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An aspect observes the execution of a base program; when
certain actions occur, the aspect runs some extra code of
its own. In the AspectJ language, the observations that an
aspect can make are confined to the current action: it is not
possible to directly observe the history of a computation.

Recently, there have been several interesting proposals
for new history-based language features, most notably by
Douence et al. and by Walker and Viggers. In this pa-
per, we present a new history-based language feature called
tracematches that enables the programmer to trigger the
execution of extra code by specifying a regular pattern of
events in a computation trace. We have fully designed and
implemented tracematches as a seamless extension of As-
pectd.

A key innovation in our tracematch approach is the in-
troduction of free variables in the matching patterns. This
enhancement enables a whole new class of applications in
which events can be matched not only by the event kind,
but also by the values associated with the free variables.
We provide several examples of applications enabled by this
feature.

After introducing and motivating the idea of tracematches
via examples, we present a detailed semantics of our lan-
guage design, and we derive an implementation from that
semantics. The implementation has been realised as an ex-
tension of the abc compiler for AspectJ.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages, Design, Theory
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1. INTRODUCTION

Aspect-oriented programming offers a new set of language
features to increase modularity and separation of concerns.
One could think of an aspect as a special kind of object that
observes a base program: when certain patterns of actions
happen in the base program, the aspect runs some extra
code of its own. The actions that may be intercepted are
called joinpoints, and the patterns are called pointcuts. The
most popular implementation of these ideas is AspectJ [18],
an extension of Java.

In AspectJ, pointcuts can only refer to the current pro-
gram state, or more precisely, the current joinpoint, includ-
ing an abstraction of the call stack. It is natural to explore
a richer pointcut notation that refers to the whole history
of a computation as a trace of the joinpoints encountered
so far. Several such history-based approaches have recently
been proposed. Walker and Viggers have introduced the
idea of tracecuts as a history-based generalisation of point-
cuts [31]. Other history-based proposals have been put for-
ward by Douence et al. [7-10].

Inspired by these pioneering efforts, the present paper
takes an important step forward by extending the trace
patterns with free variables. This innovation, which we
term tracematches, enables a whole new class of applica-
tions, which we illustrate in Section 2. The key point is that
matches can be made not just based on the kind of events,
but also on the values bound to free variables. Thus, a trace-
match can be used to pick out a trace of events relevant to
individual objects.

Our motivating examples in themselves help to settle a
number of important language design decisions, and we dis-
cuss those decisions in Section 3. A major goal of our design
was to achieve a seamless integration of tracematches into
the existing AspectJ language.

Although our examples provide a general feeling for our
new tracematch language feature, we felt that it was impor-
tant to give a rigorous definition and to use this definition
to produce a correct and sound implementation. We first
define a reasonably obvious declarative semantics, then we
give a non-trivial operational semantics that could be used
to guide a reference implementation, and finally we prove

1A detailed comparison of our approach to these approaches
is given in Section 7.



that the declarative and operational semantics are equiv-
alent. These two semantics and the equivalence proof are
given in Section 4.

We feel that proceeding in this principled fashion is an
important contribution of the paper, since despite the fact
that the meaning of tracematches is intuitive and crystal-
clear, their implementation is quite subtle. The key prob-
lem to address is that tracematches must perform two in-
teracting functions. First, tracematches filter the current
trace so that they only match on symbols that are explicitly
declared in a tracematch declaration. This is important be-
cause it means that the patterns don’t need to be cluttered
with irrelevant details and can focus on the events of inter-
est. Second, tracematches must consistently bind variables
across the whole match. This makes it easier to track the
behaviour of individual objects in the pattern.

The declarative semantics makes these two notions of fil-
tering and consistent binding precise, and serves to pin down
exactly what behaviour we want. It is tricky to combine
filtering and consistent binding in an implementation, how-
ever: intuitively, you only know what symbols to filter out
once you have a binding for all the variables. In the imple-
mentation, you have to “guess” whether a symbol can be
skipped and the operational semantics formalises that idea.
In our experience it is very hard to get the implementation
correct, and indeed, we got it wrong several times before
we formally showed the equivalence of the declarative and
operational semantics.

We have derived a concrete reference implementation from
the operational semantics. Section 5 discusses some further
implementation issues, in particular the choice of concrete
representations for the main abstract data types. It is also
here that we address the very important question of mem-
ory usage — a naive implementation of tracematches would
suffer severe memory leaks. We also briefly discuss optimi-
sations for tracematches in Section 6. The design has been
fully implemented as an extension to the AspectBench Com-
piler abe [1] for the Aspect] language.

Finally, in Section 7 we discuss in more detail how our
design differs from the works cited above, and we conclude
in Section 8.

In summary, this paper presents the following original con-
tributions:

e An important generalisation of earlier proposals for
history-based approaches. Our approach, tracematches,
introduces the notion of free variables in trace pat-
terns.

e A new class of applications of history-based advice,
enabled by this generalisation.

e A careful review of the design decisions for tracematches,
in the light of these applications.

e A seamless integration of tracematches into the exist-
ing AspectJ language.

e A declarative semantics of tracematches, as well as an
operational semantics, and a proof of their equivalence.

e A reference implementation that is derived from the
operational semantics.

e A detailed discussion of implementation decisions, in
particular regarding memory usage of compiled code.
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(TRACEMATCH) 1=
[perthread]| tracematch ((VARIABLE DECLARATIONS))

{

(TOKEN DECLARATION )+
(REGEX)
(METHOD BODY)

(TOKEN DECLARATION) ::=
sym (NAME) (KIND): (POINTCUT);

(KIND) 1=
before
| after
| after returning [( (VARIABLE) )]
| after throwing [( (VARIABLE) )]
| (TYPE) around [( (VARIABLES) )]

(REGEX) ::=
(NAME)
| (REGEX) (REGEX) AB — A followed by B
| (REGEX) | (REGEX) AlB— A or B
| <REGEX> * A* — 0 or more As
| <REGEX> + A+ — 1 or more As
| (REGEX) [ (CONSTANT) | A[n] — ezactly n As
| ( (REGEX) ) (A) — grouping

Figure 1: Grammar for a tracematch

In what follows, we assume the reader has a nodding ac-
quaintance with AspectJ, and in fact most of our pure As-
pectdJ code should be self-explanatory. There is a wealth of
textbooks available on the subject, including [6,15,19,20,24].

2. TRACEMATCHES

Traditional aspects allow programmers to define advice —
pieces of code that are run when the current program ex-
ecution state (or ‘joinpoint’) meets some specified criteria.
Tracematches extend this so that the program’s entire exe-
cution history (or trace) can be examined to determine when
the advice should run. The program’s trace is modelled as
a sequence of entries and exits from standard AOP join-
points. To wit, the following aspect (in standard AspectJ)
prints out a formatted version of a program trace. An enter
event occurs before every joinpoint, and upon its completion
we have an exit event.

aspect TraceGen {
before () !within(TraceGen) {
System.err.println(”enter:.”+
thisJoinPoint );

}
after () !within(TraceGen) {
System.err.println(”exit:_ "+
thisJoinPoint );

A tracematch defines a pattern and a code block to be run
when the current trace matches that pattern. The grammar
for a tracematch is shown in Figure 1. Each tracematch
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consists of three parts: the declaration of one or more sym-
bols (events of interest), a pattern involving those symbols,
and a piece of code to be executed. A match occurs when a
suffix of the current program trace, when restricted to the
symbols declared in the tracematch, is a word in the regu-
lar language specified by the pattern. Here is a very simple
example of a tracematch:

tracematch () {
sym f before:
sym g after:

call(x f(..));
call (+ g(.));

f g

{ System.out.println(”fg!”); }

Line 1 is the tracematch header, which defines any trace-
match variables (none in this case). Next, on lines 2-3, we
define two symbols. The symbol f matches enter events on
joinpoints that match the pointcut call(x f(..)). Similarly,
the symbol g matches exit events on joinpoints that match
the pointcut call(* g(..)). The regular expression on line 5
specifies that advice is triggered on traces that end with a
call to f and g. Finally, line 7 gives the advice body to be
executed.

In matching the pattern to the trace, any events in the
trace that are not declared as symbols in the tracematch
are ignored, and only events declared as symbols can trigger
the match. Hence, this tracematch matches any exit from
a call to g which was preceded by an enter of a call to f
without any exits from calls to g in between.

2.1 Examples

We present a number of typical examples to demonstrate
the practical uses of tracematches and to motivate our de-
sign. For each example, we describe a problem, give a
straightforward solution in terms of tracematches, and show
an equivalent solution in plain AspectJ to illustrate the ad-
vantages of the declarative tracematch approach. The var-
ious features of the tracematch extension will be explained
alongside the examples as they are used.

Autosave. Consider an editor of some sort. We wish to add
an ‘autosave’ feature that ensures a copy of the file is saved
to disk after every five actions. This is easy to do with a
tracematch. We begin by declaring two symbols: the first
one for saves — either those explicitly initiated by the user,
or automatic ones (lines 2-4). The other symbol is a call to
execute a command — this is what we mean by an ‘action’
(lines 5-6). Whenever we see five consecutive actions (as
specified by the regular pattern on line 8) the autosave()
method is called (line 10). Here, the syntax ‘[5]" means
exactly 5 repetitions of the same symbol. Any constant-
valued expression can go here, so the actual value could be
put into a static, final field for clarity.

This example illustrates an important design decision: all
events are ignored, except those that match one of the ex-
plicitly declared symbols. The save symbol is included in
the alphabet, but not in the regular expression, in order
to prevent the expression from matching if the actions are
interrupted by a save action.

tracematch () {
sym save after:
call (x Application.save())
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|| call (x Application.autosave());
sym action after:
call (% Command.execute ());

(5]

Application.autosave ();

action

Now consider how the same effect is achieved in pure As-
pectJ. We maintain a counter to keep track of the number
of actions since the last save (line 2). Whenever a save event
happens, the counter is reset to 0 (lines 4-7). Furthermore,
upon the completion of each action, we increase the count
by 1: if the total reaches 5, the autosave() method is called
(lines 10-12).

aspect Autosave {
private int actions_since_last_save = 0;

after (): call (x Application.save())
|| call (x Application.autosave()) {
actions_since_last_save = 0;

}

after (): call (x Command.execute ()) {

actions_since_last_save —++;

if (actions_since_last_save
Application.autosave ();

— 5)

}

Note how the state of the matching process (the counter) is
explicit in the AspectJ solution. In this example, that leads
to only minor complications, but as we shall see below, often
the burden of such state maintenance is much greater.

Previous program state can be exposed to tracematches
by capturing variables in the symbol pointcuts. These vari-
ables are defined in the tracematch header (similarly to the
definition of pointcut variables in ordinary pointcuts) and
bound by the normal pointcut variable binding constructs
in the symbol pointcuts. Unlike ordinary pointcuts, symbol
pointcuts in tracematches do not define variables of their
own. A tracematch variable is visible in the advice body
and in the symbol pointcut by which it is bound. All trace-
match variables that are used by the advice body must be
bound by at least one symbol in any symbol string matching
the pattern. This ensures that these variables have always
been given a value whenever the body is executed.

