
Modeling User Variance in Time-Biased Gain
Mark D. Smucker

Department of Management Sciences
University of Waterloo, Canada
mark.smucker@uwaterloo.ca

Charles L. A. Clarke
School of Computer Science

University of Waterloo, Canada
claclark@plg.uwaterloo.ca

ABSTRACT
Cranfield-style information retrieval evaluation considers
variance in user information needs by evaluating retrieval sys-
tems over a set of search topics. For each search topic, tra-
ditional metrics model all users searching ranked lists in ex-
actly the same manner and thus have zero variance in their
per-topic estimate of effectiveness. Metrics that fail to model
user variance overestimate the effect size of differences be-
tween retrieval systems. The modeling of user variance is
critical to understanding the impact of effectiveness differ-
ences on the actual user experience. If the variance of a dif-
ference is high, the effect on user experience will be low.
Time-biased gain is an evaluation metric that models user in-
teraction with ranked lists that are displayed using document
surrogates. In this paper, we extend the stochastic simulation
of time-biased gain to model the variation between users. We
validate this new version of time-biased gain by showing that
it produces distributions of gain that agree well with actual
distributions produced by real users. With a per-topic vari-
ance in its effectiveness measure, time-biased gain allows for
the measurement of the effect size of differences, which al-
lows researchers to understand the extent to which predicted
performance improvements matter to real users.

Author Keywords
Information retrieval; search evaluation

ACM Classification Keywords
H.3.4 Information Storage and Retrieval: Systems and Soft-
ware—Performance evaluation (efficiency and effectiveness)

INTRODUCTION
User interfaces of major commercial search engines typically
share a common interaction paradigm. In response to a query,
these retrieval systems display their results as a ranked list of
surrogates. In the case of document retrieval, these surro-
gates include a document title, a URL, and a query-biased
summary (or snippet) which taken together we will simply
call a summary. Clicking on a summary takes the user to the
summary’s corresponding full document. The user can eas-
ily navigate back and forth between the summaries and full
documents, examining the results as they wish and stopping

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
HCIR’12, October 4–5, 2012, Cambridge, MA, USA.
Copyright 2012 ACM 978-1-4503-1796-2/12/10...$15.00.

whenever they want. Colloquially, this interaction paradigm
has come to be known as ten blue links. We are interested in
understanding and modeling user behavior on these ten blue
links. With accurate models of user behavior, we can predict
user performance in an automated fashion and evaluate the
utility of ranking algorithms.

In this paper, we use stochastic simulation to model user be-
havior on ten blue link interfaces. In particular, we use simu-
lation to estimate the expected number of relevant documents
that a user will find when processing a single ranked list.
More generally, we can predict the distribution of the num-
ber of relevant documents found by a population of users.

When we use simulation to estimate the expected number of
relevant documents found by a user, the simulation acts as
a Cranfield-styled evaluation metric called time-biased gain
(TBG) [23, 24]. Cranfield-style evaluation, named for the ex-
periments conducted by Cleverdon at Cranfield University in
the 1960s, forms the primary evaluation methodology em-
ployed at TREC and other evaluation efforts [28]. The re-
search literature sometimes refers to Cranfield-style evalua-
tion as “batch evaluation” in order to contrast it with “inter-
active evaluation” and other user-oriented methodologies.

Cranfield-style evaluation is characterized by the develop-
ment of reusable test collections for evaluating ranking func-
tions and other specific search engine components. A test
collection consists of relevance judgments for a fixed set of
documents with respect to a fixed set of queries. To evaluate
a search engine, we execute the queries over the documents to
generate a ranked result list, and then apply the judgments to
compute traditional retrieval effectiveness measures, includ-
ing mean average precision (MAP) [20] and normalized dis-
counted cumulative gain (nDCG) [13]. The reusable nature
of these test collections permits us to re-compute the mea-
sures as often as needed for tasks such as parameter tuning,
intra-system comparisons, and learning to rank.

In the human computer information retrieval (HCIR) commu-
nity, Cranfield-style evaluation is widely viewed as an inad-
equate, and possibly misleading, substitute for actual experi-
ments with users. For example, in their classic paper Hersh
et al. [12] ask “Do improvements in system performance
demonstrated by batch evaluation confer the same benefits
for real users?” System-oriented researchers working on im-
proved ranking algorithms frequently publish results show-
ing improvements in metrics such as MAP, while HCIR re-
searchers generally feel that MAP does not predict user per-
formance on interactive retrieval systems. What good is an
improvement in MAP, or any other evaluation metric, if the
metric does not reflect improved user performance?

1

Our work builds on that of Smucker and Jethani [25] who
contend that the low predictive power of many Cranfield-style
metrics comes from their lack of realism. Indeed, most met-
rics have little or no model of a user or of a user interface.
Smucker and Jethani investigated precision as a metric given
that the concept of precision is integral to many metrics. They
found evidence that as the user interface became more com-
plex, precision became less predictive of user performance.
Precision as a metric assumes that users move at a constant
rate down a ranked list and that all relevant documents are
recognized as such. Neither of these assumptions are realis-
tic, and they become less realistic as interfaces allow more
interaction.

We designed time-biased gain to allow us to more realistically
model users for the purpose of measuring retrieval system ef-
fectiveness in human terms. This paper’s version of time-
biased gain has a ten blue links styled hypothetical user inter-
face and a user model that reflects that user actions take time
and not all user decisions are error free. Different versions
of time-biased gain can be created for different interfaces and
usage scenarios.

