Approximating the Top-m Passages
in a Parallel Question Answering System

Charles L. A. Clarke
School of Computer Science
University of Waterloo
Waterloo, Canada
claclark@plg.uwaterloo.ca

ABSTRACT

We examine the problem of retrieving the top-m ranked
items from a large collection, randomly distributed across
an n-node system. In order to retrieve the top m overall,
we must retrieve the top m from the subcollection stored on
each node and merge the results. However, if we are will-
ing to accept a small probability that one or more of the
top-m items may be missed, it is possible to reduce com-
putation time by retrieving only the top k < m from each
node. In this paper, we demonstrate that this simple obser-
vation can be exploited in a realistic application to produce
a substantial efficiency improvement without compromising
the quality of the retrieved results. To support our claim, we
present a statistical model that predicts the impact of the
optimization. The paper is structured around a specific ap-
plication — passage retrieval for question answering — but
the primary results are more broadly applicable.
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Design, Experimentation, Measurement, Performance

Keywords
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1. INTRODUCTION

A ranking query retrieves an ordered list of the top-m
items from a set, where the items are ranked according to
values assigned by a scoring function. For example, infor-
mation retrieval systems typically return the top-m docu-
ments from a collection that are most likely to be be rele-
vant to a natural-language query posed by a user. In some
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Figure 1: Architecture of the MultiText information
retrieval system.

information retrieval applications, items other than docu-
ments are retrieved. Question answering systems often use
an information retrieval component to return the top-m
passages that are most likely to contain the answer to a
question [20]. XML information retrieval systems may re-
turn document subcomponents as well as complete docu-
ments [3,10,12]. Ranking queries are also supported in re-
lational databases [1, 8], content-based image retrieval sys-
tems [15,22], and other areas.

In this paper we focus on the efficient execution of ranking
queries in parallel information retrieval systems, particularly
in the context of question answering. However, nothing pre-
cludes the application of the core of this work to ranking
queries in other distributed and parallel environments, and
we keep the presentation as general as possible. In par-
ticular, the work presented in section 4 should be broadly
applicable, and the rest of the paper may in part be viewed
as an extended example to validate it.

Parallel information retrieval systems are often based on
a cluster-of-workstations architecture. The document col-
lection is split into n subcollections that are indexed on dif-
ferent nodes in the cluster [6,7,18]. Each node processes



a query independently, retrieving the top documents from
its local subcollection. The results of these independent
searches, which are small in size and require little band-
width to communicate, are gathered centrally and merged
to create a final result set.

As an example, Figure 1 shows the architecture of the
MultiText information retrieval system, which was used to
generate the experimental results reported in this paper.
External clients contact the query marshaller/dispatcher,
which forwards the client’s query to search engines running
on each node in the cluster, combines the results, and reports
them back to the client. The query marshaller/dispatcher
may run on any node in the system, or may run on a ded-
icated node. The update marshaller/dispatcher performs
a similar role for an external update agent, as well as im-
plementing the system’s load balancing and fault tolerance
strategies [6]. In this paper, we address only search perfor-
mance; updates are not further discussed.

To guarantee globally that the top-m items from the col-
lection are retrieved, each node must retrieve the top-m
items from its local subcollection. The top-m items from
each subcollection are required to handle the case that a
single node contains the top-m items from the collection as
a whole. This case would not be unusual if items were dis-
tributed according to their content or source. However, if
the top-m items are randomly distributed across the system,
the probability that all of them will be located on the same
node is extremely small: (1/n)™. In many cases, returning
the top kK < m items from each node will retrieve the top m
globally with high probability. If we are willing to tolerate
a small probability of missing one or more of the top m,
each node could compute only the top k < m, providing an
opportunity to reduce overall execution time.

Whether or not we can realize a substantial gain in effi-
ciency by computing the top £ < m on each node, rather
than the top m, depends on the specific information retrieval
algorithm. In the case of many standard information re-
trieval algorithms it is not obvious that any benefit would
result, except in the extreme case when m is large enough
that the time to communicate query results across the net-
work plays a significant role in the overall query time. In
textbooks and research literature, information retrieval tech-
niques are often expressed as formulae that are applied to
each document containing one or more terms from the user’s
query. If these algorithms are implemented naively, the size
of the result set (m) has no impact on efficiency, since a score
for each document must still be computed. With a few ex-
ceptions [23], the impact of result set size on efficiency has
not been a concern of information retrieval research.