Whenever the same tracematch variable is bound more
than once in a trace (by the same symbol or by different sym-
bols) the variable is not rebound to the new value. Rather,
it is checked that the old and the new value are equal (in
the sense of ==). If this is not the case, the new symbol is
ignored for this particular trace. In other words, a program
trace is defined to match the regular expression when there
exists some set of values that can be consistently substituted
for the pointcut variables in such a way that the program
trace matches the defined expression. When more than one
set of variable bindings exists that cause the expression to
match, the code block is executed multiple times, once for
every possible match. This allows the tracematch to match
patterns in the behaviour of individual objects, for exam-
ple to enforce conditions on the order in which the object’s
methods are called (by reporting runtime errors when the
conditions are violated).
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Contextual logging. Our next example is intended to il-
lustrate the use of variable binding in tracematches. The
application is to log the actions of the users of a database:
whenever a user has logged in, we want to report the queries
of that user. For simplicity, we consider a system where only
one user is logged in at any time.

Variables that are to be bound in the pattern of a trace-
match are declared in its header (line 1). Here there are
two such variables, namely the user u and a query ¢q. The
first symbol we declare is the one that binds u, via a call
to the login(..) method (lines 2-4). We also track logout
actions, so that we stop logging when the user has finished
(lines 5-6). Finally, we declare a symbol for query events
(lines 7-9), and intercept the value of the query in variable
q. The pattern is then very simple: we just look for queries
that follow a login event (line 11). Whenever this matches a
suffix of the current trace, we print an appropriate logging
message that reports both the user u and the query ¢ (lines
13-14).

tracematch (User u, Query q) {
sym login after returning:
call (x LoginManager.login (User,..))
args(u,..);
logout after:
call (x LoginManager.logout ());
query before:
call (x Database.query(Query))

args(q);

&&
sym

sym
&&
login query+

System.out.println(u +
” _made_query.” + q);
}

}

Note that it does not make sense to replace + in the above
pattern (line 11) by #, for that would imply that the g pa-
rameter might not have been bound. It is a requirement
(checked statically by the compiler) that any variable that
is used inside the advice body must be bound by some sym-
bol in all possible traces matched by the regular expression.

Now consider how the same functionality is encoded in
pure AspectJ. We need a boolean variable to keep track of
whether a user has been logged in, and another variable to
record the user (lines 2-3). (At a pinch, the two might be
combined, as the user field is null precisely when the boolean
field is false — but we find that less transparent.) When-
ever the login() call succeeds, we set the boolean to true,
and update the user field as well (lines 5-11). Correspond-
ing updates are made upon a logout (lines 13-17). When a
query happens, and a user is logged in, the logging message
is output (lines 19-26).

aspect Logging {
private boolean loggedIn =
private User user;

false;

after (User u) returning:
call (x LoginManager .
login (User, Password))
&& args(u,..) {

loggedIn = true;
user = u;

}

after ():

call (x LoginManager.logout ()) {
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loggedIn = false;
user = null;

}

before (Query q):
call (x Database.query(Query))
&& args(q) {
if (loggedIn) {
System.out.println
(user + ”_made_query.” + q);

}
}
}

Apart from being more verbose, this AspectJ solution is also
less flexible than the one based on a tracematch. Suppose
we wanted to extend this logging aspect to log the actions
of multiple users who can be logged in at the same time.
For the tracematch version, all we would have to do would
be to extend the login, logout and query symbols to capture
some unique information such as a session id (assuming this
is made explicit in the base program). This would then tie
the login and query events together by their shared session
id, allowing the user from the login symbol to be available
to the advice body. To add the same functionality to the
AspectJ version, the variables would have to be replaced by
mappings and the code changed accordingly.

Observer. This example demonstrates a way of implement-
ing the well-known Observer design pattern. Here we have
a set of Subject objects, which represent the state of some
entity being modelled, and a set of Observer objects which
are attached to a particular Subject and need to be notified
in any changes to their Subject’s state. The solutions be-
low both provide a way of doing this without the Subject
needing to be aware that it is being observed.

The tracematch based solution declares two events of in-
terest, in lines 2-7: the creation of an observer o (where the
subject s is passed as an argument), and updates to that
same subject s. We then specify the sequence of events that
will cause the view of the observer to be updated, on line
9. In words, we perform an observer update upon creation
of the observer, and subsequently upon each update of the
subject that follows the creation of the observer. Note how
this example illustrates our use of variable bindings in pat-
terns: it is the observer creation that binds variables s and
o. The update symbol then only matches execution events
with those same variable bindings.

tracematch (Subject s, Observer o) {

sym create_observer after returning(o):
call (Observer .new (..))
args (s);
update_subject after:
call(x Subject.update (..))
target(s);

&&

sym
&&

create_observer update_subject x

{

o.update_view ();

}
}

A similar AspectJ solution is shown below. It needs to
maintain a vector of observers for each subject. The associ-
ation of the vector to each subject is achieved via a so-called
intertype declaration on lines 2-3. This inserts a new field
called observers into the Subject class (or, if it is an inter-
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face, into each implementor of that interface). When a new
observer is constructed, we add it to the observers of sub-
ject s (line 8), and we also update its view (line 9). Then,
whenever the subject is updated, we update each of its ob-
servers (lines 15-20). A comparison of the AspectJ solution
with our formulation in terms of tracematches highlights an
important point, namely that in a tracematch, the advice
is executed for all matching bindings. The iteration that
is explicit in the AspectJ solution is implicit when using
tracematches.

aspect Observer {
private Vector Subject.observers
= new Vector ();

after (Subject s) returning(Observer o):
call(Observer .new(..))
&& args(s) {
s.observers.add(o);
o.update_view ();

}

after (Subject s):
call(x Subject .update (..))
&& target(s) {
Iterator obsit = s.observers.iterator ();
while (obsit . hasNext ()) {
Observer o
= (Observer)
o.update_view ();

obsit.next ();

}
}
}

For brevity, we have chosen a minimal implementation of
the observer pattern, but the use of tracematches also sim-
plifies the more advanced formulation in [17]. In that sem-
inal paper, Hannemann and Kiczales demonstrate convinc-
ingly that many design patterns are more easily expressed in
AspectJ than in Java. Here we present a further significant
improvement over that work.

In addition to before and after, symbols can also be de-
clared as around. An around symbol matches enter events
of the corresponding joinpoints, just as before does. How-
ever, the advice body gets executed instead of the original
joinpoint, rather than just before it.

There are certain restrictions on how around symbols can
be used. We require that either all the events that could be
the last in the matched sequence are of around type, or
none are. This restriction is necessary as advice bodies for
around advice are incompatible with the ones for before
and after, for two reasons: first, around advice must return
a value of the return type declared for the advice (declared
just before the around keyword); second, similarly to ordi-
nary around advice, around advice in tracematches can call
the special method proceed() to invoke the original join
point. We will say more about proceed() in Section 3.5.
Additionally, we require that around symbols can only ap-
pear at the end of matched sequences, as there is no sensible
meaning for around if there is no advice to be executed at
the matched joinpoint.

F|yW€i ght. We now consider the Flyweight design pattern.
The purpose of this pattern is to avoid a huge number of
small objects being created. To achieve that, a pool of in-
stances is maintained; where possible, each constructor call
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is intercepted and instead an object from the pool is re-
turned. For simplicity we stipulate that objects of the Fly-
Weight type that were created with the same argument to
the constructor are considered equivalent. An implementa-
tion of the flyweight pattern thus requires that we cache the
result of constructor calls, only creating one object for each
different argument value.

The flyweight pattern has a natural description in terms
of a tracematch. We look for the first object creation with a
given argument; and after that, any constructor call with
the same argument is intercepted. We therefore declare
two symbols (lines 2-7). Note that the latter symbol is an
instance of around. The advice body does not call pro-
ceed(), which means that the original constructor call is
not performed. Instead, it just returns the value returned
the last time the constructor was called with the same ar-
gument. (line 11).

tracematch (Flyweight fw, Object arg) {
sym return_an_obj after returning(fw):

call (FlyWeight 4+.new(Object ))

args(arg);

create_another_obj FlyWeight around:

call (FlyWeight 4+.new(Object ))

args(arg);

&&

sym
&&

return_an_obj create_another_obj

{

return fw;

}
}

We now consider an encoding of the flyweight pattern in
pure AspectJ, as displayed below. Again this is a minor
simplification of the code of Hannemann and Kiczales [17].
It explicitly maintains a table of those objects that have
previously been used as arguments to a flyweight construc-
tor, and the associated object that was returned (lines 2-3).
An IdentityHashMap is used for this to mimic the object
identity behaviour of the tracematch version. Then, upon
each constructor call (lines 6-7), we check whether a table
entry exists for the given argument (line 9). If so, the corre-
sponding object is returned (lines 10-11). Otherwise, a new
object is created, and stored in the table before returning
(lines 14-16).

aspect FlyWeightAspect {
private Map constructedObjects
= new IdentityHashMap ();

FlyWeight around(Object arg):
call (FlyWeight +.new(Object))
&& args(arg)

if (constructedObjects.containsKey (arg))
return (FlyWeight)
constructedObjects . get (arg);
else

FlyWeight fw = proceed(arg);
constructedObjects . put(arg ,fw);
return fw;

}
}
}

The code using a tracematch is marginally shorter, but in
our view that is not its main advantage. The true merit of
the tracematch is that it directly states the programmer’s
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intention, crisp and clear, without a need to encode the es-
sential idea.

Safeiterators. Our next example concerns the safe use of
iterators. It is usually the case that the data source that
underlies an iterator may not be changed during the itera-
tion process. It is fairly common to explicitly encode that
behaviour in the implementation of iterators, by throwing
an exception if an iterator is used after the collection has
changed, but it would be nicer to specify it as a separate
concern, once and for all.