Real users are variable. Different users have different infor-
mation needs, and this aspect of user variation is commonly
part of IR evaluation in the form of a set of search topics.
Beyond the search topic, we know that users have different
abilities and different strategies that they employ when con-
ducting a search. In addition to variation across users, there
is also variation in decisions and the times to make decisions
by an individual user.

While real users are variable, most batch evaluation met-
rics purposely have no notion of user variability. Traditional
Cranfield- and TREC-style tests adopt a “ruthless abstrac-
tion of the user” [27], as nothing more than a list of rel-
evance judgments with respect to some query. According
to Voorhees [27], this abstraction may be seen as an im-
portant strength of the Cranfield approach, providing “suf-
ficient fidelity to real user tasks to be informative”, while be-
ing “broadly applicable, feasible to implement, and compara-
tively inexpensive.” In particular, this abstraction strips away
all issues of user variability. For any given result list, this ab-
stract user always behaves in exactly the same way, and thus,
for a single result list, traditional effectiveness measures pro-
duce a single number, with no associated variance.

Of course, in reality different users do experience the same
result list differently. In this work, in addition to variabil-
ity of search topics, our stochastic simulation of time-biased
gain models variation in both the actions of an individual user
and variation across different users to produce per-topic vari-
ance in the effectiveness measure. As we shall see, if this
variance accurately reflects the user population, it provides
insights into system effectiveness not provided by traditional
measures.

Modeling user variance does not limit our ability to detect
small performance improvements, for our simulation allows
us to take an unlimited number of samples and thus can pro-
duce a precise point estimate. Having a good estimate of the

variance allows us to compute and understand the effect size
of performance differences between systems. If the variance
is large relative to the difference, the effect size is reduced,
which means fewer users will experience the difference be-
tween the systems. Without the estimation of variance, such
effect size computations are limited to the estimation of vari-
ance across topics, which underestimates the actual variance
in performance.

The main contribution of this paper is an effectiveness mea-
sure that both predicts the number and distribution of relevant
documents that a user will save when processing a ranked list
with a ten blue links interface. By producing a per-topic dis-
tribution of the number of saved relevant documents, we can
talk about whether or not differences in systems will matter
to users by measuring the effect size of differences on a per
topic basis.

We next describe time-biased gain, its simulation of user be-
havior, and how we predict the distribution of the number of
relevant documents saved by a user processing a ranked list of
documents. We then show how time-biased gain allows us to
measure the impact of performance improvements on the user
experience. Related work is reviewed before the conclusion
of the paper.

TIME-BIASED GAIN
As described in the introduction, our goal is to predict the
distribution of the number of relevant documents that a user
will save when processing a ranked list using a ten blue links
styled interface. We will refer to the number of relevant doc-
uments saved as simply the cumulative gain.

We consider a user to accumulate gain over time. Let us de-
fine a function G(t) that represents the cumulative gain over
time t. Given that G(t) is a function of time, if we have a
probability density function f(t) that gives us the distribution
of how long a user is likely to work, then we can compute the
expected gain as follows:

E[G(t)] =

∫ ∞

0

G(t)f(t)dt, (1)

which represents time-biased gain in its general form.

Equation 1 says nothing about the form of gain or how it is
accumulated. In this paper we consider each relevant doc-
ument to have a gain of 1, and thus Equation 1 represents
the expected number of relevant documents saved by a user,
but other assumptions and scenarios are possible. In a Web
search context, if a user has a navigational need then G(t)
might have a single step, occurring when the target page is
found. In some cases, G(t) might be partially continuous, if
gain is realized by viewing a video or listening to music. Un-
der another approach, we might measure gain according to
the number of informational nuggets [7, 19] encountered as
documents are read. Likewise, time-biased gain as described
by Equation 1 is not restricted to the processing of ranked
lists of documents. Time-biased gain could be applied to the
whole search process, from the moment a user starts seeking
information to the moment the user stops. We leave these
ideas for future work.

2

)|1(irRCP)|1(irRSP

)|1(1 irRCP)|1(1 irRSP

iDocument

)(iD lTtt

View

TBGTBG
)(tDri

iDocument
Save

1iSummary
View

STtt

STtt

iSummary
View

Start

Figure 1. User model. Table 1 describes the parameters.

A user processing a ranked list does so according to some
process. This process is complex, and our work can only start
to scratch the surface of how to model user behavior. To sim-
plify our model, at the cost of some accuracy, we choose to
model users as proceeding down the rank list, one document
at a time. On the whole, this simplification is a good approx-
imation to reality. In the user data we use from the experi-
ment of Smucker and Jethani [25], 94% of the users’ moves
through the list were to a lower ranked document.

With user motion fixed to be down a ranked list one document
at a time, we can express Equation 1 as:

TBG(L,U) =

|L|∑
k=1

gkD(T (k)), (2)

where TBG(L,U) is the time-biased gain for the ranked list
L of length |L| with the user model U , T (k) is the time it
takes for a user to finish processing the document at rank k
and realize its gain gk, and D(t) is the survival probability,
i.e. the probability that a user survives to time t. The gain of
a document, gk, depends on whether or not the document is
saved as relevant by a user. In our model, a user only realizes
gain when the user saves a NIST judged relevant document.
A single saved relevant document has a gain of 1. We call
D(t) the decay function. Appendix A explains how we get
from Equation 1 to 2.

To compute Equation 2, we need to model the gain achieved
at rank k, gk, the time it takes to achieve that gain, T (k), and
also the probability of surviving to rank k, D(t). Rather than
formulate an analytic expression for gk and T (k), we use a
previously developed stochastic simulation [23] to determine
when a simulated user saves a relevant at rank k.