In this paper, we present an passage retrieval algorithm
for question answering with an average execution time that
depends on the size of the result set. A statistical model is
used to estimate the impact of retrieving k& < m passages
from each node. For this application, surprisingly small val-
ues of k can be used, substantially reducing retrieval times
without compromising the quality of the results.

1.1 Related Work

The efficient implementation of ranking queries is a topic
of current interest in the database community, and in much
of this work the number of items (m) is considered to be
a key parameter. In particular, over the past few years,
the database community has devoted attention to the prob-

lem of optimizing ranked query with joins. In general, these
queries are comprised of lists of ranked data and a join pred-
icate specified by the user. Carey et al. [2] extended SQL
to incorporate a new operator that allows a user to spec-
ify the desired depth for a join operation. In cases where
the matching between query and the database is not exact,
the results are normally scored by similarity, and in such
settings join operations also address ranked data. Natsev
et. al. [17] investigate multimedia queries, based on similar-
ity scores, and proposed algorithms to support incremental
joins. In traditional relational databases, the limitations of
SQL require a join to be fully executed before sorting to
compute the final ranking. This is not desirable since the
size of the join is exponential in the number of ranked lists
in the projection (with base equals to the geometric mean).
Recently, rank-aware operators were proposed and they al-
low queries with join predicates to be optimized without the
need to execute a complete join [1,8].

The work presented in this paper has application to other
passage retrieval algorithms [9,11,13,14,16,20]. Unlike the
MultiText algorithm, which extracts passages directly from
the collection, many of these algorithms operate by first
retrieving the top documents and then scanning them to
identify high-scoring passages. Thus, passage retrieval time
grows in proportion to the number of documents. Some sys-
tems retrieve and scan as many as the top 1000 documents.
In a multi-node system, reducing the number of documents
scanned on each node would produce a corresponding de-
crease in processing time.

Witten et al. [23] provide a through summary of efficient
implementation techniques for document-oriented informa-
tion retrieval. They discuss the problem of identifying the
top-m documents during the final stage of query processing,
after scores have been assigned to documents, and propose
a selection algorithm to reduce execution time when m is
small relative to the number of documents.

1.2 Organization of the Paper

After a brief introduction to question answering (QA) sys-
tems, we describe an algorithm that computes the top-m
passages from a question. This algorithm has been used suc-
cessfully as a component in the MultiText QA system since
2000 [4,5]. In terms of its retrieval effectiveness—its ability
to identify passages containing answers to a question — it is
comparable to the best known algorithms [20]. Here, we fo-
cus on its efficiency rather than its effectiveness, measuring
the impact of result set size on execution time and demon-
strating the potential for overall performance improvement.
Section 4 presents a statistical model of the distribution of
items in an n-node system that allows us to determine re-
trieval probabilities as result set sizes are varied. Section 5
applies this model to the MultiText passage retrieval algo-
rithm, examining its impact on both efficiency and effective-
ness.

1.3 Terminology and Assumptions

For clarity, this section summarizes the key terminology
used throughout the paper. We assume the context of an in-
formation retrieval or database system whose goal is to iden-
tify the top-m items from a large collection, which may con-
sist of documents, passages, XML entities, database records,
or other objects, depending on the application. We refer
these m items as the target set or the target items.



We assume the collection is divided into n subcollections
of roughly equal size, where each subcollection is stored and
searched on a separate node of an n-node distributed or
parallel computer. We assume the items are distributed ran-
domly (uniformly and independently) across the n nodes.

We assume the system processes a ranking query by re-
trieving the top k < m items from each subcollection, merg-
ing the results, and returning the top m. We refer to k as
the retrieval depth. Items are ranked according to a real-
valued scoring function that can be applied to each item
independently, so that an item will be assigned the same
score regardless of the other items in the subcollection that
contains it.

2. QUESTION ANSWERING

We use the “factoid” question answering task as a vehi-
cle to demonstrate the validity and potential benefits of our
work. The goal of this task is to produce an short, factual
answer in response to a question posed by a user. For ex-
ample, the user might pose the question, “What mythical
Scottish town appears for one day every 100 years?” and
receive the answer “Brigadoon”, or pose the question “Who
was Galileo?” and receive the answer “astronomer and pi-
oneer of modern physical science.” Most trivia questions
provide an example of this task.