There are three symbols of interest here: the creation of
an iterator on a particular data source (lines 2-4), the next()
operation on that same iterator (lines 5-7), and update oper-
ations on the given datasource (lines 8-10). Then, whenever
we see a creation, followed by some iteration steps, one (or
more) update(s) and then another iteration step, we know
that an error has occurred. This is captured by the pattern
on lines 12-13.

tracematch (Iterator i, DataSource ds) {
sym create_iter after returning(i):

call(Iterator DataSource.iterator ())

target(ds);

call_next before:

call (Object Iterator.next())

target(i);

update_source after:

call (x DataSource.update (..))

target(ds);

&&

sym

&&

sym
&&

create_iter call_next=x
update_source+ call_next

throw new
ConcurrentModificationException ();

In the AspectJ version, we keep track of the state of the
DataSource explicitly, in a map from the DataSource to
some unique object (lines 3-4). We then reallocate this ob-
ject each time the state changes (line 30). For each Iterator
object, we remember its associated DataSource (lines 5-6
and 13) and the state the DataSource was in upon the cre-
ation of the iterator (lines 7-8 and 14). If the DataSource
has changed state since the iterator was created, the next()
operation fails (lines 21-24).

aspect Safelterators
{
private Map ds_state
= new IdentityHashMap ();
private Map it_ds
= new IdentityHashMap ();
private Map it_ds_state
= new IdentityHashMap ();

after (DataSource ds) returning(Iterator i):
call(Iterator DataSource.iterator ())
&& target(ds) {
it_ds.put(i, ds);
it_ds_state.put(i,

}

before(Iterator 1i):
call (Object Iterator.next())
&& target (i)

ds_state.get (ds));

if (ds_state.get(it_-ds.get(i))

22
23
24
25
26
27
28
29
30
31
32

= it_ds_state.get (1))
throw new
ConcurrentModificationException ();

}

after (DataSource ds):
call(x DataSource.update (..))
&& target(ds) {
ds_state.put(ds, new Object ());

}
}

Again, the intent is clearly visible in the tracematch so-
lution, whereas the pure AspectJ solution is formulated in
terms of how the constraint is actually implemented. Fur-
thermore, this AspectJ implementation will cause severe
memory leaks. Any DataSource and Iterator ever used will
end up in the maps and not be garbage collected. For this
example, this could be easily fixed by using weak references
to ensure that mappings are removed from the maps when
their keys are no longer in use.?> A naive tracematch imple-
mentation would of course suffer from the same problems,
but in this case the compiler has the opportunity to analyze
the specification and use weak maps wherever applicable.
We will return to the issue of weak references in Section 5.

The Aspectd solution could be expressed a bit more simply
(and without the memory leak problem) by using intertype
declarations on the DataSource and Iterator classes. How-
ever, in order to inject intertype declarations, the AspectJ
compiler must have access to modify these classes, either at
compile time or by using a weaving class loader. Such ac-
cess is typically not available for the Java standard library
classes, so this proposed solution would not work with, for
example, the standard collection classes. The tracematch
implementation does not require weaving access to classes
bound to tracematch variables, so in order to achieve as close
to the same behaviour for the two solutions as possible, the
hash map version was chosen.

Connection management. In our final example, we use an
aspect to control the opening and closing of some form of
‘connection’, for example to a database system. For the sake
of the example, we assume that a Connection class has three
methods, open(), query() and close(). The query() method
should only be called on a Connection that is in the open
state. We assume that the open() and close() methods take
some time to execute, so should not be called unnecessarily,
but also that open connections require some overhead, so
connections should not be left open and unused for large
periods of time.

The aspects below allow users of the Connection class to
ignore the open() and close() methods, and just assume that
they will be opened and closed when needed. To achieve
this, a closed connection is opened immediately before a
query is called on it, and an open connection that has not
been used ‘recently’ is closed. We define a connection not
having been used recently to mean “there have been 5 calls
to some logging API since its last use”. This might not
be a useful heuristic in a realistic setting, but it can be
easily replaced by something more sophisticated, since it is
encoded as a trace pattern.

2No WeakIdentityHashMap exists in the Java Standard Li-
brary, but such a class could of course be written specifically
for this purpose.
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The desired effect is achieved with two tracematches. The
first is shown below. It declares symbols for opening, clos-
ing, querying, and creating a new connection (lines 2-12).
The connection must be opened when we see the first query
after a creation, or when we see that a query is performed
immediately after a close. This is captured with the pattern
on line 14, and it illustrates that all declared symbols must
be matched: because open_con is one of the symbols, the
pattern rules out a situation where the connection is open
already.

tracematch (Connection c) {

sym open_con after:
call (x Connection.open())
target(c);
close_con after:
call (x Connection. close ())
target(c);
query before:
call (x Connection.query (..))
target(c);
create after returning(c):
call (Connection.new());

&&
sym

&&
sym

&&

sym

(create query)|(close_con query)

{
c.open ();
}
}

The next step is to define a tracematch that closes a connec-
tion when it has been open too long. As said, our heuristic
rule defining ‘too long’ is that there have been 5 logging calls
since the last query. Declaring an explicit symbol for clos-
ing the connection (lines 2-4) guarantees that the connection
has not been closed after the matching query event.

tracematch (Connection c¢) {
sym close_con after:
call (x Connection.close())
target(c);
query before:
call (x Connection.query (..))
target(c);
log before ():
call (x Log.add (..));

(5]

c.close ();

}

&&

sym

&&

sym

query log

}

This example hints at the need for a language mechanism to
name symbols outside a particular tracematch, to allow the
same symbol to be used in multiple tracematches. However,
often the amount of repetition can be minimised by naming
the relevant pointcut, and therefore we have decided (at
least for the moment) against such a mechanism.

Let us now consider a similar solution in plain AspectJ
(a much fuller discussion of this type of application can be
found in section 7.13 of Laddad’s textbook [20]). To track
the number of logs since the last query on each open con-
nection, we have a map from Connections to Integers (lines
2-3). An invariant of the code is that any connection that
is a key in this map is open, and all other connections are
closed.

When a connection is opened, we record it in the age map
and set its age to 0 (line 8). When a connection is closed,
we remove it from the map (line 14). When a query is
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intercepted, we must open the connection if it is currently
closed, and its age is then reset to zero (lines 20-22). Finally,
whenever a log call happens, we iterate over the set of all
connections (lines 26-39). For each connection, we increase
its age, and if this pushes the age of a connection to 5, the
connection is closed and removed from the map.

aspect AJConnectionManagement {
private Map connection_age
= new IdentityHashMap ();

after (Connection c¢):
call (x Connection.open())
&& target(c) {
connection_age.put(c, new Integer (0));

}

after (Connection c¢):
call (x Connection. close ())
&& target(c) {
connection_age .remove(c);

}

before (Connection c¢):
call (x Connection.query (..))
&& target(c) {
if (!connection_age.containsKey (c))

c.open();
connection_age.put(c, new Integer (0));
}
before (): call (x Log.add (..)) {

Iterator it
= connection_age.entrySet ().
while (it . hasNext ()) {
Map. Entry e = (Map.Entry)it.next ();
Connection ¢ = (Connection)e.getKey ();
int age = ((Integer)e.getValue())
.intValue ();
age++;
e.setValue (new Integer (age));
if(age = 5) {
c.close ();
it.remove();

}

iterator ();

}
}
}

It is interesting to contrast this code with our earlier for-
mulation in terms of tracematches. There, the statement
of the intended behaviour is purely declarative, and we do
not need to create an explicit iteration. Instead, the iter-
ation happens automatically, for each binding that results
from matching the regular pattern to suffixes of the current
trace. This is similar to the use of iteration in our earlier
discussion of the observer pattern.

3. DESIGN CONSIDERATIONS

We now review the crucial design choices for tracematches.
In particular, we contrast our decisions with alternatives, fo-
cussing on those cases where others have made a different
choice. In doing so, it is our aim to give a rational account
of our design, deferring a detailed comparison with related
work till Section 7. As we shall demonstrate, all decisions
were informed both by the examples in the preceding sec-
tion, as well as the desire to have a clean semantics that
admits an efficient implementation.



3.1 Definition of Traces

A trace is a sequence of events in the execution of a pro-
gram. Our events are defined as entries and exits from join-
points. In the tracematch declaration itself, we attach the
standard AspectJ advice kinds before, after and around
to symbol declarations. Analogously to ordinary advice,
around is treated similarly to before for the purposes of
matching but then executes in place of the matched join-
point rather than before it.

An alternative way to define a trace might be to use join-
points as events directly, which is similar to the way AspectJ
defines the cflow pointcuts. This means thinking of join-
points as nodes in a program execution tree (a generalisa-
tion of the dynamic call graph with nodes for all joinpoints,
not just calls), and define the trace as the sequence of join-
points that have been visited so far. However, joinpoints
are not atomic events — in particular they can be nested
inside each other. It follows that the ordering of events in
the resulting trace depends on the definition of ‘visited’ that
is used. Whether a parent or child node is visited first de-
pends on whether the trace is defined in terms of a preorder
or postorder traversal.

Our definition is more flexible than this alternative ap-
proach. The above scenario gives the trace ‘before parent;
before child; after child; after parent’. By writing appropri-
ate patterns, the programmer can achieve the same effect as
either a preorder or postorder traversal would have done.

3.2 ClassoflLanguage Usedto Describe Traces

Our trace patterns are described as regular expressions.
The motivation for doing so is that regular expressions pro-
vide a concise, easily understood notation. Indeed, in typi-
cal use cases of tracematches, regular expressions offer just
the right level of expressiveness. Furthermore, regular ex-
pressions lend themselves to static analyses: for richer for-
malisms, the question of language inclusion is typically un-
decidable, for example.

The only obvious alternative is to consider context-free
language patterns instead. Most examples in the literature
that motivate such a generalisation involve dependencies on
balanced method calls and returns. However, in these cases,
the call stack dependencies can often be described using
cflow pointcuts. These pointcuts allow the programmer to
assert that program execution is below one of a given set
of joinpoints in the execution stack. Together with cflow
pointcuts regular trace patterns achieve a high degree of ex-
pressiveness.

3.3 Matching a Pattern to a Trace

An important design decision concerns the filtering of
traces to the events of interest. We have decided to explic-
itly declare all “interesting” symbols, and restrict the trace
to events that match one of these declared symbols. The
pattern is then matched against this restricted trace. This
decision avoids cluttering the pattern with spurious sym-
bols for events that are irrelevant to the problem in hand.
One subtle point is that we never discard the last event of a
trace: this last event must match a declared symbol. This is
to ensure that advice is only executed at the point a match
occurs, and not at each ignored symbol thereafter.

One could consider defining the set of captured events
implicitly as all events matched by symbols that occur in
the regular expression (as opposed to all symbols defined

in the tracematch). However, with this definition, it would
not be possible to explicitly exclude certain events from the
trace. If an event was included in the regular expression
then by definition it could appear in some matched trace,
and if it didn’t appear then it would be completely ignored.
As shown in the examples, being able to exclude events is
highly useful.

The fact that all symbols for a tracematch must be de-
clared within the tracematch declaration provides a form
of encapsulation. Individual tracematches are isolated from
each other, so introducing or changing one tracematch does
not interfere with the matching of another, except for any
changes to the program state or trace that the tracematch
causes explicitly. This retains the independency achieved by
normal AspectJ pointcuts.

3.4 Binding Variables

The most prominent feature of our tracematch design is
the handling of variable bindings in the symbol pointcuts:
multiple occurrences of the same variable in the pattern
must be bound to a single value that is consistent across
all the occurrences.

To see the rationale for this fundamental decision, note
that variable bindings in tracematches serve two important
purposes:

e To give code in the advice body access to context val-
ues at the joinpoints matched by the tracematch sym-
bols. This is similar to variable binding in ordinary
advice.

e To allow the tracematch to match traces in the be-
haviour of individual objects or groups of objects, rather
than just control-flow traces. This mechanism is vaguely
related to per-clauses for ordinary aspects (in the sense
that these too associate pointcuts with individual ob-
jects) but serves a quite different purpose, as it is bind-
ing together traces of events rather than merely select-
ing an aspect instance.

