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Abstract

Most desktop search systems maintain per-user in-
dices to keep track of file contents. In a multi-user
environment, this is not a viable solution, because
the same file has to be indexed many times, once
for every user that may access the file, causing both
space and performance problems. Having a single
system-wide index for all users, on the other hand,
allows for efficient indexing but requires special se-
curity mechanisms to guarantee that the search re-
sults do not violate any file permissions.

We present a security model for full-text file sys-
tem search, based on the UNIX security model, and
discuss two possible implementations of the model.
We show that the first implementation, based on a
postprocessing approach, allows an arbitrary user
to obtain information about the content of files for
which he does not have read permission. The sec-
ond implementation does not share this problem.
We give an experimental performance evaluation
for both implementations and point out query opti-
mization opportunities for the second one.

1 Introduction and Overview

With the advent of desktop and file system search
tools by Google, Microsoft, Apple, and others, effi-
cient file system search is becoming an integral com-
ponent of future operating systems. These search
systems are able to deliver the response to a search
query within a fraction of a second because they in-
dex the file system ahead of time and keep an index
that, for every term that appears in the file system,
contains a list of all files in which the term occurs
and the exact positions within those files (called the
term’s posting list).

While indexing the file system has the obvious ad-
vantage that queries can be answered much faster
from the index than by an exhaustive disk scan, it
also has the obvious disadvantage that a full-text in-

dex requires significant disk space, sometimes more
than what is available. Therefore, it is important
to keep the disk space consumption of the index-
ing system as low as possible. In particular, for a
computer system with many users, it is infeasible to
have an individual index for every user in the sys-
tem. In a typical UNIX environment, for example,
it is not unusual that about half of the file system
is readable by all users in the system. In such a
situation, even a single chmod operation – making
a previously private file readable by everybody –
would trigger a large number of index update oper-
ations if per-user indices were used. Similarly, due
to the lack of information sharing among the indi-
vidual per-user indices, multiple copies of the index
information about the same file would need to be
stored on disk, leading to a disk space consumption
that could easily exceed that of the original file.

We investigated different desktop search tools, by
Google1, Microsoft2, Apple3, Yahoo4, and Coper-
nic5, and found that all but Apple’s Spotlight main-
tain a separate index for every user (Google’s search
tool uses a system-wide index, but this index may
only be accessed by users with administrator rights,
which makes the software unusable in multi-user en-
vironments). While this is an unsatisfactory solu-
tion because of the increased disk space consump-
tion, it is very secure because all file access permis-
sions are automatically respected. Since the index-
ing process has the same privileges as the user that
it belongs to, security restrictions cannot be vio-
lated, and the index accurately resembles the user’s
view of the file system.

If a single system-wide index is used instead, this
index contains information about all files in the file
system. Thus, whenever the search system pro-

1http://desktop.google.com/
2http://toolbar.msn.com/
3http://www.apple.com/macosx/features/spotlight/
4http://desktop.yahoo.com/
5http://www.copernic.com/
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cesses a search query, care has to be taken that
the results are consistent with the user’s view of
the file system. A search result is obviously incon-
sistent with the user’s view of the file system if it
contains files for which the user does not have read
permission. However, there are more subtle cases of
inconsistency. In general, we say that the result to
a search query is inconsistent with the user’s view
of the file system if some aspect of it (e.g., the or-
der in which matching files are returned) depends
on the content of files that cannot be read by the
user. Examples of such inconsistencies are discussed
in section 5.

An obvious way to address the consistency prob-
lem is the postprocessing approach: The same,
system-wide index is used for all users, and every
query is processed in the same way, regardless of
which user submitted the query; after the query
processor has computed the list of files matching
the query, all file permissions are checked, and files
that may not be searched by the user are removed
from the final result. This approach, which is used
by Apple’s Spotlight search system (see [App05] for
details), works well for Boolean queries. However,
pure Boolean queries are not always appropriate.
If the number of files in a file system is large, the
search system has to do some sort of relevance rank-
ing in order to present the most likely relevant files
first and help the user find the information he is
looking for faster. Usually, a TF/IDF-based (term
frequency / inverse document frequency) algorithm
is used to perform this relevance ranking.

In this paper, we present a full-text search secu-
rity model. We show that, if a TF/IDF-style rank-
ing algorithm is used by the search system, an im-
plementation of the security model must not follow
the postprocessing approach. If it does, it produces
search results that are inconsistent with the user’s
view of the file system. The inconsistencies can be
exploited by the user in a systematical way and al-
low him to obtain information about the content
of files which he is not allowed to search. While
we do not know the exact ranking algorithm em-
ployed by Apple’s Spotlight, we conjecture that it
is at least in parts based on the TF/IDF paradigm
(as TF/IDF-based algorithms are the most popular
ranking techniques in information retrieval systems)
and therefore amenable to the attacks described in
this paper.

After discussing possible attacks on the postpro-
cessing approach, we present a second approach to
the inconsistency problem which guarantees that all
search results are consistent with the user’s view of
the file system and which therefore does not allow

a user to infer anything about the content of files
which he may not search. This safe implementation
of the file system search security model is part of
the Wumpus6 file system search engine. The sys-
tem is freely available under the terms of the GNU
General Public License.

In the next two sections, we give a brief overview
of previous work on security issues in multi-user en-
vironments (section 2) and an introduction to basic
information retrieval techniques (section 3). This
introduction covers the Okapi BM25 relevance rank-
ing function (section 3.1) and the structural query
language GCL (section 3.2) on which our retrieval
framework and the safe implementation of the secu-
rity model are based.