Over the past several years, a considerable body of work
has been published concerning this task [4,5,9,13,14,16,19-
21]. This work has been encouraged by the inclusion of a
question answering task in the TREC evaluations conducted
annually by the National Institute of Standards and Tech-
nology. The evaluation reported in this paper is based on a
set of 1,732 questions taken from the TREC QA experiments
conducted between 2000 and 2003.

Many QA system, including the MultiText system, oper-
ate according to the following general plan: 1) The question
is analyzed to identify key terms, the type of answer ex-
pected, and related information. 2) A query is formulated
from the question and submitted to an information retrieval
system that returns passages that may contain the answer
to the question. 3) The passages are processed to extract
possible answers.

While QA systems differ greatly in the details of how this
plan is implemented, and most incorporate other steps and
strategies, these three steps are usually present. Descrip-
tions of many QA systems can be found in the current and
past proceedings of TREC®. Strzalkowski and Harabagiu [19]
provide an overview of current QA research. Tellex et al. [20]
survey passage retrieval algorithms for question answering
and evaluate their relative effectiveness.

3. PASSAGE RETRIEVAL FOR QA

Complete details of the MultiText QA system, including
a discussion of its question analysis and answer extraction
components, as well as a description of its passage retrieval
algorithm, appear elsewhere [4]. In this section, we repro-
duce the core of the passage retrieval algorithm. This de-
scription is provided to illustrate how the performance of an
information retrieval algorithm can vary with the size of the
target set. In addition, we extend this description by exam-
ining the efficiency of the algorithm as the retrieval depth is
varied.

1trec.nist.gov

Unlike many passage-retrieval algorithms, the MultiText
passage retreival algorithm does not return predefined pas-
sages, such as paragraphs, sentences or fixed-size windows
of text. Instead, it can retrieve any substring of any doc-
ument in the subcollection stored on a given node. Since
passages, rather than documents, are the products of the
retrieval algorithm, the primary view of each subcollection
is as a single long string, consisting of all the documents in
the subcollection concatenated together. Under this view,
a subcollection C can be treated as an ordered sequence of
terms:

C =1 C2 C3...CN.

A passage from C is represented by an extent, an ordered pair
of coordinates (u,v) with 1 <u <wv < N, that corresponds
to the subsequence of C beginning at position u and ending
at position v

Cy Cy+1 Cy+2...Cy.

A query Q@ is generated from the original question and takes
the form of a term set:

Q = {t1, ta2, t3,...}.

An extent (u,v) satisfies a term set T C @ if the subse-
quence of C defined by the extent contains at least one term
matching each of the terms from 7. The determination that
a query term ¢; matches a collection term c¢; may take into
account stemming, synonym expansion and similar trans-
formations. In the actual MultiText implementation a term
may also be a phrase or a structured query, but for simplicity
we ignore these extensions in the description that follows.

An extent (u,v) is a cover for T if (u, v) satisfies T" and the
subsequence corresponding to (u, v) contains no subsequence
that also satisfies T'. That is, there does not exist an extent
(u',v") # (u,v) with u <’ <o <o that also satisfies T

As an example, for TREC question 1462 (“Where is the
oldest synagogue in the United States?”) the question anal-
ysis step produces the three-term query:

"oldest" "synagogue"
"u.s"+"usa"+"american"+"united.states"

The last term is a disjunction of words and phrases that
expand on the question phrase “United States”. A typical
fragment retrieved by this query is given in Figure 2. The
term cover is shown in boldface. Possible answers, based
on question type, are shown in italics.

While the focus is on passage retrieval, the locations of
document boundaries are retained for post-retrieval filtering
of passages. First, we exclude extents that cross document
boundaries. The co-occurrence of question terms in such an
extent may be purely accidental, and a lower scoring pas-
sage found at the end of one document or the beginning of
the other may be a better choice. Second, we retain only
the highest scoring extent from each document. The answer
extraction step of the MultiText system depends on the in-
dependent appearance of candidates in multiple passages,
and the terms appearing in a second passage from the same
document are unlikely to exhibit this independence.

3.1 Passage Scoring Function

Given an extent (u,v) that is a cover for a term set T' =
{t1, t2,...} we wish to compute a score for the extent with
respect to T that reflects the likelihood that an answer to



... The $350,000 makeover is expected to be completed by December. The structure is the
oldest synagogue under the American flag to have never missed Sabbath services.
It is the third-oldest synagogue in the Western Hemisphere after a temple built in 1732
on the Dutch Caribbean island of Curacao and a 1763 synagogue in Newport, R.I. The
congregation also boasts that its synagogue held the first confirmation ceremony for Jewish
youth in the Western Hemisphere. The historical significance...