As long as a variable is only bound once in a trace, it is
simply bound to the corresponding value. When a variable
is bound more than once in the same trace (whether by the
same symbol or by different symbols), there are a number
of options for what the behaviour could be:

e Re-bind the variable, so that the value seen by the
advice is the one bound most recently in the trace.
This is similar to what is done for cflow pointcuts,
where the values bound by the most closely enclosing
joinpoint are the ones seen by the advice.

e Check for equality with the previous binding. The
pointcut is extended with an implicit condition that
the values bound must be the same as was previously
bound to the same variables. If the value is different,
the pointcut does not match, so the trace is rejected.
In this design, the first value that is bound to a vari-
able in a given trace is the only possible value for that
variable.

e Allow multiple sets of bindings for any given trace. For
any given set of bindings, events that cause symbols
to bind with different values are ignored in the same
way as events that are not matched by any declared
symbols.



The last option here is the only one that fulfils the second
purpose above. By viewing the trace as a set of parallel,
object-specific traces, the behaviour of individual objects
can be easily captured by the tracematch. As witnessed by
the examples in Section 2, this is highly useful.

This mechanism can in most cases simulate the other two
options mentioned above. To only capture the last binding
of a variable, rewrite the regular expression so that only the
last binding is part of the match. To check equality between
bindings, bind the values to different variables and check
their equality as an extra condition in the advice body.

In defining the equality of values above, we have used ref-
erence equality, corresponding to Java’s == operator. One
could consider whether it would be more appropriate to
define equality by the equals() method instead. The dis-
tinction here is between tracking an object and tracking a
value. However, “tracking a value” does not really make
sense, since the fact that two objects are equal according the
the equals() method does not in any way imply that these
objects are related in the data flow of the program. As the
examples clearly show, the tracking of particular object in-
stances is very useful in capturing properties of the program
data flow. Again, equality of values based on equals() can
be checked by binding the values to different variables and
checking their equality in the advice body.

3.5 Behaviour with multiple matches

The same pattern can match a single execution trace in
multiple ways, producing different variable bindings for each
match. Our decision is to execute the advice once for each of
the variable bindings. A typical example where this feature
proved crucial is that of the Observer pattern, where multi-
ple Observers are notified upon a change in the Subject.

This decision was motivated by our desire to mimic the
behaviour of multiple pieces of ordinary advice that apply
to the same joinpoint. From this perspective, it is natural
that the advice body is executed multiple times, once with
each different set of bindings for the tracematch variables.
It is possible that a trace can match the regular expression
in two different ways, but result in the same values being
bound. When this happens the advice is still executed just
once for those particular values. It is the bound values that
distinguish the traces.

It is not obvious how to define the order in which the ad-
vice for the different bindings are executed, as this involves
the ordering of sets of values. One could consider using the
structure of the way the trace was matched or the order
in which the values were bound to define an ordering, but
this would not give a unique ordering, since different values
can be bound by identical traces, and the same values could
be bound in several possible ways. This means that any
given ordering is not particularly intuitive, since it would be
based on some underlying mechanism which is not visible to
the programmer. Ordering based solely on the actual val-
ues bound to the variables is not possible in general, since
some values might not have a natural ordering. At least
until more work is done on exploring implementations and
applications, we have chosen not to define any particular
ordering on the execution of tracematch advice.

Matters get more complicated when the final symbol is
an around symbol. Similarly to ordinary around advice,
around advice in tracematches can call the special method
proceed() to invoke the original join point. If more than

one trace matched at the same joinpoint, proceed() invokes
the next match, and only during execution of the final match
does proceed() invoke the original joinpoint. It is permis-
sible for the advice body not to call proceed() at all, in
which case the original join point is skipped and no more
matches are executed. Similarly, if proceed() is called mul-
tiple times, the original joinpoint (or the following match)
executes multiple times.

Normally, proceed() takes no arguments. A sometimes
confusing feature of AspectJ is that the proceed() call can
be given arguments which are used to replace the original
value of variables bound by the pointcut. We provide an
analogous feature in tracematches by the following mecha-
nism. An around symbol can optionally declare a signature
for proceed() by giving a list of tracematch variables after
the around keyword (similarly to ordinary around advice
but without the types). The actual values passed to pro-
ceed() then replace the values at the original join point to
which the corresponding variables were bound. In the case of
multiple matches, the following match sees the passed values
as new values for the corresponding tracematch variables.

If any final symbols declare such a signature, all final sym-
bols must give the same list of variables, all these variables
must be bound by all of the around symbol pointcuts, and
they must be bound by the same binding constructs. This
ensures that these variables have the same values for all pos-
sible matches at a given joinpoint. Thus, if the advice always
passes the parameters directly to proceed(), the behaviour
is the same as if no variables were specified.

3.6 Behaviour with multiple threads

So far, we have implicitly assumed that all programs to
which tracematches are applied are single-threaded. We
need to define how tracematches behave in the presence of
multiple threads. There are at least two sensible behaviours
that could be defined in this case: the first is to treat each
thread like a separate program, and match the traces of each
thread individually. The second is to create a single trace
of the entire program, by interleaving the events of each
thread. Our decision is to allow either behaviour, leaving
the choice to the programmer.

The first possible behaviour, matching thread traces in-
dependently, is useful where a tracematch needs to detect
patterns in control flow. Examples of this are to detect con-
trol flow patterns that are known to lead to error conditions,
or to enforce rules such as ”a thread should not use an object
of type X until it first acquires a lock on it”.

The second possible behaviour, interleaving thread traces,
can be used when a tracematch needs to detect a pattern of
events with reference to a particular object, for example to
enforce typestate restrictions. Examples include ”all Con-
nection objects must be in an open state before being used”
or "only one thread may have a lock on an object at a time”.

Because both of these behaviours have important uses,
we allow the programmer to select the desired behaviour.
The default is to interleave events across threads, but we
introduce a modifier, perthread, which can be added to a
tracematch declaration to declare that the traces of each
thread should be matched independently.

Both of these kinds of tracematches have their own sources
of extra overhead compared to the single-threaded version.
For the thread-local version, we have to keep track of the
tracematch matching state per thread, using thread locals or
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tracematch (X x)

sym f before
call(x f(..))
&& target(x) ;
sym g after :
call(x g(..)
&& target(x);

fg

{ System.out.println(”fg!”); }

Figure 2: An example tracematch

hash maps mapping from the current thread, similar to what
needs to be done in the implementation of cflow pointcuts.
For global tracematches, we need to make matching and
tracematch state tracking code synchronized in order to
ensure that atomic events are properly interleaved.

4. SEMANTICS

We now pin down the meaning of tracematches so that it
is possible to give a high-level description of their implemen-
tation. We first define the semantics in a declarative man-
ner, and then refine this into a more operational semantics,
geared towards defining a reference implementation.

4.1 Roadmap

Before diving into the formalities, we first give a brief
roadmap, motivating our formal decisions later on.

Declarative semantics. For a tracematch without vari-
ables, we match every suffix of the current trace against
the pattern. In doing so, the trace is filtered, by ignoring all
events that do not correspond to any of the declared sym-
bols. The last event in the trace should, however, always
correspond to a declared symbol: this is just the require-
ment that advice is executed immediately when a match
occurs. These three ideas (suffixes, filtering, and last event
declared) are the three key features of the declarative se-
mantics.

To give a declarative meaning to a tracematch that has
free variables, we read it as a template for all possible in-
stantiations, where each of the variables has been replaced
by a specific runtime value (there may be an infinite num-
ber of such instantiations). Each of these instantiations is a
tracematch without variables, and we have already given a
meaning to those.

To illustrate these points, consider the tracematch in Fig-
ure 2. and the sequence of calls

v.f(); v.h(); w.g(); w.f(); v.g();

To keep the example short and manageable, we assume that
each of f, g and h has void return type and an empty body.
A full trace of the above call sequence is shown in Figure 3.

As described above, the above tracematch should be seen
as a template for all possible instantiations assigning values
to . In this case it is clear that the only relevant values
for x are x = v and * = w. Consider first the instantiation
2 = v. Then the events relating to v.h(), w.g() and w.f()
are all filtered out, and the resulting trace is just [el, e20]

el enter: call(void FG.f()) on v

e2 enter: execution(void FG.f()) on v
e3  exit: execution(void FG.f()) on v
ed exit: call(void FG.f()) on v

eb enter: call(void FG.h()) on v

e6  enter: execution(void FG.h()) on v
e7  exit: execution(void FG.h()) on v
e8 exit: call(void FG.h()) on v

e9 enter: call(void FG.g()) on v

el0 enter: execution(void FG.g()) on w
ell exit: execution(void FG.g()) on w
el2 exit: call(void FG.g()) on w

el3 enter: call(void FG.f()) on w

el4d enter: execution(void FG.f()) on w
el5 exit: execution(void FG.f()) on w
el6 exit: call(void FG.f()) on w

el7 enter: call(void FG.g()) on v

el8 enter: execution(void FG.g()) on v
el9 exit: execution(void FG.g()) on v
€20 exit: call(void FG.g()) on v

Figure 3: An example trace.

(labels given in Figure 3). Now el matches the symbol f
with = v, while €20 matches the symbol g. Hence this
matches the pattern f g, and the tracematch applies with
binding x = v.

Now consider the instantiation x = w. Then the only
events in the trace that match one of the symbols f and
g with * = w are el2 and el3. Hence the filtered trace is
[e12, e13]. This trace does not match the pattern f g, and so
the tracematch does not match with binding x = w. In fact,
this also fails to match for another reason: the last event €20
of the trace is filtered out, while a tracematch only matches
if the last event of the trace matches a declared symbol.

Now suppose that we added one more symbol to the dec-
larations in the above tracematch, namely

after
call (x g(..));

We leave the pattern unchanged, however. Consider the
(only possible) binding x = v, as in the above example.
The filtered trace from Figure 3 includes the same events as
before (el and €20), but this time the ezit event from w.g()
(event e12) also matches g2. The filtered trace is therefore
lel, e12,€20]. This no longer matches the pattern f g, and
now the tracematch does not match the trace, solely because
we introduced a new declared symbol and therefore reduced
the amount of filtering. The reader may wish to check for
him/herself that the new tracematch would match the event
sequence generated by

v.£(); v.h(); w.(); v.g();

The declarative semantics is formally defined in Section
4.2 (the definition of events, symbols and tracematches) and
Section 4.3 (the definition of matching).

sym g2

Operational semantics. The definition of tracematches with
free variables via all possible instantiations is attractive, be-
cause it is simple and it gives us an effective way of reasoning
about tracematches. It does not give any guidance on their
implementation, however.



Without variables, it is not difficult to see how an imple-
mentation might go. Alongside the base program, we run
a finite automaton. This finite automaton recognises pre-
cisely the language of the regular expression, interspersed
with events that do not match any of the declared symbols.
Furthermore, construct the automaton to match ¢ if some
suffix of ¢ matches the given pattern. Finally, we stipulate
that only transitions labelled with a declared symbol can en-
ter a final state. This way the automaton captures all three
of the important elements of matching in the declarative
definition (filtering, suffixes and last event declared).

