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Abstract 

 
To date, most clone detection techniques have concentrated 
on various forms of source code analysis, often by 
analyzing token streams. In this paper, we introduce a 
complementary technique of analyzing generated 
assembler for clones.  This approach is appealing as it is 
mostly impervious to trivial changes in the source, with 
compilation serving as a kind of normalization technique.  
We have built detectors to analyze both Java VM code as 
well as GCC Linux assembler for C and C++. In the paper, 
we describe our approach and show how it can serve as a 
valuable complementary semantic approach to syntactic 
source code based detection. 
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1. Introduction 
 
Source code clone detection is the attempt to 
discover similar logic within different parts of a code 
base, either so that cloned source code might be 
consolidated, making the resulting code cleaner   [4], 
or so that the strong similarities between code in 
diverse parts of the code base might at least be 
recognized and documented to aid future maintainers.  
Clone detection has several potential benefits: it can 
ease software maintenance; the correcting of errors in 
all similar places where they occur may be more 
likely; and when performed on assembler it can aid in 
reverse engineering large systems for which there is 
no source code. In addition clone detection may serve 
as a possible metric of cohesion when evaluating 
unfamiliar code [3] [6] [7].  
  
Two immediate challenges of any tool that performs 
source code clone detection are to discard non-
significant differences in the source code, and to 
discover commonality within the logic that remains.  
These challenges can be addressed by developing a 
sophisticated clone detection tool that is capable of 
understanding all the intricacies of specific 
programming languages, or by having the clone 
detection tool operate on an intermediate 

representation of the source code [9] in which 
irrelevant differences in the source code are removed 
through normalization and complex control flow 
patterns are reduced to simple sequences of 
operations. 
 
We have taken the latter approach for several 
reasons:  clone detection can be cleanly divided into 
two independent sub-problems, simplifying the 
process; it permits the clone detection tool to operate 
on simplified input; and source code written in 
different languages — such as C, C++, and C#  — 
can be treated in a homogenous rather than a 
heterogeneous manner. While it has been suggested 
[10] that this intermediate representation might itself 
be chosen so as to be of most use to achieving clone 
detection, there is some benefit in exploiting the 
intermediary assembler (or interpretive language) 
that is produced when source is compiled  [2] [8]. 
 
This approach has the disadvantage that we must 
have access to existing binaries, or must be able to 
compile the source code. Clone detection tools that 
use token-based approaches do not make this 
requirement. Our approach also has the disadvantage 
that some compilers (notably not Java) generate 
assembler languages that are platform specific, while 
different compilers for the same machine might 
produce very different assembler.   
 
However, our approach has the advantage that the 
input operated upon by the clone detector is known 
to be a genuine representation of the source code as 
used in the actual build process, accurately reflecting 
files included, macros employed, data types used, etc.   
This input can readily be derived from source code 
written in various languages without any need to 
develop, support and maintain custom translation 
tools for each such language.  Many syntactic 
differences in the source are normalized in the 
assembler. A further advantage of this approach is 
that it permits clone detection to also be performed 
on object code for which source code is lacking.   It 

 



also cleanly permits clone detection to be performed 
on source code that contains embedded assembler. 
Finally, it is believed that semantic analysis of 
assembler permits discovery of logically equivalent 
code more easily than would be possible at the source 
code level. 
 
The rest of the paper is structured as follows:  In 
Sections 2 and 3, we discuss our approaches for 
analyzing assembler produced from Java and C/C++ 
source respectively.  In Sections 4, we discuss the 
general approach that we take in detecting clones in 
assembly languages.  Finally, in Section 5, we 
summarize our contributions. 
 
2. Java 
 
Java source code is typically compiled into one or 
more Java class files.  It is these class files that the 
Java Virtual Machine reads when interpretively 
executing a program. These class files contain all of 
the semantic knowledge about what an arbitrary Java 
program is to do when executed.  In addition, when 
Java programs are compiled in a manner that permits 
them to be later debugged, considerable extra 
information is embedded within the Java class files.  
This information permits correlation between the 
contents of these class files and the source code from 
which they are produced, as well as preservation of 
syntactic information such as the names of variables 
used in the source code.  
 