Our simulation models the time it takes users to complete var-
ious actions as well as the probabilities with which they make
various decisions. Figure 1 represents our model as a semi-
Markov model. Now, the task of determining gk and T (k) are
replaced with determining the probabilities of clicking on a
summary and of saving a document, how long it takes to pro-
cess a document summary, TS , and how long it takes to pro-
cess a full document of length l words, TD(l). We model the
time to process a summary as a Weibull distribution. The time

Parameter Description
t Accumulated time.
TS Time spent viewing a document

summary. Modeled as a random de-
viate drawn from a Weibull distribu-
tion.

P (C = 1|R = ri) Probability of clicking on a sum-
mary given its NIST relevance.

TD(li) Time spent viewing full document
at rank i, which contains li words.
Modeled as a random deviate drawn
from a log-normal linear distribu-
tion. Duplicates modeled as a ran-
dom deviate drawn from a log-
normal distribution.

P (S = 1|R = ri) Probability of saving a viewed doc-
ument given its NIST relevance.

ri The NIST relevance for the docu-
ment at rank i, where ri = 1 if the
document is relevant, ri = 0 other-
wise.

D(t) Decay function. Probability of sur-
viving to time t.

TBG Time-biased gain. The expected
number of saved relevant docu-
ments.

Table 1. User model parameters. Figure 1 shows the user model.

to process a full document is modeled as a log-normal linear
distribution based on the document’s length and whether or
not it is a duplicate of a higher ranked document. In the next
section, we explain how we calibrate these components of the
simulation.

Running the simulation once produces a single sample of
time-biased gain for the given list and user model. Repeat-
edly running the simulation will produce a distribution of
TBG(L,U) values for the list and user model. The mean
of this distribution produces an estimate of the expected gain.
If we only have a single user model, the distribution of TBG
will be representative of the variance in the decisions of a
user and the time it takes to make those decisions, which was
the limit of the variance we previously modeled [23]. In this
paper, our goal is to produce a distribution of the gain for a
population of users.

The semi-Markov model of Figure 1 is too simple to correctly
model a user population’s variance. We can either choose to
create a new, more complex model, or we can divide a pop-
ulation into homogeneous subsets and use the simple model
for each subset [29]. We have chosen to do the latter.

To model a population of users, U , we will create a setU ofN
user models, where each user model Ui represents a different
result list processing strategy. To estimate TBG for a single
result listL, we will takeB samples of user behavior and then
average these samples:

TBG(L) =
1

B

B∑
TBG(L,Ui : i = Random(1, N)) (3)

3

where Random(1, N) returns a random integer in the range
[1, N], and TBG(L,Ui) is a single random sample of TBG
for list L with user model Ui. A single user model Ui can pro-
duce as many different random samples of TBG as we want.
As such, our ability to precisely estimate TBG is only limited
by the number of samples B that we produce. The B samples
produce for us a per-topic distribution of retrieval effective-
ness that is representative of the user population U modeled
by the N models of U .

Calibration of Model Components
We use data from phase 2 of the user study of Smucker and
Jethani [25] to calibrate the simulation. In phase 2 of that
study, 48 participants searched ranked lists for relevant docu-
ments using a ten blue links styled interface. The summaries
page displayed 10 summaries and provided links for navigat-
ing to the next and previous 10 summaries in the ranked list.
Clicking on a summary took the participant to a page that dis-
played the full document. On this page, the participant could
save the document as relevant if desired, but the participant
was not required to make an explicit relevance judgment.

Each participant worked for 10 minutes on each of 4 TREC
2005 Robust track [26] search topics. Using language sim-
ilar to that of Smith and Kantor [21], participants were in-
structed to “try to find and save as many relevant documents
as possible in the 10 minutes while saving as few non-relevant
documents as possible.” The result lists contained duplicates,
and participants were instructed to judge duplicate documents
the same. Documents were from the AQUAINT newswire
collection. The result lists had two precisions: 0.3 and 0.6.
The lists were designed to mimic actual ranked lists in that
documents likely to be ranked highly by search engines were
ranked higher. A 0.3 precision list had 3 relevant documents
for each 10 documents displayed, and, likewise, 0.6 precision
had 6.

In total, the study used 8 search topics (310, 336, 362, 367,
383, 426, 427, 436) and the topics were balanced across
search tasks, list precision, and participants. Participants
searched each list for 10 minutes. In addition to the origi-
nal report on the study [25], which includes full details of the
user study, we have reported on the variety of list processing
strategies [22] observed. We believe that the user behavior
in the Smucker and Jethani study is representative of actual
result list processing behavior given the similarity between
the study’s observed behavior and that reported by other re-
searchers (cf. strategies in Aula [1] and Dumais et al. [9],
probabilities of clicking on summaries in Yilmaz et al. [31]).

Our stochastic simulation needs to capture variance in behav-
ior at both the individual user level as well as the population
level, i.e. across users. For each participant in our study, we
will create a single user model. In other words, we will have
N = 48 user models in our population U , where each of the
models corresponds to one of the participants in our study.

To calibrate each of the user models, we will use the same
process as we have previously described [23], but we will
restrict the calibration of each of the 48 models to a specific
participant’s data.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Click Summary False Positive Rate = P(C=1 | R=0)

T
ru

e
P

os
iti

ve
 R

at
e

=
 P

(C
=

1
| R

=
1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Save Document as Relevent False Positive Rate = P(S=1 | R=0)

T
ru

e
P

os
iti

ve
 R

at
e

=
 P

(S
=

1
| R

=
1)

Figure 2. Probabilities of clicking on summaries and saving relevant
documents for the 48 user models.