While the base program is running, we keep a flag on
each state of the automaton, to track whether the current
trace moves the automaton into that state. Note that as
the transitions are labelled by symbols, and an event can be
matched by more than one symbol, the automaton can be
in multiple states simultaneously (a new event causes the
automaton to take all matching transitions).

To start with, the flags are set on the initial states of
the automaton. Because every trace can be a prefix of an
accepted trace, the flags on the initial states remain set to
true at all times. Now when a new event e happens in the
base program, we match it against each of the symbols, and
make the corresponding changes to the flags: if there is a
transition from s’ to s labelled with symbol a, if the flag on
s’ is set to true, and if @ matches the new event e, the flag
on s is set to true. If no such transition to s exists, the flag
on s is set to false. When a final state becomes reachable,
advice is executed.

Now how can this be modified to take free variables into
account? We use the same automaton construction, but
instead of boolean flags to indicate reachability, we use con-
straints. A constraint label on state s records any assump-
tions made in reaching s with the current trace. One may
think of a constraint as a logical formula that combines as-
signments of values to variables (z = 1), as well as the nega-
tions of such expressions (y # 1). In the same way we
updated the boolean flags on states, so one can also update
the constraint labels. New equations of the form =z = value
are generated by AspectJ’s pointcut matching.

To capture filtering of declared symbols on account of
wrong variable bindings (for instance, filtering out el2 in
the first example above), however, it is not enough to match
only on declared symbols. We introduce a new symbol skip
to capture events that are ignored in the matching (either
because they match no declared symbol, or because of wrong
variable bindings). The skip symbol matches exactly un-
der the conditions that cause all declared symbols to fail to
match. In particular, if an event is not matched by any de-
clared symbol, then it is matched by skip. Also, if there ex-
ists one declared symbol that matches with variable binding
r = wvalue, then skip matches with binding = # value. This
is the way negative bindings are entered into constraints.

There are thus two important ideas in the operational
semantics: the use of constraints and the anything-but-a-
declared-symbol skip. Together they allow us to do the fil-
tering of events incrementally, without knowing the variable
bindings in advance.

In Section 4.4, we make the above intuition precise, and
we give a formal definition of skip. Then, in Section 4.5,
a formal proof is presented that the declarative and oper-
ational semantics coincide. To avoid cluttering that proof,
we shall already introduce constraints while discussing the

declarative semantics in Sections 4.2 and 4.3. In Section
4.6, we spell out the incremental computation of the con-
straints that label the automaton states. Finally, in Section
4.7, all this is made concrete, by generating AspectJ code
that directly implements the operational semantics.

4.2 Events, Symbols and Tracematches

Events and Traces. An event occurs when a joinpoint is
either entered or left. Accordingly, we define:

event = {enter, exit} x joinpoint

A trace is then simply a finite sequence of events. An ex-
ample trace is shown in Figure 3.

Constraints. We shall model variable bindings as constraints,
that is equations combined with the usual logical connec-
tives. In particular, a constraint may be an equation be-
tween a variable and a runtime value, x = v, or an inequa-
tion, =(x = v). We write C for the set of all constraints.
For a given tracematch, the relevant variables are those that
are declared in its header.

Q/mbols. The symbols defined in a tracematch are just As-
pectJ pointcuts. However, it will be convenient to abstract
away from the precise details of matching AspectJ point-
cuts to joinpoints. We will model symbols as functions from
events to constraints:

symbol = event — constraint

For a symbol a (a pointcut) and an event e, the constraint
a(e) defines the assignments of values to the variables of a
obtained when matching a to e. If the pointcut does not
match, then a(e) = false.

For example, in the example tracematch shown in Figure
2 with the trace shown in Figure 3, we have f(el) = (z = v)
and g(el2) = (xr = w), while g(el) = false and f(e20) =
false (the symbols f and g are defined in Figure 2).

We will assume that for any event e, if a variable x ap-
pears in the constraint a(e), then z is one of the variables
declared in the tracematch. This is clearly satisfied by point-
cut matching.

A symbol s is said to be a ground symbol if for any event
e, s(e) is either true or false. A ground symbol can match
or fail to match, but does not bind variables.

Tracematches. A tracematch is defined as a list of vari-
ables, a list of symbols, a pattern, and finally the body of
the tracematch (code to execute when the pattern matches).
The pattern is a regular expression over symbols. How-
ever, as we are only concerned with defining the semantics
of matching here, we may ignore the body of the tracematch
and define:

tracematch = variable set x symbol set x symbol regexp

We will fix a tracematch ¢tm = (F, A, P) in what follows.
Hence F' is the set of free variables of tm, A is the set of
defined symbols, and P the pattern.

4.3 Semantics of Tracematches

Valuations. A wvaluation is defined as a mapping from iden-
tifiers to runtime values, assigning values to each of the free



variables of the tracematch:
valuation = F — value

We define valuation on symbols as follows: the constraint
resulting from matching o(a) to an event e is obtained by
applying the valuation o to a(e):

o(a) = Xe. o(a(e))

In particular, as o assigns a value to each variable occurring
in a(e), o(a(e)) is a simple truth value.

For example, recall that f(el) = (z =v). If 0 = {z > v},
then (o(f))(el) = (v = v) = true, while if ¢’ = {z — w},
then (o’(f))(el) = (v = w) = false (provided v and w are
distinct).

Valuations are lifted to patterns (regular expressions of
symbols) by applying the valuation to each symbol in the
pattern (in place).

Matching a trace to a word. We define the match oper-
ator to take a sequence of symbols and a trace of events,
and evaluate to the constraint that must be satisfied for the
symbols to match the trace. If the number of symbols is the
same as the number of events, the constraint is the conjunc-
tion of the constraints obtained by applying each symbol
to the corresponding event. If the sequence of symbols and
the trace of events are of different length, there can be no
match, so the constraint is false. This can be written as:

match({a1,...,an),{€1,...,€m)) =
(Ni:1<i<n:aie)) ifn=m
false otherwise

Note that we use the notation (Gx : P(z) : v) in lieu of its
equivalent @P(z) v throughout.

The constraint that must be satisfied to match a trace
to a sequence of symbols is just the conjunction of all the
individual constraints obtained by matching each event to
each symbol. If every symbol a; is a ground symbol, the
result is either true or false.

Filter ing. Recall that any events that do not match any
defined symbol in a tracematch are simply ignored when
matching. To formalise this, we define the event set of a
tracematch, and the restriction of a trace to this set.

The event set of a tracematch tm under a given valua-
tion o is defined to be the set Q(tm, o) of events that are
matched by some defined symbol in ¢m, with variable bind-
ings compatible with the valuation ¢. Formally, we define:

Q(tm,o) ={e € event | (Fa:a € A:o(ale)) = true)}

Finally, we write the trace obtained from ¢ by removing
any events not in a set S ast|S.

We can now define the match of a sequence of symbols to
a sequence of events relative to an alphabet S. This is the
match of symbols to events, ignoring any events not in S.
A minor complication is that we must ensure that the last
event in the sequence lies in S. This ensures that events
that are ignored do not cause the tracematch to match re-
peatedly. We therefore define:

matchs(as,t) = (last t € S) A match(as,t]|S)

The match of a pattern (regular expression over symbols)
to a sequence of events, still relative to an alphabet, is the

disjunction of the matches of all strings denoted by the pat-
tern to the given sequence of events:

matchs(p,t) = (Vas : as in the language of p : matchs(as,t))

The semantics of tracematches. The semantics of trace-
matches can now be defined as follows. A tracematch tm is
modelled by a function

[tm] : trace — valuation set

To wit, [tm](t) returns the set of valuations that cause tm
to match some suffix of t. The body of tm will be executed
exactly once for each such valuation.

Informally, the set of such valuations can be found as fol-
lows: replace the tracematch tm by the (possibly infinitely
many) tracematches obtained by applying every possible val-
uation o to tm. Each of these involve no variables and can
be matched against a trace straightforwardly. The result
[tm](¢) is the set of valuations that cause tm to match (some
suffix of) ¢.

This can be formalised as follows. Write u < v to mean
that u is a suffix of v. Then

[tm](t) =

{o € valuation | (3" : t’ <t : matchq(im,o)(o(P),t'))}

4.4 Operational Semantics

We have defined the semantics of tracematches in terms
of applying all possible assignments of values to variables
to a tracematch, and matching the resulting tracematches
against a trace. We now wish to derive a more opera-
tional semantics that allows the resulting valuations to be
effectively computed, leading to an implementation of trace-
match matching.

Alphabet. As before, A is the set of symbols that are ex-
plicitely declared in the tracematch. In addition, we intro-
duce a symbol skip intended to capture both events that
match no declared symbol (and so are ignored in matching),
and events that could match some declared symbol but are
ignored because of inconsistent variable bindings. This is
defined by:

skip(e) =
“(Va:a € A:ale)) =
Aa:a € A:—a(e)

The constraint skip(e) defines the set of valuations that
make e match no defined symbol a. We write ¥ = A U
{skip}.

To illustrate, consider the event e; (see Figure 3) that
occurs upon entering the call v.f(). Here we have f(e1) =
(x =) and g(e1) = false, whence

skip(e1) = —~(z = v V false) = (x # v)

Pattern. We now aim to construct a finite automaton to im-
plement matching of traces. To achieve this, it is necessary
to transform the pattern P appearing in the tracematch to
allow skip to occur.

For two sets of strings U and V, write U | V' for the set of
all possible interleavings of strings in U and V. It is easily
checked that the class of regular languages is closed under
interleaving.



event symbol | constraint

el enter: call(void FG.f()) f xT=v
e2  enter: execution(void FG.f()) | skip true
e3  exit: execution(void FG.f()) skip true
ed  exit: call(void FG.f()) skip true
eb  enter: call(void FG.h()) skip true
e6  enter: execution(void FG.h()) | skip true
e7  exit: execution(void FG.h()) | skip true
e8 exit: call(void FG.h()) skip true
€9 enter: call(void FG.g()) skip true
el0 enter: execution(void FG.g()) | skip true
ell exit: execution(void FG.g()) | skip true
el2 exit: call(void FG.g()) skip T F#w
el3 enter: call(void FG.f()) skip T #w
el4d enter: execution(void FG.f()) | skip true
el5 exit: execution(void FG.f()) skip true
el6 exit: call(void FG.f()) skip true
el7 enter: call(void FG.g()) skip true
el8 enter: execution(void FG.g()) | skip true
el9 exit: execution(void FG.g()) | skip true
e20 exit: call(void FG.g()) g T=0

Figure 4: Matching a trace to a word.

The transformed pattern of the tracematch, named Pat,
is the regular language

Pat =" (P | skip™) N (7 A)

A string s lies in Pat precisely when some suffix of s, possi-
bly interleaved with some occurrences of skip representing
ignored events, matches P. In addition, it is required that
s end with a declared symbol (not skip).

To illustrate, for the tracematch shown earlier, P = fg,
A ={f, g}, whence X = {f, g,skip}. Then Pat = X" fskip*g.