The Java virtual machine specification provides 
extensive documentation on the internal format and 
interpretation of such Java class files.  Using this 
standard it is straightforward to reverse engineer and 
mine the contents of Java class files so as to enhance 
the knowledge about the source code from which it is 
produced.  Armed with this ability to correctly parse 
Java class files, we have developed software to 
reconstruct quasi-source code from a class file, to 
extract graphs that can be viewed visually showing a 
wide variety of different types of relationships which 
arise in Java source code, and to perform clone 
detection on Java.  
 
The underlying common framework for parsing Java 
class files permits class files to be automatically 
constructed before being read by transparently 
compiling the corresponding source files; 
furthermore, it permits dynamic inclusion of new 
class files in the set to be examined, when referenced 
either directly or indirectly by the initial sources 

presented to clone detection.  This inclusion uses the 
same class path mechanism that the Java compiler 
uses to discover needed components when compiling 
Java source code. Thus our Java clone detector can 
detect code duplication not only in the source code 
presented to it, but across the totality of all Java used 
in the execution of a Java program. 
 
To facilitate better clone detection, we perform a 
small amount of post processing on the Java byte-
code.  Compression techniques that used different p-
code instructions to describe the same operation are 
normalized.  If local variable names are available (as 
consequence of the class files having been compiled 
using the –g option) these can replace internal 
variable numbers.  Pseudo instructions are also added 
to reflect the start and end of try and catch blocks, 
since this information is not included within the p-
code, but maintained in separate tables.  
  
3. C, C++, and Assembler 
 
The task of converting C and C++ code to assembler 
is automated by capturing a history of all of the 
compilation steps performed in the process of 
building a system, and then modifying the 
compilation parameters so that the desired assembler  
(when absent) can be automatically generated from 
each source file involved in that build process. 
 
Each assembler file is read into memory, and then 
modified to better suit the needs of clone detection.  
The assembler is normalized by removing comments 
and redundant white space, and jumps are resolved to 
the assembler instruction branched to.  References to 
constant strings are replaced by the strings 
themselves to simplify comparison of code that used 
such references.  References to variables (within the 
assembler expressed as machine addresses) are 
replaced by the corresponding variable name, using 
the symbolic debugging information embedded 
within the assembler.  Operations performed on parts 
of a variable (as for example happens when operating 
on double precision numbers or complex structures) 
are represented as variable name together with 
numeric byte offset within it.  
 
Compiler-generated temporary variables also need 
names.  Making the presumption that compiler 
generated names have scope restricted to the 
translation of individual lines of source code, we give 
such variables incremental numbers (in the order 
encountered), with the incrementing mechanism 

 



being reset each time the assembler being examined 
pertains to a new corresponding source line. 
 
It remains unclear whether nested components of 
composite structures are best named as they would be 
within C and C++, which would cause clone 
detection to treat such names differently when any 
part of them changed, or as offsets from the root 
variable name, which would cause clone detection to 
treat them differently if internal memory addresses of 
such subcomponents changed as result of 
modification of the internal descriptions of the 
structures containing them. Possibly variables need 
matching against multiple naming schemes. 
 
4. Steps in performing clone detection 
 
The task of clone detection at the assembly language 
level is to discover maximal pairings of distinct 
matched assembler instructions from two distinct 
assembler subsequences (contained within a 
function) that occur in the same sequence, subject to 
some limit being imposed on the interleaved 
assembler instructions that are discovered not to 
match.  We take a search-based approach [5] to 
performing the matching. 
 
We begin by reading each class/assembler file into an 
assembler object.  Assembler objects form a linked 
list which may be traversed.  Each assembler object 
contained an array of function objects.  Function 
objects themselves contain an array of p-
code/assembler instructions which clone detection 
operated upon.  The unit of comparison is typically a 
single assembler instruction. However, switch and 
case statements that are implemented as a lookup and 
branch table in the assembler are treated as composite 
instructions involving an ordered sequence of branch 
instructions by the clone detection tool. 
 