The model shown in Figure 1, has a probabilistic transition
between the view-summary state and the view-document state
and there is another probabilistic transition between the view-
document state and the save-document state. We model the
probability of clicking on a summary, P (C|R), and the prob-
ability of saving a document, P (S|R), as conditional on the
document’s NIST relevance. To estimate the participant’s
overall probabilities, we compute a weighted average of the
per-topic estimates. For a search topic’s viewed documents,
we can compute the fraction of NIST relevant documents that
are saved and this is P (S = 1|R = 1). Likewise, we can eas-
ily compute P (S = 1|R = 0). For the probability of clicking
on a summary, we make an assumption that all summaries up
to the last clicked summary are viewed by a participant. With
this assumption, we can compute a search topic’s P (C|R) as
we did for P (S|R). In computing the final weighted averages
of the probabilities, we weight a topic’s probabilities by the
number of viewed documents or summaries.

Figure 2 shows the computed values for the click and save
probabilities for the 48 user models plotted in ROC space.
Points above the dashed line represent an ability to discrim-
inate between relevant and non-relevant summaries and doc-
uments. User models with P (C = 1|R = 1) = 1 and
P (C = 1|R = 0) = 1 represent users that click on ev-
ery summary. Points closer to the upper left corner show
increasing abilities to discriminate between relevant and non-
relevant documents.

The web-based system used in the user study recorded the
time spent on each view of the summaries page and the full
document page. To estimate the amount of time spent on a
summary, TS , we need to allocate the recorded times to all the
viewed summaries, which we again assume includes all sum-
maries up to the last clicked summary. To do this, we spread
each recorded time on the summaries page across Mt/|St|
summaries, where Mt is the maximum rank reached by the
participant on topic t and |St| is the number of recorded times.
We then fit a Weibull distribution to all of the summaries’
times to allow us to simulate the variance in summary view-
ing times for a participant by drawing random deviates from
the corresponding Weibull distribution.

For all of the fit Weibull distributions, we compared the mean
of the user model fit with the mean of the participant and
found good agreement in all cases. Figure 3 shows two exam-

4

0 2 4 6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time to Read Summary in Seconds

0 10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Time to Read Summary in Seconds

Figure 3. Examples of the distributions of summary times for single par-
ticipants shown as histograms and the maximum likelihood fit Weibull
probability density function for each of the corresponding user models.

ples of the distribution of summary times and the correspond-
ing Weibull probability density function. The top example
was the most common style of fit, while in a limited number
of cases the fit Weibull distribution took on the shape of an
exponential as show in the bottom example. The exponential-
like distribution has the unfortunate property of having us
model a participant as sometimes taking zero time to process
a summary. In the future, we may use smoothed empirical
distributions rather than fit a known distribution.

In the case of the time spent viewing a document, TD, we
have found that participants spend more time on longer docu-
ments where the document length is measured in words. We
have also found that the time to judge a duplicate document is
independent of its length. As such, we separately model the
time to judge a first viewed document and viewings of dupli-
cates lower in the ranked list. For each participant, we fit the
log of their times spent viewing “first viewed” documents as
a linear function of the documents’ lengths. Such a fit pro-
duces a model with slope a, intercept b, and standard error of
the residuals σf . Individual participants in general have not
judged enough duplicates for us to estimate individual distri-
butions of the time spent viewing duplicates. As such, we fit
a single log-normal distribution to all users’ recorded times
spent viewing duplicates. We have found that incorporating
the document’s NIST relevance or the precision of the ranked
list into the model does not increase the variance explained
when document length is available.

To produce a random deviate for the time spent viewing a
document a document, we use the following function:

TD(l) = exp(al + b+ σfu)F + exp(μd + σdu)(1− F) (4)

where u is a random deviate drawn from a normal distribution
with a mean of zero and a variance of 1, l is the length of the
document in words, and F is a binary indicator that is 1 if

0 500 1000 1500 2000 2500

1
2

3
4

5

Document Length in Words

Lo
g(

 ti
m

e
in

 s
ec

on
ds

)

Figure 4. Example of a linear fit of time to judge a document for one
user.

the document is a first viewed document or 0 if a duplicate.
The parameters: a, b, and σf are for the log-normal linear
fit, and the parameters: μd and σd are the parameters of the
log-normal distribution for the duplicates. When we fit each
of the 48 user models, in one case, a was slightly less than
zero, and we set a to zero to represent that the participant’s
time to judge documents appeared to have no correlation with
document length.

Figure 4 shows an example fit for one participant. As can be
seen, there is considerable variance in the time to judge docu-
ments and our model only captures two of the many variables
that affect the time a user will spend viewing a document.

Our decay function, D(t), is based on data from a commer-
cial search engine log provided by Microsoft to researchers
in 2006 and 2007. Coming from a separate dataset, we do not
have the ability to fit it separately to each of the 48 models,
and we use the same fit as in Smucker and Clarke [24]:

D(t) = e−t ln 2
h , (5)

where h is the half-life of users. The half-time corresponds
to the the time at which half of the population of users has
stopped processing the ranked lists. In our experiments, h
equals 224 seconds.

VALIDATION OF SIMULATION
After the design of a simulation and its calibration, we must
validate it to confirm that the simulation performs correctly
and can make useful predictions. In the case of the simulation
described in this paper, we want to determine if it produces a
distribution of gain values that is a good fit to observed values
from the user study that was used to calibrate it.