Figure 2: A typical fragment retrieved for TREC question 1462 — the text in boldface was identified by the
passage retrieval algorithm; possible answers are shown in italics.

the question is contained in the extent or appears in its close
proximity. Our score for an extent of length [ = v —u +1
containing the terms T C @ is:

> log(N/fe) — |T|log(l) (1

teT

where f: is the total number of times ¢ appears in the sub-
collection and N is the sum of the lengths of all documents
in the subcollection.

Equation 1 assigns higher scores to passages whose prob-
ability of occurrence is lower. While a higher score does not
directly imply a greater likelihood that the answer will ap-
pear in close proximity, but empirical evidence suggests that
this relationship holds.

3.2 Passage Retrieval Algorithm

Given a query ) we generate J, the set of all covers for all
subsets of @), and rank them using equation 1. We discard
all but the highest-ranking cover from each document. Of
those remaining, the top m are processed to extract possible
answers.

Implementation of this passage retrieval and ranking tech-
nique depends on a fast algorithm to compute all covers of
all subsets of Q. An extent (u,v) is said to i-satisfy a query
Q if the subsequence of C defined by the extent contains ex-
actly ¢ distinct terms from Q. An extent (p,q) is an i-cover
for @ if and only if it i-satisfies @) and does not contain a
shorter extent that also i-satisfies (). Below we present an
algorithm to generate J;, the set of all i-covers of @, in time
O(|Q| - |Ti] - log(N)). The set of covers for all subsets of Q
is simply the union of the i-covers

N
J = Uz
i=1

There are O(N?) different extents that might legitimately
be returned by a passage-retrieval algorithm, and the signifi-
cance of the extents in J may not be immediately obvious. If
all O(N?) extents were ranked using equation 1, some of the
extents not in J may be ranked before some of the extents
in J. However, from the definition of i-cover and from equa-
tion 1, any extent not in J has at least one higher scoring
passage from J nested within it. Such an extent need not
be generated. It would be eliminated from the final ranked
list of passages, since it either occurs in a document with
a higher ranking passage (the nested passage) or overlaps a
document boundary.

The efficient generation of i-covers depends on specific
support from the underlying index structures that record lo-
cations of terms within the subcollection. This support takes
the form of two access functions r(t,w) and I(¢,w) that re-
turn positions in the subcollection term sequence ci, ...,cnN.

Cover(Q,i,w) =

1 Let t1,...,t|g| be the elements of Q.
2 for j — 1 to |Q| do

; R[j] — r(t;,w)

4 end for

5 v «— ith largest element of R
6 Q/ — @

7 for j — 1 to |Q| do

8 if R[j] <v then

0 Q' — Q' Uit}

10 end if

11 end for

12 Let t'1,...,t'|g/| be the elements of Q'.
13 for j — 1 to |Q'| do

i Llj) = 1(t'5,v)
15 end for
16 u «— smallest element of £
17 return (u,v)
Figure 3: Passage Retrieval — Given a query @, a

ranking level ¢, and a corpus position w, the cover
generation procedure generates the first i-cover for
Q starting at or after w. The procedure calls the [
and r access functions to generate term positions.



Both access functions take a term ¢ and a position in the
term sequence w as arguments and return results as follows:

v if 3 ¢, matching ¢ such that w <wv
and 74 ¢, matching ¢
such that w < v’ < v
N + 1 otherwise;

r(t,w) =

u if 3 ¢, matching ¢t such that w > u
and 7 ¢, matching ¢
such that w > v’ > u
0 otherwise.

Informally, the access function (¢, w) returns the position of
the first occurrence of the term ¢ located at or after position
w in the term sequence. If there is no occurrence of ¢ at
or after position w, then r(¢, w) returns N + 1, one position
beyond the end of the subcollection. Similarly, the access
function I(t,w) returns the position of the last occurrence
of the term ¢ located at or before position w in the term
sequence. If there is no occurrence of ¢ at or before position
w, then [(¢,w) returns 0.

