
Indexing Time vs. Query Time
Trade-offs in Dynamic Information Retrieval Systems

Stefan Büttcher and Charles L. A. Clarke
University of Waterloo, Canada

{sbuettch, claclark}@plg.uwaterloo.ca

ABSTRACT
We examine issues in the design of fully dynamic informa-
tion retrieval systems supporting both document insertions
and deletions. The two main components of such a system,
index maintenance and query processing, affect each other,
as high query performance is usually paid for by additional
work during update operations. Two aspects of the system –
incremental updates and garbage collection for delayed doc-
ument deletions – are discussed, with a focus on the respec-
tive indexing vs. query performance trade-offs. Depending
on the relative number of queries and update operations,
different strategies lead to optimal overall performance.

Categories and Subject Descriptors
H.2.4 [Systems]: Textual databases; H.3.4 [Systems and

Software]: Performance evaluation

General Terms
Experimentation, Performance

1. INTRODUCTION
Although they are usually studied independently, index-

ing and query processing are two closely related topics in
text retrieval. Many query optimization techniques necessi-
tate additional work at indexing time and thus represent
trade-offs between indexing and query processing perfor-
mance. While this may be ignored in traditional (static)
retrieval systems, it is critical in dynamic search environ-
ments, in which the underlying text collection is continu-
ously changing and the number of queries to be processed
may vary greatly. An example is file system search, where
several thousand index updates per day are not unusual [2].
Index updates include two types of update operations: doc-
ument insertions and document deletions.

Techniques to support document insertions into an exist-
ing index usually follow a standard scheme: Two indices
are maintained, one in memory, the other on disk. Postings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

for new documents are accumulated in main memory until
it is exhausted, at which point they are transferred to disk
and combined with existing on-disk data. This operation
can be performed by following an in-place update scheme
[4] or by merging the old index with the new data, resulting
in a new index that supercedes the old one [3]. Both ap-
proaches have in common that the entire on-disk index has
to be read/written every time main memory is exhausted,
causing performance problems for large collections (In-place

does not need to read the whole collection. However, it
trades read operations for disk seeks, leading to the same
type of problem). We show how, by allowing multiple on-
disk indices at the same time, the number of disk operations
can be significantly reduced.

A thorough evaluation of techniques for document dele-
tions has not been published. Moreover, a general discus-
sion of the trade-offs associated with index maintenance and
query optimization techniques does not exist.

2. SUB-INDEX MERGING
We discuss three different strategies to merge sub-indices,

representing different trade-off levels.

Strategy 1: Immediate Merge

The first merge strategy has been proposed by Lester et
al. [3]. The indexing system maintains one on-disk and one
in-memory index. As soon as main memory is full, the in-
memory postings are merged with the existing on-disk index,
creating a new index. The old index is deleted. This strat-
egy minimizes the number of disk seeks necessary to fetch a
posting list. Its disadvantage is that for every merge opera-
tion the entire index has to be scanned. Thus, the number
of disk operations necessary to index the whole collection is
quadratic in the size of the text collection.

Strategy 2: No Merge

The second strategy does not perform any merge opera-
tions. When memory is full, postings are sorted and written
to disk, creating a new on-disk sub-index. On-disk indices
are never merged. When the posting list for a given term
has to be retrieved from the index, sub-lists are fetched from
all sub-indices. The advantage of No Merge is its high in-
dexing performance (linear number of disk operations). Its
disadvantage is that fetching a posting list requires Ω(n)
disk seeks, where n is the size of the text collection.

Strategy 3: Logarithmic Merge

The two strategies described so far represent the two ex-
tremes. The third strategy is a compromise: A newly cre-
ated on-disk sub-index is sometimes merged with an existing

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8

T
ot

al
 ti

m
e

(in
 m

in
ut

es
)

Queries per 1000 document insertions

TREC-Genomics corpus (128 MB for in-memory index)

No Merge
Logarithmic Merge
Immediate Merge

Figure 1: Comparison of sub-index merging strate-

gies for a growing text collection and varying D
Q

U .

one, but not always. We use the concept of index generation

to decide when to merge sub-indices. An on-disk index that
was created directly from in-memory postings is of genera-
tion 0. An index that is the result of a merge operation is
of generation g +1, where g is the highest generation of any
input index. If, after creating a new on-disk index, there are
two indices of the same generation, they are merged. This is
repeated until there are no more such collisions. The number
of sub-indices is bounded by O(log(n)), and the total num-
ber of disk operations necessary to index the text collection
is O(n · log(n)), where n is the size of the collection.