We need to validate the distribution of gain after a period of
time. Each participant searched for 10 minutes on each search
topic. We will compare the actual distribution of gain after
10 minutes to the predicted distribution after 10 minutes. To
match the user study, we will not apply any decay to the com-
putation of TBG.

In order to compare a distribution of gain values from the
user study against a distribution from the simulation, we need
a distribution from the user study with enough data for the

5

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

User Study Gain (Number of Relevant Documents Saved)

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

User Study Gain (Number of Relevant Documents Saved)

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

Simulation User Population Model Gain

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

Simulation User Population Model Gain

0 10 20 30 40 50

0
10

20
30

40
50

Q−Q Plot for Precision = 0.3 Result Lists

User Study Gain

S
im

ul
at

io
n

U
se

r
P

op
ul

at
io

n
M

od
el

 G
ai

n

0 10 20 30 40 50

0
10

20
30

40
50

Q−Q Plot for Precision = 0.6 Result Lists

User Study Gain

S
im

ul
at

io
n

U
se

r
P

op
ul

at
io

n
M

od
el

 G
ai

n

Figure 5. This figure compares the user study gain at 10 minutes with that predicted by the stochastic simulation. The user study has result lists of
0.3 and 0.6 precision. The results for the 0.3 precision lists is shown on the left and 0.6 on the right. The quantile-quantile (Q-Q) plots show that the
simulation’s predicted distribution is in excellent agreement with the user study for the 0.6 precision lists, while the simulation’s distribution for the 0.3
precision lists is good but does not spread out as fast as the user study distribution.

6

comparison to be meaningful. The user study had 48 partic-
ipants complete 4 search topics. In total, there are 192 mea-
sures of cumulative gain at 10 minutes. The study used 2
levels of precision: 0.3 and 0.6. Thus, at each level of preci-
sion we have 96 gain values. If we also broke the lists down
by topic, we would only have 12 gain values for a topic and
precision pairing, which is not enough to make a good com-
parison between predicted and actual distributions. Thus, we
restrict our comparison to the distributions of gain values at
the two levels of precision at 10 minutes.

To produce the predicted distributions, we took the 8 results
lists at each precision and ran the simulation with B = 10000
samples per result list to produce 10000 samples of the cumu-
lative gain at 10 minutes. Each saved relevant document adds
1.0 to the cumulative gain.

Figure 5 shows the results for the 0.3 precision lists on the
left and the 0.6 precision lists on the right. The topmost plots
in Figure 5 are the actual user study distributions of the num-
ber of saved relevant documents. The middle plots are the
predicted distributions. To compare the distributions, we will
look at the means of the distributions as well as the shape of
the distributions.

The user study had mean cumulative gains at 10 minutes for
the 0.3 and 0.6 lists of 7.4 and 10.9 respectively. The pre-
dicted means and standard errors were 6.22 ± 0.01 and 11.28
± 0.02 for the 0.3 and 0.6 precision lists, respectively. While
the simulation’s estimate of gain falls below and above the
actual user study amounts for the 0.3 and 0.6 precision lists
respectively, there is considerable variation in the number of
relevant documents saved by participants. The 95% confi-
dence interval for the user study’s mean cumulative gain is
6.1-8.6 for the 0.3 precision lists and 9.2-12.6 for the 0.6 pre-
cision. Thus, for both precisions, the differences between the
user study’s means and the simulation’s predicted means are
not statistically significant differences.

While we can visually compare the actual and predicted dis-
tributions, a better way to compare one distribution with an-
other is with a quantile-quantile (Q-Q) plot. When two dis-
tributions are equivalent, the points on a Q-Q plot fall on the
y = x line. Deviations from the y = x line can inform us in
the differences between the distributions.

The bottom plots in Figure 5 are the Q-Q plots comparing
the user study distribution of number of relevant documents
saved to the simulation’s distribution. The simulation’s dis-
tribution of gain for the 0.3 precision lists is very good up
to about 8 documents and then begins to slowly worsen.
What we see here is that the simulation’s distribution does not
spread itself in the tail as much as the user study’s distribu-
tion. For the 0.6 precision lists, the simulation’s distribution
is in excellent agreement with the user study distribution.

In general, we found outliers in performance difficult to
model. For example, the bottom plot in Figure 3 shows
that the fit model effectively says there is zero probability of
spending more than 30 seconds on a summary. The reality is
that this participant spent in excess of 30 seconds on a sum-
mary 3 times during the user study. This was a real person,

and real people produce outliers in performance. We believe
that modeling outliers is important and their effective model-
ing will improve the predicted distributions of gain.

EFFECT SIZE OF PERFORMANCE DIFFERENCES
In this section, we look at the value of having a retrieval met-
ric that produces both an estimate of expected performance in
human terms (number of relevant documents saved) and the
variance of this estimate on a per-topic level.

The TREC 2005 Robust Track overview [26] compares
two top performing title-only, automatic runs: uic0501
and indri05RdmmT. The geometric mean average precision
(gMAP) is 0.233 for uic0501 and is 0.206 for indri05RdmmT.
The MAP (arithmetic mean) is 0.310 for uic501 and 0.332 for
indri05RdmmT. Both of these runs are also top performing
runs when evaluated with TBG. The mean TBG for uic0501
is 4.98 and the mean TBG for indri05RdmmT is 4.70. We
used 10,000 samples per topic to estimate TBG and its vari-
ance. Of note, we think that reporting an expected 4.98 rel-
evant documents to be saved by users is a much more mean-
ingful metric than a 0.310 MAP. TBG produces a measure of
retrieval effectiveness in human terms.