In section 4, we present a general file system
search security model and define what it means
for a file to be searchable by a user. Section 5
discusses the first implementation of the security
model, based on the postprocessing approach de-
scribed above. We show how this implementation
can be exploited in order to obtain the total number
of files in the file system containing a certain term.
This is done by systematically creating and deleting
files, submitting search queries to the search sys-
tem, and looking at either the relevance scores or
the relative ranks of the files returned by the search
engine.

In section 6, we present a second implementation
of the security model. This implementation is im-
mune against the attacks described in section 5. Its
performance is evaluated experimentally in section
7 and compared to the performance of the post-
processing approach. Opportunities for query opti-
mization are discussed in section 8, where we show
that making an almost non-restrictive assumption
about the indepence of different files allows us to
virtually nullify the overhead of the security mech-
anisms in the search system.

2 Related Work

While some research has been done in the area
of high-performance dynamic indexing [BCC94]
[LZW04], which is also very important for file sys-
tem search, the security problems associated with
full-text search in a multi-user environment have
not yet been studied.

In his report on the major decisions in the de-
sign of Microsoft’s Tripoli search engine, Pelto-
nen [Pel97] demands that “full text indexing must
never compromise operating or file system security”.

6http://www.wumpus-search.org/
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However, after this initial claim, the topic is not
mentioned again in his paper. Turtle and Flood
[TF95] touch the topic of text retrieval in multi-user
environments, but only mention the special memory
requirements, not the security requirements.

Griffiths and Wade [GW76] and Fagin [Fag78]
were among the first who investigated secu-
rity mechanisms and access control in relational
database systems (System R). Both papers study
discretionary access control with ownership-based
administration, in some sense similar to the UNIX
file system security model [RT74] [Rit78]. However,
their work goes far beyond UNIX in some aspects.
For example, in their model it is possible that a user
grants the right to grant rights for file (table) access
to other users, which is impossible in UNIX. Bertino
et al. [BJS95] give an overview of database secu-
rity models and access control mechanisms, such as
group authorization [WL81] and authorization re-
vocation [BSJ97].

While our work is closely related to existing re-
search in database security, most results are not ap-
plicable to the file system search scenario because
the requirements of a relational database are differ-
ent from those of a file search system and because
the security model of the search system is rather
strictly predetermined by the security model of the
underlying file system, UNIX in our case, which
does not allow most of the operations database man-
agement systems support. Furthermore, the opti-
mizations discussed in section 8 cannot be realized
in a relational database systems.

3 Information Retrieval Basics

In this section, we give an introduction to basic
information retrieval techniques. We first explain
Okapi BM25, one of the most popular relevance
ranking techniques, and then present the structural
query language GCL which can be used to express
queries like

Find all documents in which “mad” and
“cow” occur within a distance of 3 words
from each other.

We also show how BM25 and GCL can be combined
in order to compute collection term statistics on the
fly. We chose GCL as the underlying query language
because it offers very light-weight operators to de-
fine structural query constraints.

3.1 Relevance Ranking: TF/IDF and the
Okapi BM25 Scoring Function

Most relevance ranking functions used in today’s
information retrieval systems are based on the vec-
tor space model and the TF/IDF scoring paradigm.
Other techniques, such as latent semantic indexing
[DDL+90] or Google’s pagerank [PBMW98], do ex-
ist, but cannot be used for file system search:

• Latent semantic indexing is appropriate for in-
formation retrieval purposes, but not for the
known-item search task associated with file sys-
tem search; users are searching for the exact
occurrence of query terms in files, not for se-
mantic concepts.

• Pagerank cannot be used because there are usu-
ally no cross-references between the files in a file
system.

Suppose a user sends a query to the search sys-
tem requesting certain pieces of data matching the
query (files in our scenario, documents in traditional
information retrieval). The vector space model con-
siders the query and all documents in the text col-
lection (files in the file system) vectors in an n-
dimensional vector space, where n is the number
of different terms in the search system’s vocabulary
(this essentially means that all terms are considered
independent). The document vectors are ranked by
their similarity to the query vector, for example the
angle between a document and the query vector.

TF/IDF (term frequency, inverse document fre-
quency) is one possible way to define the similarity
between a document and the search query. It means
that a document is more relevant if it contains more
occurrences of a query term (has greater TF value),
and that a query term is more important if it occurs
in fewer documents (has greater IDF value). One
of the most prominent TF/IDF document scoring
functions is Okapi BM25 [RWJ+94] [RWHB98].

A BM25 query is a set of (T, qT ) pairs, where T is
a query term and qT is T ’s within-query weight. For
example, when a user searches for “full text search”
(not as a phrase, but as 3 individual terms), this
results in the BM25 query

Q := {(“full”, 1), (“text”, 1), (“search”, 1)}.

Given a query Q and a document D, the docu-
ment’s BM25 relevance score is:

s(D) =
∑

(T,qT )∈Q

qT · wT · dT · (1 + k1)

dT + k1 · ((1 − b) + b · dl
avgdl

)
, (1)

where dT is the number of occurrences of the term
T within D, dl is the length of the document D
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(number of tokens), and avgdl is the average docu-
ment length in the system. The free parameters are
usually chosen as k1 = 1.2 and b = 0.75. wT is the
IDF weight of the query term T :

wT = log(
|D|

|DT |
), (2)

where D is the set of all documents in the text col-
lection and DT is the set of all documents containing
T . In our scenario, the documents are files, and we
consequently denote D as F in the following sec-
tions.