Each instruction is stored in a hash table that with 
high probability will hash instructions deemed not to 
match when compared for equivalence to different 
hash chains.  Each instruction records a back 
reference to the function containing it, and each 
function likewise contains a back reference to the 
assembler or class file containing it.  The source and 
line number from which each instruction is produced 
is also captured, if available. 
 
Our clone detection algorithm examines each 
instruction by walking through each function and 
each array of instructions within a function.  An 

initial instruction P1 may be deemed capable of 
matching some initial instruction Q1 only if both are 
the first instruction generated at a given line in the 
corresponding source code, neither is derived from 
source in a location other than the primary source file 
from which the assembler derives (i.e. a macro 
defined within a header file) and/or only if both 
instructions do not require information from the stack 
added by an earlier instruction.  These optional 
restrictions are designed to avoid matching sequences 
of instructions that are deemed not to be strongly 
related to the actual source code from which the 
assembler is derived. 
 
To avoid the reporting of clones that overlap other 
clones, reported pairs of matched instructions may 
not subsequently be treated as the start of any other 
later clone. 
 
Each matchable instruction is compared to all later 
instructions within the same hash chain (thus having 
the same hash value). For each pair of instructions 
that match, two sub-arrays of instructions are 
submitted to clone detection. These start at each 
matched instruction and typically run to the last 
instruction in the function containing it. However, 
when both instructions occur within the same 
function, the earlier sub-array has as its last member 
the instruction before the later matching instruction. 
 
For most instructions determining if another 
instruction matches it is straightforward: it matches if 
and only if the instruction type matches, as well as 
any arguments associated with these instructions.  
Branch instructions, whose argument is an address, 
require more complex analysis.  Self loops match 
only self loops. Branches outside the range of the 
instructions that potentially form a clone do not 
match. Otherwise two branch instructions match if 
they are of the same type, and either both branch 
forwards or both branch backwards and the nearest 
recognized matched instructions at or prior to the 
addresses branched to match one with the other. 
 
Having identified an initial match, the length of the 
corresponding clone is determined as follows.  A 
positive weight (default 1) is associated with cases 
where instructions match, and a negative weight 
(default -1) is associated with cases where 
instructions fail to match.  More complex schemes 
might weight different types of assembler instruction 
differently. 
 

 



A greedy (not necessarily optimal) algorithm is used 
that attempts to identify the longest subsequences 
beginning at the initially matched instructions having 
the property that the weighted sum of matched and 
mismatched instructions remains non-negative.  
 
Given two sequences of comparable instructions P 
and Q, (by construction) P1 matches Q1.  So suppose 
that we have just successfully matched instructions Pi 
and Qj   If either is the last instruction in one of the 
subsequences presented to clone detection we are 
done.  Otherwise we attempt to extend the matched 
sequence by comparing Pi+1 with Qj+1.  If these 
instructions also match we increase our weight 
associated with the matched subsequences and 
repeat.  Otherwise we conclude that there must be at 
least one mismatched instruction, decrement our 
weight, terminate if it becomes negative and compare 
(subject to terms existing) Pi+1 with Qj+2, and if 
necessary Pi+2 with Qj+1.  A match in either permits us 
to again increment our weight and proceed from 
these new matched end points. Failing to match 
either pairing, forces us to conclude that at least two 
mismatched instructions must occur and so we again 
decrement our weight and compare Pi+1 with Qj+3;, 
Pi+2 with Qj+2;,  and if necessary Pi+3 with Qj+1. 
Generalizing having concluded that at least n 
instructions must be skipped in the matching process, 
we compare in some implementation order (subject 
to the instructions existing) every possible matching 
of   Pi+1+k with Qj+1+n-k for 0 ≤ k ≤ n.  For example, 
this algorithm will match the solid edges shown in 
Figure 1. 
 

