
of iterations have been performed; when a given time
limit is exceeded; or when no further improvement
seems possible.

Iteration between the greedy and hill climbing
algorithm continues as long as improvement in the
matching between discovered clones occurs. Once no
further improvement seems possible, matched
forward branches which disagree as to the nearest
recognized matched instructions at or prior to the
addresses branched to are unmatched.

The subsequences discovered in the above process
are upon conclusion each truncated so that either the
last matched instructions within each determined
subsequence, or alternatively the last match for
which the weighting was maximal, becomes the last
instruction within each respective clone.

The primary benefit of the above algorithm is that it
is fast, simple, and appears to be effective. This
algorithm when presented with longer sequences of
instructions that match becomes correspondingly
more forgiving of later instructions that do not,
which seems reasonable (even desirable) behavior.
Modification of the parameterized weights permits
exact (type 1) matching of sub-sequences to be
enforced, or more or less tolerance of mismatches.

Our algorithm is similar to that proposed by Baker
[1], but it differs in that it aggressively seeks long
clones that potentially contain mismatched code,
rather than in aggressively seeking fragments of code
that under potential parametric transformation match
exactly, which can then potentially become part of
longer clones that include mismatched code. It also
differs in how it avoids reporting clones derived from
overlapping instruction sequences.

Runtime complexity for the greedy algorithm is
O(n*m*p?) where n is the total number of assembler
instructions examined as candidates to begin a clone,
m is the average matches in a discovered clone, and p
> 1 is the average number of steps needed to find a
match, in the presence of mismatched instructions.

Runtime complexity for the hill climbing algorithm is
dominated by the need to consider O(n*m) possible
edges between clones of length n and m, and worse
the O((nm)?) intersections that can arise between
these edges. As consequence this algorithm cannot
reasonably be expected to run to normal conclusion,
or be able to obtain sufficient memory to run at all,
when presented with very long clone pairs. However
it can be expected to make improvements while
running.

We are currently evaluating our tools empirically
against several source-based clone detection tools.

5. Conclusions

We have presented a novel search based approach for
performing clone detection that complements other
available approaches. This approach permits one to
perform clone detection on precisely those source
files actively used in a build process, and to analyze
source on which all the normal preprocessing
involving macro expansion and header file inclusion
has been performed. It offers the potential of
building hybrid clone detection algorithms that can
exploit commonality in the source code and the
assembler produced from it, since source code,
assembler, and the correlation between the two are all
known. By exploiting the ability to interpret
assembler instructions one can aggressively perform
clone detection, not merely by using the available
syntactic information, but also by considering the
actual runtime behavior of the assembler.

Our clone detection software is reasonably fast, and
produces comprehensive results that can be viewed
through a web browser, a graphical visualization
tool, and/or other back end clone evaluation
software. While it must be customized for each
assembly language that it is to be used on, this is a
one-time cost.

Source code for our Java (JCD) and Assembler
(ACD) clone detection tools are available [11].

Acknowledgments

This research is supported by grants from CA
Canada Inc. and NSERC.

References

[1] Baker B. S. On finding duplication and near
duplication in large software systems. Proceedings
of the 2" Working Conference on Reverse
Engineering. 1995

[2] Baker B. S. & Manber U. Deducing similarities in
Java source from bytecodes.
USENIX Annual Technical Conference. 1998

[3] Davis L. J. & Godfrey M. W. Clone Detection by
Exploiting Assembler (position paper). Fourth
International Workshop on Software Clones.
May 8, 2010,

[4] De Sutter B., De Bus B., De Bosschere K.
Time Binary Rewriting Techniques for Program
Compaction. ACM Transactions on Programming
Languages and Systems, 27(5) September 2005

[5] Harman M, The Current State and Future of Search
Based Software Engineering. Proceedings of the
29th International Conference on Software
Engineering, 20-26 May, 2007

[6] Kapser C. J. & Godfrey M. W. Supporting the
Analysis of Clones in Software Systems.
Journal of Software Maintenance and Evolution.
Vol. 18(2) (March 2006)

[7] Kapser C. J. Towards an Understanding of Software
Code Cloning as a Development Practice.
PhD Thesis June 2009

[8] Norman M. Clone Detection applied to Java
Bytecode Carleton University (unpublished)
10 Dec 2008

[9] Roy C. K. & Cordy J. R. A Survey of Software
Clone Detection Research. Technical Report 2007-
541 Queens University. September 26, 2007.

[10] Selim G. M. K., FooK. C.,and Zou Y.
Enhanced Clone Detection Using “Jimple”
Code Representation Queens University.
Poster, CSER (unpublished) Fall 2009

[11] SWAG: Software Architecture Group.
www.swag.uwaterloo.ca

http://www.swag.uwaterloo.ca/

	1. Introduction
	2. Java
	3. C, C++, and Assembler
	4. Steps in performing clone detection
	This research is supported by grants from CA Canada Inc. and NSERC.
	References