3.2 Structural Queries: The GCL Query
Language

The GCL (generalized concordance lists) query lan-
guage proposed by Clarke et al. [CCB95] supports
structural queries of various types. We give a brief
introduction to the language because our safe imple-
mentation of the security model is based on GCL.

GCL assumes that the entire text collection (file
contents) is indexed as a continuous stream of to-
kens. There is no explicit structure in this token
stream. However, structural components, such as
files or directories, can be added implicitly be in-
serting <file> and </file> tags (or <dir> and
</dir>) into the token stream.

A GCL expression evaluates to a set of index ex-
tents (i.e., [start, end] intervals of index positions).
This is done by first producing an operator tree from
the given GCL expression and then repeatedly ask-
ing the root node of the operator tree for the next
matching index extent after the one that was seen
last, until there are no more such extents.

GCL’s shortest substring paradigm demands that
if two nested index extents satisfy a query condition,
only the inner extent is part of the result set. This
restriction limits the number of possible results to
a query by the size of the text collection, whereas
without it there could be

(

n
2

)

∈ Θ(n2) result extents
for a text collection of size n. An example of how
the application of the shortest substring rule affects
the result to a GCL query is shown in Figure 2.

The original GCL framework supports the follow-
ing operators, which are only informally described
here. Assume E is an index extent and A and B

are GCL expressions. Then:

• E matches (A∧B) if it matches both A and B;

• E matches (A ∨ B) if it matches A or B;

• E matches (A · · ·B) if it has a prefix matching
A and a suffix matching B;

GCL query:

(<doc> · · · </doc>) B ( (mad ∧ cow) C [3] )

Operator tree:

B

· · ·

<doc> </doc>

C

∧

mad cow

[3]

Figure 1: GCL query and resulting operator tree for
the example query: Find all documents in which “mad”

and “cow” occur within a distance of 3 words from each

other.

• E matches (ABB) if it matches A and contains
an extent E2 matching B;

• E matches (A 6BB) if it matches A and does
not contain an extent matching B;

• E matches (A C B) if it matches A and is con-
tained in an extent E2 matching B;

• E matches (A 6CB) if it matches A and is not
contained in an extent matching B;

• [n] returns all extents of length n (i.e. all n-
term sequences).

We have augmented the original GCL framework by
two additional operators that let us compute collec-
tion statistics:

• #(A) returns the number of extents that match
the expression A;

• length(A) returns the sum of the lengths of all
extents that match A.

Throughout this paper, we use the same notation
for both a GCL expression and the set of index ex-
tents that are represented by the expression.

3.3 BM25 and GCL

With the two new operators introduced in section
3.2, GCL can be employed to calculate all TF and
IDF values that the query processor needs during
a BM25 ranking process. Suppose the set of all
documents inside the text collection is given by the
GCL expression

<doc> · · · </doc>,
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(1) (2)

(3)

(4)

GCL query:

( to ∧ be )

To be, or not to be, that is the question.

For the given query, only the index extents (1),

(2), and (3) are returned. (4) matches the query,

but contains a substring that also matches the

query. Thus, returning (4) would violate the

shortest substring rule.

Figure 2: An example GCL query and the effect of the
shortest substring rule: Find all places where “to” and

“be” co-occur.

denoted as documents, and and the document
whose score is to be calculated is D. Then D’s rel-
evance score is:

∑

T∈Q

wT ·
#(T C D) · (1 + k1)

#(T C D) + k1 · ((1 − b) + b · dl
avgdl

)
, (3)

where

wT = log

(

#(documents)

#((documents) B T )

)

,

dl = length(D), and

avgdl =
length(documents)

#(documents)
.

This is very convenient because it allows us to com-
pute all collection statistics necessary to rank the
search results on the fly. Thus, integrating the nec-
essary security restrictions into the GCL query pro-
cessor in such a way that no file permissions are vi-
olated, automatically guarantees consistent search
results for relevance queries. We will use this prop-
erty in section 6.

4 A File System Search Security

Model

In section 1, we have used the term searchable to
refer to a file whose content is accessible by a user
through the search system. In this section, we give
a definition of what it means for a file to be search-
able by user. Before we do so, however, we have to
briefly revisit the UNIX security model, on which

Table 1: File permissions in UNIX (example). Owner

permissions override group permissions; group permis-
sions override others. Access is either granted or rejected
explicitly (in the example, a member of the group would
not be allowed to execute the file, even though every-
body else is).

owner group others

Read x x

Write x

eXecute x x

our security model is based, and discuss the tradi-
tional UNIX search paradigm.

The UNIX security model [RT74] [Rit78] is an
ownership-based model with discretionary access
control that has been adopted by many operating
systems. Every file is owned by a certain user. This
user (the file owner) can associate the file with a
certain group (a set of users) and grant access per-
missions to all members of that group. He can also
grant access permissions to the group of all users
in the system (others). Privileges granted to other
users can be revoked by the owner later on.

Extensions to the basic UNIX security model,
such as access control lists [FA88], have been im-
plemented in various operating systems (e.g., Win-
dows, Linux), but the simple owner/group/others
model is still the dominant security paradigm.