3. GARBAGE COLLECTION
Document deletions are addressed by a garbage collection

approach. Postings that belong to deleted documents are
filtered and ignored during query processing, using a tech-
nique similar to the invalidation scheme proposed by Chiueh
and Huang [1]. However, this is expensive in terms of time
and space. Therefore, at some point, the garbage collector
is started and removes all garbage postings from the index.

Threshold-based Garbage Collection

A simple strategy is to keep track of the relative number
of postings in the index that belong to deleted documents:

r =
#deleted postings

#postings
.

As soon as this number exceeds a predefined threshold ρ,
the garbage collector is started. ρ = 0 guarantees maximum
query performance. For ρ = 1, index maintenance perfor-
mance is maximal, but the query processor spends a great
amount of time fetching and decompressing postings that
belong to deleted documents.

On-the-Fly Garbage Collection

The threshold-based garbage collection strategy descibed
above has the disadvantage that it is independent of the sub-
index merging strategy employed and thus causes additional
disk operations that could have been avoided by integrating
the garbage collector into the merge process. We call this
integration on-the-fly garbage collection: If the combined rel-
ative amount of garbage postings in all sub-indices involved
in a merge operation exceeds a threshold ρ′, the garbage
collector is integrated into the merge process.

4. EXPERIMENTAL RESULTS
The retrieval system used in our experiments is the Wum-

pus search engine. As the underlying text collection, we used
the TREC 2004 Genomics corpus, consisting of 4.5 million

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2000 4000 6000 8000 10000

T
ot

al
 ti

m
e

(in
 m

in
ut

es
)

Update operations per query

TREC-Genomics corpus (Logarithmic Merge; 256 MB RAM)

Threshold-based (rho = 0.10)
Threshold-based (rho = 0.25)
Threshold-based (rho = 0.50)

On-the-fly (rho = 0.50, rho’ = 0.20)

Figure 2: Comparison of garbage collection strate-

gies for a fully dynamic collection and varying D
U
Q.

documents with a total size of 14 GB.
In order to be able discuss indexing time vs. query time

trade-offs with respect to the amount of work the indexing
subsystem and the query processor have to do, the experi-
ments were conducted with varying relative query and up-
date loads. This ratio is expressed by D

U
Q, the number of up-

date operations per query, and its pendant D
Q

U , queries per
update operation. A system with D

U
Q = 0 processes queries

for a static text collection. D
U
Q = ∞, on the other hand,

describes a system which only performs update operations
and never processes any queries. We conducted experiments
for D

U
Q values realistic in file system search.

The first series of experiments, depicted in Figure 1, in-
volves a monotonically growing collection. The whole collec-
tion is indexed, with queries being processed concurrently.
It can be seen that Logarithmic Merge is the best strategy
for a wide range of relative update/query loads. Only for

very small DQ

U , No Merge gives better overall performance.
In the second series of experiments, the system started

from an index containing 50% of the collection. Documents
were added and deleted randomly. Figure 2 shows that a
garbage threshold ρ = 0.5 is a good choice under most cir-
cumstances. On-the-fly garbage collection increases perfor-
mance slightly and gives a 3% improvement over the pure
threshold-based strategy.

5. ADDITIONAL RESOURCES
The Wumpus search system, along with technical reports

giving more details regarding the issues discussed in this pa-
per, can be found on-line: http://www.wumpus-search.org/.

6. REFERENCES
[1] T. Chiueh and L. Huang. Efficient Real-Time Index

Updates in Text Retrieval Systems. Technical report,
Stony Brook, New York, USA, August 1998.

[2] T. J. Gibson and E. L. Miller. Long-Term File Activity
Patterns in a UNIX Workstation Environment. In
Proceedings of the 15th IEEE Symposium on Mass

Storage Systems, pages 355–371, March 1998.

[3] N. Lester, J. Zobel, and H. E. Williams. In-Place versus
Re-Build versus Re-Merge: Index Maintenance
Strategies for Text Retrieval Systems. In Proceedings of

the 27th Conference on Australasian Computer Science,
pages 15–23, Darlinghurst, Australia, 2004.

[4] A. Tomasic, H. Garćıa-Molina, and K. Shoens.
Incremental Updates of Inverted Lists for Text
Document Retrieval. In Proceedings of the 1994 ACM

SIGMOD Conference, pages 289–300, New York, 1994.