Executing advice. We wish to execute advice whenever the
current trace matches the pattern Pat. Unlike the declara-
tive semantics described previously, there is no need to filter
the trace (as skip symbols deal with events not in the al-
phabet) or to consider suffixes of the trace. We therefore
execute the advice body for each solution of the constraint:

match(Pat,t)

Of course, if the constraint is false, there are no solutions
and the advice body is not executed at all.

As an example, Figure 4 shows a match between the trace
given in Figure 3 and the string fskip'®g € Pat, together
with resulting constraints. The complete constraint is (x =
v) A (x # w) = (z = v) (assuming v and w are distinct),
whence the advice is run once, with valuation x +— wv.

4.5 Equivalence of the Semantics

We have defined two semantics for the match of a trace-
match tm to a trace t, which we now reconcile. The two
results of matching tm to t were defined as: the set of valu-
ations

S={c |3t :t' <t: matchqm o (o(P),t')}
and the constraint

¢ = match(Pat, t)

As a notational convenience, we identify a constraint with
the set of valuations that satisfy it. We therefore need to
show that 0 € S <= o € c.

The proof is founded on the following crucial observation
about our definitions. If we fix a valuation o, then for each
event e,

e €Q(tm,0) <= Ja:a € A:0 cale) <= o ¢skip(e)

(1)
The first equivalence is just the definition of €2, and the sec-
ond equivalence follows directly from the definition of skip.
We denote the concatenation of sequences r and s by r++s.

(c € S=0€c). Let 0 € S. Then we can split ¢ into p and
q such that t = p4+q and matchqm,o) (0 (P),q) = true. By
the definition of match, there exists a sequence of symbols
as =ai ...an in the language P such that

(last(q) € Q(tm, o)) A match(o(as),q|Q(tm, o))

Let ¢’ = q| Q(tm, o). First note that as match(o(as),q’) =
true, it is the case that o € match(as,q’).

Now, consider an event ¢; of ¢. Then there are two cases:
either ¢; € Q(tm, o), or ¢; is not in this set. In the first
case, ¢; is part of ¢’, say it appears at position j. Then by
observation (1), 0 € a;j(¢g;). In the second case, again by
observation (1), o € skip(g;). Therefore, it is clear that
o € match(as || skip®, q).

Also, as a consequence of observation (1), for any event e
and valuation o, there exists some a € ¥ such that o € a(e).
Hence o € match(X*, p). Finally, last(q) € Q(tm, o), so we
can conclude that o € match(X* (P || skip™) N XA, p ++ q),
as required.

(c €c= 0 €S). Since o € match(X*(P || skip*) N X" A, 1),
we know that last(t) € Q(tm,o), and we can split ¢ into p
and g such that t = p++q and o € match(P| skip®, ¢). Then
q is an interleaving of two strings of events r and s such that
o € match(P,r) and o € match(skip®,s). Since P is over
the alphabet A, for each event r; of r, Ja:a € A : o € a(r;),
sor; € Q(tm, o). For each event s; of s, o € skip(s;), so s; &
Q(tm, o) (by observation 1). Therefore, r = ¢|Q(tm, o).
Hence, matchq(im,o)(0(P),q) = true, as required.

4.6 From Semantics to Implementation

It is relatively straightforward to derive the implemen-
tation from the operational semantics defined above. The
main difficulty is to compute match(Pat,t) for the current
trace t efficiently at runtime.

Let M be an automaton for Pat. For each state s of M,
define L(s) to be the language obtained by making s the
only final state.

During execution, each state s of M is labelled by the
constraint

lab(s,t) = match(L(s),t)

where t is the current trace. It is shown below how to up-
date these constraints when a new event is appended to the
current trace. After we have computed the new decorated
version of M, the advice body is executed for all distinct
solutions of

Vs : s is a final state of M : lab(s,t)



Computing Labelled States. We now turn to the question
of how to compute lab(s,t) efficiently, making an update
when the trace t is extended by another symbol.

We define lab(s,t) by recursion on t. The base case is

true if s is an initial state

lab(s,) = match(L(s), €) = { false otherwise

Now assume that we have computed lab(s, t) for a trace ¢,
and we want to know its new value lab(s, te) for an extended
trace te. Write s’ —“ s to indicate that there is a transition
labelled a from s’ to s in M. Then for all states s, it is
straightforward to derive that

lab(s,te) = Va,s' :a€ X As —%s:lab(s',t) Aa(e)

This expression treats declared symbols and the newly in-
troduced symbol skip on the same footing, but this is not
quite possible in the implementation, for we have an ex-
plicit pointcut that corresponds to each a € A, but not for
skip. We therefore split off skip as a special case. Since
3 = {skip} U A, the above formula may be rewritten as

lab(s,te) = (Vs :s =P 5:lab(s',t) A skip(e))
V (Va,s' :a€ ANs —% s:1lab(s',t) Aale))
(2)
Equation (2) describes how the bindings are affected by
an event e. Intuitively it is only necessary to update the
bindings for events that match one of the declared symbols
(that is, events e such that skip(e) # true). It is certainly
desirable to avoid updates on irrelevant events for efficiency,
and we introduce a refinement of (2) to allow this.
We have thus far not assumed any properties of the au-
tomaton M for Pat. However, as Pat = ¥*(P| skip*)NX* A,

there is an automaton N say for Pat satisfying the following:

(a) Whenever s —**P s’ in N, s = s’ (i.e. all skip tran-
sitions are self-loops), and

(b) For any state s, either s =P 5 or s has no outgoing
transitions (and s is then final)

The (nondeterministic) automaton N can be obtained in
the following way: start with an automaton for A*P, and
add skip self-loops to each state to get an automaton N; for
¥*(P| skip®). Let N2 be the (nondeterministic) automaton
for ¥* A with two states, and no transitions from the final
state. Then N is derived from N; and N2 by the product
construction (and so the language recognised by N is the
intersection of those recognised by N; and N, that is Pat),
removing states that have no outgoing transitions but are
not final. This satisfies conditions (a) and (b) above.

Using (a), since skip only occurs on self-loops, we can
rewrite (2) as:

lab(s,te) =

(if s —=*¥P 5 then lab(s,t) A skip(e) else false)
V (Va,s" :a€ ANs —*s:lab(s',t) Aale))

®3)

We can use (3) to derive an implementation that only up-
dates constraints when relevant events occur (where an event
e is relevant if it matches some defined symbol, that is if
skip(e) # true). The implementation will compute con-

straints labimpi(s, t), satisfying: labimpi(s, te) = lab(s, te) when-

ever s has an outgoing transition or skip(e) # true. It is
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easy to see that this invariant is maintained by applying (3) i,

whenever e is a relevant event — for otherwise lab(s,te) =

12

lab(s,t) for all states except final states, which by (b) have
no outgoing transitions.

Furthermore, this invariant is enough to guarantee cor-
rect matching: a tracematch can only apply at a trace te if
skip(e) # true, and in this case the computed labimpi(s, te)
constraints are valid for all states s.

Our strategy upon occurrence of a new event e, then, is
to first compute skip(e), and subsequently to apply the
above formula (if one of the tracematch declared symbols
matched).

4.7 A Reference Implementation

This abstract reference implementation may, at first sight,
appear expensive. Note, however, that in AspectJ, most
of the pointcut matching in the computation of a(e) can
be carried out statically [23], and consequently the above
transition from lab to lab’ is also mostly static: it can be
pre-computed at compile-time, except for variable bindings.

Let us assume that there is some suitable implementa-
tion of constraints, through a class called Constraint. It
is worthwhile to generate a specialised implementation for
each tracematch, but for simplicity we assume it is generic.
The Constraint type has the obvious operations for the log-
ical operations. A new equality constraint is generated by
the static factory method eq(varname,value).

The key step is the computation of lab(s, te) from lab(s,t)
for all states s, whenever the trace t is extended by the
event e. The implementation maintains variables labs and
labs_temp for each state s — the value of labs is lab(s,t) for
the current trace, and labs_temp is an intermediate result in
the computation of lab(s,te). Furthermore, a variable skip
is used to store t the constraint skip(e).

To extend bindings when a new (relevant) event occurs,
we compute the value of skip(e) in variable skip as the
conjunction of all a(e). Also, the value of the second disjunct
of Equation (3) is accumulated in labs_temp. Finally, the
value of skip is added to labs_temp for all non-final s.

It is straightforward to define an action to be taken when
a symbol a matches: it suffices to define a piece of advice
with pointcut a. Furthermore, variable bindings are given
by AspectJ’s advice mechanism.

Suppose that the defined symbols of the tracematch are
named pointcuts a1(vs1), ..., an(vsyn) (where for each i, vs;
is the list of variable names bound in a;). Define a pointcut

some: ai(x) V az(*) V-V an(*)

that matches when some of the a; do, ignoring variable
bindings. Also, for a list of variable names vs and a list
of runtime values os, let egs(vs,os) denote the constraint
(A1 <3< |zs|: eq(vsi, 08i)).

Then the pseudocode for the implementation of a trace-
match is the following aspect:

aspect Tracematch

// For each initial state sj (I<=j<=N)
private Constraint labsj = true ();
private Constraint labsj_temp = false ();

// For each mon—initial state sj (I<=j<=N)
private Constraint labsj = false ();
private Constraint labsj_temp = false ();

)

private Constraint skip = true

// for each symbol ai (I1<=i<=n)
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ai(yl, ..., yk)

{ Constraint ¢ = eqgs(vsi, [yl,...,yk]);

skip = and(skip, not(c));
foreach state sj
foreach state sl with sl —>ai sj
labsj_-temp = or(labsj_temp ,
and(labsl, c¢)); }
some

{ for each state sj
if sj has a skip self—loop then
labsj_temp = or(labsj_temp ,
and (labsj ,
labsj = labsj_-temp;
labsj_temp = false ();

skip));

if sj is final
foreach solution s of labsj
run the tracematch body
with bindings s }

This pseudocode cannot be directly expanded into As-
pectJ. For, we have omitted to consider the before/after
qualifiers for each piece of advice. This is not a serious diffi-
culty (though it makes the translation slightly more compli-
cated) — each advice a; inherits its before or after qualifier
from the corresponding declared symbol. The final piece of
advice (with poincut some) must be duplicated into be-
fore/after versions if both kinds of declared symbols are
used (this is correct, as each event unambiguously matches
either before or after symbols).

In the case of around symbols, the matching code is not
affected (as around symbols are only allowed in final posi-
tions, and otherwise match as before symbols), though the
way in which the tracematch body is run must be altered.

Finally, the main aim of the above translation is clarity,
but it should be obvious that opportunities for further spe-
cialisation of the code abound. We shall explore these and
related issues in Section 5.

An Example. To conclude this section, we illustrate the
translation of tracematches into AspectJ with an example.
Recall the Observer example from Section 2. The code is
repeated below for ease of reference:

aspect ObserveAspect

tracematch(Subject s,
sym create_observer
after returning(o):

call (Observer .new (..)) &&
args(s)
sym update_subject after

Observer o){

call(x Subject.update (..)) &&
target(s);

create_observer update_subject x

{
o.update_view ();

}

}
}

For brevity, call the creation event ¢ and the update event
u. The set of declared symbols is A = {c,u}. The finite
automaton N implementing the pattern Pat derived from
this tracematch is shown in Figure 5 (obtained as described
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Figure 5: The automaton for the obs tracematch.

in Section 4.6). State 1 is the initial state, and state 3 is the
only final state.