UNIX file permissions can be represented as a 3×
3 matrix, as shown in Table 1. When a user wants to
access a file, the operating system searches from left
to right for an applicable permission set. If the user
is the owner of the file, the leftmost column is taken.
If the user is not the owner, but member of the
group associated with the file, the second column is
taken. Otherwise, the third column is taken. This
can, for instance, be used to grant read access to all
users in the system except for those who belong to
a certain group.

File access privileges in UNIX fall into three dif-
ferent categories: Read, Write, and eXecute. Write
permissions can be ignored for the purpose of this
paper, which does not deal with file changes. The
semantics of the read and execute privileges are dif-
ferent depending on whether they are granted for a
file or a directory. For files,

• the read privilege entitles a user to read the
contents of a file;

• the execute privilege entitles a user to run the
file as a program.

For directories,
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• the read privilege allows a user to read the di-
rectory listing, which includes file names and
attributes of all files and subdirectories within
that directory;

• the execute privilege allows a user to access files
and subdirectories within the directory.

In the traditional find/grep paradigm, a file can
only be searched by a user if

1. the file can be found in the file system’s direc-
tory tree and

2. its content may be read by the user.

In terms of file permissions, the first condition
means that there has to be a path from the file sys-
tem’s root directory to the file in question, and the
user needs to have both the read privilege and the
execute privilege for every directory along this path,
while the second condition requires the user to have
the read privilege for the actual file in question. The
same rules are used by slocate7 to decide whether
a matching file may be displayed to the user or not.

While these rules seem to be appropriate in many
scenarios, they have one significant shortcoming: It
is not possible to grant search permission for a single
file without revealing information about other files
in the same directory. In order to make a file search-
able by other users, the owner has to give them the
read privilege for the file’s parent directory, which
reveals file names and attributes of all other files
within the same directory.

A possible solution to this problem is to relax the
definition of searchable and only insist that there is
a path from the file system root to the file in ques-
tion such that the user has the execution privilege
for every directory along this path. Unfortunately,
this conflicts with the traditional use of the read
and execution privileges, in which this constellation
is usually used to give read permission to all users
who know the exact file name of the file in question
(note that, even without read permission for a di-
rectory, a user can still access all files in it; he just
cannot ls for them). While we think this not as big
a problem as the make-the-whole-directory-visible
problem above, it still is somewhat unsatisfactory.

The only completely satisfying solution would be
the introduction of an explicit fourth access privi-
lege, the search privilege, in addition to the existing
three. Since this is very unlikely to happen, as it
would probably break most existing UNIX software,
we base our definition of searchable on a combina-
tion of read and execute. A file is searchable by a
user if and only if

7http://www.geekreview.org/slocate/

1. there is a path from the root directory to the
file such that the user has the execute privilege
for all directories along this path and

2. the user has the read privilege for the file.

Search permissions can be granted and revoked, just
as any other permission types, be modifying the re-
spective read and execute privileges.

While our security model is based on the sim-
ple owner/group/other UNIX security model, it can
easily be extended to other security models, such
as access control lists, as long the set of privileges
(R, W, X) stays the same, because it only requires
a user to have certain privileges and does not make
any assumptions about where these privileges come
from.

This is our basic security model. In order to fully
implement this model, a search system must not
deliver query results that depend on files that are
not searchable by the user who submitted the query.
Two possible implementations of the model are dis-
cussed in the following sections. The first implemen-
tation does not meet this additional requirement,
while the second does.

It should be noted at this point that in most
UNIX file systems the content of a file is actually
associated with an i-node instead of the file itself,
and there can be multiple files referring to the same
i-node. This is taken into account by our search en-
gine by assuming an i-node to be searchable if and
only if there is at least one hard link to that i-node
such that the above rules hold for the link.

5 A First Implementation of the Se-

curity Model and How to Exploit

It: The Postprocessing Approach

One possible implementation of the security model
is based on the postprocessing approach described
in section 1. Whenever a query is processed, system-
wide term statistics (IDF values) are used to rank all
matching files by decreasing similarity to the query.
This is always done in the same way, regardless of
which user sent the search query. After the ranking
process has finished, all files for which the user does
not have search permission (according to the rules
described in the previous section) are removed from
the final list of results.

Using system-wide statistics instead of user-
specific data suggests itself because it allows the
search system to precompute and store all IDF val-
ues, which, due to storage space requirements, is not
possible for per-user IDF values in a multi-user envi-
ronment. Precomputing term statistics is necessary
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for various query optimization techniques [WL93]
[PZSD96].

In this section, we show how this approach can be
exploited to calculate (or approximate) the number
of files that contain a given term, even if the user
sending the query does not have read permissions
for those files. Depending on whether the search
system returns the actual BM25 file scores to the
user or only a ranked list of files, without any scores,
it is either possible to compute exact term statistics
or approximate them.

One might argue that revealing to an unautho-
rized user the number of files that contain a certain
term T1 is only a minor problem. We disagree. It is
a major problem, and we give two example scenar-
ios in which the ability to infer term statistics can
have disastrous effects on file system security:

• An industrial spy knows that the company he
is spying on is developing a new chemical pro-
cess. He starts monitoring term frequencies for
certain chemical compounds that are likely to
be involved in the process. After some time,
this will have given him enough information to
tell which chemicals are actually used in the
process – without reading any files.

• The search system can be used as a covert chan-
nel to transfer information from one user ac-
count to another, circumventing security mech-
anisms like file access logging.

Throughout this section we assume that the num-
ber of files in the system is sufficiently large so that
the addition of a single file does not modify the col-
lection statistics significantly. This assumption is
not necessary, but it simplifies the calculations.