The r(t,w) and I(t,w) access functions may be easily im-
plemented using file structures that can resolve a call to
either access function in O(log N) time. The MultiText QA
System uses an extended inverted-index file structure orig-
inally developed to support retrieval from structured text.
These file structures store a sorted list of positions for each
term, organized to allow the list to be efficiently addressed
by position w, directly supporting the access functions and
permitting portions of the list to be skipped when possible.

The generation of i-covers is achieved through calls to the
r and [ access functions. The procedure Cover (Figure 3)
takes as its arguments a set of query terms (@, a ranking
level i, and a term sequence position w, and generates the
first i-cover for @ that starts at or after w.

The loop over lines 24 of Figure 3 calls the access function
r(tj,w) for each term ¢; € @, recording the results in R, an
array of positions within the subcollection. For each term
t; € Q,1<j <|Q|, the position of its first occurrence at
or after w is assigned to R[j]. At line 5, the variable v is
assigned the ith largest element of R. From the definition of
r(t,w), the extent (w,v) i-satisfies @, and any extent (w,v")
with w < v’ < v will not i-satisfy . Therefore, the first
i-cover for () starting at or after position w ends at v.

Lines 6-11 construct the set Q' consisting of the i terms
from @ that appear in the interval of the subcollection as-
sociated with (w,v). The loop over lines 13-15 calls the ac-
cess function [(t';,v) for each term t'; € Q. For each term
t'; € Q', 1 < j <1, the position of its last occurrence at or
before v is assigned to the array element L[j]. At line 16,
the integer variable u is assigned the smallest element of L.
From the definition of (¢, w), the extent (u,v) i-satisfies Q,
and any extent (u’,v) with u < ' < v will not i-satisfy Q.
Therefore, (u,v) is an i-cover for Q.

At line 17, (u,v) is returned to the caller. If @ has no
i-cover starting after the specified w, the extend (N+1, N +
1) is returned. Generating a single i-cover requires |Q|+¢ =
O(|Q|) calls to access functions.

By definition, i-covers do not nest. It follows immediately
that no two i-covers can share a common starting position.
The set J; of all i-covers of @) can therefore be generated by
successive calls to the Cover procedure:

Ji =0
(u,v) « Cover(Q,1,0)
while ©u < N do
Ji — Ji U{(u,v)}
(u,v) « Cover(Q,i,u+ 1)
end while

The generation of J; requires O(|Q| - |Ji| - log(N)) time.
Overall, generating J, the set of all covers for all subsets of
Q requires O(|Q| - |J| - log(V)) time.

The top scoring elements of J from distinct documents
become the raw material for the answer extraction step.
Since an element of J may cover only query terms, it is
expanded by including text at the beginning and end to
provide context. Up to n words of text may be added to
both the beginning and end. In most cases we use n = 100.
After expansion, the result is a set of passages. Passages
from each node are merged and the result becomes the in-
put to the answer-extraction step. Within each passage, the
location of the original cover is also marked as a “hotspot”
for use during answer extraction.

3.3 Efficiency Heuristics

In practice, all elements of J may not be needed, since
only the top k elements of J from distinct documents must
be generated on each node. To this point, the efficiency
of the algorithm does not depend on the retrieval depth.
However, since the algorithm proceeds in stages, computing
J: before J;—1, we can apply two heuristics to reduce the
work done in later stages and halt the process when we can
guarantee that the top k have been found.

The algorithm begins the ranking process by generating
J\q|, the set of covers for all terms of J, and then generates
.7‘Q‘,1 down to Ji in succession. Before the generation of
J: for a particular ¢, it may be the case that k£ or more
covers have already been generated, with the lowest scoring
cover having score z. Using equation 1 with the length of
the covering extent set to zero (I = 0), @ can be checked to
determine the largest score that can be obtained from ¢ of its
terms. If this score does not exceed x, the cover generation
process may be halted.

For term t, define s(t) = log(N/f:). Assume that the
terms of the query Q = {¢1, t2, ts,...} are labeled such that
a < b implies s(tq) > s(ty). At the start of stage i, before
the computation of J; begins, we check

1

Zs(ta)—i<x

a=1

If so, any cover generated by this or later stages will not
form part of the final result set, and the algorithm may be
halted.