The concrete implementation of the pseudocode for this
tracematch is given below:

aspect ObserveAspect

{
private Constraint labl = true ();
private Constraint labl_temp = false ();
private Constraint lab2 = false ();
private Constraint lab2_temp = false ();
private Constraint lab3 = false ();
private Constraint lab3_temp = false ();
private Constraint skip = true ();
pointcut c(Subject s) :
call(Observer.new (..)) && args(s);
pointcut u(Subject s) :
call(Subject.update (..)) && target(s);
pointcut some () c(*) || u(x);
after (Subject s) returning(Observer o):
c(s) {
Constraint ¢ =
and (eq("s”, 5), eq("0”, 0));
skip = and(skip, not(c));
labl_temp = or(labl_temp, and(labl,c));
lab2_temp = or(lab2_temp , and(labl,c));
}
after (Subject s): u(s) {
Constraint ¢ = eq(”s”, s);
skip = and(skip, not(c));
labl_temp = or(labl_temp , and(labl,c));
lab2_temp = or(lab2_temp, and(lab2,c));
lab3_temp = or(lab3_temp, and(lab2,c));
}
after (): some() {
labl_temp = or(labl_temp , skip);
labl = labl_temp; labl_temp = false ();
lab2_temp = or(lab2_temp , skip);
lab2 = lab2_temp; lab2_temp = false ();
lab3 = lab3_temp; lab3_temp = false ();
skip = true ();
for (s lab3.sols ())
adviceBody ((Subject)s.valOf(”s”),
(Observer)s.valOf(70”));
}
}
void adviceBody (Subject s, Observer o) {
o.update_view ();
}
}



Again, it is clear that the code generated for this tracematch
could be improved, but we omit this for clarity.

5. IMPLEMENTATION

We have implemented our design as an extension to abc,
the extensible AspectJ compiler [1]. abc uses Polyglot, an
extensible Java compiler [25], as its front-end, and Soot, a
Java bytecode analysis and transformation framework [29],
as its backend. Our implementation of tracematches does
all the semantic checks via Polyglot, while the bulk of the
code generation happens in Soot.

The implementation given in the previous section is al-
most complete: it remains to decide on a concrete repre-
sentation of the abstract type of constraints. We chose the
simplest option, namely keeping the logical formula in dis-
junctive normal form. Below we shall refer to each compo-
nent of that normal form as a disjunct: a constraint is a
represented as a set of disjuncts. The type of disjuncts is
specialised to the free variables of a tracematch. That is,
a disjunct has a flag for each variable to say whether it is
bound, and if not, a set of values it should not be equal to.
If the flag is true, then the disjunct records the value bound
to the variable in question.

Avoiding space leaks. A naive implementation will suffer
severe space leaks: the bindings recorded in disjuncts might
hold on to objects that could otherwise be garbage collected.
We therefore aim to use weak references whenever possible.
Clearly, we can use weak references for the ‘not’ sets in each
disjunct. In recording positive bindings, one has to be a
little bit more careful.

For each non-initial state in the finite automaton, we par-
tition the set of all tracematch formals into three sets:

collectableWeakRefs: variables that are bound on every
path from the current state to a final state.

weakRefs: variables that are not used in the tracematch
body, and which are not in the above set.

needStrongRefs: all variables that are not in the above
two sets.

These three sets indicate for each variable what kind of refer-
ence should be used. For the first two sets, we can use weak
references. Furthermore, if a member of collectable WeakRefs
becomes invalid, then all disjuncts that contain it can be
discarded too: it will not be possible to complete a partial
match based on that disjunct, because that would require
a live instance of the bound object to reach a final state.
For members of weakRefs, no such additional clean-up of
the containing disjuncts is possible. All variables in need-
StrongRefs are required to be bound with normal, strong
references.

Even with this analysis, it is possible for a tracematch to
create an unbounded number of disjuncts that are never re-
leased, namely when we have a non-final, non-initial state
where collectable WeakRefs is empty. In such cases, our com-
piler prints a warning message to indicate a leak might occur.

The above discussion ignores the problems caused by bind-
ing null values to members of collectable WeakRefs, as again
this could lead to disjuncts to be never reclaimed. For now,
our implementation will throw a runtime exception when a
tracematch variable is assigned a null value. A more satis-
factory solution might be to employ a compile-time nullness

analysis to spot such potential problems. For the same rea-
son, tracematches cannot bind values of primitive types.

Performance. Our current implementation closely follows
the exposition in this paper, with an emphasis on correctness
rather than speed. In our experience, the tracematch version
of the small examples presented earlier is typically a factor of
15 times slower than the best hand-coded AspectJ version.
The main reason for this overhead is a purely functional
implementation of the constraint-handling code, which leads
to substantial heap turnover.

As a realistic example, we applied our safe iterator trace-
match to the use of Enumeration in JHotDraw [13], when
playing an animation in the JavaDraw application. The
total size of JHotDraw is 9422 SLOC. We chose this ap-
plication because it represents a worst-case scenario for our
techniques: if we were to apply tracematches to database
connection management, for example, other costs in the sys-
tem would likely dominate the use of tracematches. As to
the utility of this type of application, it turns out that the
use of Enumeration in JHotDraw is not safe when the draw-
ing is edited while an animation is in progress. Indeed, we
discovered this violation by running our tracematch.

For the measurements, we removed the timed slow-down
in the Animator class (which slows down the animation so it
appears as a smooth movement on the screen), and set it to
run for 100,000 iterations. In a typical run there are 526K
enumerator construction events and 7925K nextElement op-
erations — we are thus instrumenting a very substantial part
of the application.

We measured four versions of the program: with no instru-
mentation, with a naive aspect as shown earlier in this paper,
which uses hash maps, as well as a carefully coded aspect
that uses weak references, and finally our tracematch imple-
mentation. The experiments were conducted on a 2.2GHz
Athlon 64 with a 512K cache, running the HotSpot JVM ver-
sion 1.5.0.04 under Debian Linux. We measured both the
time taken in seconds, as well as the total amount of heap
memory used in kilobytes. The memory measurements were
taken by calling the garbage collector and subsequently re-
porting the difference between total and free memory after
the animation was completed.

version time (sec) | memory (K)
no aspect 28.8 1,092
naive aspect 49.3 78,682
weak ref aspect 36.8 1,413
tracematch 275.2 1,103

Note in particular that the tracematch version uses hardly
more memory than the version with no aspect: the tech-
niques discussed above succeed in eliminating all memory
leakage. To verify that this is not an artifact of completing
the animation, we measured the memory usage at intervals
of 5 seconds, taking 56 measurements in all: the result is
shown in Figure 6. This clearly shows the absence of an
upward trend, and thus the absence of memory leaks.

These results demonstrate the feasibility of our approach;
indeed, with the tracematch in place, JHotDraw animations
are still pleasing to the eye and there is no noticeable slow-
down in the interaction. There is however still plenty of
scope for optimisations, and the next section discusses some
of these.



1100

1090

1080

1070
b ANNAAANANANNANA AN
1050

1040

1030

Memory usage (Kb)

1020

1010

L o e

Time (5 second steps)

Figure 6: Memory (in Kb) over time (5 secs).

6. OPTIMISATIONS

A key issue in the design of a language feature is the
balance between being sufficiently expressive to be practical,
while being restrictive enough to make it possible to reason
about the code (both by humans and by automated tools).
As we have seen in Section 2, many useful tracematches
can be expressed with our design. At the same time, a
key goal of our design is to provide enough information to
enable compiler tools to analyze tracematch behaviour and
optimize their implementation. In this section, we propose
analyses and optimizations that our design makes possible,
and that we intend to implement in the future.

The state that a tracematch implementation must repre-
sent at run time is a set of configurations of the form (¢, o),
where ¢ is a state of the machine M matching Pat, and
o is the partial substitution of actual run-time values for
tracematch variables that were implied by the events that
caused M to transition to the state q. Whenever the exe-
cuting program encounters a joinpoint matching a symbol
of the tracematch (an event), and the variable bindings are
consistent with o, the state ¢ is changed to the appropri-
ate successor in M, and the substitution o is updated with
any new bindings implied by the match. In optimizing the
implementation of tracematches, our goal is to reduce the
size of the set of configurations that must be maintained by
removing configurations which can be proven to never lead
to an accepting state.

Let us begin by considering the simple case of a trace-
match with no tracematch variables. In this case, every sub-
stitution is empty, so a configuration is just a machine state
q. By identifying joinpoint shadows in the program where
each symbol may match, and by performing an interproce-
dural control-flow analysis of the program, an analysis can
construct a finite state machine N modelling the possible
executions of the program. Each state p in N is a joinpoint
shadow matching a symbol m(p) of the tracematch, and
there is a transition from state p to p’ if there is a potential
control-flow path from the joinpoint shadow p to the join-
point shadow p’, passing through no other shadow matching
any tracematch symbol. Then, when the program execution
is at a joinpoint shadow po, and the tracematch is in state qo
of M, it is possible to reach an accepting state of M only if
there is a sequence of joinpoint shadows po,pi,...,pn such
that it both is a path in IV, and that following the transitions
m(po), m(p1),...,m(pn) in M starting from go leads to an
accepting state. This can be determined at compile time by
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intersecting the automata M and N. If it is not possible to
reach an accepting state of M, then at po, the compiler can
generate code to omit the configuration go from the set of
configurations.

Dealing with tracematch variables requires a more so-
phisticated analysis, because whether a joinpoint shadow
matches a tracematch symbol depends on the values of the
tracematch variables. Optimizing even relatively simple trace-
matches requires a sophisticated analysis of objects in the
heap and their flow during program execution. Specifically,
a heap analysis for optimizing tracematches would have to
identify when bound variables at distinct symbols of the
tracematch refer to the same or to distinct heap objects.
Because the different symbols match at different joinpoints
in the execution of the program, the analysis would have
to compute these relationships between variable values at
different times during execution. This is more information
than what is provided by traditional heap analyses, which
only compute relationships between the values of variables
at each individual point in the execution.

To illustrate what kind of analysis information would be
required to optimize tracematches in general, we present a
simple, realistic example, and discuss the information re-
quired to optimize even this simple example. Consider the
short program fragment in Figure 7, to which we apply the
safe iterator tracematch from Section 2. The example cre-
ates a collection, adds an element to it, and iterates through
it, all repeated within an outer loop. In an actual applica-
tion, such code would likely be interspersed with other code,
and most likely spread out in different methods, but the gen-
eral pattern of operations is fairly typical.