Figure 6 shows each run’s per topic TBG for a few exam-
ple topics. For each topic, the runs’ performances are shown
paired with the uic0501 run always on the left of the pair and
the indri05RdmmT run on the right. This plot is based on
1000 samples per topic to reduce the clutter of outliers in the
plot, but otherwise the plot remains nearly the same as for the
10000 samples data.

When analyzing the performance difference between two
runs, we now can better understand the significance of a dif-
ference at the topic level. For example, it is clear that on
topic 433, uic0501 is significantly better than indri05RdmmT
while we see that the difference on topic 436 is likely not
significant. We can formally capture this idea that some dif-
ferences are more important than others using measures of
effect size [11].

There are two measures of effect size that we will demon-
strate. The first measure of effect size is called Cohen’s d
and the second is known as the probability of superiority. To
illustrate these measures of effect size, we’ll use these two
runs’ performance on topics 325 and 303. On both topics, in-
dri05RdmmT has a higher mean TBG than uic0501, but the
distribution of TBG values overlap to varying degrees.

Cohen’s d is a standardized measure of the difference be-
tween means. The measure is also known as Hedges’ g [11]
or the standardized mean gain [16]. The measure is defined
to be:

d =
Y A − Y B

sp
(6)

where Y X is the mean of system X, and sp is the pooled
standard deviation of systems A and B:

sp =

√
(nA − 1)s2A + (nB − 1)s2B

(nA − 1) + (nB − 1)
(7)

7

where nX is the number of samples of system X, and sX is
the standard deviation of system X [16].

The idea of the standardized mean difference is to represent
the difference between two means in terms of the spread of
the data that form the means. For example, on topic 325,
there is a 2.3 difference in TBG between the indri run and
the uic run, and d = 0.53. In other words, on topic 325, the
indri run’s mean is 0.53 standard deviations better than the
uic run’s mean. In comparison, for topic 303, there is a 2.1
difference in TBG between indri and uic, and d = 1.2. By
Cohen’s d, the 2.1 difference in TBG on topic 303 is a larger
effect than the 2.3 difference on topic 325. Cohen gave the
guideline that a d ≤ 0.2 is a small difference, a d = 0.5 is
medium, and d ≥ 0.8 is large [16].

A possible issue with Cohen’s d is that the distributions of
TBG are not normal but are more log-normal in their shape.
Thus, one solution to this issue would be to measure the dif-
ference in the log means, rather than the means, except that
some notion of smoothing would be needed to be applied to
avoid taking the log of zero. Another solution would be to
use a non-parametric measure of effect size.

The probability of superiority (PS) is a non-parametric mea-
sure of effect size [11]. In terms of two IR systems’ perfor-
mance on a topic, PS is defined to be the probability that users
of system A have greater performance than users of system B,
i.e.

PS = P (YA > YB). (8)

In other words, PS is the probability that a randomly chosen
user of system A has a greater performance than a randomly
chosen user of system B. The PS can be naively computed by
taking all pairs of scores for systems A and B on a topic (the
cross product) and counting the number of pairs that have a
higher score for A and then dividing by the total number of
pairs. A tied pair is counted as 0.5 rather than 1. A more
efficient means to compute the PS is to compute the Mann-
Whitney U statistic, which is also known as the Wilcoxon
rank sum statistic, and divide by the number of pairs. PS
ranges from 0 to 1 and a PS of 0.5 corresponds to no effect.
A PS of 0 or 1 both mean that the two groups of scores are
completely separate. Note that P (YA > YB) = 1− P (YB >
YA). PS is equivalent to the area under the curve (AUC) if
we treat the scores as the output of a classifier and label one
system’s scores the positive instances and the other system’s
scores the negative instances. The PS can also be converted to
an odds ratio (OR) [11]: OR = P (YA > YB)/P (YB > YA)
For example, a PS of 0.75 can be understand as an odds ratio
of 3 to 1. In other words, for every three users that perform
better with system A, one user performs better with system
B.

For topic 325, there is a 2.3 difference in TBG, and the PS is
0.66 (OR = 1.9 ≈ 2 to 1). In comparison, for topic 303, there
is a 2.1 difference in TBG, and the PS is 0.81 (OR = 4.3 ≈
4 to 1). The lower TBG values on topic 303 mean that the
variance is less as well. In terms of user experience, the 2.1
difference on topic 303 is a much more important difference
than the 2.3 difference on topic 325, for a much larger portion

0

10

20

30

325 436 689 303 401 433 650
Topic

T
B

G

Run

uic0501

indri05RdmmT

Figure 6. TBG on example topics for runs uic0501 and indri05RdmmT.
For each topic, the runs are shown as a pair. The uic0501 run is always
on the left of the pair and the indri05RdmmT run on the right.

of the user population will experience a difference between
the two systems.

As pointed out by Cormack and Lynam [8], with a distri-
bution of effectiveness scores on a per-topic basis, as pro-
duced by TBG, we can treat each topic as a separate experi-
ment and then report comparisons between runs using meta-
analysis [16]. We leave for future work the investigation of
the application of meta-analysis to system performance com-
parison.

RELATED WORK
Others have proposed models of user behavior for evaluat-
ing search engines that incorporate notions of user effort and
time. Dunlop [10] directly inspired our own approach, both
in this paper and in prior work [23, 24]. He defined a time-
to-view graph as a function indicating the time required for
a user for to view a given number of relevant documents —
essentially the inverse of G(t). For computing time-to-view
graphs, Dunlop developed and calibrated a model of user be-
havior that includes estimates for the times needed to load
screens, read summaries, view documents, etc., on an actual
user interface.