Similarly, it may be the case that a particular ¢t € ) can-
not be combined with any other i — 1 terms from @ to pro-
duce a cover with score greater than x. In this case, t can be
eliminated from further consideration. For example, during
stage ¢ this property may be true for term ¢;, j > ¢, so that

i s(ta) +s(tj) —i<w

In which case t; may be removed from the term set before
the computation of J; is begun.
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3.4 Measurements

To evaluate the algorithm, including the benefits of the
heuristics outlined in the previous section, we used a set
of 1,732 questions from the 2000-2003 TREC question an-
swering experiments. Associated with each question is one
or more answer patterns, specified as regular expressions.
We assume that a passage answers a question if it contains
a match to one or more of its associated patterns. This
question set includes all TREC questions for which answer
patterns were available, with the exception of a small num-
ber of questions from TREC-9 that were minor re-wordings
of other TREC-9 questions.

The questions are first processed by the question anal-
ysis component of the MultiText QA system to formulate
queries. The queries were then executed over a terabyte of
Web data crawled from the general Web during 2001. This
data was divided into 36 subcollections of roughly 28GB
each, distributed across a cluster-of-workstations.

Figure 4 plots the average query execution time as a func-
tion of target set size, with the value of m ranging between
1 and 100. These execution times were measured on a single
node in the cluster, a uniprocessor machine with an AMD
Athlon running at 1.4Ghz and containing 512 Mbytes of
RAM. The disk is a conventional ATA under an IDE inter-
face.

Execution time increases with k, with greater rates of
change seen at lower values of k. The execution time for
k = 100 is twice the time for k = 5.

Figure 5 plots two effectiveness measures for these ques-
tions. For a given m, coverage indicates the ratio of ques-
tions that have answers in the top-m passages. As m in-
creases, coverage increases, exceeding a value of 80% at
m = 30 and continuing to grow slowly after that. Preci-
ston indicates the ratio of passages in the top-m that con-
tain answers. Precision drops as m increases. Both cover-
age and precision are important to the performance of the
MultiText answer extraction component. Typically, the top
m = 40 passages are passed to the answer extraction com-
ponent, providing a reasonable combination of coverage and
precision.

1 T 0.4

Coveraée (Iefl-ha‘nd scale)‘

Precision (right-hand scale) -------
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Figure 5: Effectiveness — coverage and precision.

4. MODEL

In a multi-node environment, we can exploit the relation-
ship between query execution time and retrieval depth (k)
to improve overall performance. Our goal is to return the
top-m items across the system as a whole. As stated earlier,
the only way to achieve this goal with 100% certainly is to
retrieve the top-m items from each node and merge these
results. However, if we are willing to relax the requirements
slightly, and accept a small probability that one or more of
the target items will be missed, we can reduce the number
of items that must be retrieved from each node, improving
average query time.

In this section, we model the placement of items on nodes
in order to quantify the relationship between the probability
of failure and the retrieval depth. We assume that items
are randomly distributed across the n nodes, uniformly and
independently, and that the total number of items is large
enough that we can safely ignore the possibility of a node
containing less than m items.

The probability that a particular target item will be lo-
cated on a particular server is 1/n, and thus the probability
that a particular server contains exactly ! of the m target
items is given by the binomial distribution:

o = (1) () (-3)"

Let p(n,m, k) be the probability that all of the m target
items will be found by retrieving the top k from each of the
n nodes. A recursive formula for p(n, m, k) can be developed
by observing that if [ items are stored on a particular node
(0 <1< k< m),then p(n,m, k) depends on the distribution
of the remaining m — [ target items across the other nodes,
p(n —1,m — I, k). Combining this observation with some
simple boundary cases gives:

1 if m <k;

0 if n=1and m > k;
p(n,m,k) = k

Z b(n,m,)p(n —1,m — I, k) otherwise.

1=0

This equation can be solved through the application of dy-
namic programming.



Given this equation, we can choose a probability threshold
(say 95%) and determine a minimum value for k that gives
us at least that probability of retrieving the top-m items in
an n-node system. Figure 6 plots the minimum k for vari-
ous values of n and m with a probability threshold of 95%;
Figure 7 plots the minimum £ with a probability threshold
of 99.9%.

On an eight-node system, a retrieval depth of k = 11
will return the top m = 40 items with greater than 95%
probability, and a retrieval depth of £ = 14 will retrieve the
top m = 40 items with greater than 99.9% probability. On
an 64-node system, a retrieval depth of k = 7 will return the
top m = 100 items with greater than 95% probability and a
retrieval depth of k = 9 will retrieve the top m = 100 items
with greater than 99.9% probability.