List 1;
Iterator 1ij;

while (condition ) {
1 = new ArrayList ();
1.add(” foo” );
i = 1l.iterator ();
while (i.hasNext()) {
System.out.println(i.next ());
}

Figure 7: Example use of safe iterator tracematch

In a naive tracematch implementation, each time an itera-
tor is created (line 7), a new configuration would be created
binding the tracematch variable ds to the current list ob-
ject, and the tracematch variable i to the iterator object
just created. If an analysis could statically prove that the
list will not be updated between the creation of the iterator
and a call to next() on the iterator, the tracematch would be
known never to apply, and the configuration would not have
to be created. In order to prove this, however, an analysis
would have to track the list and iterator objects pointed to
by 1 and i, even across different iterations of the outer loop.
Specifically, to prove iterator safety for this simple example,
an analysis would need to either prove that the list to which
an element is added in line 6 is distinct from every list on
which an iterator has ever already been created in line 7 in
earlier iterations of the outer loop, or that the iterator on
which next is called in line 9 is the iterator that was created
in line 7 of the same iteration of the loop, and that it is



distinct from all other iterators created in earlier iterations.

The information needed to optimize tracematches could
be obtained by starting with heap information at a program
point potentially matching a symbol of a tracematch, then
tracking the flow of individual heap objects along execution
paths leading to program points potentially matching other
symbols of the tracematch. We leave the development of
such an analysis to future work.

7. RELATED WORK

It has long been recognised that history-based advice is a
powerful and desirable feature in aspect-oriented program-
ming. The contribution of this paper is to enhance the previ-
ous proposals through trace filtering and consistent variable
bindings, as well as a seamless integration into AspectJ. Be-
low we discuss these previous proposals, and we pin down
how our own design differs from them. We also briefly re-
view some related work in property checking — although the
techniques are not called ‘aspect-oriented’, there are many
overlapping ideas.

Douenceet al.. History-based advice first came to our at-
tention through the work of Douence, Fradet, Motelet and
Stidholt [7—10]. In these works, they put forward a calculus
of aspects, where advice can be triggered via a sequence of
joinpoints. The syntax of their history advice is

A pa.A recursion
Cp>I;a base case of recursion
CrI;A sequencing

AOA choice

The first form is a recursive definition; the base case of such
a recursion is the second form, where a stands for the re-
cursive call. Both in the second and third form, C' stands
for a pointcut, and I for a piece of advice. Intuitively, if a
joinpoint matches C, the advice I is executed, and control
transfers to a (recursion) or A. Finally, A10A5 offers the
environment a choice between two pieces of history advice
Ai and As: if A; succeeds, that is the preferred option, and
Ay executes only when A; fails.

As a concrete example, consider the history advice below,
which is taken from [9]. It logs file accesses during a session
(from a call to login to a call to logout):

wai . login> skip
(1 a2 . (logout > skip ; a1)
O
(read(x) > addLog(zx) ; a2))

The reader is encouraged to contrast this formulation with
the contextual logging example presented in Section 2.

As a formal calculus, the work of Douence et al. is more
geared towards a formal understanding, and somewhat less
towards a production programming language than ours. Nev-
ertheless, there are clear similarities in the design: in par-
ticular, because only tail-recursive definitions are allowed,
the patterns of execution are essentially regular languages.
The use of regular languages to identify join points was also
considered in [27], although there they range over paths in
an object hierarchy, not over traces.

An important difference between our proposal and that of
Douence et al. is the association of a piece of advice with
every pointcut. In our setting, this would mean that every

symbol declaration has an associated piece of code. Clearly
this is very powerful, but it also makes it very difficult to
track what is happening in the matching process, especially
when the advice has side-effects. In cases where such be-
haviour is needed, we could use two tracematches instead of
one.

A second important difference concerns the treatment of
the choice operator. In the design of Douence et al., (O) is
asymmetric, favouring the left-hand component where pos-
sible. In our proposal R|S and S|R are equivalent patterns.
Furthermore, if both R and S match, that may result in
multiple variable bindings, and the advice is executed once
for each binding. Several of the examples in Section 2 (in
particular Observer and Connection Management) make es-
sential use of such multiple bindings.

A very nice feature of the design of Douence et al. is that
it enables interesting static analysis to determine possible
interactions between aspects [9]. Based on the close similar-
ities with our work, we are fairly confident that their results
can be transferred to our setting, and implemented in abc.

There exist at least two implementations that were loosely
inspired by the design of Douence et al., namely in JaSCo
[30] (an integration with Java), and in the Arachne sys-
tem [11]. Applications of the former are discussed in [5] and
of the latter in [12]. Especially the examples of [12] provide
strong indication of the importance of matching with vari-
ables as we have defined it: in that paper, the code has many
explicit equality tests between variables. In tracematches,
such equality tests are expressed by simply using the same
variable multiple times.

Walker and Viggers. The term ‘tracecuts’ was introduced
by Walker and Viggers in [31]. Unlike the works discussed
above, their design has also been integrated with an imple-
mentation of AspectJ. It is particularly interesting, there-
fore, to compare our design decisions to theirs.

An obvious difference is that their design uses an exten-
sion of context-free grammars to define the set of traces to
match, rather than the regular expression presented here.
The set of languages used are not strictly context-free, how-
ever. A ’semantic action block’ can be associated with each
token, to be executed whenever a current joinpoint matches
a token. This block has access to information about the
trace matched so far and can reject a match using the fail
keyword, which results in the computation continuing as if
the joinpoint had not matched the token. The presence of
these blocks removes any restrictions on the set of languages
that can be used to identify matches. We believe there is
merit in restricting the set of languages that is recognised,
not least from the point of view of program analysis: while it
is trivial to decide whether one regular language is included
in another, the problem is undecidable for context-free lan-
guages.

These semantic action blocks can also have side-effects,
which complicate the relationship between the tracecuts and
the original program. Without side-effects, a tracecut sim-
ply observes the execution of the base program until the
point where a match is discovered (so if a match is never
found then the behaviour of the program is not altered.)
When side-effects are allowed, a tracecut may interact with
and modify the behaviour of the base program during the
matching process, making them more complex than straight-
forward observers.



Bockisch et al.. In [3], Bockisch, Mezini and Ostermann
put forward a very general notion of pointcuts that capture
dynamic properties. Their proposal is implemented in the
Alpha language [26]. Alpha provides Prolog queries over
a rich representation of the program, including a complete
representation of the execution history up to the current
joinpoint. It thus provides a flexible testbed for experiment-
ing with radical new pointcut idioms, albeit without regard
for efficiency of the implementation. We believe it would
be easy to implement our design for tracematches in Alpha,
although such an implementation cannot rival the compila-
tion techniques discussed here. Lieberherr et al. raise the
interesting issue of the inherent time complexity of various
classes of pointcut language [21]. It would be worthwhile
to extend their work to history-based pointcuts, with the
proposal of Alpha on one end of the scale, followed by the
context-free patterns of tracecuts, and our regular patterns
as the least expressive (but more efficient) variant.

Property checking. Recent years have seen a veritable ex-
plosion of work that aims to verify, either dynamically or
statically, the correct usage of an API. The Safe Iterators
example in Section 2 is a typical instance of the type of
property involved. These works on property checking are
almost entirely disjoint from the aspect-oriented program-
ming community.

Typically one specifies erroneous traces in a separate spec-
ification language, and then the specification is statically
checked against the code, or dynamic tests are woven in as
appropriate. Examples of this line of work are [2,16].

An important difference with the proposal discussed here
is that tracematches are intended as a feature that is fully
integrated in the programming language, here AspectJ. As-
pectJ has some very weak support for static checking of
properties, namely the declare warning and declare error
constructs. These take a pointcut and a message: when the
pointcut is matched at compile-time, the error message is
printed. An obvious generalisation is to provide trace ver-
sions of these constructs, and then the formalism is very
close in expressive power to the works cited above. Such
a feature would require a static analysis such as the one
discussed in Section 6.

In this respect, we are particularly encouraged by the suc-
cess of program query languages such as PTQL [14] and
PQL [22]. In these systems, one writes queries over program
traces; and these queries are evaluated by instrumenting the
object program. Advanced static analyses are used to min-
imise the overheads of the queries. In the case of PTQL,
the queries are phrased in the style of SQL, whereas PQL
is based on Datal.og. Neither of these adopts the declara-
tive semantics for tracematching we have proposed in this
paper, filtering the traces to include precisely those events
that correspond to ground instances of the symbols.

Bodden. In [4], Bodden introduces the notion of concern-
specific languages (CSLs), which are specific to a cross-
cutting concern like domain-specific languages are specific
to a domain. He considers the concern of Runtime Verifi-
cation [28], and shows how it can be implemented with an
example language, namely linear-time temporal logic (LTL)
over pointcuts. The language thus defined allows checking of
certain run-time properties — among the examples Bodden
gives are checking that a user is logged in when performing

certain actions and proper use (i.e. timely acquiring and re-
leasing) of locks during program execution. He exhibits an
implementation which uses the abc framework to translate
the LTL expressions into pure AspectJ.

The LTL predicates, as defined in this work, offer func-
tionality that is quite similar to tracematches — properties
of the program execution as a whole can be checked. Con-
sequently, all the examples he presents have natural equiv-
alents that can be expressed using tracematches. The con-
verse is not necessarily true; in particular for tracematches
that use variable bindings, LTL equivalents may be quite
cumbersome or even impossible. Also, the focus of the work
is verifying properties of the program execution rather than
injecting code; tracematches offer more flexibility here. Bod-
den presents the idea that CSL implementations could ben-
efit from building on top of each other, and this seems justi-
fied here: translating his language into tracematches seems
easier than into pure AspectJ.

8. CONCLUSIONS

We have presented a novel design for integrating trace-
matches into the AspectJ language. The main innovation
is our treatment of free variables in trace patterns. By
defining the meaning of a tracematch through all consis-
tent instantiations of these variables, many more examples
are conveniently expressed. Inspired by these applications,
we carefully reviewed the design space for tracematches and
motivated our design decisions.

Of course the use of variables in trace patterns is non-
trivial, and therefore we presented a precise declarative se-
mantics, intended for reasoning about the behaviour of trace-
matches. We also presented an operational semantics as a
step towards an implementation. The main insight in defin-
ing the operational semantics was the need for a new symbol
in the alphabet to capture the skipping of other symbols due
to variable binding. The declarative and operational seman-
tics were proved to be equivalent. This is quite a satisfactory
result, because conceptually they are quite different.

Furthermore, the operational semantics directly led us to
a reference implementation of tracematches. It would have
been quite difficult to arrive at this implementation without
the careful semantic analysis that preceded it.

There are also a number of pragmatic issues must be ad-
dressed in the implementation, in particular regarding the
memory usage of tracematches. We also identified a num-
ber of further optimisation opportunities. Some of these
require advanced program analyses, and we intend to re-
port on careful performance experiments, involving those
advanced optimisations, in a companion paper.

Finally, this language design exercise exemplifies our phi-
losophy for aspect-oriented programming language research:
a rigorous analysis of use cases, followed by a sound defi-
nition of the semantics, leading to a neat implementation.
The implementation itself has been carried out using the
abc compiler, a workbench for aspect-oriented language and
compiler research.
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