Zhang et al. [32] analyzed logs from a commercial search en-
gine to compute parameters for cumulated gain effectiveness
measures. They created a user model from query and click
logs and applied it to compute empirical discount values.
They compared these empirical values to the discount func-
tions underlying traditional measures, concluding that rank
biased precision’s (RBP) [17] geometric distribution provides
the best fit.

Yilmaz et al. [31] present a model of a user interacting with
a standard commercial search engine, applying it to compute
expected browsing utility (EBU), which is similar to the ex-
pected total gain computed by TBG. Like Zhang et al., they
calibrate and validate their model from the queries and clicks
appearing in the logs of a commercial search engine. EBU

8

incorporates probabilities for clicking on summaries, return-
ing to the result page after viewing a document, and stopping
after viewing relevant and non-relevant documents. However,
EBU does not model the time required for these actions, im-
plicitly adopting the fixed-rate traversal assumption.

Carterette et al. [5] present a method for estimating the pa-
rameter in RBP’s geometric distribution from a user’s queries
and clicks. By estimating parameters for a large number of
users, they create a distribution of parameter values, where
different query types (e.g, informational vs. navigational)
may have different distributions of parameter values. Sam-
pling from the user population implied by the distribution of
parameters values allows them to compute variance due to
user behavior. We follow a similar approach in the current
paper, sampling from a user population and simulating user
behavior over a result list, but with a more substantial user
model.

Cormack and Lyman [8] have investigated how variation in
the collection affects IR evaluation. While we have added
user variance to time-biased gain, we do not address collec-
tion variation in this paper. Cormack and Lyman’s work is
also notable for the points it makes with regard to the need
to measure the magnitude and importance of differences and
not merely to report the statistical significance of differences.
Our work here on incorporating more variance into IR eval-
uation, fits within the framework outlined by Cormack and
Lynam for the meta-analysis of IR systems.

While rarely making time-based predictions, others have
aimed to simulate the use of interactive IR, or have applied
HCI user-modeling techniques to IR-related tasks [2–4,6,14,
15, 18, 30]. In some cases, simulations are compared to hu-
man studies to determine if the user model accurately reflects
human performance.

CONCLUDING DISCUSSION
User studies allow us to measure the impact of specific design
and interface choices on user experience. System-oriented
tests, as typified by Cranfield-style evaluation, allow for low
cost, repeatable evaluation, but lack the realism of user stud-
ies. Time-biased gain is a Cranfield-style evaluation metric
that tries to capture benefits of both user-oriented studies and
system-oriented tests. For example, time-biased gain mea-
sures effectiveness in human terms — the number of saved
relevant documents — rather than difficult to interpret scores
that are not directly predictive of human performance. Time-
biased gain is able to make predictions of human performance
behavior because it employs a user model of result list pro-
cessing that has been calibrated and validated using actual
user behavior data.

The stochastic simulation of time-biased gain models behav-
ior in terms of the distribution of times to complete actions
and the probabilistic nature of decisions made during the pro-
cessing of a ranked list. The simulation’s user model oper-
ates in the context of a hypothetical user interface consisting
of document surrogates that when clicked on allow the user
to view the full documents. The simulation gives us a model
of result list processing behavior that we can apply to other

result lists and obtain estimates of both the gain and variance
where the gain is measured in units of number of relevant
documents saved. In other words, we can “replay” the con-
ducted user study over and over again with new ranked lists
to evaluate performance.

The simulation in this paper is unique in its use of multiple
user models to simulate a population. An advantage of us-
ing multiple models over one single complex model is that it
gives us greater experimental flexibility. We can study perfor-
mance in terms of the population and also in terms of specific
users or classes of users. Our user model and validation is
limited by the amount of data we have collected, but the idea
of creating multiple models to simulate a population should
be easy to apply to larger datasets, e.g. those datasets col-
lected by commercial search engines.

By simulating a user population, we can model user variance
in performance on a per-topic basis. For each search topic,
time-biased gain produces a distribution of the number of rel-
evant documents saved (cumulative gain). We showed that
the simulation’s fit to the user study’s distribution of cumula-
tive gain is good.

Knowing the per-topic distribution of gain allows for mea-
surement of the effect size of differences. Most existing met-
rics ignore user variance and only produce a single number
for the quality of a ranked list. Metrics that produce an esti-
mate with a variance of zero, overstate the effect size of the
difference between two ranked lists. Real users are variable
and as such some will perform better with one list than the
other and vice versa. Time-biased gain allows for the use of
effect size measures on a per topic basis so that we can de-
termine, for example, the probability that a random user of
one ranked list will save more relevant documents than a ran-
dom user of another ranked list. As such, time-biased gain
allows for a prediction of the impact that retrieval improve-
ments have on actual user performance. In short, we can start
to have conversations about the degree to which measured im-
provements in retrieval quality result in noticeable changes to
the user experience.

ACKNOWLEDGMENTS
We thank the reviewers for their helpful feedback. This work
was supported in part by NSERC, in part by the GRAND
NCE, in part by Google, in part by Amazon, in part by the fa-
cilities of SHARCNET, and in part by the University of Wa-
terloo.

REFERENCES
1. Aula, A., Majaranta, P., and Räihä, K.-J. Eye-tracking

reveals the personal styles for search result evaluation.
In Human-Computer Interaction – INTERACT 2005,
vol. 3585 of LNCS, Springer (2005), 1058–1061.

2. Azzopardi, L. The economics in interactive information
retrieval. In SIGIR, (2011), 15–24.

3. Azzopardi, L., Järvelin, K., Kamps, J., and Smucker,
M. D. Report on the SIGIR 2010 workshop on the
simulation of interaction. SIGIR Forum, (January 2011),
35–47.