We can extend our model to consider the problem from a
different perspective, by fixing the value of k and determin-
ing how large a target document set we expect to retrieve.
In other words, for a given k, we may determine a value for
m such that we expect to retrieve all of the top-m items.

For a given n, we define the random variable M} as the
size of the target set returned when the top k items from
each node are retrieved and merged. Thus, when M, = m
the result set includes all of the top m items, but not the
item with rank m + 1.

Let g(n, j, k) be the probability of retrieving exactly the
top j in an n-node system with retrieval depth k. By “ex-
actly the top 7”7 we mean that all of the items ranked 1 to j
are retrieved, but the item ranked j+1 is not retrieved. Since
p(n, j,k) is the probability that at least the top j will be re-
trieved, we observe that q(n,j,k) = p(n,j, k)—p(n,j+1,k).
We also observe that g(n,j,k) = 0 when j > n - k. Com-
bining these observations with a little algebra allows us to
compute the expected value of My:

E[My] = Zj-q(n,ayk)
= Zj~(p(n7j7k)—p(n7j+1,k))

n-k
= Z p(nvjv k)
=1

Figure 8 plots the minimum £ against the expected target
set size. On an eight-node system, a retrieval depth of k = 8
gives an expected target set size of 40, and a retrieval depth
of k = 18 gives an expected target set size of 100. On a 64-
node system, a retrieval depth of k£ = 3 gives an expected
target set size of 40, and a retrieval depth of k = 5 gives an
expected target set size of 100.

Either a specific probability threshold or the expected tar-
get set size may be used as a criterion to select a value for k.
This selection does not depend on characteristics of the ap-
plication, other than those implied by the basic assumptions
listed in Section 1.3. For particular applications, smaller val-
ues of k may produce acceptable results. In the next section,
we apply the model to the passage retrieval application, ex-
amining its impact on both efficiency and effectiveness.

5. IMPACT

In the case of passage retrieval for QA, the values for k
produced by the criteria in the previous section are fairly
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Figure 6: Minimum retrieval depth with probability
threshold 95.0%.

30

T T

n =8 nodes
n =16 nodes -------
n=32nodes --------
n = 64 nodes

Retrieval depth (k)

. . . . . . . . .
0 10 20 30 40 50 60 70 80 20 100
Number of target items (m)

Figure 7: Minimum retrieval depth with probability
threshold 99.9%.
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Figure 8: Minimum retrieval depth by expected target
set size (E[Mjg)).
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Figure 9: Coverage — target set size m = 40
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Figure 10: Precision — target set size m = 40

conservative. Figures 9 and 10 plot coverage and precision
as a function of k for four different cluster sizes. In both
figures we use a fixed target set size of m = 40. For these
figures, various cluster sizes were simulated from the top-
1000 passages for each question, by randomly distributing
passages to nodes. These top-1000 passages were generated
on the cluster described in section 3.4, where n = 36. As
indicated in these figures, if n - k > m the effectiveness of
the system is essentially indistinguishable from the baseline
given in Figure 5. For this application, k = [m/n] would
be an acceptable choice.

Figure 11 shows the system speedups obtained when vari-
ous criterion are used to select k. These speedups are based
on the measured execution times plotted in Figure 4, with a
cluster size of n = 36. For a given criterion, the value of m
is used to select a value for k, and the speedup is computed
as the ratio of the baseline execution time to the execution
time with a retrieval depth of k. The upper bound given in
the figure corresponds to a choice of k = [m/n]. The other
curves correspond to the selection criteria from Section 4 as
illustrated in Figures 6 to 8. The jaggedness in the curves
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Figure 11: Speedup

is caused by shifts in the value of k as the value of m is
increased. For m = 40, speedups range from 1.45 to 1.95.

By default, the MultiText system uses a probability thresh-
old of 95.0% for all ranked queries. The client supplies a
value for m to the query marshaller/dispatcher (Figure 1),
which converts it to the corresponding retrieval depth and
passes this value to the individual search engines along with
the query.

6. CONCLUSION

This work is based on a simple observation that applies
to the processing of any top-m query in an n-node system,
when the appropriate assumptions are satisfied. If we ac-
cept a small probability that one or more of the top-m items
may be missed, it is possible to reduce computation time by
retrieving only the top k£ < m from each node. The contri-
bution of this paper is a demonstration that this observation
may be beneficially applied in a realistic environment, along
with the provision of a statistical model to guide its appli-
cation.
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