 
Figure 1.  Possible matchings 

 
A hill climbing algorithm may be invoked following 
execution of the greedy algorithm. Every possible 
way in which instructions from the one discovered 
clone might be matched with the other is computed, 
and these edges between the two clones not currently 

matched become candidates to be matched. To some 
user-specified maximum, in increasing order of the 
number of currently matched edges which block an 
edge from being matched (either as consequence of 
crossing it or of sharing an end point with it) all such 
blocking edges are marked unmatched, and the 
candidate edge together with all other now unblocked 
edges are marked matched, whenever this change 
increases the number of matched edges. Thus this 
algorithm will replace two of the solid edges shown 
in Figure 1, with the three dotted edges shown. 
 
The hill climbing algorithm terminates when any of 
four conditions hold:  when insufficient memory 
exists to implement it; when a user-specified number 
of iterations have been performed; when a given time 
limit is exceeded; or when no further improvement 
seems possible.   
 
Iteration between the greedy and hill climbing 
algorithm continues as long as improvement in the 
matching between discovered clones occurs. Once no 
further improvement seems possible, matched 
forward branches which disagree as to the nearest 
recognized matched instructions at or prior to the 
addresses branched to are unmatched. 
 
The subsequences discovered in the above process 
are upon conclusion each truncated so that either the 
last matched instructions within each determined 
subsequence, or alternatively the last match for 
which the weighting was maximal, becomes the last 
instruction within each respective clone. 
 
The primary benefit of the above algorithm is that it 
is fast, simple, and appears to be effective.  This 
algorithm when presented with longer sequences of 
instructions that match becomes correspondingly 
more forgiving of later instructions that do not, 
which seems reasonable (even desirable) behavior.  
Modification of the parameterized weights permits 
exact (type 1) matching of sub-sequences to be 
enforced, or more or less tolerance of mismatches. 
 
Our algorithm is similar to that proposed by Baker 
[1], but it differs in that it aggressively seeks long 
clones that potentially contain mismatched code, 
rather than in aggressively seeking fragments of code 
that under potential parametric transformation match 
exactly, which can then potentially become part of 
longer clones that include mismatched code.  It also 
differs in how it avoids reporting clones derived from 
overlapping instruction sequences. 
 

 



 

Runtime complexity for the greedy algorithm is 
O(n*m*p2) where n is the total number of assembler 
instructions examined as candidates to begin a clone,  
m is the average matches in a discovered clone, and p 
≥ 1 is the average number of steps needed to find a 
match, in the presence of mismatched instructions. 
 
Runtime complexity for the hill climbing algorithm is 
dominated by the need to consider O(n*m) possible 
edges between clones of length n and m, and worse 
the O((nm)2) intersections that can arise between 
these edges.  As consequence this algorithm cannot 
reasonably be expected to run to normal conclusion, 
or be able to obtain sufficient memory to run at all, 
when presented with very long clone pairs.  However 
it can be expected to make improvements while 
running. 
 
We are currently evaluating our tools empirically 
against several source-based clone detection tools. 
 
5. Conclusions 
 
We have presented a novel search based approach for 
performing clone detection that complements other 
available approaches.  This approach permits one to 
perform clone detection on precisely those source 
files actively used in a build process, and to analyze 
source on which all the normal preprocessing 
involving macro expansion and header file inclusion 
has been performed.  It offers the potential of 
building hybrid clone detection algorithms that can 
exploit commonality in the source code and the 
assembler produced from it, since source code, 
assembler, and the correlation between the two are all 
known.  By exploiting the ability to interpret 
assembler instructions one can aggressively perform 
clone detection, not merely by using the available 
syntactic information, but also by considering the 
actual runtime behavior of the assembler. 
 
Our clone detection software is reasonably fast, and 
produces comprehensive results that can be viewed 
through a web browser, a graphical visualization 
tool, and/or other back end clone evaluation 
software.  While it must be customized for each 
assembly language that it is to be used on, this is a 
one-time cost.   
 
Source code for our Java (JCD) and Assembler 
(ACD) clone detection tools are available [11]. 
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