5.1 Exploiting BM25 Relevance Scores

Suppose the search system uses a system-wide index
and implements Okapi BM25 to perform relevance
ranking on files matching a search query. After all
files matching a user’s query have been ranked by
BM25, all files that may not be searched by the
user are removed from the list. The remaining files,
along with their relevance scores, are presented to
the user.

We will determine the total number of files in the
file system containing the term T1 by computing the
values of the unknown parameters avgdl and |F| in
the BM25 scoring function, as shown in equation
(1). We start with |F|, the number of files in the
system. For this purpose, we generate two random
terms T2 and T3 that do not appear in any file. We
then create three files F1, F2, and F3:

• F1 contains only the term T2;

• F2 consists of two occurrences of the term T2;

• F3 contains only the term T3.

Now, we send two queries to the search engine: {T2}
and {T3}. For the former, the engine returns F1 and
F2; for the latter, it returns F3. For the scores of
F1 and F3, we know that

score(F1) =
(1 + k1) · log( |F|

2 )

1 + k1 · ((1 − b) + b
avgdl

)
(4)

and

score(F3) =
(1 + k1) · log( |F|

1 )

1 + k1 · ((1 − b) + b
avgdl

)
(5)

Dividing (4) by (5) results in

score(F1)

score(F3)
=

log( |F|
2 )

log(|F|)
(6)

and thus

|F| = 2
(

score(F3)

score(F3)−score(F1)
)
. (7)

Now that we know |F|, we proceed and compute
the only remaining unknown, avgdl. Using equation
(5), we obtain

avgdl =
b

X − 1 + b
, (8)

where

X =
(1 + k1) · log(|F|) − score(F3)

score(F3) · k1
. (9)

Since now we know all parameters of the BM25
scoring function, we create a new file F4 which con-
tains the term T1 that we are interested in, and
submit the query {T1}. The search engine returns
F4 along with score(F4). This information is used
to construct the equation

score(F4) =
(1 + k1) · log( |F|

|FT1 |
)

1 + k1 · ((1 − b) + b
avgdl

)
, (10)

in which |FT1 | is the only unknown. We can there-
fore easily calculate its value and after only two
queries know the number of files containing T1:

|FT1 | = |F| · (
1

2
)score(F4)·Y , (11)

where

Y =
1 + k1 · ((1 − b) + b

avgdl
)

1 + k1
. (12)
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To avoid small changes in F and avgdl, the new file
F4 can be created before the first query is submitted
to the system.

While this particular technique only works for
BM25, similar methods can be used to obtain term
statistics for most TF/IDF-based scoring functions.

5.2 Exploiting BM25 Ranking Results

An obvious countermeasure against this type of at-
tack is to restrict the output a little further and not
return relevance scores to the user. We now show
that even if the response does not contain any rel-
evance scores, it is still possible to compute an ap-
proximation of |FT1 |, or even its exact value, from
the order in which matching files are returned by the
query processor. The accuracy of the approximation
obtained depends on the number of files Fmax that
a user may create. We assume Fmax = 2000.

The basic observation is that most interesting
terms are infrequent. This fact is used by the follow-
ing strategy: After we have created a single file F0,
containing only the term T1, we generate a unique,
random term T2 and create 1000 files F1 . . . F1000,
each containing the term T2. If in the response
to the query {T1, T2} the file F0 appears before
any of the other files (F1 . . . F1000), we know that
|DT1 | ≤ 1000 and can perform a binary search, vary-
ing the number of files containing T2, to compute
the exact value of |FT1 |.

If instead F0 appears after the other files
(F1 . . . F1000), at least we know that |FT1 | ≥ 1000.
It might be that this information is enough evidence
for our purpose. However, if for some reason we
need a better approximation of |FT1 |, we can achieve
that, too.

We first delete all files we have created so far.
We then generate a second random term T3 and
create 1,000 files (F ′

1 . . . F ′
1000), each containing the

two terms T2 and T3. We generate a third random
term T4 and create 999 files (F ′

1001 . . . F ′
1999) each

of which contains T4. We finally create a last file
F ′

0 that contains the two terms T1 (the term we are
interested in) and T4.

After we have created all the files, we submit the
query {T1, T2, T3, T4} to the search system. The rel-
evance scores of the files F ′

0 . . . F ′
1000 are:

score(F ′
0) = C · (log(

|F|

|FT1 |
) + log(

|F|

|FT4 |
)), (13)

because F ′
0 contains T1 and T4, and

score(F ′
i ) = C · (log(

|F|

|FT2 |
) + log(

|F|

|FT3 |
)) (14)

(for 1 ≤ i ≤ 1000), because all the F ′
i contain T2

and T3. The constant C, which is the same for
all files created, is the BM25 length normalization
component for a document of length 2:

C =
1 + k1

1 + k · ((1 − b) + 2·b
avgdl

)
. (15)

We now subsequently delete one of the files
F ′

1001 . . . F ′
1999 at a time, starting with F ′

1999, un-
til score(F ′

0) ≥ score(F ′
1) (i.e. F ′

0 appears before
F ′

1 in the list of matching files). Let us assume this
happens after d deletions. Then we know that

log(
|F|

|FT1 |
) + log(

|F|

1000− d
) (16)

≥ 2 · log(
|F|

1000
) (17)

≥ log(
|F|

|FT1 |
) + log(

|F|

1000− d + 1
) (18)

and thus

− log(|FT1 |) − log(1000− d) (19)

≥ −2 · log(1000) (20)

≥ − log(|FT1 |) − log(1000− d + 1), (21)

which implies

10002

1000− d
≥ |FT1 | ≥

10002

1000− d + 1
. (22)

If |FT1 | = 11000, for example, this technique would
give us the following bounds:

10990 ≤ |FT1 | ≤ 11111.