9

4. Baeza-Yates, R., Hurtado, C., Mendoza, M., and Dupret,
G. Modeling user search behavior. In Proceedings of the
Third Latin American Web Conference, IEEE (2005),
242-251.

5. Carterette, B., Kanoulas, E., and Yilmaz, E. Simulating
simple user behavior for system effectiveness
evaluation. In CIKM, (2011), 611–620.

6. Chi, E. H., Pirolli, P., Chen, K., and Pitkow, J. Using
information scent to model user information needs and
actions and the web. In SIGCHI, (2001), 490–497.

7. Clarke, C. L., Craswell, N., Soboroff, I., and Ashkan, A.
A comparative analysis of cascade measures for novelty
and diversity. In WSDM, (2011), 75–84.

8. Cormack, G. V., and Lynam, T. R. Statistical precision
of information retrieval evaluation. In SIGIR, (2006),
533–540.

9. Dumais, S. T., Buscher, G., and Cutrell, E. Individual
differences in gaze patterns for web search. In IIiX,
(2010), 185–194.

10. Dunlop, M. D. Time, relevance and interaction
modelling for information retrieval. In SIGIR, (1997),
206–213.

11. Grissom, R. J., and Kim, J. J. Effect Sizes for Research,
2nd ed. Routledge, Taylor and Francis Group, 2012.

12. Hersh, W., Turpin, A., Price, S., Chan, B., Kramer, D.,
Sacherek, L., and Olson, D. Do batch and user
evaluations give the same results? In SIGIR, (2000),
17–24.

13. Järvelin, K., and Kekäläinen, J. Cumulated gain-based
evaluation of IR techniques. TOIS, (2002),
20(4):422–446.

14. Keskustalo, H., Järvelin, K., Sharma, T., and Nielsen,
M. L. Test collection-based IR evaluation needs
extension toward sessions: A case of extremely short
queries. In AIRS, (2009), 63–74.

15. Lin, J., and Smucker, M. D. How do users find things
with PubMed? Towards automatic utility evaluation
with user simulations. In SIGIR, (2008), 19–26.

16. Lipsey, M. W., and Wilson, D. B. Practical
Meta-Analysis. Sage Publications, Inc., 2001.

17. Moffat, A., and Zobel, J. Rank-biased precision for
measurement of retrieval effectiveness. TOIS, (2008),
27(1):1–27.

18. O’Brien, M., Keane, M. T., and Smyth, B. Predictive
modeling of first-click behavior in web-search. In
WWW, (2006), 1031–1032.

19. Pavlu, V., Rajput, S., Golbus, P. B., and Aslam, J. A. IR
system evaluation using nugget-based test collections. In
WSDM, (2012), 393–402.

20. Robertson, S. A new interpretation of average precision.
In SIGIR, (2008), 689–690.

21. Smith, C. L., and Kantor, P. B. User adaptation: good
results from poor systems. In SIGIR, (2008), 147–154.

22. Smucker, M. D. An analysis of user strategies for
examining and processing ranked lists of documents. In
HCIR, (2011).

23. Smucker, M. D., and Clarke, C. L. A. Stochastic
simulation of time-biased gain. To appear in CIKM,
(2012), 5 pages.

24. Smucker, M. D., and Clarke, C. L. A. Time-based
calibration of effectiveness measures. In SIGIR, (2012),
95–104.

25. Smucker, M. D., and Jethani, C. Human performance
and retrieval precision revisited. In SIGIR, (2010),
595–602.

26. Voorhees, E. M. Overview of the TREC 2005 Robust
Retrieval Track. In TREC, (2005).

27. Voorhees, E. M. I come not to bury Cranfield, but to
praise it. In HCIR, (2009), 13–16.

28. Voorhees, E. M., and Harman, D. K., Eds. TREC. MIT
Press, 2005.

29. Weiss, E. N., Cohen, M. A., and Hershey, J. C. An
iterative estimation and validation procedure for
specification of semi-Markov models with application to
hospital patient flow. Operations Research, (1982), pp.
1082–1104.

30. White, R. W., Ruthven, I., Jose, J. M., and van
Rijsbergen, C. J. Evaluating implicit feedback models
using searcher simulations. TOIS, (2005),
23(3):325–361.

31. Yilmaz, E., Shokouhi, M., Craswell, N., and Robertson,
S. Expected browsing utility for web search evaluation
(2010). In CIKM, (2010), 1561–1564.

32. Zhang, Y., Park, L. A., and Moffat, A. Click-based
evidence for decaying weight distributions in search
effectiveness metrics. Information Retrieval (2010),
13:46–69.

APPENDIX A
To get Equation 1 into the form of Equation 2, our first step
is to go from a probability density function f(t) to a survival
probability, D(t), whereD(t) is the fraction of the population
that survives to time t. To do this, we let F (t) be the cumula-
tive distribution function for f(t), i.e. f(t) = F ′(t). The sur-
vival probability, D(t) = 1− F (t), and thus f(t) = −D′(t).
As such, Equation 1 can be restated as:

E[G(t)] = −
∫ ∞

0

G(t)D′(t)dt

= −G(t)D(t)
∣∣∣∞
0

+

∫ ∞

0

G′(t)D(t)dt

=

∫ ∞

0

G′(t)D(t)dt (9)

Measuring G′ is difficult, and instead we make gain discrete
and be obtained at the point in time when the user has finished
processing the document at rank k, i.e. at T (k), and we write
Equation 9 as Equation 2.

10