The relative error here is about 0.5%. Again, binary
search can be used to reduce the number of queries
necessary from 1000 to around 10.

If it turns out that the approximation obtained
is not good enough (e.g., if |FT1 | > 40000, we
have a relative error of more than 2%), we re-
peat the process, this time with more than 2 terms
per file. For |FT1 | = 40001 and 3 terms per file,
for instance, this would give us the approximation
39556 ≤ |FT1 | ≤ 40057 (relative error: 0.6%) in-
stead of 40000 ≤ |FT1 | ≤ 41666 (relative error:
2.1%).

Thus, we have shown a way to systematically
compute a very accurate approximation of the num-
ber of files in the file system containing a given term.
Hence, if the postprocessing approach is taken to
implement the search security model, it is possible
for an arbitrary user to obtain information about
the content of files for which he does not have read
permission – by simply looking at the order in which
files are returned by the search engine.
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5.3 More Than Just Statistics

The above methods can be used to calculate the
number of files that contain a particular term.
While this already is undesirable, the situation
is much worse if the search system allows rele-
vance ranking for more complicated queries, such
as boolean queries and phrases.

If, for instance, the search system allows phrase
queries of arbitrary length, then it is possible to use
the search system to obtain the whole content of
a file. Assume we know that a certain file contains
the phrase “A B C”. We then try all possible terms
D and and calculate the number of files which con-
tain “A B C D” until we have found a D that gives
a non-zero result. We then continue with the next
term E. This way, it is possible to construct the en-
tire content of a file using a finite number of search
queries (although this might take a long time). A
simple n-gram language model [CGHH91] [GS95]
can be used to predict the next word and thus in-
crease the efficiency of this method significantly.

6 A Second Implementation of the

Security Model: Query Integration

In this section, we describe how structured queries
can be used to apply security restrictions to search
results by integrating the security restrictions into
the query processing instead of applying them in a
postprocessing step. This implementation of the file
system search security model is part of the Wumpus
search system.

The general layout of the retrieval system is
shown in Figure 3. A detailed description is given by
[BC05]. All queries (Boolean and relevance queries)
are handled by the query processor module. In the
course of processing a query, it requests posting lists
from the index manager. Every posting list that is
sent back to the query processor has to pass the se-
curity manager, which applies user-specific restric-
tions to the list. As a result, the query processor
only sees those parts of a posting list that lie within
files that are searchable by the user who submitted
the query. Since the query processor’s response is
solely dependent on the posting lists it sees, the re-
sults are guaranteed to be consistent with the user’s
view of the file system.

We now explain how security restrictions are ap-
plied within the security manager. In our implemen-
tation, every file in the file system is represented by
an index extent satisfying the GCL expression

<file> · · · </file>.

Sub-Index 1

Index Manager

Sub-Index 2 Sub-Index n.....

Security Manager

Query Processor

User 1

User 2 .....

User m

User m-1

Figure 3: General layout of the Wumpus search system.
The index manager maintains multiple sub-indices, one
for every mount point. Whenever the query processor
requests a term’s posting list, the index manager com-
bines the sub-lists from all indices into one large list and
passes it to the security manager which applies user-
specific security restrictions.

Whenever the search engine receives a query from a
user U , the security manager is asked to compute a
list FU of all index extents that correspond to files
whose content is searchable by U (using our security
model’s definition of searchable). FU represents the
user’s view of the file system at the moment when
the search engine received the query. Changes to
the file system taking place while the query is being
processed are ignored; the same list FU is used to
process the entire query.

While the query is being processed, every time
the query processor asks for a term’s posting list
(denoted as PT ), the index manager generates PT

and passes it to the security manager, which pro-
duces

P
(U)
T ≡ (PT C FU ),

the list of all occurrences of T within files searchable
by U . The operator tree that results from adding
these security restrictions to a GCL query is shown
in Figure 4. Their effect on query results is shown
in Figure 5.

Since P
(U)
T is all the query processor ever sees,

it is impossible for it to produce query results that
depend on the content of files that are not search-
able by U . Using the equations from section 3.3,
all statistics necessary to perform BM25 relevance
ranking can be generated from the user-specific
posting lists, making it impossible to infer system-
wide term statistics from the order in which match-
ing files are returned to the user.

9



Figure 5: Query results for two example queries (“<doc> · · · </doc>” and “mad ∧ cows”) with security restrictions
applied. Only postings from files that are searchable by the user are considered by the query processor.

GCL query:

(<doc> · · · </doc>) B ( (mad ∧ cow) C [3] )

Operator tree:
B

· · ·

C

<doc> FU

C

</doc> FU

C

∧

C

mad FU

C

cow FU

[3]

Figure 4: Integrating security restrictions into the query
processing – GCL query and resulting operator tree with
security restrictions applied to all posting lists.

Because all operators in the GCL framework sup-
port lazy evaluation, it is not necessary to apply the
security restrictions to the entire posting list when
only a small portion of the list is used to process a
query. This is important for query processing per-
formance.

It is worth pointing out that this implementa-
tion of the security model has the nice property
that it automatically supports index update opera-
tions. When a file is deleted from the file system,
this file system change has to be reflected by the
index immediately. Without a security model, ev-
ery file deletion would either require an expensive
physical update of the internal index structures, or a
postprocessing step would be necessary in which all
query results that refer to deleted files are removed
from the final list of results [CH98]. The postpro-
cessing approach would have the same problems as
the one described in section 5: It would use term
statistics that do not reflect the user’s actual view
of the file system. With our implementation of the
security model, file deletions are automatically sup-
ported because the

<file> · · · </file>

extent associated with the deleted file is removed

from the security manager’s internal representation
of the file system. This way, it is possible to keep the
index up-to-date at minimal cost. Updates to the
actual index data, which are very expensive, may be
delayed and applied in batches. A more thorough
discussion of index updates and their connection to
security mechanisms is given by [BC05].

One drawback of our current implementation is
that, in order to efficiently generate the list of index
extents representing all files searchable by a given
user, the security manager needs to keep some infor-
mation about every indexed i-node in main memory.
This information includes the i-nodes start and end
address in the index address space, owner, permis-
sions, etc. and comes to a total of 32 bytes per
i-node. For file systems with a few million index-
able files, this can become a problem. Keeping this
information on disk, on the other hand, is not a
satisfying solution, either, since it would make sub-
second query times impossible.

7 Performance Evaluation

We evaluated the performance of both implemen-
tations of the security model – postprocessing and
query integration – using a text collection known
as TREC4+5-CR (TREC disks 4 and 5 without
the Congressional Record). This collection contains
528,155 documents, which we split up into 528,155
different files in 5,282 directories. The index for
this 2-GB text collection, with full positional infor-
mation, requires about 615 MB, including 73 MB
that are consumed by the search system’s internal
representation of the directory tree, comprising file
names for all files.

As query set, we used Okapi BM25 queries that
were created by taking the 100 topics employed
in the TREC 2003 Robust track and removing all
stop words (using a moderately-sized set of 80 stop
words). The original topics read like:

Identify positive accomplishments of the
Hubble telescope since it was launched in
1991.

The topics were translated into queries that could
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(a) Without cache effects: All posting lists have to be
fetched from disk.

(b) With cache effects: All posting lists are fetched
from the disk cache.

Figure 6: Performance comparison – query integration using GCL operators vs. postprocessing approach. When the
number of files searchable is small, query integration is more efficient than postprocessing because relevance scores
for fewer documents have to be computed.

by parsed and executed by our retrieval system:

@rank[bm25] "<doc>".."</doc>" by

"positive", "accomplishments", "hubble",

"telescope", "since", "launched", "1991"

On average, a query contained 8.7 query terms,
which is significantly more than the 2.2 terms found
in an average web search query [JSBS98]. Nonethe-
less, our system can execute the queries in well be-
low a second on the TREC4+5-CR text collection
used in our experiments.

We ran several experiments for different percent-
ages of searchable files in the entire collection. This
was done by changing the file permissions of all files
in the collection between two experiments, making
a random p% readable and the other files unread-
able. This way, we are able to see how the relative
number of files searchable by the user submitting
the search query affects the relative performance of
postprocessing and query integration.

All experiments were conducted on a PC based
on an AMD Athlon64 3500+ with 2 GB of main
memory and a 7,200-rpm SATA hard drive.

The results depicted in Figure 6 show that the
performance of the second implementation (query
integration) is reasonably close to that of the post-
processing approach. Depending on whether the
time that is necessary to fetch the postings for the
query terms from disk is taken into account or not,
the slowdown is either 54% (Figure 6(a)) or 74%
(Figure 6(b)) – when 100% of the files in the in-
dex are searchable by the user submitting the query.
Performance figures for both the cached and the un-
cached case are given because, in a realistic environ-
ment, system behavior is somewhere between these
two extremes.

As the number of searchable files is decreased,
query processing time drops for the query integra-
tion approach, since fewer documents have to be ex-
amined and fewer relevance scores have to be com-
puted, but remains constant for the postprocess-
ing approach. This is, because in the postprocess-
ing approach, the only part of the query process-
ing is the postprocessing, which requires very little
time compared to running BM25 on all documents.
As a consequence, query integration is 18%/36%
(uncached/cached) faster than postprocessing when
only 10% of the files are searchable by the user.

8 Query Optimization

Although our GCL-based implementation of the se-
curity model does not exhibit an excessively de-
creased performance, it is still noticeably slower
than the postprocessing approach if more than 50%
of the files can be searched by the user (22-30%
slowdown when 50% of the files are searchable).
The slowdown is caused by applying the security
restrictions (. . . C FU ) not only to every query
term but also to the document delimiters (<doc>
and </doc>). Obviously, in order to guarantee con-
sistent query results, it is only necessary to apply
to apply them to either the documents (in which
case the query BM25 function will ignore all oc-
currences of query terms that lie outside searchable
documents) or the query terms (in which case un-
searchable documents would not contain any query
terms and therefore receive a score of 0).

However, this optimization would be very specific
to the type of the query (TF/IDF relevance rank-
ing). More generally, we can see the equivalence of
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Figure 7: Query results for two example queries (“<doc> · · · </doc>” and “mad ∧ cows”) with revised security
restrictions applied. Even though <doc> in file 2 and </doc> in file 4 are visible to the query processor, they are not
considered valid query results, since they are in different files.

GCL query:

(<doc> · · · </doc>) B ( (mad ∧ cow) C [3] )

Operator tree:
C

B

· · ·

<doc> </doc>

C

∧

mad cow

B

[3] FU

FU

Figure 8: GCL query and resulting operator tree with
optimized security restrictions applied to the operator
tree.

the following three GCL expressions:

((E1 C FU ) B (E2 C FU )),

((E1 C FU ) B E2), and

(E1 B E2) C FU ,

where the first expression is the result of the im-
plementation from section 6 when run on the GCL
expression

(E1 B E2).

The three expressions are equivalent because if an
index extent E is contained in another index extent
E′, and E′ is contained in a searchable file, then E

has to be contained in a searchable file as well.
If we make the (not very constrictive assumption)

that every index extent produced by one of the GCL
operators has to lie completely within a file search-
able by the user that submitted the query, then we
get additional equivalences:

((E1 C FU ) ∧ (E2 C FU )) ≡ ((E1 ∧ E2) C FU ),

((E1 C FU ) ∨ (E2 C FU )) ≡ ((E1 ∨ E2) C FU ),

((E1 C FU ) · · · (E2 C FU )) ≡ ((E1 · · ·E2) C FU ),

and so on. Limiting the list of extents returned by
a GCL operator to those extents that lie entirely

within a single file conceptually means that all files
are completely independent. This is not an unre-
alistic assumption, since index update operations
may be performed in an arbitrary order when pro-
cessing events associated with changes in the file
system. Thus, no ordering of the files in the index
can be guaranteed, which renders extents spanning
over multiple files somewhat useless. The effect that
this assumption has on the query results is shown
in Figure 7.

Note that if we did not make the file indepen-
dence assumption, then the right-hand side of the
above equivalences would be more restrictive than
the left-hand side (in the case of “∨”, for example,
the right-hand side mandates that both extents lie
within the same searchable file, whereas the left-
hand side only requires that both extents lie within
searchable files). If we make the assumption, then
in all the cases shown above we can freely decide
whether the security restrictions should be applied
at the leaves of the operator tree or whether they
should be moved up in the tree in order to achieve
better query performance.

The only GCL operator that does not allow this
type of optimization is the contained-in operator.
The GCL expression

((E1 C FU ) C (E2 C FU ))

is not equivalent to

(E1 C E2) C FU ,

since in the second expression E2 can refer to some-
thing outside the searchable files without the secu-
rity restriction operator (CFU ) “noticing” it. This
would allow a user to infer things about terms out-
side the files searchable by him, so we cannot move
the security restrictions up in the operator tree in
this case.

At this point, it is not clear to us which operator
arrangement leads to optimal query processing per-
formance. Therefore, we follow the simple strategy
of moving the security restrictions as far to the top
of the of the operator tree as possible, as shown in

12



 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 ti
m

e 
pe

r 
qu

er
y 

(m
s)

Percentage of files searchable by user

Query performance for different security restriction mechanisms

Postprocessing approach
Query integration (simple)

Query integration (optimized)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 ti
m

e 
pe

r 
qu

er
y 

(m
s)

Percentage of files searchable by user

Query performance for different security restriction mechanisms

Postprocessing approach
Query integration (simple)

Query integration (optimized)

(a) Without cache effects: All posting lists have to be
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Figure 9: Performance comparison – query integration using GCL operators (simple and optimized) vs. postprocessing
approach. Time per query for the optimized integration is between 61% and 117% compared to postprocessing.

Figure 8. Note that, in the figure, security restric-
tions are applied to the sub-expression “[3]” (all in-
dex extents of length 3), which, of course, does not
make much sense, but is done by our implementa-
tion anyway.

Despite the possibility of other optimization
strategies leading to better performance for certain
queries, the move-to-top strategy works very well for
“flat” relevance queries, such as the ones we used in
our experiments:

(<doc> · · · </doc>) B (T1 ∨ T2 ∨ . . . ∨ Tn),

where the Ti are the query terms. The perfor-
mance gains caused by moving the security restric-
tions to the top of the tree are shown in Figure
9. With optimizations, the query integration is be-
tween 12-17% slower (100% files visible) and 20-
39% faster (10% files visible) than the postprocess-
ing approach. Even if most files in the file sys-
tem are searchable by the user, this is only a minor
slowdown that is probably acceptable, given the in-
creased security.

9 Conclusion

Guided by the goal to reduce the overall index disk
space consumption, we have investigated the secu-
rity problems that arise if, instead of many per-user
indices, a single system-wide index is used to pro-
cess search queries from all users in a multi-user file
system search environment.

If the same system-wide wide is accessed by all
users, appropriate mechanisms have to be employed
in order to make sure that no search results violate
any file permissions. Our full-text search security
model specifies what it means for a user to have the
privilege to search a file. It integrates into the UNIX

security model and defines the search privilege as a
combination of read and execution privileges.

For one possible implementation of the security
model, based on the postprocessing approach, we
have demonstrated how an arbitrary user can in-
fer the number of files in the file system containing
a given term, without having read access to these
files. This represents a major security problem. The
second implementation we presented, a query inte-
gration approach, does not share this problem, but
may lead to a query processing slowdown of up to
75% in certain situations.

We have shown that, using appropriate query op-
timization techniques based on certain properties of
the structural query operators in our retrieval sys-
tem, this slowdown can be decreased to a point at
which queries are processed between 39% faster and
17% slower by the query integration than by the
postprocessing approach, depending on what per-
centage of the files in the file system is searchable
by the user.
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